1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (1*HZ)
105 
106 const char gfar_driver_version[] = "1.3";
107 
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 			   struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 static int gfar_poll_sq(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 			       int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144 				  const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150 
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 			    dma_addr_t buf)
153 {
154 	u32 lstatus;
155 
156 	bdp->bufPtr = buf;
157 
158 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 		lstatus |= BD_LFLAG(RXBD_WRAP);
161 
162 	eieio();
163 
164 	bdp->lstatus = lstatus;
165 }
166 
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 	struct gfar_private *priv = netdev_priv(ndev);
170 	struct gfar_priv_tx_q *tx_queue = NULL;
171 	struct gfar_priv_rx_q *rx_queue = NULL;
172 	struct txbd8 *txbdp;
173 	struct rxbd8 *rxbdp;
174 	int i, j;
175 
176 	for (i = 0; i < priv->num_tx_queues; i++) {
177 		tx_queue = priv->tx_queue[i];
178 		/* Initialize some variables in our dev structure */
179 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 		tx_queue->cur_tx = tx_queue->tx_bd_base;
182 		tx_queue->skb_curtx = 0;
183 		tx_queue->skb_dirtytx = 0;
184 
185 		/* Initialize Transmit Descriptor Ring */
186 		txbdp = tx_queue->tx_bd_base;
187 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 			txbdp->lstatus = 0;
189 			txbdp->bufPtr = 0;
190 			txbdp++;
191 		}
192 
193 		/* Set the last descriptor in the ring to indicate wrap */
194 		txbdp--;
195 		txbdp->status |= TXBD_WRAP;
196 	}
197 
198 	for (i = 0; i < priv->num_rx_queues; i++) {
199 		rx_queue = priv->rx_queue[i];
200 		rx_queue->cur_rx = rx_queue->rx_bd_base;
201 		rx_queue->skb_currx = 0;
202 		rxbdp = rx_queue->rx_bd_base;
203 
204 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
206 
207 			if (skb) {
208 				gfar_init_rxbdp(rx_queue, rxbdp,
209 						rxbdp->bufPtr);
210 			} else {
211 				skb = gfar_new_skb(ndev);
212 				if (!skb) {
213 					netdev_err(ndev, "Can't allocate RX buffers\n");
214 					return -ENOMEM;
215 				}
216 				rx_queue->rx_skbuff[j] = skb;
217 
218 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
219 			}
220 
221 			rxbdp++;
222 		}
223 
224 	}
225 
226 	return 0;
227 }
228 
229 static int gfar_alloc_skb_resources(struct net_device *ndev)
230 {
231 	void *vaddr;
232 	dma_addr_t addr;
233 	int i, j, k;
234 	struct gfar_private *priv = netdev_priv(ndev);
235 	struct device *dev = priv->dev;
236 	struct gfar_priv_tx_q *tx_queue = NULL;
237 	struct gfar_priv_rx_q *rx_queue = NULL;
238 
239 	priv->total_tx_ring_size = 0;
240 	for (i = 0; i < priv->num_tx_queues; i++)
241 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
242 
243 	priv->total_rx_ring_size = 0;
244 	for (i = 0; i < priv->num_rx_queues; i++)
245 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
246 
247 	/* Allocate memory for the buffer descriptors */
248 	vaddr = dma_alloc_coherent(dev,
249 				   (priv->total_tx_ring_size *
250 				    sizeof(struct txbd8)) +
251 				   (priv->total_rx_ring_size *
252 				    sizeof(struct rxbd8)),
253 				   &addr, GFP_KERNEL);
254 	if (!vaddr)
255 		return -ENOMEM;
256 
257 	for (i = 0; i < priv->num_tx_queues; i++) {
258 		tx_queue = priv->tx_queue[i];
259 		tx_queue->tx_bd_base = vaddr;
260 		tx_queue->tx_bd_dma_base = addr;
261 		tx_queue->dev = ndev;
262 		/* enet DMA only understands physical addresses */
263 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265 	}
266 
267 	/* Start the rx descriptor ring where the tx ring leaves off */
268 	for (i = 0; i < priv->num_rx_queues; i++) {
269 		rx_queue = priv->rx_queue[i];
270 		rx_queue->rx_bd_base = vaddr;
271 		rx_queue->rx_bd_dma_base = addr;
272 		rx_queue->dev = ndev;
273 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275 	}
276 
277 	/* Setup the skbuff rings */
278 	for (i = 0; i < priv->num_tx_queues; i++) {
279 		tx_queue = priv->tx_queue[i];
280 		tx_queue->tx_skbuff =
281 			kmalloc_array(tx_queue->tx_ring_size,
282 				      sizeof(*tx_queue->tx_skbuff),
283 				      GFP_KERNEL);
284 		if (!tx_queue->tx_skbuff)
285 			goto cleanup;
286 
287 		for (k = 0; k < tx_queue->tx_ring_size; k++)
288 			tx_queue->tx_skbuff[k] = NULL;
289 	}
290 
291 	for (i = 0; i < priv->num_rx_queues; i++) {
292 		rx_queue = priv->rx_queue[i];
293 		rx_queue->rx_skbuff =
294 			kmalloc_array(rx_queue->rx_ring_size,
295 				      sizeof(*rx_queue->rx_skbuff),
296 				      GFP_KERNEL);
297 		if (!rx_queue->rx_skbuff)
298 			goto cleanup;
299 
300 		for (j = 0; j < rx_queue->rx_ring_size; j++)
301 			rx_queue->rx_skbuff[j] = NULL;
302 	}
303 
304 	if (gfar_init_bds(ndev))
305 		goto cleanup;
306 
307 	return 0;
308 
309 cleanup:
310 	free_skb_resources(priv);
311 	return -ENOMEM;
312 }
313 
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
317 	u32 __iomem *baddr;
318 	int i;
319 
320 	baddr = &regs->tbase0;
321 	for (i = 0; i < priv->num_tx_queues; i++) {
322 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323 		baddr += 2;
324 	}
325 
326 	baddr = &regs->rbase0;
327 	for (i = 0; i < priv->num_rx_queues; i++) {
328 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329 		baddr += 2;
330 	}
331 }
332 
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335 	struct gfar_private *priv = netdev_priv(ndev);
336 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
337 	u32 rctrl = 0;
338 	u32 tctrl = 0;
339 	u32 attrs = 0;
340 
341 	/* write the tx/rx base registers */
342 	gfar_init_tx_rx_base(priv);
343 
344 	/* Configure the coalescing support */
345 	gfar_configure_coalescing_all(priv);
346 
347 	/* set this when rx hw offload (TOE) functions are being used */
348 	priv->uses_rxfcb = 0;
349 
350 	if (priv->rx_filer_enable) {
351 		rctrl |= RCTRL_FILREN;
352 		/* Program the RIR0 reg with the required distribution */
353 		gfar_write(&regs->rir0, DEFAULT_RIR0);
354 	}
355 
356 	/* Restore PROMISC mode */
357 	if (ndev->flags & IFF_PROMISC)
358 		rctrl |= RCTRL_PROM;
359 
360 	if (ndev->features & NETIF_F_RXCSUM) {
361 		rctrl |= RCTRL_CHECKSUMMING;
362 		priv->uses_rxfcb = 1;
363 	}
364 
365 	if (priv->extended_hash) {
366 		rctrl |= RCTRL_EXTHASH;
367 
368 		gfar_clear_exact_match(ndev);
369 		rctrl |= RCTRL_EMEN;
370 	}
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Insert receive time stamps into padding alignment bytes */
378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 		rctrl &= ~RCTRL_PAL_MASK;
380 		rctrl |= RCTRL_PADDING(8);
381 		priv->padding = 8;
382 	}
383 
384 	/* Enable HW time stamping if requested from user space */
385 	if (priv->hwts_rx_en) {
386 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 		priv->uses_rxfcb = 1;
388 	}
389 
390 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
391 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
392 		priv->uses_rxfcb = 1;
393 	}
394 
395 	/* Init rctrl based on our settings */
396 	gfar_write(&regs->rctrl, rctrl);
397 
398 	if (ndev->features & NETIF_F_IP_CSUM)
399 		tctrl |= TCTRL_INIT_CSUM;
400 
401 	if (priv->prio_sched_en)
402 		tctrl |= TCTRL_TXSCHED_PRIO;
403 	else {
404 		tctrl |= TCTRL_TXSCHED_WRRS;
405 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407 	}
408 
409 	gfar_write(&regs->tctrl, tctrl);
410 
411 	/* Set the extraction length and index */
412 	attrs = ATTRELI_EL(priv->rx_stash_size) |
413 		ATTRELI_EI(priv->rx_stash_index);
414 
415 	gfar_write(&regs->attreli, attrs);
416 
417 	/* Start with defaults, and add stashing or locking
418 	 * depending on the approprate variables
419 	 */
420 	attrs = ATTR_INIT_SETTINGS;
421 
422 	if (priv->bd_stash_en)
423 		attrs |= ATTR_BDSTASH;
424 
425 	if (priv->rx_stash_size != 0)
426 		attrs |= ATTR_BUFSTASH;
427 
428 	gfar_write(&regs->attr, attrs);
429 
430 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
431 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
432 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
433 }
434 
435 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
436 {
437 	struct gfar_private *priv = netdev_priv(dev);
438 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
439 	unsigned long tx_packets = 0, tx_bytes = 0;
440 	int i;
441 
442 	for (i = 0; i < priv->num_rx_queues; i++) {
443 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
444 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
445 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446 	}
447 
448 	dev->stats.rx_packets = rx_packets;
449 	dev->stats.rx_bytes   = rx_bytes;
450 	dev->stats.rx_dropped = rx_dropped;
451 
452 	for (i = 0; i < priv->num_tx_queues; i++) {
453 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
454 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
455 	}
456 
457 	dev->stats.tx_bytes   = tx_bytes;
458 	dev->stats.tx_packets = tx_packets;
459 
460 	return &dev->stats;
461 }
462 
463 static const struct net_device_ops gfar_netdev_ops = {
464 	.ndo_open = gfar_enet_open,
465 	.ndo_start_xmit = gfar_start_xmit,
466 	.ndo_stop = gfar_close,
467 	.ndo_change_mtu = gfar_change_mtu,
468 	.ndo_set_features = gfar_set_features,
469 	.ndo_set_rx_mode = gfar_set_multi,
470 	.ndo_tx_timeout = gfar_timeout,
471 	.ndo_do_ioctl = gfar_ioctl,
472 	.ndo_get_stats = gfar_get_stats,
473 	.ndo_set_mac_address = eth_mac_addr,
474 	.ndo_validate_addr = eth_validate_addr,
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476 	.ndo_poll_controller = gfar_netpoll,
477 #endif
478 };
479 
480 void lock_rx_qs(struct gfar_private *priv)
481 {
482 	int i;
483 
484 	for (i = 0; i < priv->num_rx_queues; i++)
485 		spin_lock(&priv->rx_queue[i]->rxlock);
486 }
487 
488 void lock_tx_qs(struct gfar_private *priv)
489 {
490 	int i;
491 
492 	for (i = 0; i < priv->num_tx_queues; i++)
493 		spin_lock(&priv->tx_queue[i]->txlock);
494 }
495 
496 void unlock_rx_qs(struct gfar_private *priv)
497 {
498 	int i;
499 
500 	for (i = 0; i < priv->num_rx_queues; i++)
501 		spin_unlock(&priv->rx_queue[i]->rxlock);
502 }
503 
504 void unlock_tx_qs(struct gfar_private *priv)
505 {
506 	int i;
507 
508 	for (i = 0; i < priv->num_tx_queues; i++)
509 		spin_unlock(&priv->tx_queue[i]->txlock);
510 }
511 
512 static void free_tx_pointers(struct gfar_private *priv)
513 {
514 	int i;
515 
516 	for (i = 0; i < priv->num_tx_queues; i++)
517 		kfree(priv->tx_queue[i]);
518 }
519 
520 static void free_rx_pointers(struct gfar_private *priv)
521 {
522 	int i;
523 
524 	for (i = 0; i < priv->num_rx_queues; i++)
525 		kfree(priv->rx_queue[i]);
526 }
527 
528 static void unmap_group_regs(struct gfar_private *priv)
529 {
530 	int i;
531 
532 	for (i = 0; i < MAXGROUPS; i++)
533 		if (priv->gfargrp[i].regs)
534 			iounmap(priv->gfargrp[i].regs);
535 }
536 
537 static void free_gfar_dev(struct gfar_private *priv)
538 {
539 	int i, j;
540 
541 	for (i = 0; i < priv->num_grps; i++)
542 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
543 			kfree(priv->gfargrp[i].irqinfo[j]);
544 			priv->gfargrp[i].irqinfo[j] = NULL;
545 		}
546 
547 	free_netdev(priv->ndev);
548 }
549 
550 static void disable_napi(struct gfar_private *priv)
551 {
552 	int i;
553 
554 	for (i = 0; i < priv->num_grps; i++)
555 		napi_disable(&priv->gfargrp[i].napi);
556 }
557 
558 static void enable_napi(struct gfar_private *priv)
559 {
560 	int i;
561 
562 	for (i = 0; i < priv->num_grps; i++)
563 		napi_enable(&priv->gfargrp[i].napi);
564 }
565 
566 static int gfar_parse_group(struct device_node *np,
567 			    struct gfar_private *priv, const char *model)
568 {
569 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
570 	u32 *queue_mask;
571 	int i;
572 
573 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
574 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
575 					  GFP_KERNEL);
576 		if (!grp->irqinfo[i])
577 			return -ENOMEM;
578 	}
579 
580 	grp->regs = of_iomap(np, 0);
581 	if (!grp->regs)
582 		return -ENOMEM;
583 
584 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
585 
586 	/* If we aren't the FEC we have multiple interrupts */
587 	if (model && strcasecmp(model, "FEC")) {
588 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
589 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
590 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
591 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
592 		    gfar_irq(grp, ER)->irq == NO_IRQ)
593 			return -EINVAL;
594 	}
595 
596 	grp->priv = priv;
597 	spin_lock_init(&grp->grplock);
598 	if (priv->mode == MQ_MG_MODE) {
599 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600 		grp->rx_bit_map = queue_mask ?
