1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 #define DEBUG 62 63 #include <linux/kernel.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/of_platform.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/udp.h> 83 #include <linux/in.h> 84 #include <linux/net_tstamp.h> 85 86 #include <asm/io.h> 87 #ifdef CONFIG_PPC 88 #include <asm/reg.h> 89 #include <asm/mpc85xx.h> 90 #endif 91 #include <asm/irq.h> 92 #include <linux/uaccess.h> 93 #include <linux/module.h> 94 #include <linux/dma-mapping.h> 95 #include <linux/crc32.h> 96 #include <linux/mii.h> 97 #include <linux/phy.h> 98 #include <linux/phy_fixed.h> 99 #include <linux/of.h> 100 #include <linux/of_net.h> 101 102 #include "gianfar.h" 103 104 #define TX_TIMEOUT (5*HZ) 105 106 const char gfar_driver_version[] = "2.0"; 107 108 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 109 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 110 MODULE_LICENSE("GPL"); 111 112 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 113 dma_addr_t buf) 114 { 115 u32 lstatus; 116 117 bdp->bufPtr = cpu_to_be32(buf); 118 119 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 120 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 121 lstatus |= BD_LFLAG(RXBD_WRAP); 122 123 gfar_wmb(); 124 125 bdp->lstatus = cpu_to_be32(lstatus); 126 } 127 128 static void gfar_init_tx_rx_base(struct gfar_private *priv) 129 { 130 struct gfar __iomem *regs = priv->gfargrp[0].regs; 131 u32 __iomem *baddr; 132 int i; 133 134 baddr = ®s->tbase0; 135 for (i = 0; i < priv->num_tx_queues; i++) { 136 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 137 baddr += 2; 138 } 139 140 baddr = ®s->rbase0; 141 for (i = 0; i < priv->num_rx_queues; i++) { 142 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 143 baddr += 2; 144 } 145 } 146 147 static void gfar_init_rqprm(struct gfar_private *priv) 148 { 149 struct gfar __iomem *regs = priv->gfargrp[0].regs; 150 u32 __iomem *baddr; 151 int i; 152 153 baddr = ®s->rqprm0; 154 for (i = 0; i < priv->num_rx_queues; i++) { 155 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 156 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 157 baddr++; 158 } 159 } 160 161 static void gfar_rx_offload_en(struct gfar_private *priv) 162 { 163 /* set this when rx hw offload (TOE) functions are being used */ 164 priv->uses_rxfcb = 0; 165 166 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 167 priv->uses_rxfcb = 1; 168 169 if (priv->hwts_rx_en || priv->rx_filer_enable) 170 priv->uses_rxfcb = 1; 171 } 172 173 static void gfar_mac_rx_config(struct gfar_private *priv) 174 { 175 struct gfar __iomem *regs = priv->gfargrp[0].regs; 176 u32 rctrl = 0; 177 178 if (priv->rx_filer_enable) { 179 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 180 /* Program the RIR0 reg with the required distribution */ 181 if (priv->poll_mode == GFAR_SQ_POLLING) 182 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 183 else /* GFAR_MQ_POLLING */ 184 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 185 } 186 187 /* Restore PROMISC mode */ 188 if (priv->ndev->flags & IFF_PROMISC) 189 rctrl |= RCTRL_PROM; 190 191 if (priv->ndev->features & NETIF_F_RXCSUM) 192 rctrl |= RCTRL_CHECKSUMMING; 193 194 if (priv->extended_hash) 195 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 196 197 if (priv->padding) { 198 rctrl &= ~RCTRL_PAL_MASK; 199 rctrl |= RCTRL_PADDING(priv->padding); 200 } 201 202 /* Enable HW time stamping if requested from user space */ 203 if (priv->hwts_rx_en) 204 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 205 206 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 207 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 208 209 /* Clear the LFC bit */ 210 gfar_write(®s->rctrl, rctrl); 211 /* Init flow control threshold values */ 212 gfar_init_rqprm(priv); 213 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 214 rctrl |= RCTRL_LFC; 215 216 /* Init rctrl based on our settings */ 217 gfar_write(®s->rctrl, rctrl); 218 } 219 220 static void gfar_mac_tx_config(struct gfar_private *priv) 221 { 222 struct gfar __iomem *regs = priv->gfargrp[0].regs; 223 u32 tctrl = 0; 224 225 if (priv->ndev->features & NETIF_F_IP_CSUM) 226 tctrl |= TCTRL_INIT_CSUM; 227 228 if (priv->prio_sched_en) 229 tctrl |= TCTRL_TXSCHED_PRIO; 230 else { 231 tctrl |= TCTRL_TXSCHED_WRRS; 232 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 233 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 234 } 235 236 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 237 tctrl |= TCTRL_VLINS; 238 239 gfar_write(®s->tctrl, tctrl); 240 } 241 242 static void gfar_configure_coalescing(struct gfar_private *priv, 243 unsigned long tx_mask, unsigned long rx_mask) 244 { 245 struct gfar __iomem *regs = priv->gfargrp[0].regs; 246 u32 __iomem *baddr; 247 248 if (priv->mode == MQ_MG_MODE) { 249 int i = 0; 250 251 baddr = ®s->txic0; 252 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 253 gfar_write(baddr + i, 0); 254 if (likely(priv->tx_queue[i]->txcoalescing)) 255 gfar_write(baddr + i, priv->tx_queue[i]->txic); 256 } 257 258 baddr = ®s->rxic0; 259 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 260 gfar_write(baddr + i, 0); 261 if (likely(priv->rx_queue[i]->rxcoalescing)) 262 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 263 } 264 } else { 265 /* Backward compatible case -- even if we enable 266 * multiple queues, there's only single reg to program 267 */ 268 gfar_write(®s->txic, 0); 269 if (likely(priv->tx_queue[0]->txcoalescing)) 270 gfar_write(®s->txic, priv->tx_queue[0]->txic); 271 272 gfar_write(®s->rxic, 0); 273 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 274 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 275 } 276 } 277 278 static void gfar_configure_coalescing_all(struct gfar_private *priv) 279 { 280 gfar_configure_coalescing(priv, 0xFF, 0xFF); 281 } 282 283 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 284 { 285 struct gfar_private *priv = netdev_priv(dev); 286 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 287 unsigned long tx_packets = 0, tx_bytes = 0; 288 int i; 289 290 for (i = 0; i < priv->num_rx_queues; i++) { 291 rx_packets += priv->rx_queue[i]->stats.rx_packets; 292 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 293 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 294 } 295 296 dev->stats.rx_packets = rx_packets; 297 dev->stats.rx_bytes = rx_bytes; 298 dev->stats.rx_dropped = rx_dropped; 299 300 for (i = 0; i < priv->num_tx_queues; i++) { 301 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 302 tx_packets += priv->tx_queue[i]->stats.tx_packets; 303 } 304 305 dev->stats.tx_bytes = tx_bytes; 306 dev->stats.tx_packets = tx_packets; 307 308 return &dev->stats; 309 } 310 311 /* Set the appropriate hash bit for the given addr */ 312 /* The algorithm works like so: 313 * 1) Take the Destination Address (ie the multicast address), and 314 * do a CRC on it (little endian), and reverse the bits of the 315 * result. 316 * 2) Use the 8 most significant bits as a hash into a 256-entry 317 * table. The table is controlled through 8 32-bit registers: 318 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 319 * gaddr7. This means that the 3 most significant bits in the 320 * hash index which gaddr register to use, and the 5 other bits 321 * indicate which bit (assuming an IBM numbering scheme, which 322 * for PowerPC (tm) is usually the case) in the register holds 323 * the entry. 324 */ 325 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 326 { 327 u32 tempval; 328 struct gfar_private *priv = netdev_priv(dev); 329 u32 result = ether_crc(ETH_ALEN, addr); 330 int width = priv->hash_width; 331 u8 whichbit = (result >> (32 - width)) & 0x1f; 332 u8 whichreg = result >> (32 - width + 5); 333 u32 value = (1 << (31-whichbit)); 334 335 tempval = gfar_read(priv->hash_regs[whichreg]); 336 tempval |= value; 337 gfar_write(priv->hash_regs[whichreg], tempval); 338 } 339 340 /* There are multiple MAC Address register pairs on some controllers 341 * This function sets the numth pair to a given address 342 */ 343 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 344 const u8 *addr) 345 { 346 struct gfar_private *priv = netdev_priv(dev); 347 struct gfar __iomem *regs = priv->gfargrp[0].regs; 348 u32 tempval; 349 u32 __iomem *macptr = ®s->macstnaddr1; 350 351 macptr += num*2; 352 353 /* For a station address of 0x12345678ABCD in transmission 354 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 355 * MACnADDR2 is set to 0x34120000. 356 */ 357 tempval = (addr[5] << 24) | (addr[4] << 16) | 358 (addr[3] << 8) | addr[2]; 359 360 gfar_write(macptr, tempval); 361 362 tempval = (addr[1] << 24) | (addr[0] << 16); 363 364 gfar_write(macptr+1, tempval); 365 } 366 367 static int gfar_set_mac_addr(struct net_device *dev, void *p) 368 { 369 eth_mac_addr(dev, p); 370 371 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 372 373 return 0; 374 } 375 376 static void gfar_ints_disable(struct gfar_private *priv) 377 { 378 int i; 379 for (i = 0; i < priv->num_grps; i++) { 380 struct gfar __iomem *regs = priv->gfargrp[i].regs; 381 /* Clear IEVENT */ 382 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 383 384 /* Initialize IMASK */ 385 gfar_write(®s->imask, IMASK_INIT_CLEAR); 386 } 387 } 388 389 static void gfar_ints_enable(struct gfar_private *priv) 390 { 391 int i; 392 for (i = 0; i < priv->num_grps; i++) { 393 struct gfar __iomem *regs = priv->gfargrp[i].regs; 394 /* Unmask the interrupts we look for */ 395 gfar_write(®s->imask, IMASK_DEFAULT); 396 } 397 } 398 399 static int gfar_alloc_tx_queues(struct gfar_private *priv) 400 { 401 int i; 402 403 for (i = 0; i < priv->num_tx_queues; i++) { 404 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 405 GFP_KERNEL); 406 if (!priv->tx_queue[i]) 407 return -ENOMEM; 408 409 priv->tx_queue[i]->tx_skbuff = NULL; 410 priv->tx_queue[i]->qindex = i; 411 priv->tx_queue[i]->dev = priv->ndev; 412 spin_lock_init(&(priv->tx_queue[i]->txlock)); 413 } 414 return 0; 415 } 416 417 static int gfar_alloc_rx_queues(struct gfar_private *priv) 418 { 419 int i; 420 421 for (i = 0; i < priv->num_rx_queues; i++) { 422 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 423 GFP_KERNEL); 424 if (!priv->rx_queue[i]) 425 return -ENOMEM; 426 427 priv->rx_queue[i]->qindex = i; 428 priv->rx_queue[i]->ndev = priv->ndev; 429 } 430 return 0; 431 } 432 433 static void gfar_free_tx_queues(struct gfar_private *priv) 434 { 435 int i; 436 437 for (i = 0; i < priv->num_tx_queues; i++) 438 kfree(priv->tx_queue[i]); 439 } 440 441 static void gfar_free_rx_queues(struct gfar_private *priv) 442 { 443 int i; 444 445 for (i = 0; i < priv->num_rx_queues; i++) 446 kfree(priv->rx_queue[i]); 447 } 448 449 static void unmap_group_regs(struct gfar_private *priv) 450 { 451 int i; 452 453 for (i = 0; i < MAXGROUPS; i++) 454 if (priv->gfargrp[i].regs) 455 iounmap(priv->gfargrp[i].regs); 456 } 457 458 static void free_gfar_dev(struct gfar_private *priv) 459 { 460 int i, j; 461 462 for (i = 0; i < priv->num_grps; i++) 463 for (j = 0; j < GFAR_NUM_IRQS; j++) { 464 kfree(priv->gfargrp[i].irqinfo[j]); 465 priv->gfargrp[i].irqinfo[j] = NULL; 466 } 467 468 free_netdev(priv->ndev); 469 } 470 471 static void disable_napi(struct gfar_private *priv) 472 { 473 int i; 474 475 for (i = 0; i < priv->num_grps; i++) { 476 napi_disable(&priv->gfargrp[i].napi_rx); 477 napi_disable(&priv->gfargrp[i].napi_tx); 478 } 479 } 480 481 static void enable_napi(struct gfar_private *priv) 482 { 483 int i; 484 485 for (i = 0; i < priv->num_grps; i++) { 486 napi_enable(&priv->gfargrp[i].napi_rx); 487 napi_enable(&priv->gfargrp[i].napi_tx); 488 } 489 } 490 491 static int gfar_parse_group(struct device_node *np, 492 struct gfar_private *priv, const char *model) 493 { 494 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 495 int i; 496 497 for (i = 0; i < GFAR_NUM_IRQS; i++) { 498 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 499 GFP_KERNEL); 500 if (!grp->irqinfo[i]) 501 return -ENOMEM; 502 } 503 504 grp->regs = of_iomap(np, 0); 505 if (!grp->regs) 506 return -ENOMEM; 507 508 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 509 510 /* If we aren't the FEC we have multiple interrupts */ 511 if (model && strcasecmp(model, "FEC")) { 512 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 513 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 514 if (!gfar_irq(grp, TX)->irq || 515 !gfar_irq(grp, RX)->irq || 516 !gfar_irq(grp, ER)->irq) 517 return -EINVAL; 518 } 519 520 grp->priv = priv; 521 spin_lock_init(&grp->grplock); 522 if (priv->mode == MQ_MG_MODE) { 523 u32 rxq_mask, txq_mask; 524 int ret; 525 526 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 527 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 528 529 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 530 if (!ret) { 531 grp->rx_bit_map = rxq_mask ? 532 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 533 } 534 535 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 536 if (!ret) { 537 grp->tx_bit_map = txq_mask ? 