601 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603 		grp->tx_bit_map = queue_mask ?
604 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605 	} else {
606 		grp->rx_bit_map = 0xFF;
607 		grp->tx_bit_map = 0xFF;
608 	}
609 	priv->num_grps++;
610 
611 	return 0;
612 }
613 
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616 	const char *model;
617 	const char *ctype;
618 	const void *mac_addr;
619 	int err = 0, i;
620 	struct net_device *dev = NULL;
621 	struct gfar_private *priv = NULL;
622 	struct device_node *np = ofdev->dev.of_node;
623 	struct device_node *child = NULL;
624 	const u32 *stash;
625 	const u32 *stash_len;
626 	const u32 *stash_idx;
627 	unsigned int num_tx_qs, num_rx_qs;
628 	u32 *tx_queues, *rx_queues;
629 
630 	if (!np || !of_device_is_available(np))
631 		return -ENODEV;
632 
633 	/* parse the num of tx and rx queues */
634 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635 	num_tx_qs = tx_queues ? *tx_queues : 1;
636 
637 	if (num_tx_qs > MAX_TX_QS) {
638 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639 		       num_tx_qs, MAX_TX_QS);
640 		pr_err("Cannot do alloc_etherdev, aborting\n");
641 		return -EINVAL;
642 	}
643 
644 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645 	num_rx_qs = rx_queues ? *rx_queues : 1;
646 
647 	if (num_rx_qs > MAX_RX_QS) {
648 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649 		       num_rx_qs, MAX_RX_QS);
650 		pr_err("Cannot do alloc_etherdev, aborting\n");
651 		return -EINVAL;
652 	}
653 
654 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655 	dev = *pdev;
656 	if (NULL == dev)
657 		return -ENOMEM;
658 
659 	priv = netdev_priv(dev);
660 	priv->ndev = dev;
661 
662 	priv->num_tx_queues = num_tx_qs;
663 	netif_set_real_num_rx_queues(dev, num_rx_qs);
664 	priv->num_rx_queues = num_rx_qs;
665 	priv->num_grps = 0x0;
666 
667 	/* Init Rx queue filer rule set linked list */
668 	INIT_LIST_HEAD(&priv->rx_list.list);
669 	priv->rx_list.count = 0;
670 	mutex_init(&priv->rx_queue_access);
671 
672 	model = of_get_property(np, "model", NULL);
673 
674 	for (i = 0; i < MAXGROUPS; i++)
675 		priv->gfargrp[i].regs = NULL;
676 
677 	/* Parse and initialize group specific information */
678 	if (of_device_is_compatible(np, "fsl,etsec2")) {
679 		priv->mode = MQ_MG_MODE;
680 		for_each_child_of_node(np, child) {
681 			err = gfar_parse_group(child, priv, model);
682 			if (err)
683 				goto err_grp_init;
684 		}
685 	} else {
686 		priv->mode = SQ_SG_MODE;
687 		err = gfar_parse_group(np, priv, model);
688 		if (err)
689 			goto err_grp_init;
690 	}
691 
692 	for (i = 0; i < priv->num_tx_queues; i++)
693 		priv->tx_queue[i] = NULL;
694 	for (i = 0; i < priv->num_rx_queues; i++)
695 		priv->rx_queue[i] = NULL;
696 
697 	for (i = 0; i < priv->num_tx_queues; i++) {
698 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699 					    GFP_KERNEL);
700 		if (!priv->tx_queue[i]) {
701 			err = -ENOMEM;
702 			goto tx_alloc_failed;
703 		}
704 		priv->tx_queue[i]->tx_skbuff = NULL;
705 		priv->tx_queue[i]->qindex = i;
706 		priv->tx_queue[i]->dev = dev;
707 		spin_lock_init(&(priv->tx_queue[i]->txlock));
708 	}
709 
710 	for (i = 0; i < priv->num_rx_queues; i++) {
711 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712 					    GFP_KERNEL);
713 		if (!priv->rx_queue[i]) {
714 			err = -ENOMEM;
715 			goto rx_alloc_failed;
716 		}
717 		priv->rx_queue[i]->rx_skbuff = NULL;
718 		priv->rx_queue[i]->qindex = i;
719 		priv->rx_queue[i]->dev = dev;
720 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
721 	}
722 
723 
724 	stash = of_get_property(np, "bd-stash", NULL);
725 
726 	if (stash) {
727 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728 		priv->bd_stash_en = 1;
729 	}
730 
731 	stash_len = of_get_property(np, "rx-stash-len", NULL);
732 
733 	if (stash_len)
734 		priv->rx_stash_size = *stash_len;
735 
736 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737 
738 	if (stash_idx)
739 		priv->rx_stash_index = *stash_idx;
740 
741 	if (stash_len || stash_idx)
742 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743 
744 	mac_addr = of_get_mac_address(np);
745 
746 	if (mac_addr)
747 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748 
749 	if (model && !strcasecmp(model, "TSEC"))
750 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751 				     FSL_GIANFAR_DEV_HAS_COALESCE |
752 				     FSL_GIANFAR_DEV_HAS_RMON |
753 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754 
755 	if (model && !strcasecmp(model, "eTSEC"))
756 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757 				     FSL_GIANFAR_DEV_HAS_COALESCE |
758 				     FSL_GIANFAR_DEV_HAS_RMON |
759 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760 				     FSL_GIANFAR_DEV_HAS_PADDING |
761 				     FSL_GIANFAR_DEV_HAS_CSUM |
762 				     FSL_GIANFAR_DEV_HAS_VLAN |
763 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765 				     FSL_GIANFAR_DEV_HAS_TIMER;
766 
767 	ctype = of_get_property(np, "phy-connection-type", NULL);
768 
769 	/* We only care about rgmii-id.  The rest are autodetected */
770 	if (ctype && !strcmp(ctype, "rgmii-id"))
771 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772 	else
773 		priv->interface = PHY_INTERFACE_MODE_MII;
774 
775 	if (of_get_property(np, "fsl,magic-packet", NULL))
776 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777 
778 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779 
780 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
781 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782 
783 	return 0;
784 
785 rx_alloc_failed:
786 	free_rx_pointers(priv);
787 tx_alloc_failed:
788 	free_tx_pointers(priv);
789 err_grp_init:
790 	unmap_group_regs(priv);
791 	free_gfar_dev(priv);
792 	return err;
793 }
794 
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796 			       struct ifreq *ifr, int cmd)
797 {
798 	struct hwtstamp_config config;
799 	struct gfar_private *priv = netdev_priv(netdev);
800 
801 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802 		return -EFAULT;
803 
804 	/* reserved for future extensions */
805 	if (config.flags)
806 		return -EINVAL;
807 
808 	switch (config.tx_type) {
809 	case HWTSTAMP_TX_OFF:
810 		priv->hwts_tx_en = 0;
811 		break;
812 	case HWTSTAMP_TX_ON:
813 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814 			return -ERANGE;
815 		priv->hwts_tx_en = 1;
816 		break;
817 	default:
818 		return -ERANGE;
819 	}
820 
821 	switch (config.rx_filter) {
822 	case HWTSTAMP_FILTER_NONE:
823 		if (priv->hwts_rx_en) {
824 			stop_gfar(netdev);
825 			priv->hwts_rx_en = 0;
826 			startup_gfar(netdev);
827 		}
828 		break;
829 	default:
830 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831 			return -ERANGE;
832 		if (!priv->hwts_rx_en) {
833 			stop_gfar(netdev);
834 			priv->hwts_rx_en = 1;
835 			startup_gfar(netdev);
836 		}
837 		config.rx_filter = HWTSTAMP_FILTER_ALL;
838 		break;
839 	}
840 
841 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842 		-EFAULT : 0;
843 }
844 
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848 	struct gfar_private *priv = netdev_priv(dev);
849 
850 	if (!netif_running(dev))
851 		return -EINVAL;
852 
853 	if (cmd == SIOCSHWTSTAMP)
854 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
855 
856 	if (!priv->phydev)
857 		return -ENODEV;
858 
859 	return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861 
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864 	unsigned int new_bit_map = 0x0;
865 	int mask = 0x1 << (max_qs - 1), i;
866 
867 	for (i = 0; i < max_qs; i++) {
868 		if (bit_map & mask)
869 			new_bit_map = new_bit_map + (1 << i);
870 		mask = mask >> 0x1;
871 	}
872 	return new_bit_map;
873 }
874 
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876 				   u32 class)
877 {
878 	u32 rqfpr = FPR_FILER_MASK;
879 	u32 rqfcr = 0x0;
880 
881 	rqfar--;
882 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883 	priv->ftp_rqfpr[rqfar] = rqfpr;
884 	priv->ftp_rqfcr[rqfar] = rqfcr;
885 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886 
887 	rqfar--;
888 	rqfcr = RQFCR_CMP_NOMATCH;
889 	priv->ftp_rqfpr[rqfar] = rqfpr;
890 	priv->ftp_rqfcr[rqfar] = rqfcr;
891 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892 
893 	rqfar--;
894 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895 	rqfpr = class;
896 	priv->ftp_rqfcr[rqfar] = rqfcr;
897 	priv->ftp_rqfpr[rqfar] = rqfpr;
898 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899 
900 	rqfar--;
901 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902 	rqfpr = class;
903 	priv->ftp_rqfcr[rqfar] = rqfcr;
904 	priv->ftp_rqfpr[rqfar] = rqfpr;
905 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906 
907 	return rqfar;
908 }
909 
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912 	int i = 0x0;
913 	u32 rqfar = MAX_FILER_IDX;
914 	u32 rqfcr = 0x0;
915 	u32 rqfpr = FPR_FILER_MASK;
916 
917 	/* Default rule */
918 	rqfcr = RQFCR_CMP_MATCH;
919 	priv->ftp_rqfcr[rqfar] = rqfcr;
920 	priv->ftp_rqfpr[rqfar] = rqfpr;
921 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922 
923 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929 
930 	/* cur_filer_idx indicated the first non-masked rule */
931 	priv->cur_filer_idx = rqfar;
932 
933 	/* Rest are masked rules */
934 	rqfcr = RQFCR_CMP_NOMATCH;
935 	for (i = 0; i < rqfar; i++) {
936 		priv->ftp_rqfcr[i] = rqfcr;
937 		priv->ftp_rqfpr[i] = rqfpr;
938 		gfar_write_filer(priv, i, rqfcr, rqfpr);
939 	}
940 }
941 
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944 	struct device *dev = &priv->ofdev->dev;
945 	unsigned int pvr = mfspr(SPRN_PVR);
946 	unsigned int svr = mfspr(SPRN_SVR);
947 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948 	unsigned int rev = svr & 0xffff;
949 
950 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
951 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 		priv->errata |= GFAR_ERRATA_74;
954 
955 	/* MPC8313 and MPC837x all rev */
956 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
957 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958 		priv->errata |= GFAR_ERRATA_76;
959 
960 	/* MPC8313 and MPC837x all rev */
961 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
962 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963 		priv->errata |= GFAR_ERRATA_A002;
964 
965 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967 	    (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968 		priv->errata |= GFAR_ERRATA_12;
969 
970 	if (priv->errata)
971 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972 			 priv->errata);
973 }
974 
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980 	u32 tempval;
981 	struct net_device *dev = NULL;
982 	struct gfar_private *priv = NULL;
983 	struct gfar __iomem *regs = NULL;
984 	int err = 0, i, grp_idx = 0;
985 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986 	u32 isrg = 0;
987 	u32 __iomem *baddr;
988 
989 	err = gfar_of_init(ofdev, &dev);
990 
991 	if (err)
992 		return err;
993 
994 	priv = netdev_priv(dev);
995 	priv->ndev = dev;
996 	priv->ofdev = ofdev;
997 	priv->dev = &ofdev->dev;
998 	SET_NETDEV_DEV(dev, &ofdev->dev);
999 
1000 	spin_lock_init(&priv->bflock);
1001 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1002 
1003 	platform_set_drvdata(ofdev, priv);
1004 	regs = priv->gfargrp[0].regs;
1005 
1006 	gfar_detect_errata(priv);
1007 
1008 	/* Stop the DMA engine now, in case it was running before
1009 	 * (The firmware could have used it, and left it running).
1010 	 */
1011 	gfar_halt(dev);
1012 
1013 	/* Reset MAC layer */
1014 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015 
1016 	/* We need to delay at least 3 TX clocks */
1017 	udelay(2);
1018 
1019 	tempval = 0;
1020 	if (!priv->pause_aneg_en && priv->tx_pause_en)
1021 		tempval |= MACCFG1_TX_FLOW;
1022 	if (!priv->pause_aneg_en && priv->rx_pause_en)
1023 		tempval |= MACCFG1_RX_FLOW;
1024 	/* the soft reset bit is not self-resetting, so we need to
1025 	 * clear it before resuming normal operation
1026 	 */
1027 	gfar_write(&regs->maccfg1, tempval);
1028 
1029 	/* Initialize MACCFG2. */
1030 	tempval = MACCFG2_INIT_SETTINGS;
1031 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1032 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1033 	gfar_write(&regs->maccfg2, tempval);
1034 
1035 	/* Initialize ECNTRL */
1036 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1037 
1038 	/* Set the dev->base_addr to the gfar reg region */
1039 	dev->base_addr = (unsigned long) regs;
1040 
1041 	/* Fill in the dev structure */
1042 	dev->watchdog_timeo = TX_TIMEOUT;
1043 	dev->mtu = 1500;
1044 	dev->netdev_ops = &gfar_netdev_ops;
1045 	dev->ethtool_ops = &gfar_ethtool_ops;
1046 
1047 	/* Register for napi ...We are registering NAPI for each grp */
1048 	if (priv->mode == SQ_SG_MODE)
1049 		netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1050 			       GFAR_DEV_WEIGHT);
1051 	else
1052 		for (i = 0; i < priv->num_grps; i++)
1053 			netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1054 				       GFAR_DEV_WEIGHT);
1055 
1056 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1057 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1058 				   NETIF_F_RXCSUM;
1059 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1060 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1061 	}
1062 
1063 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1064 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1065 				    NETIF_F_HW_VLAN_CTAG_RX;
1066 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1067 	}
1068 
1069 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1070 		priv->extended_hash = 1;
1071 		priv->hash_width = 9;
1072 
1073 		priv->hash_regs[0] = &regs->igaddr0;
1074 		priv->hash_regs[1] = &regs->igaddr1;
1075 		priv->hash_regs[2] = &regs->igaddr2;
1076 		priv->hash_regs[3] = &regs->igaddr3;
1077 		priv->hash_regs[4] = &regs->igaddr4;
1078 		priv->hash_regs[5] = &regs->igaddr5;
1079 		priv->hash_regs[6] = &regs->igaddr6;
1080 		priv->hash_regs[7] = &regs->igaddr7;
1081 		priv->hash_regs[8] = &regs->gaddr0;
1082 		priv->hash_regs[9] = &regs->gaddr1;
1083 		priv->hash_regs[10] = &regs->gaddr2;
1084 		priv->hash_regs[11] = &regs->gaddr3;
1085 		priv->hash_regs[12] = &regs->gaddr4;
1086 		priv->hash_regs[13] = &regs->gaddr5;
1087 		priv->hash_regs[14] = &regs->gaddr6;
1088 		priv->hash_regs[15] = &regs->gaddr7;
1089 
1090 	} else {
1091 		priv->extended_hash = 0;
1092 		priv->hash_width = 8;
1093 
1094 		priv->hash_regs[0] = &regs->gaddr0;
1095 		priv->hash_regs[1] = &regs->gaddr1;
1096 		priv->hash_regs[2] = &regs->gaddr2;
1097 		priv->hash_regs[3] = &regs->gaddr3;
1098 		priv->hash_regs[4] = &regs->gaddr4;
1099 		priv->hash_regs[5] = &regs->gaddr5;
1100 		priv->hash_regs[6] = &regs->gaddr6;
1101 		priv->hash_regs[7] = &regs->gaddr7;
1102 	}
1103 
1104 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1105 		priv->padding = DEFAULT_PADDING;
1106 	else
1107 		priv->padding = 0;
1108 
1109 	if (dev->features & NETIF_F_IP_CSUM ||
1110 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1111 		dev->needed_headroom = GMAC_FCB_LEN;
1112 
1113 	/* Program the isrg regs only if number of grps > 1 */
1114 	if (priv->num_grps > 1) {
1115 		baddr = &regs->isrg0;
1116 		for (i = 0; i < priv->num_grps; i++) {
1117 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1118 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1119 			gfar_write(baddr, isrg);
1120 			baddr++;
1121 			isrg = 0x0;
1122 		}
1123 	}
1124 
1125 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1126 	 * but, for_each_set_bit parses from right to left, which
1127 	 * basically reverses the queue numbers
1128 	 */
1129 	for (i = 0; i< priv->num_grps; i++) {
1130 		priv->gfargrp[i].tx_bit_map =
1131 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1132 		priv->gfargrp[i].rx_bit_map =
1133 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1134 	}
1135 
1136 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1137 	 * also assign queues to groups
1138 	 */
1139 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1140 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1141 
1142 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1143 				 priv->num_rx_queues) {
1144 			priv->gfargrp[grp_idx].num_rx_queues++;
1145 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1146 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1147 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1148 		}
1149 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1150 
1151 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1152 				 priv->num_tx_queues) {
1153 			priv->gfargrp[grp_idx].num_tx_queues++;
1154 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1155 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1156 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1157 		}
1158 		priv->gfargrp[grp_idx].rstat = rstat;
1159 		priv->gfargrp[grp_idx].tstat = tstat;
1160 		rstat = tstat =0;
1161 	}
1162 
1163 	gfar_write(&regs->rqueue, rqueue);
1164 	gfar_write(&regs->tqueue, tqueue);
1165 
1166 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1167 
1168 	/* Initializing some of the rx/tx queue level parameters */
1169 	for (i = 0; i < priv->num_tx_queues; i++) {
1170 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1171 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1172 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1173 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1174 	}
1175 
1176 	for (i = 0; i < priv->num_rx_queues; i++) {
1177 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1178 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1179 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1180 	}
1181 
1182 	/* always enable rx filer */
1183 	priv->rx_filer_enable = 1;
1184 	/* Enable most messages by default */
1185 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1186 	/* use pritority h/w tx queue scheduling for single queue devices */
1187 	if (priv->num_tx_queues == 1)
1188 		priv->prio_sched_en = 1;
1189 
1190 	/* Carrier starts down, phylib will bring it up */
1191 	netif_carrier_off(dev);
1192 
1193 	err = register_netdev(dev);
1194 
1195 	if (err) {
1196 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1197 		goto register_fail;
1198 	}
1199 
1200 	device_init_wakeup(&dev->dev,
1201 			   priv->device_flags &
1202 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1203 
1204 	/* fill out IRQ number and name fields */
1205 	for (i = 0; i < priv->num_grps; i++) {
1206 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1207 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1208 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1209 				dev->name, "_g", '0' + i, "_tx");
1210 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1211 				dev->name, "_g", '0' + i, "_rx");
1212 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1213 				dev->name, "_g", '0' + i, "_er");
1214 		} else
1215 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1216 	}
1217 
1218 	/* Initialize the filer table */
1219 	gfar_init_filer_table(priv);
1220 
1221 	/* Create all the sysfs files */
1222 	gfar_init_sysfs(dev);
1223 
1224 	/* Print out the device info */
1225 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1226 
1227 	/* Even more device info helps when determining which kernel
1228 	 * provided which set of benchmarks.