538 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 539 } 540 541 if (priv->poll_mode == GFAR_SQ_POLLING) { 542 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 543 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 544 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 545 } 546 } else { 547 grp->rx_bit_map = 0xFF; 548 grp->tx_bit_map = 0xFF; 549 } 550 551 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 552 * right to left, so we need to revert the 8 bits to get the q index 553 */ 554 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 555 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 556 557 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 558 * also assign queues to groups 559 */ 560 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 561 if (!grp->rx_queue) 562 grp->rx_queue = priv->rx_queue[i]; 563 grp->num_rx_queues++; 564 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 565 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 566 priv->rx_queue[i]->grp = grp; 567 } 568 569 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 570 if (!grp->tx_queue) 571 grp->tx_queue = priv->tx_queue[i]; 572 grp->num_tx_queues++; 573 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 574 priv->tqueue |= (TQUEUE_EN0 >> i); 575 priv->tx_queue[i]->grp = grp; 576 } 577 578 priv->num_grps++; 579 580 return 0; 581 } 582 583 static int gfar_of_group_count(struct device_node *np) 584 { 585 struct device_node *child; 586 int num = 0; 587 588 for_each_available_child_of_node(np, child) 589 if (of_node_name_eq(child, "queue-group")) 590 num++; 591 592 return num; 593 } 594 595 /* Reads the controller's registers to determine what interface 596 * connects it to the PHY. 597 */ 598 static phy_interface_t gfar_get_interface(struct net_device *dev) 599 { 600 struct gfar_private *priv = netdev_priv(dev); 601 struct gfar __iomem *regs = priv->gfargrp[0].regs; 602 u32 ecntrl; 603 604 ecntrl = gfar_read(®s->ecntrl); 605 606 if (ecntrl & ECNTRL_SGMII_MODE) 607 return PHY_INTERFACE_MODE_SGMII; 608 609 if (ecntrl & ECNTRL_TBI_MODE) { 610 if (ecntrl & ECNTRL_REDUCED_MODE) 611 return PHY_INTERFACE_MODE_RTBI; 612 else 613 return PHY_INTERFACE_MODE_TBI; 614 } 615 616 if (ecntrl & ECNTRL_REDUCED_MODE) { 617 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 618 return PHY_INTERFACE_MODE_RMII; 619 } 620 else { 621 phy_interface_t interface = priv->interface; 622 623 /* This isn't autodetected right now, so it must 624 * be set by the device tree or platform code. 625 */ 626 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 627 return PHY_INTERFACE_MODE_RGMII_ID; 628 629 return PHY_INTERFACE_MODE_RGMII; 630 } 631 } 632 633 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 634 return PHY_INTERFACE_MODE_GMII; 635 636 return PHY_INTERFACE_MODE_MII; 637 } 638 639 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 640 { 641 const char *model; 642 const void *mac_addr; 643 int err = 0, i; 644 struct net_device *dev = NULL; 645 struct gfar_private *priv = NULL; 646 struct device_node *np = ofdev->dev.of_node; 647 struct device_node *child = NULL; 648 u32 stash_len = 0; 649 u32 stash_idx = 0; 650 unsigned int num_tx_qs, num_rx_qs; 651 unsigned short mode, poll_mode; 652 653 if (!np) 654 return -ENODEV; 655 656 if (of_device_is_compatible(np, "fsl,etsec2")) { 657 mode = MQ_MG_MODE; 658 poll_mode = GFAR_SQ_POLLING; 659 } else { 660 mode = SQ_SG_MODE; 661 poll_mode = GFAR_SQ_POLLING; 662 } 663 664 if (mode == SQ_SG_MODE) { 665 num_tx_qs = 1; 666 num_rx_qs = 1; 667 } else { /* MQ_MG_MODE */ 668 /* get the actual number of supported groups */ 669 unsigned int num_grps = gfar_of_group_count(np); 670 671 if (num_grps == 0 || num_grps > MAXGROUPS) { 672 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 673 num_grps); 674 pr_err("Cannot do alloc_etherdev, aborting\n"); 675 return -EINVAL; 676 } 677 678 if (poll_mode == GFAR_SQ_POLLING) { 679 num_tx_qs = num_grps; /* one txq per int group */ 680 num_rx_qs = num_grps; /* one rxq per int group */ 681 } else { /* GFAR_MQ_POLLING */ 682 u32 tx_queues, rx_queues; 683 int ret; 684 685 /* parse the num of HW tx and rx queues */ 686 ret = of_property_read_u32(np, "fsl,num_tx_queues", 687 &tx_queues); 688 num_tx_qs = ret ? 1 : tx_queues; 689 690 ret = of_property_read_u32(np, "fsl,num_rx_queues", 691 &rx_queues); 692 num_rx_qs = ret ? 1 : rx_queues; 693 } 694 } 695 696 if (num_tx_qs > MAX_TX_QS) { 697 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 698 num_tx_qs, MAX_TX_QS); 699 pr_err("Cannot do alloc_etherdev, aborting\n"); 700 return -EINVAL; 701 } 702 703 if (num_rx_qs > MAX_RX_QS) { 704 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 705 num_rx_qs, MAX_RX_QS); 706 pr_err("Cannot do alloc_etherdev, aborting\n"); 707 return -EINVAL; 708 } 709 710 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 711 dev = *pdev; 712 if (NULL == dev) 713 return -ENOMEM; 714 715 priv = netdev_priv(dev); 716 priv->ndev = dev; 717 718 priv->mode = mode; 719 priv->poll_mode = poll_mode; 720 721 priv->num_tx_queues = num_tx_qs; 722 netif_set_real_num_rx_queues(dev, num_rx_qs); 723 priv->num_rx_queues = num_rx_qs; 724 725 err = gfar_alloc_tx_queues(priv); 726 if (err) 727 goto tx_alloc_failed; 728 729 err = gfar_alloc_rx_queues(priv); 730 if (err) 731 goto rx_alloc_failed; 732 733 err = of_property_read_string(np, "model", &model); 734 if (err) { 735 pr_err("Device model property missing, aborting\n"); 736 goto rx_alloc_failed; 737 } 738 739 /* Init Rx queue filer rule set linked list */ 740 INIT_LIST_HEAD(&priv->rx_list.list); 741 priv->rx_list.count = 0; 742 mutex_init(&priv->rx_queue_access); 743 744 for (i = 0; i < MAXGROUPS; i++) 745 priv->gfargrp[i].regs = NULL; 746 747 /* Parse and initialize group specific information */ 748 if (priv->mode == MQ_MG_MODE) { 749 for_each_available_child_of_node(np, child) { 750 if (!of_node_name_eq(child, "queue-group")) 751 continue; 752 753 err = gfar_parse_group(child, priv, model); 754 if (err) 755 goto err_grp_init; 756 } 757 } else { /* SQ_SG_MODE */ 758 err = gfar_parse_group(np, priv, model); 759 if (err) 760 goto err_grp_init; 761 } 762 763 if (of_property_read_bool(np, "bd-stash")) { 764 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 765 priv->bd_stash_en = 1; 766 } 767 768 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 769 770 if (err == 0) 771 priv->rx_stash_size = stash_len; 772 773 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 774 775 if (err == 0) 776 priv->rx_stash_index = stash_idx; 777 778 if (stash_len || stash_idx) 779 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 780 781 mac_addr = of_get_mac_address(np); 782 783 if (!IS_ERR(mac_addr)) 784 ether_addr_copy(dev->dev_addr, mac_addr); 785 786 if (model && !strcasecmp(model, "TSEC")) 787 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 788 FSL_GIANFAR_DEV_HAS_COALESCE | 789 FSL_GIANFAR_DEV_HAS_RMON | 790 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 791 792 if (model && !strcasecmp(model, "eTSEC")) 793 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 794 FSL_GIANFAR_DEV_HAS_COALESCE | 795 FSL_GIANFAR_DEV_HAS_RMON | 796 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 797 FSL_GIANFAR_DEV_HAS_CSUM | 798 FSL_GIANFAR_DEV_HAS_VLAN | 799 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 800 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 801 FSL_GIANFAR_DEV_HAS_TIMER | 802 FSL_GIANFAR_DEV_HAS_RX_FILER; 803 804 /* Use PHY connection type from the DT node if one is specified there. 805 * rgmii-id really needs to be specified. Other types can be 806 * detected by hardware 807 */ 808 err = of_get_phy_mode(np); 809 if (err >= 0) 810 priv->interface = err; 811 else 812 priv->interface = gfar_get_interface(dev); 813 814 if (of_find_property(np, "fsl,magic-packet", NULL)) 815 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 816 817 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 818 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 819 820 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 821 822 /* In the case of a fixed PHY, the DT node associated 823 * to the PHY is the Ethernet MAC DT node. 824 */ 825 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 826 err = of_phy_register_fixed_link(np); 827 if (err) 828 goto err_grp_init; 829 830 priv->phy_node = of_node_get(np); 831 } 832 833 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 834 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 835 836 return 0; 837 838 err_grp_init: 839 unmap_group_regs(priv); 840 rx_alloc_failed: 841 gfar_free_rx_queues(priv); 842 tx_alloc_failed: 843 gfar_free_tx_queues(priv); 844 free_gfar_dev(priv); 845 return err; 846 } 847 848 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 849 u32 class) 850 { 851 u32 rqfpr = FPR_FILER_MASK; 852 u32 rqfcr = 0x0; 853 854 rqfar--; 855 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 856 priv->ftp_rqfpr[rqfar] = rqfpr; 857 priv->ftp_rqfcr[rqfar] = rqfcr; 858 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 859 860 rqfar--; 861 rqfcr = RQFCR_CMP_NOMATCH; 862 priv->ftp_rqfpr[rqfar] = rqfpr; 863 priv->ftp_rqfcr[rqfar] = rqfcr; 864 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 865 866 rqfar--; 867 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 868 rqfpr = class; 869 priv->ftp_rqfcr[rqfar] = rqfcr; 870 priv->ftp_rqfpr[rqfar] = rqfpr; 871 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 872 873 rqfar--; 874 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 875 rqfpr = class; 876 priv->ftp_rqfcr[rqfar] = rqfcr; 877 priv->ftp_rqfpr[rqfar] = rqfpr; 878 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 879 880 return rqfar; 881 } 882 883 static void gfar_init_filer_table(struct gfar_private *priv) 884 { 885 int i = 0x0; 886 u32 rqfar = MAX_FILER_IDX; 887 u32 rqfcr = 0x0; 888 u32 rqfpr = FPR_FILER_MASK; 889 890 /* Default rule */ 891 rqfcr = RQFCR_CMP_MATCH; 892 priv->ftp_rqfcr[rqfar] = rqfcr; 893 priv->ftp_rqfpr[rqfar] = rqfpr; 894 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 895 896 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 897 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 898 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 899 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 900 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 901 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 902 903 /* cur_filer_idx indicated the first non-masked rule */ 904 priv->cur_filer_idx = rqfar; 905 906 /* Rest are masked rules */ 907 rqfcr = RQFCR_CMP_NOMATCH; 908 for (i = 0; i < rqfar; i++) { 909 priv->ftp_rqfcr[i] = rqfcr; 910 priv->ftp_rqfpr[i] = rqfpr; 911 gfar_write_filer(priv, i, rqfcr, rqfpr); 912 } 913 } 914 915 #ifdef CONFIG_PPC 916 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 917 { 918 unsigned int pvr = mfspr(SPRN_PVR); 919 unsigned int svr = mfspr(SPRN_SVR); 920 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 921 unsigned int rev = svr & 0xffff; 922 923 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 924 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 925 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 926 priv->errata |= GFAR_ERRATA_74; 927 928 /* MPC8313 and MPC837x all rev */ 929 if ((pvr == 0x80850010 && mod == 0x80b0) || 930 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 931 priv->errata |= GFAR_ERRATA_76; 932 933 /* MPC8313 Rev < 2.0 */ 934 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 935 priv->errata |= GFAR_ERRATA_12; 936 } 937 938 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 939 { 940 unsigned int svr = mfspr(SPRN_SVR); 941 942 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 943 priv->errata |= GFAR_ERRATA_12; 944 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 945 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 946 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 947 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 948 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 949 } 950 #endif 951 952 static void gfar_detect_errata(struct gfar_private *priv) 953 { 954 struct device *dev = &priv->ofdev->dev; 955 956 /* no plans to fix */ 957 priv->errata |= GFAR_ERRATA_A002; 958 959 #ifdef CONFIG_PPC 960 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 961 __gfar_detect_errata_85xx(priv); 962 else /* non-mpc85xx parts, i.e. e300 core based */ 963 __gfar_detect_errata_83xx(priv); 964 #endif 965 966 if (priv->errata) 967 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 968 priv->errata); 969 } 970 971 static void gfar_init_addr_hash_table(struct gfar_private *priv) 972 { 973 struct gfar __iomem *regs = priv->gfargrp[0].regs; 974 975 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 976 priv->extended_hash = 1; 977 priv->hash_width = 9; 978 979 priv->hash_regs[0] = ®s->igaddr0; 980 priv->hash_regs[1] = ®s->igaddr1; 981 priv->hash_regs[2] = ®s->igaddr2; 982 priv->hash_regs[3] = ®s->igaddr3; 983 priv->hash_regs[4] = ®s->igaddr4; 984 priv->hash_regs[5] = ®s->igaddr5; 985 priv->hash_regs[6] = ®s->igaddr6; 986 priv->hash_regs[7] = ®s->igaddr7; 987 priv->hash_regs[8] = ®s->gaddr0; 988 priv->hash_regs[9] = ®s->gaddr1; 989 priv->hash_regs[10] = ®s->gaddr2; 990 priv->hash_regs[11] = ®s->gaddr3; 991 priv->hash_regs[12] = ®s->gaddr4; 992 priv->hash_regs[13] = ®s->gaddr5; 993 priv->hash_regs[14] = ®s->gaddr6; 994 priv->hash_regs[15] = ®s->gaddr7; 995 996 } else { 997 priv->extended_hash = 0; 998 priv->hash_width = 8; 999 1000 priv->hash_regs[0] = ®s->gaddr0; 1001 priv->hash_regs[1] = ®s->gaddr1; 1002 priv->hash_regs[2] = ®s->gaddr2; 1003 priv->hash_regs[3] = ®s->gaddr3; 1004 priv->hash_regs[4] = ®s->gaddr4; 1005 priv->hash_regs[5] = ®s->gaddr5; 1006 priv->hash_regs[6] = ®s->gaddr6; 1007 priv->hash_regs[7] = ®s->gaddr7; 1008 } 1009 } 1010 1011 static int __gfar_is_rx_idle(struct gfar_private *priv) 1012 { 1013 u32 res; 1014 1015 /* Normaly TSEC should not hang on GRS commands, so we should 1016 * actually wait for IEVENT_GRSC flag. 1017 */ 1018 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1019 return 0; 1020 1021 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1022 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1023 * and the Rx can be safely reset. 