1229 	 */
1230 	netdev_info(dev, "Running with NAPI enabled\n");
1231 	for (i = 0; i < priv->num_rx_queues; i++)
1232 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1233 			    i, priv->rx_queue[i]->rx_ring_size);
1234 	for (i = 0; i < priv->num_tx_queues; i++)
1235 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1236 			    i, priv->tx_queue[i]->tx_ring_size);
1237 
1238 	return 0;
1239 
1240 register_fail:
1241 	unmap_group_regs(priv);
1242 	free_tx_pointers(priv);
1243 	free_rx_pointers(priv);
1244 	if (priv->phy_node)
1245 		of_node_put(priv->phy_node);
1246 	if (priv->tbi_node)
1247 		of_node_put(priv->tbi_node);
1248 	free_gfar_dev(priv);
1249 	return err;
1250 }
1251 
1252 static int gfar_remove(struct platform_device *ofdev)
1253 {
1254 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1255 
1256 	if (priv->phy_node)
1257 		of_node_put(priv->phy_node);
1258 	if (priv->tbi_node)
1259 		of_node_put(priv->tbi_node);
1260 
1261 	unregister_netdev(priv->ndev);
1262 	unmap_group_regs(priv);
1263 	free_gfar_dev(priv);
1264 
1265 	return 0;
1266 }
1267 
1268 #ifdef CONFIG_PM
1269 
1270 static int gfar_suspend(struct device *dev)
1271 {
1272 	struct gfar_private *priv = dev_get_drvdata(dev);
1273 	struct net_device *ndev = priv->ndev;
1274 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275 	unsigned long flags;
1276 	u32 tempval;
1277 
1278 	int magic_packet = priv->wol_en &&
1279 			   (priv->device_flags &
1280 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1281 
1282 	netif_device_detach(ndev);
1283 
1284 	if (netif_running(ndev)) {
1285 
1286 		local_irq_save(flags);
1287 		lock_tx_qs(priv);
1288 		lock_rx_qs(priv);
1289 
1290 		gfar_halt_nodisable(ndev);
1291 
1292 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1293 		tempval = gfar_read(&regs->maccfg1);
1294 
1295 		tempval &= ~MACCFG1_TX_EN;
1296 
1297 		if (!magic_packet)
1298 			tempval &= ~MACCFG1_RX_EN;
1299 
1300 		gfar_write(&regs->maccfg1, tempval);
1301 
1302 		unlock_rx_qs(priv);
1303 		unlock_tx_qs(priv);
1304 		local_irq_restore(flags);
1305 
1306 		disable_napi(priv);
1307 
1308 		if (magic_packet) {
1309 			/* Enable interrupt on Magic Packet */
1310 			gfar_write(&regs->imask, IMASK_MAG);
1311 
1312 			/* Enable Magic Packet mode */
1313 			tempval = gfar_read(&regs->maccfg2);
1314 			tempval |= MACCFG2_MPEN;
1315 			gfar_write(&regs->maccfg2, tempval);
1316 		} else {
1317 			phy_stop(priv->phydev);
1318 		}
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int gfar_resume(struct device *dev)
1325 {
1326 	struct gfar_private *priv = dev_get_drvdata(dev);
1327 	struct net_device *ndev = priv->ndev;
1328 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1329 	unsigned long flags;
1330 	u32 tempval;
1331 	int magic_packet = priv->wol_en &&
1332 			   (priv->device_flags &
1333 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1334 
1335 	if (!netif_running(ndev)) {
1336 		netif_device_attach(ndev);
1337 		return 0;
1338 	}
1339 
1340 	if (!magic_packet && priv->phydev)
1341 		phy_start(priv->phydev);
1342 
1343 	/* Disable Magic Packet mode, in case something
1344 	 * else woke us up.
1345 	 */
1346 	local_irq_save(flags);
1347 	lock_tx_qs(priv);
1348 	lock_rx_qs(priv);
1349 
1350 	tempval = gfar_read(&regs->maccfg2);
1351 	tempval &= ~MACCFG2_MPEN;
1352 	gfar_write(&regs->maccfg2, tempval);
1353 
1354 	gfar_start(ndev);
1355 
1356 	unlock_rx_qs(priv);
1357 	unlock_tx_qs(priv);
1358 	local_irq_restore(flags);
1359 
1360 	netif_device_attach(ndev);
1361 
1362 	enable_napi(priv);
1363 
1364 	return 0;
1365 }
1366 
1367 static int gfar_restore(struct device *dev)
1368 {
1369 	struct gfar_private *priv = dev_get_drvdata(dev);
1370 	struct net_device *ndev = priv->ndev;
1371 
1372 	if (!netif_running(ndev)) {
1373 		netif_device_attach(ndev);
1374 
1375 		return 0;
1376 	}
1377 
1378 	if (gfar_init_bds(ndev)) {
1379 		free_skb_resources(priv);
1380 		return -ENOMEM;
1381 	}
1382 
1383 	init_registers(ndev);
1384 	gfar_set_mac_address(ndev);
1385 	gfar_init_mac(ndev);
1386 	gfar_start(ndev);
1387 
1388 	priv->oldlink = 0;
1389 	priv->oldspeed = 0;
1390 	priv->oldduplex = -1;
1391 
1392 	if (priv->phydev)
1393 		phy_start(priv->phydev);
1394 
1395 	netif_device_attach(ndev);
1396 	enable_napi(priv);
1397 
1398 	return 0;
1399 }
1400 
1401 static struct dev_pm_ops gfar_pm_ops = {
1402 	.suspend = gfar_suspend,
1403 	.resume = gfar_resume,
1404 	.freeze = gfar_suspend,
1405 	.thaw = gfar_resume,
1406 	.restore = gfar_restore,
1407 };
1408 
1409 #define GFAR_PM_OPS (&gfar_pm_ops)
1410 
1411 #else
1412 
1413 #define GFAR_PM_OPS NULL
1414 
1415 #endif
1416 
1417 /* Reads the controller's registers to determine what interface
1418  * connects it to the PHY.
1419  */
1420 static phy_interface_t gfar_get_interface(struct net_device *dev)
1421 {
1422 	struct gfar_private *priv = netdev_priv(dev);
1423 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1424 	u32 ecntrl;
1425 
1426 	ecntrl = gfar_read(&regs->ecntrl);
1427 
1428 	if (ecntrl & ECNTRL_SGMII_MODE)
1429 		return PHY_INTERFACE_MODE_SGMII;
1430 
1431 	if (ecntrl & ECNTRL_TBI_MODE) {
1432 		if (ecntrl & ECNTRL_REDUCED_MODE)
1433 			return PHY_INTERFACE_MODE_RTBI;
1434 		else
1435 			return PHY_INTERFACE_MODE_TBI;
1436 	}
1437 
1438 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1439 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1440 			return PHY_INTERFACE_MODE_RMII;
1441 		}
1442 		else {
1443 			phy_interface_t interface = priv->interface;
1444 
1445 			/* This isn't autodetected right now, so it must
1446 			 * be set by the device tree or platform code.
1447 			 */
1448 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1449 				return PHY_INTERFACE_MODE_RGMII_ID;
1450 
1451 			return PHY_INTERFACE_MODE_RGMII;
1452 		}
1453 	}
1454 
1455 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1456 		return PHY_INTERFACE_MODE_GMII;
1457 
1458 	return PHY_INTERFACE_MODE_MII;
1459 }
1460 
1461 
1462 /* Initializes driver's PHY state, and attaches to the PHY.
1463  * Returns 0 on success.
1464  */
1465 static int init_phy(struct net_device *dev)
1466 {
1467 	struct gfar_private *priv = netdev_priv(dev);
1468 	uint gigabit_support =
1469 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1470 		GFAR_SUPPORTED_GBIT : 0;
1471 	phy_interface_t interface;
1472 
1473 	priv->oldlink = 0;
1474 	priv->oldspeed = 0;
1475 	priv->oldduplex = -1;
1476 
1477 	interface = gfar_get_interface(dev);
1478 
1479 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1480 				      interface);
1481 	if (!priv->phydev)
1482 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1483 							 interface);
1484 	if (!priv->phydev) {
1485 		dev_err(&dev->dev, "could not attach to PHY\n");
1486 		return -ENODEV;
1487 	}
1488 
1489 	if (interface == PHY_INTERFACE_MODE_SGMII)
1490 		gfar_configure_serdes(dev);
1491 
1492 	/* Remove any features not supported by the controller */
1493 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1494 	priv->phydev->advertising = priv->phydev->supported;
1495 
1496 	return 0;
1497 }
1498 
1499 /* Initialize TBI PHY interface for communicating with the
1500  * SERDES lynx PHY on the chip.  We communicate with this PHY
1501  * through the MDIO bus on each controller, treating it as a
1502  * "normal" PHY at the address found in the TBIPA register.  We assume
1503  * that the TBIPA register is valid.  Either the MDIO bus code will set
1504  * it to a value that doesn't conflict with other PHYs on the bus, or the
1505  * value doesn't matter, as there are no other PHYs on the bus.
1506  */
1507 static void gfar_configure_serdes(struct net_device *dev)
1508 {
1509 	struct gfar_private *priv = netdev_priv(dev);
1510 	struct phy_device *tbiphy;
1511 
1512 	if (!priv->tbi_node) {
1513 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1514 				    "device tree specify a tbi-handle\n");
1515 		return;
1516 	}
1517 
1518 	tbiphy = of_phy_find_device(priv->tbi_node);
1519 	if (!tbiphy) {
1520 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1521 		return;
1522 	}
1523 
1524 	/* If the link is already up, we must already be ok, and don't need to
1525 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1526 	 * everything for us?  Resetting it takes the link down and requires
1527 	 * several seconds for it to come back.
1528 	 */
1529 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1530 		return;
1531 
1532 	/* Single clk mode, mii mode off(for serdes communication) */
1533 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1534 
1535 	phy_write(tbiphy, MII_ADVERTISE,
1536 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1537 		  ADVERTISE_1000XPSE_ASYM);
1538 
1539 	phy_write(tbiphy, MII_BMCR,
1540 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1541 		  BMCR_SPEED1000);
1542 }
1543 
1544 static void init_registers(struct net_device *dev)
1545 {
1546 	struct gfar_private *priv = netdev_priv(dev);
1547 	struct gfar __iomem *regs = NULL;
1548 	int i;
1549 
1550 	for (i = 0; i < priv->num_grps; i++) {
1551 		regs = priv->gfargrp[i].regs;
1552 		/* Clear IEVENT */
1553 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1554 
1555 		/* Initialize IMASK */
1556 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1557 	}
1558 
1559 	regs = priv->gfargrp[0].regs;
1560 	/* Init hash registers to zero */
1561 	gfar_write(&regs->igaddr0, 0);
1562 	gfar_write(&regs->igaddr1, 0);
1563 	gfar_write(&regs->igaddr2, 0);
1564 	gfar_write(&regs->igaddr3, 0);
1565 	gfar_write(&regs->igaddr4, 0);
1566 	gfar_write(&regs->igaddr5, 0);
1567 	gfar_write(&regs->igaddr6, 0);
1568 	gfar_write(&regs->igaddr7, 0);
1569 
1570 	gfar_write(&regs->gaddr0, 0);
1571 	gfar_write(&regs->gaddr1, 0);
1572 	gfar_write(&regs->gaddr2, 0);
1573 	gfar_write(&regs->gaddr3, 0);
1574 	gfar_write(&regs->gaddr4, 0);
1575 	gfar_write(&regs->gaddr5, 0);
1576 	gfar_write(&regs->gaddr6, 0);
1577 	gfar_write(&regs->gaddr7, 0);
1578 
1579 	/* Zero out the rmon mib registers if it has them */
1580 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1581 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1582 
1583 		/* Mask off the CAM interrupts */
1584 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1585 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1586 	}
1587 
1588 	/* Initialize the max receive buffer length */
1589 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1590 
1591 	/* Initialize the Minimum Frame Length Register */
1592 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1593 }
1594 
1595 static int __gfar_is_rx_idle(struct gfar_private *priv)
1596 {
1597 	u32 res;
1598 
1599 	/* Normaly TSEC should not hang on GRS commands, so we should
1600 	 * actually wait for IEVENT_GRSC flag.
1601 	 */
1602 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1603 		return 0;
1604 
1605 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1606 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1607 	 * and the Rx can be safely reset.
1608 	 */
1609 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1610 	res &= 0x7f807f80;
1611 	if ((res & 0xffff) == (res >> 16))
1612 		return 1;
1613 
1614 	return 0;
1615 }
1616 
1617 /* Halt the receive and transmit queues */
1618 static void gfar_halt_nodisable(struct net_device *dev)
1619 {
1620 	struct gfar_private *priv = netdev_priv(dev);
1621 	struct gfar __iomem *regs = NULL;
1622 	u32 tempval;
1623 	int i;
1624 
1625 	for (i = 0; i < priv->num_grps; i++) {
1626 		regs = priv->gfargrp[i].regs;
1627 		/* Mask all interrupts */
1628 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1629 
1630 		/* Clear all interrupts */
1631 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1632 	}
1633 
1634 	regs = priv->gfargrp[0].regs;
1635 	/* Stop the DMA, and wait for it to stop */
1636 	tempval = gfar_read(&regs->dmactrl);
1637 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1638 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1639 		int ret;
1640 
1641 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1642 		gfar_write(&regs->dmactrl, tempval);
1643 
1644 		do {
1645 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1646 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1647 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1648 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1649 				ret = __gfar_is_rx_idle(priv);
1650 		} while (!ret);
1651 	}
1652 }
1653 
1654 /* Halt the receive and transmit queues */
1655 void gfar_halt(struct net_device *dev)
1656 {
1657 	struct gfar_private *priv = netdev_priv(dev);
1658 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1659 	u32 tempval;
1660 
1661 	gfar_halt_nodisable(dev);
1662 
1663 	/* Disable Rx and Tx */
1664 	tempval = gfar_read(&regs->maccfg1);
1665 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1666 	gfar_write(&regs->maccfg1, tempval);
1667 }
1668 
1669 static void free_grp_irqs(struct gfar_priv_grp *grp)
1670 {
1671 	free_irq(gfar_irq(grp, TX)->irq, grp);
1672 	free_irq(gfar_irq(grp, RX)->irq, grp);
1673 	free_irq(gfar_irq(grp, ER)->irq, grp);
1674 }
1675 
1676 void stop_gfar(struct net_device *dev)
1677 {
1678 	struct gfar_private *priv = netdev_priv(dev);
1679 	unsigned long flags;
1680 	int i;
1681 
1682 	phy_stop(priv->phydev);
1683 
1684 
1685 	/* Lock it down */
1686 	local_irq_save(flags);
1687 	lock_tx_qs(priv);
1688 	lock_rx_qs(priv);
1689 
1690 	gfar_halt(dev);
1691 
1692 	unlock_rx_qs(priv);
1693 	unlock_tx_qs(priv);
1694 	local_irq_restore(flags);
1695 
1696 	/* Free the IRQs */
1697 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1698 		for (i = 0; i < priv->num_grps; i++)
1699 			free_grp_irqs(&priv->gfargrp[i]);
1700 	} else {
1701 		for (i = 0; i < priv->num_grps; i++)
1702 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1703 				 &priv->gfargrp[i]);
1704 	}
1705 
1706 	free_skb_resources(priv);
1707 }
1708 
1709 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1710 {
1711 	struct txbd8 *txbdp;
1712 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1713 	int i, j;
1714 
1715 	txbdp = tx_queue->tx_bd_base;
1716 
1717 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1718 		if (!tx_queue->tx_skbuff[i])
1719 			continue;
1720 
1721 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1722 				 txbdp->length, DMA_TO_DEVICE);
1723 		txbdp->lstatus = 0;
1724 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1725 		     j++) {
1726 			txbdp++;
1727 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1728 				       txbdp->length, DMA_TO_DEVICE);
1729 		}
1730 		txbdp++;
1731 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1732 		tx_queue->tx_skbuff[i] = NULL;
1733 	}
1734 	kfree(tx_queue->tx_skbuff);
1735 	tx_queue->tx_skbuff = NULL;
1736 }
1737 
1738 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1739 {
1740 	struct rxbd8 *rxbdp;
1741 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1742 	int i;
1743 
1744 	rxbdp = rx_queue->rx_bd_base;
1745 
1746 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1747 		if (rx_queue->rx_skbuff[i]) {
1748 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1749 					 priv->rx_buffer_size,
1750 					 DMA_FROM_DEVICE);
1751 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1752 			rx_queue->rx_skbuff[i] = NULL;
1753 		}
1754 		rxbdp->lstatus = 0;
1755 		rxbdp->bufPtr = 0;
1756 		rxbdp++;
1757 	}
1758 	kfree(rx_queue->rx_skbuff);
1759 	rx_queue->rx_skbuff = NULL;
1760 }
1761 
1762 /* If there are any tx skbs or rx skbs still around, free them.
1763  * Then free tx_skbuff and rx_skbuff
1764  */
1765 static void free_skb_resources(struct gfar_private *priv)
1766 {
1767 	struct gfar_priv_tx_q *tx_queue = NULL;
1768 	struct gfar_priv_rx_q *rx_queue = NULL;
1769 	int i;
1770 
1771 	/* Go through all the buffer descriptors and free their data buffers */
1772 	for (i = 0; i < priv->num_tx_queues; i++) {
1773 		struct netdev_queue *txq;
1774 
1775 		tx_queue = priv->tx_queue[i];
1776 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1777 		if (tx_queue->tx_skbuff)
1778 			free_skb_tx_queue(tx_queue);
1779 		netdev_tx_reset_queue(txq);
1780 	}
1781 
1782 	for (i = 0; i < priv->num_rx_queues; i++) {
1783 		rx_queue = priv->rx_queue[i];
1784 		if (rx_queue->rx_skbuff)
1785 			free_skb_rx_queue(rx_queue);
1786 	}
1787 
1788 	dma_free_coherent(priv->dev,
1789 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1790 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1791 			  priv->tx_queue[0]->tx_bd_base,
1792 			  priv->tx_queue[0]->tx_bd_dma_base);
1793 }
1794 
1795 void gfar_start(struct net_device *dev)
1796 {
1797 	struct gfar_private *priv = netdev_priv(dev);
1798 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1799 	u32 tempval;
1800 	int i = 0;
1801 
1802 	/* Enable Rx and Tx in MACCFG1 */
1803 	tempval = gfar_read(&regs->maccfg1);
1804 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1805 	gfar_write(&regs->maccfg1, tempval);
1806 
1807 	/* Initialize DMACTRL to have WWR and WOP */
1808 	tempval = gfar_read(&regs->dmactrl);
1809 	tempval |= DMACTRL_INIT_SETTINGS;
1810 	gfar_write(&regs->dmactrl, tempval);
1811 
1812 	/* Make sure we aren't stopped */
1813 	tempval = gfar_read(&regs->dmactrl);
1814 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1815 	gfar_write(&regs->dmactrl, tempval);
1816 
1817 	for (i = 0; i < priv->num_grps; i++) {
1818 		regs = priv->gfargrp[i].regs;
1819 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1820 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1821 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1822 		/* Unmask the interrupts we look for */
1823 		gfar_write(&regs->imask, IMASK_DEFAULT);
1824 	}
1825 
1826 	dev->trans_start = jiffies; /* prevent tx timeout */
1827 }
1828 
1829 static void gfar_configure_coalescing(struct gfar_private *priv,
1830 			       unsigned long tx_mask, unsigned long rx_mask)
1831 {
1832 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1833 	u32 __iomem *baddr;
1834 
1835 	if (priv->mode == MQ_MG_MODE) {
1836 		int i = 0;
1837 
1838 		baddr = &regs->txic0;
1839 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1840 			gfar_write(baddr + i, 0);
1841 			if (likely(priv->tx_queue[i]->txcoalescing))
1842 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1843 		}
1844 
1845 		baddr = &regs->rxic0;
1846 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1847 			gfar_write(baddr + i, 0);
1848 			if (likely(priv->rx_queue[i]->rxcoalescing))
1849 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1850 		}
1851 	} else {
1852 		/* Backward compatible case -- even if we enable
1853 		 * multiple queues, there's only single reg to program
1854 		 */
1855 		gfar_write(&regs->txic, 0);
1856 		if (likely(priv->tx_queue[0]->txcoalescing))
1857 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1858 
1859 		gfar_write(&regs->rxic, 0);
1860 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
1861 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1862 	}
1863 }
1864 
1865 void gfar_configure_coalescing_all(struct gfar_private *priv)
1866 {
1867 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1868 }
1869 
1870 static int register_grp_irqs(struct gfar_priv_grp *grp)
1871 {
1872 	struct gfar_private *priv = grp->priv;
1873 	struct net_device *dev = priv->ndev;
1874 	int err;
1875 
1876 	/* If the device has multiple interrupts, register for
1877 	 * them.  Otherwise, only register for the one
1878 	 */
1879 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1880 		/* Install our interrupt handlers for Error,
1881 		 * Transmit, and Receive
1882 		 */
1883 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1884 				  gfar_irq(grp, ER)->name, grp);
1885 		if (err < 0) {
1886 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1887 				  gfar_irq(grp, ER)->irq);
1888 
1889 			goto err_irq_fail;
1890 		}
1891 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1892 				  gfar_irq(grp, TX)->name, grp);
1893 		if (err < 0) {
1894 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1895 				  gfar_irq(grp, TX)->irq);
1896 			goto tx_irq_fail;
1897 		}
1898 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1899 				  gfar_irq(grp, RX)->name, grp);
1900 		if (err < 0) {
1901 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1902 				  gfar_irq(grp, RX)->irq);
1903 			goto rx_irq_fail;
1904 		}
1905 	} else {
1906 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1907 				  gfar_irq(grp, TX)->name, grp);
1908 		if (err < 0) {
1909 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1910 				  gfar_irq(grp, TX)->irq);
1911 			goto err_irq_fail;
1912 		}
1913 	}
1914 
1915 	return 0;
1916 
1917 rx_irq_fail:
1918 	free_irq(gfar_irq(grp, TX)->irq, grp);
1919 tx_irq_fail:
1920 	free_irq(gfar_irq(grp, ER)->irq, grp);
1921 err_irq_fail:
1922 	return err;
1923 
1924 }
1925 
1926 /* Bring the controller up and running */
1927 int startup_gfar(struct net_device *ndev)
1928 {
1929 	struct gfar_private *priv = netdev_priv(ndev);
1930 	struct gfar __iomem *regs = NULL;
1931 	int err, i, j;
1932 
1933 	for (i = 0; i < priv->num_grps; i++) {
1934 		regs= priv->gfargrp[i].regs;
1935 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1936 	}
1937 
1938 	regs= priv->gfargrp[0].regs;
1939 	err = gfar_alloc_skb_resources(ndev);
1940 	if (err)
1941 		return err;
1942 
1943 	gfar_init_mac(ndev);
1944 
1945 	for (i = 0; i < priv->num_grps; i++) {
1946 		err = register_grp_irqs(&priv->gfargrp[i]);
1947 		if (err) {
1948 			for (j = 0; j < i; j++)
1949 				free_grp_irqs(&priv->gfargrp[j]);
1950 			goto irq_fail;
1951 		}
1952 	}
1953 
1954 	/* Start the controller */
1955 	gfar_start(ndev);
1956 
1957 	phy_start(priv->phydev);
1958 
1959 	gfar_configure_coalescing_all(priv);
1960 
1961 	return 0;
1962 
1963 irq_fail:
1964 	free_skb_resources(priv);
1965 	return err;
1966 }
1967 
1968 /* Called when something needs to use the ethernet device
1969  * Returns 0 for success.