1024 */ 1025 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1026 res &= 0x7f807f80; 1027 if ((res & 0xffff) == (res >> 16)) 1028 return 1; 1029 1030 return 0; 1031 } 1032 1033 /* Halt the receive and transmit queues */ 1034 static void gfar_halt_nodisable(struct gfar_private *priv) 1035 { 1036 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1037 u32 tempval; 1038 unsigned int timeout; 1039 int stopped; 1040 1041 gfar_ints_disable(priv); 1042 1043 if (gfar_is_dma_stopped(priv)) 1044 return; 1045 1046 /* Stop the DMA, and wait for it to stop */ 1047 tempval = gfar_read(®s->dmactrl); 1048 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1049 gfar_write(®s->dmactrl, tempval); 1050 1051 retry: 1052 timeout = 1000; 1053 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1054 cpu_relax(); 1055 timeout--; 1056 } 1057 1058 if (!timeout) 1059 stopped = gfar_is_dma_stopped(priv); 1060 1061 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1062 !__gfar_is_rx_idle(priv)) 1063 goto retry; 1064 } 1065 1066 /* Halt the receive and transmit queues */ 1067 static void gfar_halt(struct gfar_private *priv) 1068 { 1069 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1070 u32 tempval; 1071 1072 /* Dissable the Rx/Tx hw queues */ 1073 gfar_write(®s->rqueue, 0); 1074 gfar_write(®s->tqueue, 0); 1075 1076 mdelay(10); 1077 1078 gfar_halt_nodisable(priv); 1079 1080 /* Disable Rx/Tx DMA */ 1081 tempval = gfar_read(®s->maccfg1); 1082 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1083 gfar_write(®s->maccfg1, tempval); 1084 } 1085 1086 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1087 { 1088 struct txbd8 *txbdp; 1089 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1090 int i, j; 1091 1092 txbdp = tx_queue->tx_bd_base; 1093 1094 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1095 if (!tx_queue->tx_skbuff[i]) 1096 continue; 1097 1098 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1099 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1100 txbdp->lstatus = 0; 1101 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1102 j++) { 1103 txbdp++; 1104 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1105 be16_to_cpu(txbdp->length), 1106 DMA_TO_DEVICE); 1107 } 1108 txbdp++; 1109 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1110 tx_queue->tx_skbuff[i] = NULL; 1111 } 1112 kfree(tx_queue->tx_skbuff); 1113 tx_queue->tx_skbuff = NULL; 1114 } 1115 1116 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1117 { 1118 int i; 1119 1120 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1121 1122 dev_kfree_skb(rx_queue->skb); 1123 1124 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1125 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1126 1127 rxbdp->lstatus = 0; 1128 rxbdp->bufPtr = 0; 1129 rxbdp++; 1130 1131 if (!rxb->page) 1132 continue; 1133 1134 dma_unmap_page(rx_queue->dev, rxb->dma, 1135 PAGE_SIZE, DMA_FROM_DEVICE); 1136 __free_page(rxb->page); 1137 1138 rxb->page = NULL; 1139 } 1140 1141 kfree(rx_queue->rx_buff); 1142 rx_queue->rx_buff = NULL; 1143 } 1144 1145 /* If there are any tx skbs or rx skbs still around, free them. 1146 * Then free tx_skbuff and rx_skbuff 1147 */ 1148 static void free_skb_resources(struct gfar_private *priv) 1149 { 1150 struct gfar_priv_tx_q *tx_queue = NULL; 1151 struct gfar_priv_rx_q *rx_queue = NULL; 1152 int i; 1153 1154 /* Go through all the buffer descriptors and free their data buffers */ 1155 for (i = 0; i < priv->num_tx_queues; i++) { 1156 struct netdev_queue *txq; 1157 1158 tx_queue = priv->tx_queue[i]; 1159 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1160 if (tx_queue->tx_skbuff) 1161 free_skb_tx_queue(tx_queue); 1162 netdev_tx_reset_queue(txq); 1163 } 1164 1165 for (i = 0; i < priv->num_rx_queues; i++) { 1166 rx_queue = priv->rx_queue[i]; 1167 if (rx_queue->rx_buff) 1168 free_skb_rx_queue(rx_queue); 1169 } 1170 1171 dma_free_coherent(priv->dev, 1172 sizeof(struct txbd8) * priv->total_tx_ring_size + 1173 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1174 priv->tx_queue[0]->tx_bd_base, 1175 priv->tx_queue[0]->tx_bd_dma_base); 1176 } 1177 1178 void stop_gfar(struct net_device *dev) 1179 { 1180 struct gfar_private *priv = netdev_priv(dev); 1181 1182 netif_tx_stop_all_queues(dev); 1183 1184 smp_mb__before_atomic(); 1185 set_bit(GFAR_DOWN, &priv->state); 1186 smp_mb__after_atomic(); 1187 1188 disable_napi(priv); 1189 1190 /* disable ints and gracefully shut down Rx/Tx DMA */ 1191 gfar_halt(priv); 1192 1193 phy_stop(dev->phydev); 1194 1195 free_skb_resources(priv); 1196 } 1197 1198 static void gfar_start(struct gfar_private *priv) 1199 { 1200 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1201 u32 tempval; 1202 int i = 0; 1203 1204 /* Enable Rx/Tx hw queues */ 1205 gfar_write(®s->rqueue, priv->rqueue); 1206 gfar_write(®s->tqueue, priv->tqueue); 1207 1208 /* Initialize DMACTRL to have WWR and WOP */ 1209 tempval = gfar_read(®s->dmactrl); 1210 tempval |= DMACTRL_INIT_SETTINGS; 1211 gfar_write(®s->dmactrl, tempval); 1212 1213 /* Make sure we aren't stopped */ 1214 tempval = gfar_read(®s->dmactrl); 1215 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1216 gfar_write(®s->dmactrl, tempval); 1217 1218 for (i = 0; i < priv->num_grps; i++) { 1219 regs = priv->gfargrp[i].regs; 1220 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1221 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1222 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1223 } 1224 1225 /* Enable Rx/Tx DMA */ 1226 tempval = gfar_read(®s->maccfg1); 1227 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1228 gfar_write(®s->maccfg1, tempval); 1229 1230 gfar_ints_enable(priv); 1231 1232 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1233 } 1234 1235 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1236 { 1237 struct page *page; 1238 dma_addr_t addr; 1239 1240 page = dev_alloc_page(); 1241 if (unlikely(!page)) 1242 return false; 1243 1244 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1245 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1246 __free_page(page); 1247 1248 return false; 1249 } 1250 1251 rxb->dma = addr; 1252 rxb->page = page; 1253 rxb->page_offset = 0; 1254 1255 return true; 1256 } 1257 1258 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1259 { 1260 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1261 struct gfar_extra_stats *estats = &priv->extra_stats; 1262 1263 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1264 atomic64_inc(&estats->rx_alloc_err); 1265 } 1266 1267 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1268 int alloc_cnt) 1269 { 1270 struct rxbd8 *bdp; 1271 struct gfar_rx_buff *rxb; 1272 int i; 1273 1274 i = rx_queue->next_to_use; 1275 bdp = &rx_queue->rx_bd_base[i]; 1276 rxb = &rx_queue->rx_buff[i]; 1277 1278 while (alloc_cnt--) { 1279 /* try reuse page */ 1280 if (unlikely(!rxb->page)) { 1281 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1282 gfar_rx_alloc_err(rx_queue); 1283 break; 1284 } 1285 } 1286 1287 /* Setup the new RxBD */ 1288 gfar_init_rxbdp(rx_queue, bdp, 1289 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1290 1291 /* Update to the next pointer */ 1292 bdp++; 1293 rxb++; 1294 1295 if (unlikely(++i == rx_queue->rx_ring_size)) { 1296 i = 0; 1297 bdp = rx_queue->rx_bd_base; 1298 rxb = rx_queue->rx_buff; 1299 } 1300 } 1301 1302 rx_queue->next_to_use = i; 1303 rx_queue->next_to_alloc = i; 1304 } 1305 1306 static void gfar_init_bds(struct net_device *ndev) 1307 { 1308 struct gfar_private *priv = netdev_priv(ndev); 1309 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1310 struct gfar_priv_tx_q *tx_queue = NULL; 1311 struct gfar_priv_rx_q *rx_queue = NULL; 1312 struct txbd8 *txbdp; 1313 u32 __iomem *rfbptr; 1314 int i, j; 1315 1316 for (i = 0; i < priv->num_tx_queues; i++) { 1317 tx_queue = priv->tx_queue[i]; 1318 /* Initialize some variables in our dev structure */ 1319 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1320 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1321 tx_queue->cur_tx = tx_queue->tx_bd_base; 1322 tx_queue->skb_curtx = 0; 1323 tx_queue->skb_dirtytx = 0; 1324 1325 /* Initialize Transmit Descriptor Ring */ 1326 txbdp = tx_queue->tx_bd_base; 1327 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1328 txbdp->lstatus = 0; 1329 txbdp->bufPtr = 0; 1330 txbdp++; 1331 } 1332 1333 /* Set the last descriptor in the ring to indicate wrap */ 1334 txbdp--; 1335 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1336 TXBD_WRAP); 1337 } 1338 1339 rfbptr = ®s->rfbptr0; 1340 for (i = 0; i < priv->num_rx_queues; i++) { 1341 rx_queue = priv->rx_queue[i]; 1342 1343 rx_queue->next_to_clean = 0; 1344 rx_queue->next_to_use = 0; 1345 rx_queue->next_to_alloc = 0; 1346 1347 /* make sure next_to_clean != next_to_use after this 1348 * by leaving at least 1 unused descriptor 1349 */ 1350 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1351 1352 rx_queue->rfbptr = rfbptr; 1353 rfbptr += 2; 1354 } 1355 } 1356 1357 static int gfar_alloc_skb_resources(struct net_device *ndev) 1358 { 1359 void *vaddr; 1360 dma_addr_t addr; 1361 int i, j; 1362 struct gfar_private *priv = netdev_priv(ndev); 1363 struct device *dev = priv->dev; 1364 struct gfar_priv_tx_q *tx_queue = NULL; 1365 struct gfar_priv_rx_q *rx_queue = NULL; 1366 1367 priv->total_tx_ring_size = 0; 1368 for (i = 0; i < priv->num_tx_queues; i++) 1369 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1370 1371 priv->total_rx_ring_size = 0; 1372 for (i = 0; i < priv->num_rx_queues; i++) 1373 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1374 1375 /* Allocate memory for the buffer descriptors */ 1376 vaddr = dma_alloc_coherent(dev, 1377 (priv->total_tx_ring_size * 1378 sizeof(struct txbd8)) + 1379 (priv->total_rx_ring_size * 1380 sizeof(struct rxbd8)), 1381 &addr, GFP_KERNEL); 1382 if (!vaddr) 1383 return -ENOMEM; 1384 1385 for (i = 0; i < priv->num_tx_queues; i++) { 1386 tx_queue = priv->tx_queue[i]; 1387 tx_queue->tx_bd_base = vaddr; 1388 tx_queue->tx_bd_dma_base = addr; 1389 tx_queue->dev = ndev; 1390 /* enet DMA only understands physical addresses */ 1391 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1392 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1393 } 1394 1395 /* Start the rx descriptor ring where the tx ring leaves off */ 1396 for (i = 0; i < priv->num_rx_queues; i++) { 1397 rx_queue = priv->rx_queue[i]; 1398 rx_queue->rx_bd_base = vaddr; 1399 rx_queue->rx_bd_dma_base = addr; 1400 rx_queue->ndev = ndev; 1401 rx_queue->dev = dev; 1402 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1403 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1404 } 1405 1406 /* Setup the skbuff rings */ 1407 for (i = 0; i < priv->num_tx_queues; i++) { 1408 tx_queue = priv->tx_queue[i]; 1409 tx_queue->tx_skbuff = 1410 kmalloc_array(tx_queue->tx_ring_size, 1411 sizeof(*tx_queue->tx_skbuff), 1412 GFP_KERNEL); 1413 if (!tx_queue->tx_skbuff) 1414 goto cleanup; 1415 1416 for (j = 0; j < tx_queue->tx_ring_size; j++) 1417 tx_queue->tx_skbuff[j] = NULL; 1418 } 1419 1420 for (i = 0; i < priv->num_rx_queues; i++) { 1421 rx_queue = priv->rx_queue[i]; 1422 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1423 sizeof(*rx_queue->rx_buff), 1424 GFP_KERNEL); 1425 if (!rx_queue->rx_buff) 1426 goto cleanup; 1427 } 1428 1429 gfar_init_bds(ndev); 1430 1431 return 0; 1432 1433 cleanup: 1434 free_skb_resources(priv); 1435 return -ENOMEM; 1436 } 1437 1438 /* Bring the controller up and running */ 1439 int startup_gfar(struct net_device *ndev) 1440 { 1441 struct gfar_private *priv = netdev_priv(ndev); 1442 int err; 1443 1444 gfar_mac_reset(priv); 1445 1446 err = gfar_alloc_skb_resources(ndev); 1447 if (err) 1448 return err; 1449 1450 gfar_init_tx_rx_base(priv); 1451 1452 smp_mb__before_atomic(); 1453 clear_bit(GFAR_DOWN, &priv->state); 1454 smp_mb__after_atomic(); 1455 1456 /* Start Rx/Tx DMA and enable the interrupts */ 1457 gfar_start(priv); 1458 1459 /* force link state update after mac reset */ 1460 priv->oldlink = 0; 1461 priv->oldspeed = 0; 1462 priv->oldduplex = -1; 1463 1464 phy_start(ndev->phydev); 1465 1466 enable_napi(priv); 1467 1468 netif_tx_wake_all_queues(ndev); 1469 1470 return 0; 1471 } 1472 1473 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1474 { 1475 struct net_device *ndev = priv->ndev; 1476 struct phy_device *phydev = ndev->phydev; 1477 u32 val = 0; 1478 1479 if (!phydev->duplex) 1480 return val; 1481 1482 if (!priv->pause_aneg_en) { 1483 if (priv->tx_pause_en) 1484 val |= MACCFG1_TX_FLOW; 1485 if (priv->rx_pause_en) 1486 val |= MACCFG1_RX_FLOW; 1487 } else { 1488 u16 lcl_adv, rmt_adv; 1489 u8 flowctrl; 1490 /* get link partner capabilities */ 1491 rmt_adv = 0; 1492 if (phydev->pause) 1493 rmt_adv = LPA_PAUSE_CAP; 1494 if (phydev->asym_pause) 1495 rmt_adv |= LPA_PAUSE_ASYM; 1496 1497 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1498 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1499 if (flowctrl & FLOW_CTRL_TX) 1500 val |= MACCFG1_TX_FLOW; 1501 if (flowctrl & FLOW_CTRL_RX) 1502 val |= MACCFG1_RX_FLOW; 1503 } 1504 1505 return val; 1506 } 1507 1508 static noinline void gfar_update_link_state(struct gfar_private *priv) 1509 { 1510 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1511 struct net_device *ndev = priv->ndev; 1512 struct phy_device *phydev = ndev->phydev; 1513 struct gfar_priv_rx_q *rx_queue = NULL; 1514 int i; 1515 1516 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1517 return; 1518 1519 if (phydev->link) { 1520 u32 tempval1 = gfar_read(®s->maccfg1); 1521 u32 tempval = gfar_read(®s->maccfg2); 1522 u32 ecntrl = gfar_read(®s->ecntrl); 1523 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1524 1525 if (phydev->duplex != priv->oldduplex) { 1526 if (!