1970  */
1971 static int gfar_enet_open(struct net_device *dev)
1972 {
1973 	struct gfar_private *priv = netdev_priv(dev);
1974 	int err;
1975 
1976 	enable_napi(priv);
1977 
1978 	/* Initialize a bunch of registers */
1979 	init_registers(dev);
1980 
1981 	gfar_set_mac_address(dev);
1982 
1983 	err = init_phy(dev);
1984 
1985 	if (err) {
1986 		disable_napi(priv);
1987 		return err;
1988 	}
1989 
1990 	err = startup_gfar(dev);
1991 	if (err) {
1992 		disable_napi(priv);
1993 		return err;
1994 	}
1995 
1996 	netif_tx_start_all_queues(dev);
1997 
1998 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1999 
2000 	return err;
2001 }
2002 
2003 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2004 {
2005 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2006 
2007 	memset(fcb, 0, GMAC_FCB_LEN);
2008 
2009 	return fcb;
2010 }
2011 
2012 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2013 				    int fcb_length)
2014 {
2015 	/* If we're here, it's a IP packet with a TCP or UDP
2016 	 * payload.  We set it to checksum, using a pseudo-header
2017 	 * we provide
2018 	 */
2019 	u8 flags = TXFCB_DEFAULT;
2020 
2021 	/* Tell the controller what the protocol is
2022 	 * And provide the already calculated phcs
2023 	 */
2024 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2025 		flags |= TXFCB_UDP;
2026 		fcb->phcs = udp_hdr(skb)->check;
2027 	} else
2028 		fcb->phcs = tcp_hdr(skb)->check;
2029 
2030 	/* l3os is the distance between the start of the
2031 	 * frame (skb->data) and the start of the IP hdr.
2032 	 * l4os is the distance between the start of the
2033 	 * l3 hdr and the l4 hdr
2034 	 */
2035 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2036 	fcb->l4os = skb_network_header_len(skb);
2037 
2038 	fcb->flags = flags;
2039 }
2040 
2041 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2042 {
2043 	fcb->flags |= TXFCB_VLN;
2044 	fcb->vlctl = vlan_tx_tag_get(skb);
2045 }
2046 
2047 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2048 				      struct txbd8 *base, int ring_size)
2049 {
2050 	struct txbd8 *new_bd = bdp + stride;
2051 
2052 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2053 }
2054 
2055 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2056 				      int ring_size)
2057 {
2058 	return skip_txbd(bdp, 1, base, ring_size);
2059 }
2060 
2061 /* eTSEC12: csum generation not supported for some fcb offsets */
2062 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2063 				       unsigned long fcb_addr)
2064 {
2065 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2066 	       (fcb_addr % 0x20) > 0x18);
2067 }
2068 
2069 /* eTSEC76: csum generation for frames larger than 2500 may
2070  * cause excess delays before start of transmission
2071  */
2072 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2073 				       unsigned int len)
2074 {
2075 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2076 	       (len > 2500));
2077 }
2078 
2079 /* This is called by the kernel when a frame is ready for transmission.
2080  * It is pointed to by the dev->hard_start_xmit function pointer
2081  */
2082 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2083 {
2084 	struct gfar_private *priv = netdev_priv(dev);
2085 	struct gfar_priv_tx_q *tx_queue = NULL;
2086 	struct netdev_queue *txq;
2087 	struct gfar __iomem *regs = NULL;
2088 	struct txfcb *fcb = NULL;
2089 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2090 	u32 lstatus;
2091 	int i, rq = 0;
2092 	int do_tstamp, do_csum, do_vlan;
2093 	u32 bufaddr;
2094 	unsigned long flags;
2095 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2096 
2097 	rq = skb->queue_mapping;
2098 	tx_queue = priv->tx_queue[rq];
2099 	txq = netdev_get_tx_queue(dev, rq);
2100 	base = tx_queue->tx_bd_base;
2101 	regs = tx_queue->grp->regs;
2102 
2103 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2104 	do_vlan = vlan_tx_tag_present(skb);
2105 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2106 		    priv->hwts_tx_en;
2107 
2108 	if (do_csum || do_vlan)
2109 		fcb_len = GMAC_FCB_LEN;
2110 
2111 	/* check if time stamp should be generated */
2112 	if (unlikely(do_tstamp))
2113 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2114 
2115 	/* make space for additional header when fcb is needed */
2116 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2117 		struct sk_buff *skb_new;
2118 
2119 		skb_new = skb_realloc_headroom(skb, fcb_len);
2120 		if (!skb_new) {
2121 			dev->stats.tx_errors++;
2122 			kfree_skb(skb);
2123 			return NETDEV_TX_OK;
2124 		}
2125 
2126 		if (skb->sk)
2127 			skb_set_owner_w(skb_new, skb->sk);
2128 		consume_skb(skb);
2129 		skb = skb_new;
2130 	}
2131 
2132 	/* total number of fragments in the SKB */
2133 	nr_frags = skb_shinfo(skb)->nr_frags;
2134 
2135 	/* calculate the required number of TxBDs for this skb */
2136 	if (unlikely(do_tstamp))
2137 		nr_txbds = nr_frags + 2;
2138 	else
2139 		nr_txbds = nr_frags + 1;
2140 
2141 	/* check if there is space to queue this packet */
2142 	if (nr_txbds > tx_queue->num_txbdfree) {
2143 		/* no space, stop the queue */
2144 		netif_tx_stop_queue(txq);
2145 		dev->stats.tx_fifo_errors++;
2146 		return NETDEV_TX_BUSY;
2147 	}
2148 
2149 	/* Update transmit stats */
2150 	bytes_sent = skb->len;
2151 	tx_queue->stats.tx_bytes += bytes_sent;
2152 	/* keep Tx bytes on wire for BQL accounting */
2153 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2154 	tx_queue->stats.tx_packets++;
2155 
2156 	txbdp = txbdp_start = tx_queue->cur_tx;
2157 	lstatus = txbdp->lstatus;
2158 
2159 	/* Time stamp insertion requires one additional TxBD */
2160 	if (unlikely(do_tstamp))
2161 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2162 						 tx_queue->tx_ring_size);
2163 
2164 	if (nr_frags == 0) {
2165 		if (unlikely(do_tstamp))
2166 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2167 							  TXBD_INTERRUPT);
2168 		else
2169 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2170 	} else {
2171 		/* Place the fragment addresses and lengths into the TxBDs */
2172 		for (i = 0; i < nr_frags; i++) {
2173 			unsigned int frag_len;
2174 			/* Point at the next BD, wrapping as needed */
2175 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2176 
2177 			frag_len = skb_shinfo(skb)->frags[i].size;
2178 
2179 			lstatus = txbdp->lstatus | frag_len |
2180 				  BD_LFLAG(TXBD_READY);
2181 
2182 			/* Handle the last BD specially */
2183 			if (i == nr_frags - 1)
2184 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2185 
2186 			bufaddr = skb_frag_dma_map(priv->dev,
2187 						   &skb_shinfo(skb)->frags[i],
2188 						   0,
2189 						   frag_len,
2190 						   DMA_TO_DEVICE);
2191 
2192 			/* set the TxBD length and buffer pointer */
2193 			txbdp->bufPtr = bufaddr;
2194 			txbdp->lstatus = lstatus;
2195 		}
2196 
2197 		lstatus = txbdp_start->lstatus;
2198 	}
2199 
2200 	/* Add TxPAL between FCB and frame if required */
2201 	if (unlikely(do_tstamp)) {
2202 		skb_push(skb, GMAC_TXPAL_LEN);
2203 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2204 	}
2205 
2206 	/* Add TxFCB if required */
2207 	if (fcb_len) {
2208 		fcb = gfar_add_fcb(skb);
2209 		lstatus |= BD_LFLAG(TXBD_TOE);
2210 	}
2211 
2212 	/* Set up checksumming */
2213 	if (do_csum) {
2214 		gfar_tx_checksum(skb, fcb, fcb_len);
2215 
2216 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2217 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2218 			__skb_pull(skb, GMAC_FCB_LEN);
2219 			skb_checksum_help(skb);
2220 			if (do_vlan || do_tstamp) {
2221 				/* put back a new fcb for vlan/tstamp TOE */
2222 				fcb = gfar_add_fcb(skb);
2223 			} else {
2224 				/* Tx TOE not used */
2225 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2226 				fcb = NULL;
2227 			}
2228 		}
2229 	}
2230 
2231 	if (do_vlan)
2232 		gfar_tx_vlan(skb, fcb);
2233 
2234 	/* Setup tx hardware time stamping if requested */
2235 	if (unlikely(do_tstamp)) {
2236 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2237 		fcb->ptp = 1;
2238 	}
2239 
2240 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2241 					     skb_headlen(skb), DMA_TO_DEVICE);
2242 
2243 	/* If time stamping is requested one additional TxBD must be set up. The
2244 	 * first TxBD points to the FCB and must have a data length of
2245 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2246 	 * the full frame length.
2247 	 */
2248 	if (unlikely(do_tstamp)) {
2249 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2250 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2251 					 (skb_headlen(skb) - fcb_len);
2252 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2253 	} else {
2254 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2255 	}
2256 
2257 	netdev_tx_sent_queue(txq, bytes_sent);
2258 
2259 	/* We can work in parallel with gfar_clean_tx_ring(), except
2260 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2261 	 * when we were reading the num_txbdfree and checking for available
2262 	 * space, that's because outside of this function it can only grow,
2263 	 * and once we've got needed space, it cannot suddenly disappear.
2264 	 *
2265 	 * The lock also protects us from gfar_error(), which can modify
2266 	 * regs->tstat and thus retrigger the transfers, which is why we
2267 	 * also must grab the lock before setting ready bit for the first
2268 	 * to be transmitted BD.
2269 	 */
2270 	spin_lock_irqsave(&tx_queue->txlock, flags);
2271 
2272 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2273 	 * semantics (it requires synchronization between cacheable and
2274 	 * uncacheable mappings, which eieio doesn't provide and which we
2275 	 * don't need), thus requiring a more expensive sync instruction.  At
2276 	 * some point, the set of architecture-independent barrier functions
2277 	 * should be expanded to include weaker barriers.
2278 	 */
2279 	eieio();
2280 
2281 	txbdp_start->lstatus = lstatus;
2282 
2283 	eieio(); /* force lstatus write before tx_skbuff */
2284 
2285 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2286 
2287 	/* Update the current skb pointer to the next entry we will use
2288 	 * (wrapping if necessary)
2289 	 */
2290 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2291 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2292 
2293 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2294 
2295 	/* reduce TxBD free count */
2296 	tx_queue->num_txbdfree -= (nr_txbds);
2297 
2298 	/* If the next BD still needs to be cleaned up, then the bds
2299 	 * are full.  We need to tell the kernel to stop sending us stuff.
2300 	 */
2301 	if (!tx_queue->num_txbdfree) {
2302 		netif_tx_stop_queue(txq);
2303 
2304 		dev->stats.tx_fifo_errors++;
2305 	}
2306 
2307 	/* Tell the DMA to go go go */
2308 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2309 
2310 	/* Unlock priv */
2311 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2312 
2313 	return NETDEV_TX_OK;
2314 }
2315 
2316 /* Stops the kernel queue, and halts the controller */
2317 static int gfar_close(struct net_device *dev)
2318 {
2319 	struct gfar_private *priv = netdev_priv(dev);
2320 
2321 	disable_napi(priv);
2322 
2323 	cancel_work_sync(&priv->reset_task);
2324 	stop_gfar(dev);
2325 
2326 	/* Disconnect from the PHY */
2327 	phy_disconnect(priv->phydev);
2328 	priv->phydev = NULL;
2329 
2330 	netif_tx_stop_all_queues(dev);
2331 
2332 	return 0;
2333 }
2334 
2335 /* Changes the mac address if the controller is not running. */
2336 static int gfar_set_mac_address(struct net_device *dev)
2337 {
2338 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2339 
2340 	return 0;
2341 }
2342 
2343 /* Check if rx parser should be activated */
2344 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2345 {
2346 	struct gfar __iomem *regs;
2347 	u32 tempval;
2348 
2349 	regs = priv->gfargrp[0].regs;
2350 
2351 	tempval = gfar_read(&regs->rctrl);
2352 	/* If parse is no longer required, then disable parser */
2353 	if (tempval & RCTRL_REQ_PARSER) {
2354 		tempval |= RCTRL_PRSDEP_INIT;
2355 		priv->uses_rxfcb = 1;
2356 	} else {
2357 		tempval &= ~RCTRL_PRSDEP_INIT;
2358 		priv->uses_rxfcb = 0;
2359 	}
2360 	gfar_write(&regs->rctrl, tempval);
2361 }
2362 
2363 /* Enables and disables VLAN insertion/extraction */
2364 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2365 {
2366 	struct gfar_private *priv = netdev_priv(dev);
2367 	struct gfar __iomem *regs = NULL;
2368 	unsigned long flags;
2369 	u32 tempval;
2370 
2371 	regs = priv->gfargrp[0].regs;
2372 	local_irq_save(flags);
2373 	lock_rx_qs(priv);
2374 
2375 	if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2376 		/* Enable VLAN tag insertion */
2377 		tempval = gfar_read(&regs->tctrl);
2378 		tempval |= TCTRL_VLINS;
2379 		gfar_write(&regs->tctrl, tempval);
2380 	} else {
2381 		/* Disable VLAN tag insertion */
2382 		tempval = gfar_read(&regs->tctrl);
2383 		tempval &= ~TCTRL_VLINS;
2384 		gfar_write(&regs->tctrl, tempval);
2385 	}
2386 
2387 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2388 		/* Enable VLAN tag extraction */
2389 		tempval = gfar_read(&regs->rctrl);
2390 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2391 		gfar_write(&regs->rctrl, tempval);
2392 		priv->uses_rxfcb = 1;
2393 	} else {
2394 		/* Disable VLAN tag extraction */
2395 		tempval = gfar_read(&regs->rctrl);
2396 		tempval &= ~RCTRL_VLEX;
2397 		gfar_write(&regs->rctrl, tempval);
2398 
2399 		gfar_check_rx_parser_mode(priv);
2400 	}
2401 
2402 	gfar_change_mtu(dev, dev->mtu);
2403 
2404 	unlock_rx_qs(priv);
2405 	local_irq_restore(flags);
2406 }
2407 
2408 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2409 {
2410 	int tempsize, tempval;
2411 	struct gfar_private *priv = netdev_priv(dev);
2412 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2413 	int oldsize = priv->rx_buffer_size;
2414 	int frame_size = new_mtu + ETH_HLEN;
2415 
2416 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2417 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (priv->uses_rxfcb)
2422 		frame_size += GMAC_FCB_LEN;
2423 
2424 	frame_size += priv->padding;
2425 
2426 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2427 		   INCREMENTAL_BUFFER_SIZE;
2428 
2429 	/* Only stop and start the controller if it isn't already
2430 	 * stopped, and we changed something
2431 	 */
2432 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2433 		stop_gfar(dev);
2434 
2435 	priv->rx_buffer_size = tempsize;
2436 
2437 	dev->mtu = new_mtu;
2438 
2439 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2440 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2441 
2442 	/* If the mtu is larger than the max size for standard
2443 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2444 	 * to allow huge frames, and to check the length
2445 	 */
2446 	tempval = gfar_read(&regs->maccfg2);
2447 
2448 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2449 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2450 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2451 	else
2452 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2453 
2454 	gfar_write(&regs->maccfg2, tempval);
2455 
2456 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2457 		startup_gfar(dev);
2458 
2459 	return 0;
2460 }
2461 
2462 /* gfar_reset_task gets scheduled when a packet has not been
2463  * transmitted after a set amount of time.
2464  * For now, assume that clearing out all the structures, and
2465  * starting over will fix the problem.
2466  */
2467 static void gfar_reset_task(struct work_struct *work)
2468 {
2469 	struct gfar_private *priv = container_of(work, struct gfar_private,
2470 						 reset_task);
2471 	struct net_device *dev = priv->ndev;
2472 
2473 	if (dev->flags & IFF_UP) {
2474 		netif_tx_stop_all_queues(dev);
2475 		stop_gfar(dev);
2476 		startup_gfar(dev);
2477 		netif_tx_start_all_queues(dev);
2478 	}
2479 
2480 	netif_tx_schedule_all(dev);
2481 }
2482 
2483 static void gfar_timeout(struct net_device *dev)
2484 {
2485 	struct gfar_private *priv = netdev_priv(dev);
2486 
2487 	dev->stats.tx_errors++;
2488 	schedule_work(&priv->reset_task);
2489 }
2490 
2491 static void gfar_align_skb(struct sk_buff *skb)
2492 {
2493 	/* We need the data buffer to be aligned properly.  We will reserve
2494 	 * as many bytes as needed to align the data properly
2495 	 */
2496 	skb_reserve(skb, RXBUF_ALIGNMENT -
2497 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2498 }
2499 
2500 /* Interrupt Handler for Transmit complete */
2501 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2502 {
2503 	struct net_device *dev = tx_queue->dev;
2504 	struct netdev_queue *txq;
2505 	struct gfar_private *priv = netdev_priv(dev);
2506 	struct txbd8 *bdp, *next = NULL;
2507 	struct txbd8 *lbdp = NULL;
2508 	struct txbd8 *base = tx_queue->tx_bd_base;
2509 	struct sk_buff *skb;
2510 	int skb_dirtytx;
2511 	int tx_ring_size = tx_queue->tx_ring_size;
2512 	int frags = 0, nr_txbds = 0;
2513 	int i;
2514 	int howmany = 0;
2515 	int tqi = tx_queue->qindex;
2516 	unsigned int bytes_sent = 0;
2517 	u32 lstatus;
2518 	size_t buflen;
2519 
2520 	txq = netdev_get_tx_queue(dev, tqi);
2521 	bdp = tx_queue->dirty_tx;
2522 	skb_dirtytx = tx_queue->skb_dirtytx;
2523 
2524 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2525 		unsigned long flags;
2526 
2527 		frags = skb_shinfo(skb)->nr_frags;
2528 
2529 		/* When time stamping, one additional TxBD must be freed.
2530 		 * Also, we need to dma_unmap_single() the TxPAL.
2531 		 */
2532 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2533 			nr_txbds = frags + 2;
2534 		else
2535 			nr_txbds = frags + 1;
2536 
2537 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2538 
2539 		lstatus = lbdp->lstatus;
2540 
2541 		/* Only clean completed frames */
2542 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2543 		    (lstatus & BD_LENGTH_MASK))
2544 			break;
2545 
2546 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2547 			next = next_txbd(bdp, base, tx_ring_size);
2548 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2549 		} else
2550 			buflen = bdp->length;
2551 
2552 		dma_unmap_single(priv->dev, bdp->bufPtr,
2553 				 buflen, DMA_TO_DEVICE);
2554 
2555 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2556 			struct skb_shared_hwtstamps shhwtstamps;
2557 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2558 
2559 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2560 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2561 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2562 			skb_tstamp_tx(skb, &shhwtstamps);
2563 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2564 			bdp = next;
2565 		}
2566 
2567 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2568 		bdp = next_txbd(bdp, base, tx_ring_size);
2569 
2570 		for (i = 0; i < frags; i++) {
2571 			dma_unmap_page(priv->dev, bdp->bufPtr,
2572 				       bdp->length, DMA_TO_DEVICE);
2573 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2574 			bdp = next_txbd(bdp, base, tx_ring_size);
2575 		}
2576 
2577 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2578 
2579 		dev_kfree_skb_any(skb);
2580 
2581 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2582 
2583 		skb_dirtytx = (skb_dirtytx + 1) &
2584 			      TX_RING_MOD_MASK(tx_ring_size);
2585 
2586 		howmany++;
2587 		spin_lock_irqsave(&tx_queue->txlock, flags);
2588 		tx_queue->num_txbdfree += nr_txbds;
2589 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2590 	}
2591 
2592 	/* If we freed a buffer, we can restart transmission, if necessary */
2593 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2594 		netif_wake_subqueue(dev, tqi);
2595 
2596 	/* Update dirty indicators */
2597 	tx_queue->skb_dirtytx = skb_dirtytx;
2598 	tx_queue->dirty_tx = bdp;
2599 
2600 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2601 }
2602 
2603 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2604 {
2605 	unsigned long flags;
2606 
2607 	spin_lock_irqsave(&gfargrp->grplock, flags);
2608 	if (napi_schedule_prep(&gfargrp->napi)) {
2609 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2610 		__napi_schedule(&gfargrp->napi);
2611 	} else {
2612 		/* Clear IEVENT, so interrupts aren't called again
2613 		 * because of the packets that have already arrived.