(phydev->duplex)) 1527 tempval &= ~(MACCFG2_FULL_DUPLEX); 1528 else 1529 tempval |= MACCFG2_FULL_DUPLEX; 1530 1531 priv->oldduplex = phydev->duplex; 1532 } 1533 1534 if (phydev->speed != priv->oldspeed) { 1535 switch (phydev->speed) { 1536 case 1000: 1537 tempval = 1538 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1539 1540 ecntrl &= ~(ECNTRL_R100); 1541 break; 1542 case 100: 1543 case 10: 1544 tempval = 1545 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1546 1547 /* Reduced mode distinguishes 1548 * between 10 and 100 1549 */ 1550 if (phydev->speed == SPEED_100) 1551 ecntrl |= ECNTRL_R100; 1552 else 1553 ecntrl &= ~(ECNTRL_R100); 1554 break; 1555 default: 1556 netif_warn(priv, link, priv->ndev, 1557 "Ack! Speed (%d) is not 10/100/1000!\n", 1558 phydev->speed); 1559 break; 1560 } 1561 1562 priv->oldspeed = phydev->speed; 1563 } 1564 1565 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1566 tempval1 |= gfar_get_flowctrl_cfg(priv); 1567 1568 /* Turn last free buffer recording on */ 1569 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1570 for (i = 0; i < priv->num_rx_queues; i++) { 1571 u32 bdp_dma; 1572 1573 rx_queue = priv->rx_queue[i]; 1574 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1575 gfar_write(rx_queue->rfbptr, bdp_dma); 1576 } 1577 1578 priv->tx_actual_en = 1; 1579 } 1580 1581 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1582 priv->tx_actual_en = 0; 1583 1584 gfar_write(®s->maccfg1, tempval1); 1585 gfar_write(®s->maccfg2, tempval); 1586 gfar_write(®s->ecntrl, ecntrl); 1587 1588 if (!priv->oldlink) 1589 priv->oldlink = 1; 1590 1591 } else if (priv->oldlink) { 1592 priv->oldlink = 0; 1593 priv->oldspeed = 0; 1594 priv->oldduplex = -1; 1595 } 1596 1597 if (netif_msg_link(priv)) 1598 phy_print_status(phydev); 1599 } 1600 1601 /* Called every time the controller might need to be made 1602 * aware of new link state. The PHY code conveys this 1603 * information through variables in the phydev structure, and this 1604 * function converts those variables into the appropriate 1605 * register values, and can bring down the device if needed. 1606 */ 1607 static void adjust_link(struct net_device *dev) 1608 { 1609 struct gfar_private *priv = netdev_priv(dev); 1610 struct phy_device *phydev = dev->phydev; 1611 1612 if (unlikely(phydev->link != priv->oldlink || 1613 (phydev->link && (phydev->duplex != priv->oldduplex || 1614 phydev->speed != priv->oldspeed)))) 1615 gfar_update_link_state(priv); 1616 } 1617 1618 /* Initialize TBI PHY interface for communicating with the 1619 * SERDES lynx PHY on the chip. We communicate with this PHY 1620 * through the MDIO bus on each controller, treating it as a 1621 * "normal" PHY at the address found in the TBIPA register. We assume 1622 * that the TBIPA register is valid. Either the MDIO bus code will set 1623 * it to a value that doesn't conflict with other PHYs on the bus, or the 1624 * value doesn't matter, as there are no other PHYs on the bus. 1625 */ 1626 static void gfar_configure_serdes(struct net_device *dev) 1627 { 1628 struct gfar_private *priv = netdev_priv(dev); 1629 struct phy_device *tbiphy; 1630 1631 if (!priv->tbi_node) { 1632 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1633 "device tree specify a tbi-handle\n"); 1634 return; 1635 } 1636 1637 tbiphy = of_phy_find_device(priv->tbi_node); 1638 if (!tbiphy) { 1639 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1640 return; 1641 } 1642 1643 /* If the link is already up, we must already be ok, and don't need to 1644 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1645 * everything for us? Resetting it takes the link down and requires 1646 * several seconds for it to come back. 1647 */ 1648 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1649 put_device(&tbiphy->mdio.dev); 1650 return; 1651 } 1652 1653 /* Single clk mode, mii mode off(for serdes communication) */ 1654 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1655 1656 phy_write(tbiphy, MII_ADVERTISE, 1657 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1658 ADVERTISE_1000XPSE_ASYM); 1659 1660 phy_write(tbiphy, MII_BMCR, 1661 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1662 BMCR_SPEED1000); 1663 1664 put_device(&tbiphy->mdio.dev); 1665 } 1666 1667 /* Initializes driver's PHY state, and attaches to the PHY. 1668 * Returns 0 on success. 1669 */ 1670 static int init_phy(struct net_device *dev) 1671 { 1672 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1673 struct gfar_private *priv = netdev_priv(dev); 1674 phy_interface_t interface = priv->interface; 1675 struct phy_device *phydev; 1676 struct ethtool_eee edata; 1677 1678 linkmode_set_bit_array(phy_10_100_features_array, 1679 ARRAY_SIZE(phy_10_100_features_array), 1680 mask); 1681 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1682 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1683 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1684 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1685 1686 priv->oldlink = 0; 1687 priv->oldspeed = 0; 1688 priv->oldduplex = -1; 1689 1690 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1691 interface); 1692 if (!phydev) { 1693 dev_err(&dev->dev, "could not attach to PHY\n"); 1694 return -ENODEV; 1695 } 1696 1697 if (interface == PHY_INTERFACE_MODE_SGMII) 1698 gfar_configure_serdes(dev); 1699 1700 /* Remove any features not supported by the controller */ 1701 linkmode_and(phydev->supported, phydev->supported, mask); 1702 linkmode_copy(phydev->advertising, phydev->supported); 1703 1704 /* Add support for flow control */ 1705 phy_support_asym_pause(phydev); 1706 1707 /* disable EEE autoneg, EEE not supported by eTSEC */ 1708 memset(&edata, 0, sizeof(struct ethtool_eee)); 1709 phy_ethtool_set_eee(phydev, &edata); 1710 1711 return 0; 1712 } 1713 1714 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1715 { 1716 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1717 1718 memset(fcb, 0, GMAC_FCB_LEN); 1719 1720 return fcb; 1721 } 1722 1723 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1724 int fcb_length) 1725 { 1726 /* If we're here, it's a IP packet with a TCP or UDP 1727 * payload. We set it to checksum, using a pseudo-header 1728 * we provide 1729 */ 1730 u8 flags = TXFCB_DEFAULT; 1731 1732 /* Tell the controller what the protocol is 1733 * And provide the already calculated phcs 1734 */ 1735 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1736 flags |= TXFCB_UDP; 1737 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1738 } else 1739 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1740 1741 /* l3os is the distance between the start of the 1742 * frame (skb->data) and the start of the IP hdr. 1743 * l4os is the distance between the start of the 1744 * l3 hdr and the l4 hdr 1745 */ 1746 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1747 fcb->l4os = skb_network_header_len(skb); 1748 1749 fcb->flags = flags; 1750 } 1751 1752 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1753 { 1754 fcb->flags |= TXFCB_VLN; 1755 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1756 } 1757 1758 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1759 struct txbd8 *base, int ring_size) 1760 { 1761 struct txbd8 *new_bd = bdp + stride; 1762 1763 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1764 } 1765 1766 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1767 int ring_size) 1768 { 1769 return skip_txbd(bdp, 1, base, ring_size); 1770 } 1771 1772 /* eTSEC12: csum generation not supported for some fcb offsets */ 1773 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1774 unsigned long fcb_addr) 1775 { 1776 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1777 (fcb_addr % 0x20) > 0x18); 1778 } 1779 1780 /* eTSEC76: csum generation for frames larger than 2500 may 1781 * cause excess delays before start of transmission 1782 */ 1783 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1784 unsigned int len) 1785 { 1786 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1787 (len > 2500)); 1788 } 1789 1790 /* This is called by the kernel when a frame is ready for transmission. 1791 * It is pointed to by the dev->hard_start_xmit function pointer 1792 */ 1793 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1794 { 1795 struct gfar_private *priv = netdev_priv(dev); 1796 struct gfar_priv_tx_q *tx_queue = NULL; 1797 struct netdev_queue *txq; 1798 struct gfar __iomem *regs = NULL; 1799 struct txfcb *fcb = NULL; 1800 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1801 u32 lstatus; 1802 skb_frag_t *frag; 1803 int i, rq = 0; 1804 int do_tstamp, do_csum, do_vlan; 1805 u32 bufaddr; 1806 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1807 1808 rq = skb->queue_mapping; 1809 tx_queue = priv->tx_queue[rq]; 1810 txq = netdev_get_tx_queue(dev, rq); 1811 base = tx_queue->tx_bd_base; 1812 regs = tx_queue->grp->regs; 1813 1814 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1815 do_vlan = skb_vlan_tag_present(skb); 1816 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1817 priv->hwts_tx_en; 1818 1819 if (do_csum || do_vlan) 1820 fcb_len = GMAC_FCB_LEN; 1821 1822 /* check if time stamp should be generated */ 1823 if (unlikely(do_tstamp)) 1824 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1825 1826 /* make space for additional header when fcb is needed */ 1827 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 1828 struct sk_buff *skb_new; 1829 1830 skb_new = skb_realloc_headroom(skb, fcb_len); 1831 if (!skb_new) { 1832 dev->stats.tx_errors++; 1833 dev_kfree_skb_any(skb); 1834 return NETDEV_TX_OK; 1835 } 1836 1837 if (skb->sk) 1838 skb_set_owner_w(skb_new, skb->sk); 1839 dev_consume_skb_any(skb); 1840 skb = skb_new; 1841 } 1842 1843 /* total number of fragments in the SKB */ 1844 nr_frags = skb_shinfo(skb)->nr_frags; 1845 1846 /* calculate the required number of TxBDs for this skb */ 1847 if (unlikely(do_tstamp)) 1848 nr_txbds = nr_frags + 2; 1849 else 1850 nr_txbds = nr_frags + 1; 1851 1852 /* check if there is space to queue this packet */ 1853 if (nr_txbds > tx_queue->num_txbdfree) { 1854 /* no space, stop the queue */ 1855 netif_tx_stop_queue(txq); 1856 dev->stats.tx_fifo_errors++; 1857 return NETDEV_TX_BUSY; 1858 } 1859 1860 /* Update transmit stats */ 1861 bytes_sent = skb->len; 1862 tx_queue->stats.tx_bytes += bytes_sent; 1863 /* keep Tx bytes on wire for BQL accounting */ 1864 GFAR_CB(skb)->bytes_sent = bytes_sent; 1865 tx_queue->stats.tx_packets++; 1866 1867 txbdp = txbdp_start = tx_queue->cur_tx; 1868 lstatus = be32_to_cpu(txbdp->lstatus); 1869 1870 /* Add TxPAL between FCB and frame if required */ 1871 if (unlikely(do_tstamp)) { 1872 skb_push(skb, GMAC_TXPAL_LEN); 1873 memset(skb->data, 0, GMAC_TXPAL_LEN); 1874 } 1875 1876 /* Add TxFCB if required */ 1877 if (fcb_len) { 1878 fcb = gfar_add_fcb(skb); 1879 lstatus |= BD_LFLAG(TXBD_TOE); 1880 } 1881 1882 /* Set up checksumming */ 1883 if (do_csum) { 1884 gfar_tx_checksum(skb, fcb, fcb_len); 1885 1886 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1887 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1888 __skb_pull(skb, GMAC_FCB_LEN); 1889 skb_checksum_help(skb); 1890 if (do_vlan || do_tstamp) { 1891 /* put back a new fcb for vlan/tstamp TOE */ 1892 fcb = gfar_add_fcb(skb); 1893 } else { 1894 /* Tx TOE not used */ 1895 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1896 fcb = NULL; 1897 } 1898 } 1899 } 1900 1901 if (do_vlan) 1902 gfar_tx_vlan(skb, fcb); 1903 1904 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1905 DMA_TO_DEVICE); 1906 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1907 goto dma_map_err; 1908 1909 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1910 1911 /* Time stamp insertion requires one additional TxBD */ 1912 if (unlikely(do_tstamp)) 1913 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1914 tx_queue->tx_ring_size); 1915 1916 if (likely(!nr_frags)) { 1917 if (likely(!do_tstamp)) 1918 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1919 } else { 1920 u32 lstatus_start = lstatus; 1921 1922 /* Place the fragment addresses and lengths into the TxBDs */ 1923 frag = &skb_shinfo(skb)->frags[0]; 1924 for (i = 0; i < nr_frags; i++, frag++) { 1925 unsigned int size; 1926 1927 /* Point at the next BD, wrapping as needed */ 1928 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1929 1930 size = skb_frag_size(frag); 1931 1932 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1933 BD_LFLAG(TXBD_READY); 1934 1935 /* Handle the last BD specially */ 1936 if (i == nr_frags - 1) 1937 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1938 1939 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1940 size, DMA_TO_DEVICE); 1941 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1942 goto dma_map_err; 1943 1944 /* set the TxBD length and buffer pointer */ 1945 txbdp->bufPtr = cpu_to_be32(bufaddr); 1946 txbdp->lstatus = cpu_to_be32(lstatus); 1947 } 1948 1949 lstatus = lstatus_start; 1950 } 1951 1952 /* If time stamping is requested one additional TxBD must be set up. The 1953 * first TxBD points to the FCB and must have a data length of 1954 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1955 * the full frame length. 1956 */ 1957 if (unlikely(do_tstamp)) { 1958 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1959 1960 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1961 bufaddr += fcb_len; 1962 1963 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1964 (skb_headlen(skb) - fcb_len); 1965 if (!nr_frags) 1966 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1967 1968 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1969 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1970 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1971 1972 /* Setup tx hardware time stamping */ 1973 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1974 fcb->ptp = 1; 1975 } else { 1976 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1977 } 1978 1979 netdev_tx_sent_queue(txq, bytes_sent); 1980 1981 gfar_wmb(); 1982 1983 txbdp_start->lstatus = cpu_to_be32(lstatus); 1984 1985 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1986 1987 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1988 1989 /* Update the current skb pointer to the next entry we will use 1990 * (wrapping if necessary) 1991 */ 1992 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1993 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1994 1995 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1996 1997 /* We can work in parallel with gfar_clean_tx_ring(), except 1998 * when modifying num_txbdfree. Note that we didn't grab the lock 1999 * when we were reading the num_txbdfree and checking for available 2000 * space, that's because outside of this function it can only grow. 2001 */ 2002 spin_lock_bh(&tx_queue->txlock); 2003 /* reduce TxBD free count */ 2004 tx_queue->num_txbdfree -= (nr_txbds); 2005 spin_unlock_bh(&tx_queue->txlock); 2006 2007 /* If the next BD still needs to be cleaned up, then the bds 2008 * are full. We need to tell the kernel to stop sending us stuff. 2009 */ 2010 if (!tx_queue->num_txbdfree) { 2011 netif_tx_stop_queue(txq); 2012 2013 dev->stats.tx_fifo_errors++; 2014 } 2015 2016 /* Tell the DMA to go go go */ 2017 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2018 2019 return NETDEV_TX_OK; 2020 2021 dma_map_err: 2022 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2023 if (do_tstamp) 2024 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2025 for (i = 0; i < nr_frags; i++) { 2026 lstatus = be32_to_cpu(txbdp->lstatus); 2027 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2028 break; 2029 2030 lstatus &= ~BD_LFLAG(TXBD_READY); 2031 txbdp->lstatus = cpu_to_be32(lstatus); 2032 bufaddr = be32_to_cpu(txbdp->bufPtr); 2033 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2034 DMA_TO_DEVICE); 2035 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2036 } 2037 gfar_wmb(); 2038 dev_kfree_skb_any(skb); 2039 return NETDEV_TX_OK; 2040 } 2041 2042 /* Changes the mac address if the controller is not running. */ 2043 static int gfar_set_mac_address(struct net_device *dev) 2044 { 2045 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2046 2047 return 0; 2048 } 2049 2050 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2051 { 2052 struct gfar_private *priv = netdev_priv(dev); 2053 2054 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2055 cpu_relax(); 2056 2057 if (dev->flags & IFF_UP) 2058 stop_gfar(dev); 2059 2060 dev->mtu = new_mtu; 2061 2062 if (dev->flags & IFF_UP) 2063 startup_gfar(dev); 2064 2065 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2066 2067 return 0; 2068 } 2069 2070 static void reset_gfar(struct net_device *ndev) 2071 { 2072 struct gfar_private *priv = netdev_priv(ndev); 2073 2074 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2075 cpu_relax(); 2076 2077 stop_gfar(ndev); 2078 startup_gfar(ndev); 2079 2080 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2081 } 2082 2083 /* gfar_reset_task gets scheduled when a packet has not been 2084 * transmitted after a set amount of time. 2085 * For now, assume that clearing out all the structures, and 2086 * starting over will fix the problem. 2087 */ 2088 static void gfar_reset_task(struct work_struct *work) 2089 { 2090 struct gfar_private *priv = container_of(work, struct gfar_private, 2091 reset_task); 2092 reset_gfar(priv->ndev); 2093 } 2094 2095 static void gfar_timeout(struct net_device *dev) 2096 { 2097 struct gfar_private *priv = netdev_priv(dev); 2098 2099 dev->stats.tx_errors++; 2100 schedule_work(&priv->reset_task); 2101 } 2102 2103 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2104 { 2105 struct hwtstamp_config config; 2106 struct gfar_private *priv = netdev_priv(netdev); 2107 2108 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2109 return -EFAULT; 2110 2111 /* reserved for future extensions */ 2112 if (config.flags) 2113 return -EINVAL; 2114 2115 switch (config.tx_type) { 2116 case HWTSTAMP_TX_OFF: 2117 priv->hwts_tx_en = 0; 2118 break; 2119 case HWTSTAMP_TX_ON: 2120 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2121 return -ERANGE; 2122 priv->hwts_tx_en = 1; 2123 break; 2124 default: 2125 return -ERANGE; 2126 } 2127 2128 switch (config.rx_filter) { 2129 case HWTSTAMP_FILTER_NONE: 2130 if (priv->hwts_rx_en) { 2131 priv->hwts_rx_en = 0; 2132 reset_gfar(netdev); 2133 } 2134 break; 2135 default: 2136 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2137 return -ERANGE; 2138 if (!priv->hwts_rx_en) { 2139 priv->hwts_rx_en = 1; 2140 reset_gfar(netdev); 2141 } 2142 config.rx_filter = HWTSTAMP_FILTER_ALL; 2143 break; 2144 } 2145 2146 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2147 -EFAULT : 0; 2148 } 2149 2150 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2151 { 2152 struct hwtstamp_config config; 2153 struct gfar_private *priv = netdev_priv(netdev); 2154 2155 config.flags = 0; 2156 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2157 config.rx_filter = (priv->hwts_rx_en ? 2158 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2159 2160 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2161 -EFAULT : 0; 2162 } 2163 2164 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2165 { 2166 struct phy_device *phydev = dev->phydev; 2167 2168 if (!netif_running(dev)) 2169 return -EINVAL; 2170 2171 if (cmd == SIOCSHWTSTAMP) 2172 return gfar_hwtstamp_set(dev, rq); 2173 if (cmd == SIOCGHWTSTAMP) 2174 return gfar_hwtstamp_get(dev, rq); 2175 2176 if (!phydev) 2177 return -ENODEV; 2178 2179 return phy_mii_ioctl(phydev, rq, cmd); 2180 } 2181 2182 /* Interrupt Handler for Transmit complete */ 2183 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2184 { 2185 struct net_device *dev = tx_queue->dev; 2186 struct netdev_queue *txq; 2187 struct gfar_private *priv = netdev_priv(dev); 2188 struct txbd8 *bdp, *next = NULL; 2189 struct txbd8 *lbdp = NULL; 2190 struct txbd8 *base = tx_queue->tx_bd_base; 2191 struct sk_buff *skb; 2192 int skb_dirtytx; 2193 int tx_ring_size = tx_queue->tx_ring_size; 2194 int frags = 0, nr_txbds = 0; 2195 int i; 2196 int howmany = 0; 2197 int tqi = tx_queue->qindex; 2198 unsigned int bytes_sent = 0; 2199 u32 lstatus; 2200 size_t buflen; 2201 2202 txq = netdev_get_tx_queue(dev, tqi); 2203 bdp = tx_queue->dirty_tx; 2204 skb_dirtytx = tx_queue->skb_dirtytx; 2205 2206 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2207 2208 frags = skb_shinfo(skb)->nr_frags; 2209 2210 /* When time stamping, one additional TxBD must be freed. 2211 * Also, we need to dma_unmap_single() the TxPAL. 2212 */ 2213 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2214 nr_txbds = frags + 2; 2215 else 2216 nr_txbds = frags + 1; 2217 2218 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2219 2220 lstatus = be32_to_cpu(lbdp->lstatus); 2221 2222 /* Only clean completed frames */ 2223 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2224 (lstatus & BD_LENGTH_MASK)) 2225 break; 2226 2227 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2228 next = next_txbd(bdp, base, tx_ring_size); 2229 buflen = be16_to_cpu(next->length) + 2230 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2231 } else 2232 buflen = be16_to_cpu(bdp->length); 2233 2234 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2235 buflen, DMA_TO_DEVICE); 2236 2237 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2238 struct skb_shared_hwtstamps shhwtstamps; 2239 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2240 ~0x7UL); 2241 2242 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2243 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2244 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2245 skb_tstamp_tx(skb, &shhwtstamps); 2246 gfar_clear_txbd_status(bdp); 2247 bdp = next; 2248 } 2249 2250 gfar_clear_txbd_status(bdp); 2251 bdp = next_txbd(bdp, base, tx_ring_size); 2252 2253 for (i = 0; i < frags; i++) { 2254 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2255 be16_to_cpu(bdp->length), 2256 DMA_TO_DEVICE); 2257 gfar_clear_txbd_status(bdp); 2258 bdp = next_txbd(bdp, base, tx_ring_size); 2259 } 2260 2261 bytes_sent += GFAR_CB(skb)->bytes_sent; 2262 2263 dev_kfree_skb_any(skb); 2264 2265 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2266 2267 skb_dirtytx = (skb_dirtytx + 1) & 2268 TX_RING_MOD_MASK(tx_ring_size); 2269 2270 howmany++; 2271 spin_lock(&tx_queue->txlock); 2272 tx_queue->num_txbdfree += nr_txbds; 2273 spin_unlock(&tx_queue->txlock); 2274 } 2275 2276 /* If we freed a buffer, we can restart transmission, if necessary */ 2277 if (tx_queue->num_txbdfree && 2278 netif_tx_queue_stopped(txq) && 2279 !(test_bit(GFAR_DOWN, &priv->state))) 2280 netif_wake_subqueue(priv->ndev, tqi); 2281 2282 /* Update dirty indicators */ 2283 tx_queue->skb_dirtytx = skb_dirtytx; 2284 tx_queue->dirty_tx = bdp; 2285 2286 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2287 } 2288 2289 static void count_errors(u32 lstatus, struct net_device *ndev) 2290 { 2291 struct gfar_private *priv = netdev_priv(ndev); 2292 struct net_device_stats *stats = &ndev->stats; 2293 struct gfar_extra_stats *estats = &priv->extra_stats; 2294 2295 /* If the packet was truncated, none of the other errors matter */ 2296 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2297 stats->rx_length_errors++; 2298 2299 atomic64_inc(&estats->rx_trunc); 2300 2301 return; 2302 } 2303 /* Count the errors, if there were any */ 2304 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2305 stats->rx_length_errors++; 2306 2307 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2308 atomic64_inc(&estats->rx_large); 2309 else 2310 atomic64_inc(&estats->rx_short); 2311 } 2312 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2313 stats->rx_frame_errors++; 2314 atomic64_inc(&estats->rx_nonoctet); 2315 } 2316 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2317 atomic64_inc(&estats->rx_crcerr); 2318 stats->rx_crc_errors++; 2319 } 2320 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2321 atomic64_inc(&estats->rx_overrun); 2322 stats->rx_over_errors++; 2323 } 2324 } 2325 2326 static irqreturn_t gfar_receive(int irq, void *grp_id) 2327 { 2328 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2329 unsigned long flags; 2330 u32 imask, ievent; 2331 2332 ievent = gfar_read(&grp->regs->ievent); 2333 2334 if (unlikely(ievent & IEVENT_FGPI)) { 2335 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2336 return IRQ_HANDLED; 2337 } 2338 2339 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2340 spin_lock_irqsave(&grp->grplock, flags); 2341 imask = gfar_read(&grp->regs->imask); 2342 imask &= IMASK_RX_DISABLED; 2343 gfar_write(&grp->regs->imask, imask); 2344 spin_unlock_irqrestore(&grp->grplock, flags); 2345 __napi_schedule(&grp->napi_rx); 2346 } else { 2347 /* Clear IEVENT, so interrupts aren't called again 2348 * because of the packets that have already arrived. 2349 */ 2350 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2351 } 2352 2353 return IRQ_HANDLED; 2354 } 2355 2356 /* Interrupt Handler for Transmit complete */ 2357 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2358 { 2359 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2360 unsigned long flags; 2361 u32 imask; 2362 2363 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2364 spin_lock_irqsave(&grp->grplock, flags); 2365 imask = gfar_read(&grp->regs->imask); 2366 imask &= IMASK_TX_DISABLED; 2367 gfar_write(&grp->regs->imask, imask); 2368 spin_unlock_irqrestore(&grp->grplock, flags); 2369 __napi_schedule(&grp->napi_tx); 2370 } else { 2371 /* Clear IEVENT, so interrupts aren't called again 2372 * because of the packets that have already arrived. 2373 */ 2374 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2375 } 2376 2377 return IRQ_HANDLED; 2378 } 2379 2380 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2381 struct sk_buff *skb, bool first) 2382 { 2383 int size = lstatus & BD_LENGTH_MASK; 2384 struct page *page = rxb->page; 2385 2386 if (likely(first)) { 2387 skb_put(skb, size); 2388 } else { 2389 /* the last fragments' length contains the full frame length */ 2390 if (lstatus & BD_LFLAG(RXBD_LAST)) 2391 size -= skb->len; 2392 2393 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2394 rxb->page_offset + RXBUF_ALIGNMENT, 2395 size, GFAR_RXB_TRUESIZE); 2396 } 2397 2398 /* try reuse page */ 2399 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2400 return false; 2401 2402 /* change offset to the other half */ 2403 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2404 2405 page_ref_inc(page); 2406 2407 return true; 2408 } 2409 2410 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2411 struct gfar_rx_buff *old_rxb) 2412 { 2413 struct gfar_rx_buff *new_rxb; 2414 u16 nta = rxq->next_to_alloc; 2415 2416 new_rxb = &rxq->rx_buff[nta]; 2417 2418 /* find next buf that can reuse a page */ 2419 nta++; 2420 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2421 2422 /* copy page reference */ 2423 *new_rxb = *old_rxb; 2424 2425 /* sync for use by the device */ 2426 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2427 old_rxb->page_offset, 2428 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2429 } 2430 2431 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2432 u32 lstatus, struct sk_buff *skb) 2433 { 2434 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2435 struct page *page = rxb->page; 2436 bool first = false; 2437 2438 if (likely(!skb)) { 2439 void *buff_addr = page_address(page) + rxb->page_offset; 2440 2441 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2442 if (unlikely(!skb)) { 2443 gfar_rx_alloc_err(rx_queue); 2444 return NULL; 2445 } 2446 skb_reserve(skb, RXBUF_ALIGNMENT); 2447 first = true; 2448 } 2449 2450 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2451 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2452 2453 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2454 /* reuse the free half of the page */ 2455 gfar_reuse_rx_page(rx_queue, rxb); 2456 } else { 2457 /* page cannot be reused, unmap it */ 2458 dma_unmap_page(rx_queue->dev, rxb->dma, 2459 PAGE_SIZE, DMA_FROM_DEVICE); 2460 } 2461 2462 /* clear rxb content */ 2463 rxb->page = NULL; 2464 2465 return skb; 2466 } 2467 2468 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2469 { 2470 /* If valid headers were found, and valid sums 2471 * were verified, then we tell the kernel that no 2472 * checksumming is necessary. Otherwise, it is [FIXME] 2473 */ 2474 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2475 (RXFCB_CIP | RXFCB_CTU)) 2476 skb->ip_summed = CHECKSUM_UNNECESSARY; 2477 else 2478 skb_checksum_none_assert(skb); 2479 } 2480 2481 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2482 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2483 { 2484 struct gfar_private *priv = netdev_priv(ndev); 2485 struct rxfcb *fcb = NULL; 2486 2487 /* fcb is at the beginning if exists */ 2488 fcb = (struct rxfcb *)skb->data; 2489 2490 /* Remove the FCB from the skb 2491 * Remove the padded bytes, if there are any 2492 */ 2493 if (priv->uses_rxfcb) 2494 skb_pull(skb, GMAC_FCB_LEN); 2495 2496 /* Get receive timestamp from the skb */ 2497 if (priv->hwts_rx_en) { 2498 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2499 u64 *ns = (u64 *) skb->data; 2500 2501 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2502 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2503 } 2504 2505 if (priv->padding) 2506 skb_pull(skb, priv->padding); 2507 2508 /* Trim off the FCS */ 2509 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2510 2511 if (ndev->features & NETIF_F_RXCSUM) 2512 gfar_rx_checksum(skb, fcb); 2513 2514 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2515 * Even if vlan rx accel is disabled, on some chips 2516 * RXFCB_VLN is pseudo randomly set. 2517 */ 2518 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2519 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2520 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2521 be16_to_cpu(fcb->vlctl)); 2522 } 2523 2524 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2525 * until the budget/quota has been reached. Returns the number 2526 * of frames handled 2527 */ 2528 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2529 int rx_work_limit) 2530 { 2531 struct net_device *ndev = rx_queue->ndev; 2532 struct gfar_private *priv = netdev_priv(ndev); 2533 struct rxbd8 *bdp; 2534 int i, howmany = 0; 2535 struct sk_buff *skb = rx_queue->skb; 2536 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2537 unsigned int total_bytes = 0, total_pkts = 0; 2538 2539 /* Get the first full descriptor */ 2540 i = rx_queue->next_to_clean; 2541 2542 while (rx_work_limit--) { 2543 u32 lstatus; 2544 2545 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2546 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2547 cleaned_cnt = 0; 2548 } 2549 2550 bdp = &rx_queue->rx_bd_base[i]; 2551 lstatus = be32_to_cpu(bdp->lstatus); 2552 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2553 break; 2554 2555 /* order rx buffer descriptor reads */ 2556 rmb(); 2557 2558 /* fetch next to clean buffer from the ring */ 2559 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2560 if (unlikely(!skb)) 2561 break; 2562 2563 cleaned_cnt++; 2564 howmany++; 2565 2566 if (unlikely(++i == rx_queue->rx_ring_size)) 2567 i = 0; 2568 2569 rx_queue->next_to_clean = i; 2570 2571 /* fetch next buffer if not the last in frame */ 2572 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2573 continue; 2574 2575 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2576 count_errors(lstatus, ndev); 2577 2578 /* discard faulty buffer */ 2579 dev_kfree_skb(skb); 2580 skb = NULL; 2581 rx_queue->stats.rx_dropped++; 2582 continue; 2583 } 2584 2585 gfar_process_frame(ndev, skb); 2586 2587 /* Increment the number of packets */ 2588 total_pkts++; 2589 total_bytes += skb->len; 2590 2591 skb_record_rx_queue(skb, rx_queue->qindex); 2592 2593 skb->protocol = eth_type_trans(skb, ndev); 2594 2595 /* Send the packet up the stack */ 2596 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2597 2598 skb = NULL; 2599 } 2600 2601 /* Store incomplete frames for completion */ 2602 rx_queue->skb = skb; 2603 2604 rx_queue->stats.rx_packets += total_pkts; 2605 rx_queue->stats.rx_bytes += total_bytes; 2606 2607 if (cleaned_cnt) 2608 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2609 2610 /* Update Last Free RxBD pointer for LFC */ 2611 if (unlikely(priv->tx_actual_en)) { 2612 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2613 2614 gfar_write(rx_queue->rfbptr, bdp_dma); 2615 } 2616 2617 return howmany; 2618 } 2619 2620 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2621 { 2622 struct gfar_priv_grp *gfargrp = 2623 container_of(napi, struct gfar_priv_grp, napi_rx); 2624 struct gfar __iomem *regs = gfargrp->regs; 2625 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2626 int work_done = 0; 2627 2628 /* Clear IEVENT, so interrupts aren't called again 2629 * because of the packets that have already arrived 2630 */ 2631 gfar_write(®s->ievent, IEVENT_RX_MASK); 2632 2633 work_done = gfar_clean_rx_ring(rx_queue, budget); 2634 2635 if (work_done < budget) { 2636 u32 imask; 2637 napi_complete_done(napi, work_done); 2638 /* Clear the halt bit in RSTAT */ 2639 gfar_write(®s->rstat, gfargrp->rstat); 2640 2641 spin_lock_irq(&gfargrp->grplock); 2642 imask = gfar_read(®s->imask); 2643 imask |= IMASK_RX_DEFAULT; 2644 gfar_write(®s->imask, imask); 2645 spin_unlock_irq(&gfargrp->grplock); 2646 } 2647 2648 return work_done; 2649 } 2650 2651 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2652 { 2653 struct gfar_priv_grp *gfargrp = 2654 container_of(napi, struct gfar_priv_grp, napi_tx); 2655 struct gfar __iomem *regs = gfargrp->regs; 2656 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2657 u32 imask; 2658 2659 /* Clear IEVENT, so interrupts aren't called again 2660 * because of the packets that have already arrived 2661 */ 2662 gfar_write(®s->ievent, IEVENT_TX_MASK); 2663 2664 /* run Tx cleanup to completion */ 2665 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2666 gfar_clean_tx_ring(tx_queue); 2667 2668 napi_complete(napi); 2669 2670 spin_lock_irq(&gfargrp->grplock); 2671 imask = gfar_read(®s->imask); 2672 imask |= IMASK_TX_DEFAULT; 2673 gfar_write(®s->imask, imask); 2674 spin_unlock_irq(&gfargrp->grplock); 2675 2676 return 0; 2677 } 2678 2679 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2680 { 2681 struct gfar_priv_grp *gfargrp = 2682 container_of(napi, struct gfar_priv_grp, napi_rx); 2683 struct gfar_private *priv = gfargrp->priv; 2684 struct gfar __iomem *regs = gfargrp->regs; 2685 struct gfar_priv_rx_q *rx_queue = NULL; 2686 int work_done = 0, work_done_per_q = 0; 2687 int i, budget_per_q = 0; 2688 unsigned long rstat_rxf; 2689 int num_act_queues; 2690 2691 /* Clear IEVENT, so interrupts aren't called again 2692 * because of the packets that have already arrived 2693 */ 2694 gfar_write(®s->ievent, IEVENT_RX_MASK); 2695 2696 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2697 2698 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2699 if (num_act_queues) 2700 budget_per_q = budget/num_act_queues; 2701 2702 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2703 /* skip queue if not active */ 2704 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2705 continue; 2706 2707 rx_queue = priv->rx_queue[i]; 2708 work_done_per_q = 2709 gfar_clean_rx_ring(rx_queue, budget_per_q); 2710 work_done += work_done_per_q; 2711 2712 /* finished processing this queue */ 2713 if (work_done_per_q < budget_per_q) { 2714 /* clear active queue hw indication */ 2715 gfar_write(®s->rstat, 2716 RSTAT_CLEAR_RXF0 >> i); 2717 num_act_queues--; 2718 2719 if (!num_act_queues) 2720 break; 2721 } 2722 } 2723 2724 if (!num_act_queues) { 2725 u32 imask; 2726 napi_complete_done(napi, work_done); 2727 2728 /* Clear the halt bit in RSTAT */ 2729 gfar_write(®s->rstat, gfargrp->rstat); 2730 2731 spin_lock_irq(&gfargrp->grplock); 2732 imask = gfar_read(®s->imask); 2733 imask |= IMASK_RX_DEFAULT; 2734 gfar_write(®s->imask, imask); 2735 spin_unlock_irq(&gfargrp->grplock); 2736 } 2737 2738 return work_done; 2739 } 2740 2741 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2742 { 2743 struct gfar_priv_grp *gfargrp = 2744 container_of(napi, struct gfar_priv_grp, napi_tx); 2745 struct gfar_private *priv = gfargrp->priv; 2746 struct gfar __iomem *regs = gfargrp->regs; 2747 struct gfar_priv_tx_q *tx_queue = NULL; 2748 int has_tx_work = 0; 2749 int i; 2750 2751 /* Clear IEVENT, so interrupts aren't called again 2752 * because of the packets that have already arrived 2753 */ 2754 gfar_write(®s->ievent, IEVENT_TX_MASK); 2755 2756 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2757 tx_queue = priv->tx_queue[i]; 2758 /* run Tx cleanup to completion */ 2759 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2760 gfar_clean_tx_ring(tx_queue); 2761 has_tx_work = 1; 2762 } 2763 } 2764 2765 if (!has_tx_work) { 2766 u32 imask; 2767 napi_complete(napi); 2768 2769 spin_lock_irq(&gfargrp->grplock); 2770 imask = gfar_read(®s->imask); 2771 imask |= IMASK_TX_DEFAULT; 2772 gfar_write(®s->imask, imask); 2773 spin_unlock_irq(&gfargrp->grplock); 2774 } 2775 2776 return 0; 2777 } 2778 2779 /* GFAR error interrupt handler */ 2780 static irqreturn_t gfar_error(int irq, void *grp_id) 2781 { 2782 struct gfar_priv_grp *gfargrp = grp_id; 2783 struct gfar __iomem *regs = gfargrp->regs; 2784 struct gfar_private *priv= gfargrp->priv; 2785 struct net_device *dev = priv->ndev; 2786 2787 /* Save ievent for future reference */ 2788 u32 events = gfar_read(®s->ievent); 2789 2790 /* Clear IEVENT */ 2791 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2792 2793 /* Magic Packet is not an error. */ 2794 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2795 (events & IEVENT_MAG)) 2796 events &= ~IEVENT_MAG; 2797 2798 /* Hmm... */ 2799 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2800 netdev_dbg(dev, 2801 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2802 events, gfar_read(®s->imask)); 2803 2804 /* Update the error counters */ 2805 if (events & IEVENT_TXE) { 2806 dev->stats.tx_errors++; 2807 2808 if (events & IEVENT_LC) 2809 dev->stats.tx_window_errors++; 2810 if (events & IEVENT_CRL) 2811 dev->stats.tx_aborted_errors++; 2812 if (events & IEVENT_XFUN) { 2813 netif_dbg(priv, tx_err, dev, 2814 "TX FIFO underrun, packet dropped\n"); 2815 dev->stats.tx_dropped++; 2816 atomic64_inc(&priv->extra_stats.tx_underrun); 2817 2818 schedule_work(&priv->reset_task); 2819 } 2820 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2821 } 2822 if (events & IEVENT_BSY) { 2823 dev->stats.rx_over_errors++; 2824 atomic64_inc(&priv->extra_stats.rx_bsy); 2825 2826 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2827 gfar_read(®s->rstat)); 2828 } 2829 if (events & IEVENT_BABR) { 2830 dev->stats.rx_errors++; 2831 atomic64_inc(&priv->extra_stats.rx_babr); 2832 2833 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2834 } 2835 if (events & IEVENT_EBERR) { 2836 atomic64_inc(&priv->extra_stats.eberr); 2837 netif_dbg(priv, rx_err, dev, "bus error\n"); 2838 } 2839 if (events & IEVENT_RXC) 2840 netif_dbg(priv, rx_status, dev, "control frame\n"); 2841 2842 if (events & IEVENT_BABT) { 2843 atomic64_inc(&priv->extra_stats.tx_babt); 2844 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2845 } 2846 return IRQ_HANDLED; 2847 } 2848 2849 /* The interrupt handler for devices with one interrupt */ 2850 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2851 { 2852 struct gfar_priv_grp *gfargrp = grp_id; 2853 2854 /* Save ievent for future reference */ 2855 u32 events = gfar_read(&gfargrp->regs->ievent); 2856 2857 /* Check for reception */ 2858 if (events & IEVENT_RX_MASK) 2859 gfar_receive(irq, grp_id); 2860 2861 /* Check for transmit completion */ 2862 if (events & IEVENT_TX_MASK) 2863 gfar_transmit(irq, grp_id); 2864 2865 /* Check for errors */ 2866 if (events & IEVENT_ERR_MASK) 2867 gfar_error(irq, grp_id); 2868 2869 return IRQ_HANDLED; 2870 } 2871 2872 #ifdef CONFIG_NET_POLL_CONTROLLER 2873 /* Polling 'interrupt' - used by things like netconsole to send skbs 2874 * without having to re-enable interrupts. It's not called while 2875 * the interrupt routine is executing. 2876 */ 2877 static void gfar_netpoll(struct net_device *dev) 2878 { 2879 struct gfar_private *priv = netdev_priv(dev); 2880 int i; 2881 2882 /* If the device has multiple interrupts, run tx/rx */ 2883 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2884 for (i = 0; i < priv->num_grps; i++) { 2885 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2886 2887 disable_irq(gfar_irq(grp, TX)->irq); 2888 disable_irq(gfar_irq(grp, RX)->irq); 2889 disable_irq(gfar_irq(grp, ER)->irq); 2890 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2891 enable_irq(gfar_irq(grp, ER)->irq); 2892 enable_irq(gfar_irq(grp, RX)->irq); 2893 enable_irq(gfar_irq(grp, TX)->irq); 2894 } 2895 } else { 2896 for (i = 0; i < priv->num_grps; i++) { 2897 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2898 2899 disable_irq(gfar_irq(grp, TX)->irq); 2900 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2901 enable_irq(gfar_irq(grp, TX)->irq); 2902 } 2903 } 2904 } 2905 #endif 2906 2907 static void free_grp_irqs(struct gfar_priv_grp *grp) 2908 { 2909 free_irq(gfar_irq(grp, TX)->irq, grp); 2910 free_irq(gfar_irq(grp, RX)->irq, grp); 2911 free_irq(gfar_irq(grp, ER)->irq, grp); 2912 } 2913 2914 static int register_grp_irqs(struct gfar_priv_grp *grp) 2915 { 2916 struct gfar_private *priv = grp->priv; 2917 struct net_device *dev = priv->ndev; 2918 int err; 2919 2920 /* If the device has multiple interrupts, register for 2921 * them. Otherwise, only register for the one 2922 */ 2923 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2924 /* Install our interrupt handlers for Error, 2925 * Transmit, and Receive 2926 */ 2927 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2928 gfar_irq(grp, ER)->name, grp); 2929 if (err < 0) { 2930 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2931 gfar_irq(grp, ER)->irq); 2932 2933 goto err_irq_fail; 2934 } 2935 enable_irq_wake(gfar_irq(grp, ER)->irq); 2936 2937 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2938 gfar_irq(grp, TX)->name, grp); 2939 if (err < 0) { 2940 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2941 gfar_irq(grp, TX)->irq); 2942 goto tx_irq_fail; 2943 } 2944 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2945 gfar_irq(grp, RX)->name, grp); 2946 if (err < 0) { 2947 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2948 gfar_irq(grp, RX)->irq); 2949 goto rx_irq_fail; 2950 } 2951 enable_irq_wake(gfar_irq(grp, RX)->irq); 2952 2953 } else { 2954 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2955 gfar_irq(grp, TX)->name, grp); 2956 if (err < 0) { 2957 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2958 gfar_irq(grp, TX)->irq); 2959 goto err_irq_fail; 2960 } 2961 enable_irq_wake(gfar_irq(grp, TX)->irq); 2962 } 2963 2964 return 0; 2965 2966 rx_irq_fail: 2967 free_irq(gfar_irq(grp, TX)->irq, grp); 2968 tx_irq_fail: 2969 free_irq(gfar_irq(grp, ER)->irq, grp); 2970 err_irq_fail: 2971 return err; 2972 2973 } 2974 2975 static void gfar_free_irq(struct gfar_private *priv) 2976 { 2977 int i; 2978 2979 /* Free the IRQs */ 2980 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2981 for (i = 0; i < priv->num_grps; i++) 2982 free_grp_irqs(&priv->gfargrp[i]); 2983 } else { 2984 for (i = 0; i < priv->num_grps; i++) 2985 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2986 &priv->gfargrp[i]); 2987 } 2988 } 2989 2990 static int gfar_request_irq(struct gfar_private *priv) 2991 { 2992 int err, i, j; 2993 2994 for (i = 0; i < priv->num_grps; i++) { 2995 err = register_grp_irqs(&priv->gfargrp[i]); 2996 if (err) { 2997 for (j = 0; j < i; j++) 2998 free_grp_irqs(&priv->gfargrp[j]); 2999 return err; 3000 } 3001 } 3002 3003 return 0; 3004 } 3005 3006 /* Called when something needs to use the ethernet device 3007 * Returns 0 for success. 3008 */ 3009 static int gfar_enet_open(struct net_device *dev) 3010 { 3011 struct gfar_private *priv = netdev_priv(dev); 3012 int err; 3013 3014 err = init_phy(dev); 3015 if (err) 3016 return err; 3017 3018 err = gfar_request_irq(priv); 3019 if (err) 3020 return err; 3021 3022 err = startup_gfar(dev); 3023 if (err) 3024 return err; 3025 3026 return err; 3027 } 3028 3029 /* Stops the kernel queue, and halts the controller */ 3030 static int gfar_close(struct net_device *dev) 3031 { 3032 struct gfar_private *priv = netdev_priv(dev); 3033 3034 cancel_work_sync(&priv->reset_task); 3035 stop_gfar(dev); 3036 3037 /* Disconnect from the PHY */ 3038 phy_disconnect(dev->phydev); 3039 3040 gfar_free_irq(priv); 3041 3042 return 0; 3043 } 3044 3045 /* Clears each of the exact match registers to zero, so they 3046 * don't interfere with normal reception 3047 */ 3048 static void gfar_clear_exact_match(struct net_device *dev) 3049 { 3050 int idx; 3051 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3052 3053 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3054 gfar_set_mac_for_addr(dev, idx, zero_arr); 3055 } 3056 3057 /* Update the hash table based on the current list of multicast 3058 * addresses we subscribe to. Also, change the promiscuity of 3059 * the device based on the flags (this function is called 3060 * whenever dev->flags is changed 3061 */ 3062 static void gfar_set_multi(struct net_device *dev) 3063 { 3064 struct netdev_hw_addr *ha; 3065 struct gfar_private *priv = netdev_priv(dev); 3066 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3067 u32 tempval; 3068 3069 if (dev->flags & IFF_PROMISC) { 3070 /* Set RCTRL to PROM */ 3071 tempval = gfar_read(®s->rctrl); 3072 tempval |= RCTRL_PROM; 3073 gfar_write(®s->rctrl, tempval); 3074 } else { 3075 /* Set RCTRL to not PROM */ 3076 tempval = gfar_read(®s->rctrl); 3077 tempval &= ~(RCTRL_PROM); 3078 gfar_write(®s->rctrl, tempval); 3079 } 3080 3081 if (dev->flags & IFF_ALLMULTI) { 3082 /* Set the hash to rx all multicast frames */ 3083 gfar_write(®s->igaddr0, 0xffffffff); 3084 gfar_write(®s->igaddr1, 0xffffffff); 3085 gfar_write(®s->igaddr2, 0xffffffff); 3086 gfar_write(®s->igaddr3, 0xffffffff); 3087 gfar_write(®s->igaddr4, 0xffffffff); 3088 gfar_write(®s->igaddr5, 0xffffffff); 3089 gfar_write(®s->igaddr6, 0xffffffff); 3090 gfar_write(®s->igaddr7, 0xffffffff); 3091 gfar_write(®s->gaddr0, 0xffffffff); 3092 gfar_write(®s->gaddr1, 0xffffffff); 3093 gfar_write(®s->gaddr2, 0xffffffff); 3094 gfar_write(®s->gaddr3, 0xffffffff); 3095 gfar_write(®s->gaddr4, 0xffffffff); 3096 gfar_write(®s->gaddr5, 0xffffffff); 3097 gfar_write(®s->gaddr6, 0xffffffff); 3098 gfar_write(®s->gaddr7, 0xffffffff); 3099 } else { 3100 int em_num; 3101 int idx; 3102 3103 /* zero out the hash */ 3104 gfar_write(®s->igaddr0, 0x0); 3105 gfar_write(®s->igaddr1, 0x0); 3106 gfar_write(®s->igaddr2, 0x0); 3107 gfar_write(®s->igaddr3, 0x0); 3108 gfar_write(®s->igaddr4, 0x0); 3109 gfar_write(®s->igaddr5, 0x0); 3110 gfar_write(®s->igaddr6, 0x0); 3111 gfar_write(®s->igaddr7, 0x0); 3112 gfar_write(®s->gaddr0, 0x0); 3113 gfar_write(®s->gaddr1, 0x0); 3114 gfar_write(®s->gaddr2, 0x0); 3115 gfar_write(®s->gaddr3, 0x0); 3116 gfar_write(®s->gaddr4, 0x0); 3117 gfar_write(®s->gaddr5, 0x0); 3118 gfar_write(®s->gaddr6, 0x0); 3119 gfar_write(®s->gaddr7, 0x0); 3120 3121 /* If we have extended hash tables, we need to 3122 * clear the exact match registers to prepare for 3123 * setting them 3124 */ 3125 if (priv->extended_hash) { 3126 em_num = GFAR_EM_NUM + 1; 3127 gfar_clear_exact_match(dev); 3128 idx = 1; 3129 } else { 3130 idx = 0; 3131 em_num = 0; 3132 } 3133 3134 if (netdev_mc_empty(dev)) 3135 return; 3136 3137 /* Parse the list, and set the appropriate bits */ 3138 netdev_for_each_mc_addr(ha, dev) { 3139 if (idx < em_num) { 3140 gfar_set_mac_for_addr(dev, idx, ha->addr); 3141 idx++; 3142 } else 3143 gfar_set_hash_for_addr(dev, ha->addr); 3144 } 3145 } 3146 } 3147 3148 void gfar_mac_reset(struct gfar_private *priv) 3149 { 3150 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3151 u32 tempval; 3152 3153 /* Reset MAC layer */ 3154 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3155 3156 /* We need to delay at least 3 TX clocks */ 3157 udelay(3); 3158 3159 /* the soft reset bit is not self-resetting, so we need to 3160 * clear it before resuming normal operation 3161 */ 3162 gfar_write(®s->maccfg1, 0); 3163 3164 udelay(3); 3165 3166 gfar_rx_offload_en(priv); 3167 3168 /* Initialize the max receive frame/buffer lengths */ 3169 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3170 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3171 3172 /* Initialize the Minimum Frame Length Register */ 3173 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3174 3175 /* Initialize MACCFG2. */ 3176 tempval = MACCFG2_INIT_SETTINGS; 3177 3178 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3179 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3180 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3181 */ 3182 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3183 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3184 3185 gfar_write(®s->maccfg2, tempval); 3186 3187 /* Clear mac addr hash registers */ 3188 gfar_write(®s->igaddr0, 0); 3189 gfar_write(®s->igaddr1, 0); 3190 gfar_write(®s->igaddr2, 0); 3191 gfar_write(®s->igaddr3, 0); 3192 gfar_write(®s->igaddr4, 0); 3193 gfar_write(®s->igaddr5, 0); 3194 gfar_write(®s->igaddr6, 0); 3195 gfar_write(®s->igaddr7, 0); 3196 3197 gfar_write(®s->gaddr0, 0); 3198 gfar_write(®s->gaddr1, 0); 3199 gfar_write(®s->gaddr2, 0); 3200 gfar_write(®s->gaddr3, 0); 3201 gfar_write(®s->gaddr4, 0); 3202 gfar_write(®s->gaddr5, 0); 3203 gfar_write(®s->gaddr6, 0); 3204 gfar_write(®s->gaddr7, 0); 3205 3206 if (priv->extended_hash) 3207 gfar_clear_exact_match(priv->ndev); 3208 3209 gfar_mac_rx_config(priv); 3210 3211 gfar_mac_tx_config(priv); 3212 3213 gfar_set_mac_address(priv->ndev); 3214 3215 gfar_set_multi(priv->ndev); 3216 3217 /* clear ievent and imask before configuring coalescing */ 3218 gfar_ints_disable(priv); 3219 3220 /* Configure the coalescing support */ 3221 gfar_configure_coalescing_all(priv); 3222 } 3223 3224 static void gfar_hw_init(struct gfar_private *priv) 3225 { 3226 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3227 u32 attrs; 3228 3229 /* Stop the DMA engine now, in case it was running before 3230 * (The firmware could have used it, and left it running). 3231 */ 3232 gfar_halt(priv); 3233 3234 gfar_mac_reset(priv); 3235 3236 /* Zero out the rmon mib registers if it has them */ 3237 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3238 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3239 3240 /* Mask off the CAM interrupts */ 3241 gfar_write(®s->rmon.cam1, 0xffffffff); 3242 gfar_write(®s->rmon.cam2, 0xffffffff); 3243 } 3244 3245 /* Initialize ECNTRL */ 3246 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3247 3248 /* Set the extraction length and index */ 3249 attrs = ATTRELI_EL(priv->rx_stash_size) | 3250 ATTRELI_EI(priv->rx_stash_index); 3251 3252 gfar_write(®s->attreli, attrs); 3253 3254 /* Start with defaults, and add stashing 3255 * depending on driver parameters 3256 */ 3257 attrs = ATTR_INIT_SETTINGS; 3258 3259 if (priv->bd_stash_en) 3260 attrs |= ATTR_BDSTASH; 3261 3262 if (priv->rx_stash_size != 0) 3263 attrs |= ATTR_BUFSTASH; 3264 3265 gfar_write(®s->attr, attrs); 3266 3267 /* FIFO configs */ 3268 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3269 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3270 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3271 3272 /* Program the interrupt steering regs, only for MG devices */ 3273 if (priv->num_grps > 1) 3274 gfar_write_isrg(priv); 3275 } 3276 3277 static const struct net_device_ops gfar_netdev_ops = { 3278 .ndo_open = gfar_enet_open, 3279 .ndo_start_xmit = gfar_start_xmit, 3280 .ndo_stop = gfar_close, 3281 .ndo_change_mtu = gfar_change_mtu, 3282 .ndo_set_features = gfar_set_features, 3283 .ndo_set_rx_mode = gfar_set_multi, 3284 .ndo_tx_timeout = gfar_timeout, 3285 .ndo_do_ioctl = gfar_ioctl, 3286 .ndo_get_stats = gfar_get_stats, 3287 .ndo_change_carrier = fixed_phy_change_carrier, 3288 .ndo_set_mac_address = gfar_set_mac_addr, 3289 .ndo_validate_addr = eth_validate_addr, 3290 #ifdef CONFIG_NET_POLL_CONTROLLER 3291 .ndo_poll_controller = gfar_netpoll, 3292 #endif 3293 }; 3294 3295 /* Set up the ethernet device structure, private data, 3296 * and anything else we need before we start 3297 */ 3298 static int gfar_probe(struct platform_device *ofdev) 3299 { 3300 struct device_node *np = ofdev->dev.of_node; 3301 struct net_device *dev = NULL; 3302 struct gfar_private *priv = NULL; 3303 int err = 0, i; 3304 3305 err = gfar_of_init(ofdev, &dev); 3306 3307 if (err) 3308 return err; 3309 3310 priv = netdev_priv(dev); 3311 priv->ndev = dev; 3312 priv->ofdev = ofdev; 3313 priv->dev = &ofdev->dev; 3314 SET_NETDEV_DEV(dev, &ofdev->dev); 3315 3316 INIT_WORK(&priv->reset_task, gfar_reset_task); 3317 3318 platform_set_drvdata(ofdev, priv); 3319 3320 gfar_detect_errata(priv); 3321 3322 /* Set the dev->base_addr to the gfar reg region */ 3323 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3324 3325 /* Fill in the dev structure */ 3326 dev->watchdog_timeo = TX_TIMEOUT; 3327 /* MTU range: 50 - 9586 */ 3328 dev->mtu = 1500; 3329 dev->min_mtu = 50; 3330 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3331 dev->netdev_ops = &gfar_netdev_ops; 3332 dev->ethtool_ops = &gfar_ethtool_ops; 3333 3334 /* Register for napi ...We are registering NAPI for each grp */ 3335 for (i = 0; i < priv->num_grps; i++) { 3336 if (priv->poll_mode == GFAR_SQ_POLLING) { 3337 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3338 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3339 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3340 gfar_poll_tx_sq, 2); 3341 } else { 3342 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3343 gfar_poll_rx, GFAR_DEV_WEIGHT); 3344 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3345 gfar_poll_tx, 2); 3346 } 3347 } 3348 3349 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3350 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3351 NETIF_F_RXCSUM; 3352 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3353 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3354 } 3355 3356 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3357 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3358 NETIF_F_HW_VLAN_CTAG_RX; 3359 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3360 } 3361 3362 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3363 3364 gfar_init_addr_hash_table(priv); 3365 3366 /* Insert receive time stamps into padding alignment bytes, and 3367 * plus 2 bytes padding to ensure the cpu alignment. 3368 */ 3369 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3370 priv->padding = 8 + DEFAULT_PADDING; 3371 3372 if (dev->features & NETIF_F_IP_CSUM || 3373 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3374 dev->needed_headroom = GMAC_FCB_LEN; 3375 3376 /* Initializing some of the rx/tx queue level parameters */ 3377 for (i = 0; i < priv->num_tx_queues; i++) { 3378 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3379 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3380 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3381 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3382 } 3383 3384 for (i = 0; i < priv->num_rx_queues; i++) { 3385 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3386 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3387 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3388 } 3389 3390 /* Always enable rx filer if available */ 3391 priv->rx_filer_enable = 3392 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3393 /* Enable most messages by default */ 3394 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3395 /* use pritority h/w tx queue scheduling for single queue devices */ 3396 if (priv->num_tx_queues == 1) 3397 priv->prio_sched_en = 1; 3398 3399 set_bit(GFAR_DOWN, &priv->state); 3400 3401 gfar_hw_init(priv); 3402 3403 /* Carrier starts down, phylib will bring it up */ 3404 netif_carrier_off(dev); 3405 3406 err = register_netdev(dev); 3407 3408 if (err) { 3409 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3410 goto register_fail; 3411 } 3412 3413 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3414 priv->wol_supported |= GFAR_WOL_MAGIC; 3415 3416 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3417 priv->rx_filer_enable) 3418 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3419 3420 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3421 3422 /* fill out IRQ number and name fields */ 3423 for (i = 0; i < priv->num_grps; i++) { 3424 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3425 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3426 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3427 dev->name, "_g", '0' + i, "_tx"); 3428 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3429 dev->name, "_g", '0' + i, "_rx"); 3430 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3431 dev->name, "_g", '0' + i, "_er"); 3432 } else 3433 strcpy(gfar_irq(grp, TX)->name, dev->name); 3434 } 3435 3436 /* Initialize the filer table */ 3437 gfar_init_filer_table(priv); 3438 3439 /* Print out the device info */ 3440 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3441 3442 /* Even more device info helps when determining which kernel 3443 * provided which set of benchmarks. 3444 */ 3445 netdev_info(dev, "Running with NAPI enabled\n"); 3446 for (i = 0; i < priv->num_rx_queues; i++) 3447 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3448 i, priv->rx_queue[i]->rx_ring_size); 3449 for (i = 0; i < priv->num_tx_queues; i++) 3450 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3451 i, priv->tx_queue[i]->tx_ring_size); 3452 3453 return 0; 3454 3455 register_fail: 3456 if (of_phy_is_fixed_link(np)) 3457 of_phy_deregister_fixed_link(np); 3458 unmap_group_regs(priv); 3459 gfar_free_rx_queues(priv); 3460 gfar_free_tx_queues(priv); 3461 of_node_put(priv->phy_node); 3462 of_node_put(priv->tbi_node); 3463 free_gfar_dev(priv); 3464 return err; 3465 } 3466 3467 static int gfar_remove(struct platform_device *ofdev) 3468 { 3469 struct gfar_private *priv = platform_get_drvdata(ofdev); 3470 struct device_node *np = ofdev->dev.of_node; 3471 3472 of_node_put(priv->phy_node); 3473 of_node_put(priv->tbi_node); 3474 3475 unregister_netdev(priv->ndev); 3476 3477 if (of_phy_is_fixed_link(np)) 3478 of_phy_deregister_fixed_link(np); 3479 3480 unmap_group_regs(priv); 3481 gfar_free_rx_queues(priv); 3482 gfar_free_tx_queues(priv); 3483 free_gfar_dev(priv); 3484 3485 return 0; 3486 } 3487 3488 #ifdef CONFIG_PM 3489 3490 static void __gfar_filer_disable(struct gfar_private *priv) 3491 { 3492 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3493 u32 temp; 3494 3495 temp = gfar_read(®s->rctrl); 3496 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3497 gfar_write(®s->rctrl, temp); 3498 } 3499 3500 static void __gfar_filer_enable(struct gfar_private *priv) 3501 { 3502 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3503 u32 temp; 3504 3505 temp = gfar_read(®s->rctrl); 3506 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3507 gfar_write(®s->rctrl, temp); 3508 } 3509 3510 /* Filer rules implementing wol capabilities */ 3511 static void gfar_filer_config_wol(struct gfar_private *priv) 3512 { 3513 unsigned int i; 3514 u32 rqfcr; 3515 3516 __gfar_filer_disable(priv); 3517 3518 /* clear the filer table, reject any packet by default */ 3519 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3520 for (i = 0; i <= MAX_FILER_IDX; i++) 3521 gfar_write_filer(priv, i, rqfcr, 0); 3522 3523 i = 0; 3524 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3525 /* unicast packet, accept it */ 3526 struct net_device *ndev = priv->ndev; 3527 /* get the default rx queue index */ 3528 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3529 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3530 (ndev->dev_addr[1] << 8) | 3531 ndev->dev_addr[2]; 3532 3533 rqfcr = (qindex << 10) | RQFCR_AND | 3534 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3535 3536 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3537 3538 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3539 (ndev->dev_addr[4] << 8) | 3540 ndev->dev_addr[5]; 3541 rqfcr = (qindex << 10) | RQFCR_GPI | 3542 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3543 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3544 } 3545 3546 __gfar_filer_enable(priv); 3547 } 3548 3549 static void gfar_filer_restore_table(struct gfar_private *priv) 3550 { 3551 u32 rqfcr, rqfpr; 3552 unsigned int i; 3553 3554 __gfar_filer_disable(priv); 3555 3556 for (i = 0; i <= MAX_FILER_IDX; i++) { 3557 rqfcr = priv->ftp_rqfcr[i]; 3558 rqfpr = priv->ftp_rqfpr[i]; 3559 gfar_write_filer(priv, i, rqfcr, rqfpr); 3560 } 3561 3562 __gfar_filer_enable(priv); 3563 } 3564 3565 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3566 static void gfar_start_wol_filer(struct gfar_private *priv) 3567 { 3568 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3569 u32 tempval; 3570 int i = 0; 3571 3572 /* Enable Rx hw queues */ 3573 gfar_write(®s->rqueue, priv->rqueue); 3574 3575 /* Initialize DMACTRL to have WWR and WOP */ 3576 tempval = gfar_read(®s->dmactrl); 3577 tempval |= DMACTRL_INIT_SETTINGS; 3578 gfar_write(®s->dmactrl, tempval); 3579 3580 /* Make sure we aren't stopped */ 3581 tempval = gfar_read(®s->dmactrl); 3582 tempval &= ~DMACTRL_GRS; 3583 gfar_write(®s->dmactrl, tempval); 3584 3585 for (i = 0; i < priv->num_grps; i++) { 3586 regs = priv->gfargrp[i].regs; 3587 /* Clear RHLT, so that the DMA starts polling now */ 3588 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3589 /* enable the Filer General Purpose Interrupt */ 3590 gfar_write(®s->imask, IMASK_FGPI); 3591 } 3592 3593 /* Enable Rx DMA */ 3594 tempval = gfar_read(®s->maccfg1); 3595 tempval |= MACCFG1_RX_EN; 3596 gfar_write(®s->maccfg1, tempval); 3597 } 3598 3599 static int gfar_suspend(struct device *dev) 3600 { 3601 struct gfar_private *priv = dev_get_drvdata(dev); 3602 struct net_device *ndev = priv->ndev; 3603 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3604 u32 tempval; 3605 u16 wol = priv->wol_opts; 3606 3607 if (!netif_running(ndev)) 3608 return 0; 3609 3610 disable_napi(priv); 3611 netif_tx_lock(ndev); 3612 netif_device_detach(ndev); 3613 netif_tx_unlock(ndev); 3614 3615 gfar_halt(priv); 3616 3617 if (wol & GFAR_WOL_MAGIC) { 3618 /* Enable interrupt on Magic Packet */ 3619 gfar_write(®s->imask, IMASK_MAG); 3620 3621 /* Enable Magic Packet mode */ 3622 tempval = gfar_read(®s->maccfg2); 3623 tempval |= MACCFG2_MPEN; 3624 gfar_write(®s->maccfg2, tempval); 3625 3626 /* re-enable the Rx block */ 3627 tempval = gfar_read(®s->maccfg1); 3628 tempval |= MACCFG1_RX_EN; 3629 gfar_write(®s->maccfg1, tempval); 3630 3631 } else if (wol & GFAR_WOL_FILER_UCAST) { 3632 gfar_filer_config_wol(priv); 3633 gfar_start_wol_filer(priv); 3634 3635 } else { 3636 phy_stop(ndev->phydev); 3637 } 3638 3639 return 0; 3640 } 3641 3642 static int gfar_resume(struct device *dev) 3643 { 3644 struct gfar_private *priv = dev_get_drvdata(dev); 3645 struct net_device *ndev = priv->ndev; 3646 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3647 u32 tempval; 3648 u16 wol = priv->wol_opts; 3649 3650 if (!netif_running(ndev)) 3651 return 0; 3652 3653 if (wol & GFAR_WOL_MAGIC) { 3654 /* Disable Magic Packet mode */ 3655 tempval = gfar_read(®s->maccfg2); 3656 tempval &= ~MACCFG2_MPEN; 3657 gfar_write(®s->maccfg2, tempval); 3658 3659 } else if (wol & GFAR_WOL_FILER_UCAST) { 3660 /* need to stop rx only, tx is already down */ 3661 gfar_halt(priv); 3662 gfar_filer_restore_table(priv); 3663 3664 } else { 3665 phy_start(ndev->phydev); 3666 } 3667 3668 gfar_start(priv); 3669 3670 netif_device_attach(ndev); 3671 enable_napi(priv); 3672 3673 return 0; 3674 } 3675 3676 static int gfar_restore(struct device *dev) 3677 { 3678 struct gfar_private *priv = dev_get_drvdata(dev); 3679 struct net_device *ndev = priv->ndev; 3680 3681 if (!netif_running(ndev)) { 3682 netif_device_attach(ndev); 3683 3684 return 0; 3685 } 3686 3687 gfar_init_bds(ndev); 3688 3689 gfar_mac_reset(priv); 3690 3691 gfar_init_tx_rx_base(priv); 3692 3693 gfar_start(priv); 3694 3695 priv->oldlink = 0; 3696 priv->oldspeed = 0; 3697 priv->oldduplex = -1; 3698 3699 if (ndev->phydev) 3700 phy_start(ndev->phydev); 3701 3702 netif_device_attach(ndev); 3703 enable_napi(priv); 3704 3705 return 0; 3706 } 3707 3708 static const struct dev_pm_ops gfar_pm_ops = { 3709 .suspend = gfar_suspend, 3710 .resume = gfar_resume, 3711 .freeze = gfar_suspend, 3712 .thaw = gfar_resume, 3713 .restore = gfar_restore, 3714 }; 3715 3716 #define GFAR_PM_OPS (&gfar_pm_ops) 3717 3718 #else 3719 3720 #define GFAR_PM_OPS NULL 3721 3722 #endif 3723 3724 static const struct of_device_id gfar_match[] = 3725 { 3726 { 3727 .type = "network", 3728 .compatible = "gianfar", 3729 }, 3730 { 3731 .compatible = "fsl,etsec2", 3732 }, 3733 {}, 3734 }; 3735 MODULE_DEVICE_TABLE(of, gfar_match); 3736 3737 /* Structure for a device driver */ 3738 static struct platform_driver gfar_driver = { 3739 .driver = { 3740 .name = "fsl-gianfar", 3741 .pm = GFAR_PM_OPS, 3742 .of_match_table = gfar_match, 3743 }, 3744 .probe = gfar_probe, 3745 .remove = gfar_remove, 3746 }; 3747 3748 module_platform_driver(gfar_driver); 3749