2614 		 */
2615 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2616 	}
2617 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2618 
2619 }
2620 
2621 /* Interrupt Handler for Transmit complete */
2622 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2623 {
2624 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2625 	return IRQ_HANDLED;
2626 }
2627 
2628 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2629 			   struct sk_buff *skb)
2630 {
2631 	struct net_device *dev = rx_queue->dev;
2632 	struct gfar_private *priv = netdev_priv(dev);
2633 	dma_addr_t buf;
2634 
2635 	buf = dma_map_single(priv->dev, skb->data,
2636 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2637 	gfar_init_rxbdp(rx_queue, bdp, buf);
2638 }
2639 
2640 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2641 {
2642 	struct gfar_private *priv = netdev_priv(dev);
2643 	struct sk_buff *skb;
2644 
2645 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2646 	if (!skb)
2647 		return NULL;
2648 
2649 	gfar_align_skb(skb);
2650 
2651 	return skb;
2652 }
2653 
2654 struct sk_buff *gfar_new_skb(struct net_device *dev)
2655 {
2656 	return gfar_alloc_skb(dev);
2657 }
2658 
2659 static inline void count_errors(unsigned short status, struct net_device *dev)
2660 {
2661 	struct gfar_private *priv = netdev_priv(dev);
2662 	struct net_device_stats *stats = &dev->stats;
2663 	struct gfar_extra_stats *estats = &priv->extra_stats;
2664 
2665 	/* If the packet was truncated, none of the other errors matter */
2666 	if (status & RXBD_TRUNCATED) {
2667 		stats->rx_length_errors++;
2668 
2669 		atomic64_inc(&estats->rx_trunc);
2670 
2671 		return;
2672 	}
2673 	/* Count the errors, if there were any */
2674 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2675 		stats->rx_length_errors++;
2676 
2677 		if (status & RXBD_LARGE)
2678 			atomic64_inc(&estats->rx_large);
2679 		else
2680 			atomic64_inc(&estats->rx_short);
2681 	}
2682 	if (status & RXBD_NONOCTET) {
2683 		stats->rx_frame_errors++;
2684 		atomic64_inc(&estats->rx_nonoctet);
2685 	}
2686 	if (status & RXBD_CRCERR) {
2687 		atomic64_inc(&estats->rx_crcerr);
2688 		stats->rx_crc_errors++;
2689 	}
2690 	if (status & RXBD_OVERRUN) {
2691 		atomic64_inc(&estats->rx_overrun);
2692 		stats->rx_crc_errors++;
2693 	}
2694 }
2695 
2696 irqreturn_t gfar_receive(int irq, void *grp_id)
2697 {
2698 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2699 	return IRQ_HANDLED;
2700 }
2701 
2702 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2703 {
2704 	/* If valid headers were found, and valid sums
2705 	 * were verified, then we tell the kernel that no
2706 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2707 	 */
2708 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2709 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2710 	else
2711 		skb_checksum_none_assert(skb);
2712 }
2713 
2714 
2715 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2716 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2717 			       int amount_pull, struct napi_struct *napi)
2718 {
2719 	struct gfar_private *priv = netdev_priv(dev);
2720 	struct rxfcb *fcb = NULL;
2721 
2722 	/* fcb is at the beginning if exists */
2723 	fcb = (struct rxfcb *)skb->data;
2724 
2725 	/* Remove the FCB from the skb
2726 	 * Remove the padded bytes, if there are any
2727 	 */
2728 	if (amount_pull) {
2729 		skb_record_rx_queue(skb, fcb->rq);
2730 		skb_pull(skb, amount_pull);
2731 	}
2732 
2733 	/* Get receive timestamp from the skb */
2734 	if (priv->hwts_rx_en) {
2735 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2736 		u64 *ns = (u64 *) skb->data;
2737 
2738 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2739 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2740 	}
2741 
2742 	if (priv->padding)
2743 		skb_pull(skb, priv->padding);
2744 
2745 	if (dev->features & NETIF_F_RXCSUM)
2746 		gfar_rx_checksum(skb, fcb);
2747 
2748 	/* Tell the skb what kind of packet this is */
2749 	skb->protocol = eth_type_trans(skb, dev);
2750 
2751 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2752 	 * Even if vlan rx accel is disabled, on some chips
2753 	 * RXFCB_VLN is pseudo randomly set.
2754 	 */
2755 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2756 	    fcb->flags & RXFCB_VLN)
2757 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2758 
2759 	/* Send the packet up the stack */
2760 	napi_gro_receive(napi, skb);
2761 
2762 }
2763 
2764 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2765  * until the budget/quota has been reached. Returns the number
2766  * of frames handled
2767  */
2768 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2769 {
2770 	struct net_device *dev = rx_queue->dev;
2771 	struct rxbd8 *bdp, *base;
2772 	struct sk_buff *skb;
2773 	int pkt_len;
2774 	int amount_pull;
2775 	int howmany = 0;
2776 	struct gfar_private *priv = netdev_priv(dev);
2777 
2778 	/* Get the first full descriptor */
2779 	bdp = rx_queue->cur_rx;
2780 	base = rx_queue->rx_bd_base;
2781 
2782 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2783 
2784 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2785 		struct sk_buff *newskb;
2786 
2787 		rmb();
2788 
2789 		/* Add another skb for the future */
2790 		newskb = gfar_new_skb(dev);
2791 
2792 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2793 
2794 		dma_unmap_single(priv->dev, bdp->bufPtr,
2795 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2796 
2797 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2798 			     bdp->length > priv->rx_buffer_size))
2799 			bdp->status = RXBD_LARGE;
2800 
2801 		/* We drop the frame if we failed to allocate a new buffer */
2802 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2803 			     bdp->status & RXBD_ERR)) {
2804 			count_errors(bdp->status, dev);
2805 
2806 			if (unlikely(!newskb))
2807 				newskb = skb;
2808 			else if (skb)
2809 				dev_kfree_skb(skb);
2810 		} else {
2811 			/* Increment the number of packets */
2812 			rx_queue->stats.rx_packets++;
2813 			howmany++;
2814 
2815 			if (likely(skb)) {
2816 				pkt_len = bdp->length - ETH_FCS_LEN;
2817 				/* Remove the FCS from the packet length */
2818 				skb_put(skb, pkt_len);
2819 				rx_queue->stats.rx_bytes += pkt_len;
2820 				skb_record_rx_queue(skb, rx_queue->qindex);
2821 				gfar_process_frame(dev, skb, amount_pull,
2822 						   &rx_queue->grp->napi);
2823 
2824 			} else {
2825 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2826 				rx_queue->stats.rx_dropped++;
2827 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2828 			}
2829 
2830 		}
2831 
2832 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2833 
2834 		/* Setup the new bdp */
2835 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2836 
2837 		/* Update to the next pointer */
2838 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2839 
2840 		/* update to point at the next skb */
2841 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2842 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2843 	}
2844 
2845 	/* Update the current rxbd pointer to be the next one */
2846 	rx_queue->cur_rx = bdp;
2847 
2848 	return howmany;
2849 }
2850 
2851 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2852 {
2853 	struct gfar_priv_grp *gfargrp =
2854 		container_of(napi, struct gfar_priv_grp, napi);
2855 	struct gfar __iomem *regs = gfargrp->regs;
2856 	struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2857 	struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2858 	int work_done = 0;
2859 
2860 	/* Clear IEVENT, so interrupts aren't called again
2861 	 * because of the packets that have already arrived
2862 	 */
2863 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2864 
2865 	/* run Tx cleanup to completion */
2866 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2867 		gfar_clean_tx_ring(tx_queue);
2868 
2869 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2870 
2871 	if (work_done < budget) {
2872 		napi_complete(napi);
2873 		/* Clear the halt bit in RSTAT */
2874 		gfar_write(&regs->rstat, gfargrp->rstat);
2875 
2876 		gfar_write(&regs->imask, IMASK_DEFAULT);
2877 
2878 		/* If we are coalescing interrupts, update the timer
2879 		 * Otherwise, clear it
2880 		 */
2881 		gfar_write(&regs->txic, 0);
2882 		if (likely(tx_queue->txcoalescing))
2883 			gfar_write(&regs->txic, tx_queue->txic);
2884 
2885 		gfar_write(&regs->rxic, 0);
2886 		if (unlikely(rx_queue->rxcoalescing))
2887 			gfar_write(&regs->rxic, rx_queue->rxic);
2888 	}
2889 
2890 	return work_done;
2891 }
2892 
2893 static int gfar_poll(struct napi_struct *napi, int budget)
2894 {
2895 	struct gfar_priv_grp *gfargrp =
2896 		container_of(napi, struct gfar_priv_grp, napi);
2897 	struct gfar_private *priv = gfargrp->priv;
2898 	struct gfar __iomem *regs = gfargrp->regs;
2899 	struct gfar_priv_tx_q *tx_queue = NULL;
2900 	struct gfar_priv_rx_q *rx_queue = NULL;
2901 	int work_done = 0, work_done_per_q = 0;
2902 	int i, budget_per_q = 0;
2903 	int has_tx_work;
2904 	unsigned long rstat_rxf;
2905 	int num_act_queues;
2906 
2907 	/* Clear IEVENT, so interrupts aren't called again
2908 	 * because of the packets that have already arrived
2909 	 */
2910 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2911 
2912 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2913 
2914 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2915 	if (num_act_queues)
2916 		budget_per_q = budget/num_act_queues;
2917 
2918 	while (1) {
2919 		has_tx_work = 0;
2920 		for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2921 			tx_queue = priv->tx_queue[i];
2922 			/* run Tx cleanup to completion */
2923 			if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2924 				gfar_clean_tx_ring(tx_queue);
2925 				has_tx_work = 1;
2926 			}
2927 		}
2928 
2929 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2930 			/* skip queue if not active */
2931 			if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2932 				continue;
2933 
2934 			rx_queue = priv->rx_queue[i];
2935 			work_done_per_q =
2936 				gfar_clean_rx_ring(rx_queue, budget_per_q);
2937 			work_done += work_done_per_q;
2938 
2939 			/* finished processing this queue */
2940 			if (work_done_per_q < budget_per_q) {
2941 				/* clear active queue hw indication */
2942 				gfar_write(&regs->rstat,
2943 					   RSTAT_CLEAR_RXF0 >> i);
2944 				rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2945 				num_act_queues--;
2946 
2947 				if (!num_act_queues)
2948 					break;
2949 				/* recompute budget per Rx queue */
2950 				budget_per_q =
2951 					(budget - work_done) / num_act_queues;
2952 			}
2953 		}
2954 
2955 		if (work_done >= budget)
2956 			break;
2957 
2958 		if (!num_act_queues && !has_tx_work) {
2959 
2960 			napi_complete(napi);
2961 
2962 			/* Clear the halt bit in RSTAT */
2963 			gfar_write(&regs->rstat, gfargrp->rstat);
2964 
2965 			gfar_write(&regs->imask, IMASK_DEFAULT);
2966 
2967 			/* If we are coalescing interrupts, update the timer
2968 			 * Otherwise, clear it
2969 			 */
2970 			gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2971 						  gfargrp->tx_bit_map);
2972 			break;
2973 		}
2974 	}
2975 
2976 	return work_done;
2977 }
2978 
2979 #ifdef CONFIG_NET_POLL_CONTROLLER
2980 /* Polling 'interrupt' - used by things like netconsole to send skbs
2981  * without having to re-enable interrupts. It's not called while
2982  * the interrupt routine is executing.
2983  */
2984 static void gfar_netpoll(struct net_device *dev)
2985 {
2986 	struct gfar_private *priv = netdev_priv(dev);
2987 	int i;
2988 
2989 	/* If the device has multiple interrupts, run tx/rx */
2990 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2991 		for (i = 0; i < priv->num_grps; i++) {
2992 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2993 
2994 			disable_irq(gfar_irq(grp, TX)->irq);
2995 			disable_irq(gfar_irq(grp, RX)->irq);
2996 			disable_irq(gfar_irq(grp, ER)->irq);
2997 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2998 			enable_irq(gfar_irq(grp, ER)->irq);
2999 			enable_irq(gfar_irq(grp, RX)->irq);
3000 			enable_irq(gfar_irq(grp, TX)->irq);
3001 		}
3002 	} else {
3003 		for (i = 0; i < priv->num_grps; i++) {
3004 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3005 
3006 			disable_irq(gfar_irq(grp, TX)->irq);
3007 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3008 			enable_irq(gfar_irq(grp, TX)->irq);
3009 		}
3010 	}
3011 }
3012 #endif
3013 
3014 /* The interrupt handler for devices with one interrupt */
3015 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3016 {
3017 	struct gfar_priv_grp *gfargrp = grp_id;
3018 
3019 	/* Save ievent for future reference */
3020 	u32 events = gfar_read(&gfargrp->regs->ievent);
3021 
3022 	/* Check for reception */
3023 	if (events & IEVENT_RX_MASK)
3024 		gfar_receive(irq, grp_id);
3025 
3026 	/* Check for transmit completion */
3027 	if (events & IEVENT_TX_MASK)
3028 		gfar_transmit(irq, grp_id);
3029 
3030 	/* Check for errors */
3031 	if (events & IEVENT_ERR_MASK)
3032 		gfar_error(irq, grp_id);
3033 
3034 	return IRQ_HANDLED;
3035 }
3036 
3037 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3038 {
3039 	struct phy_device *phydev = priv->phydev;
3040 	u32 val = 0;
3041 
3042 	if (!phydev->duplex)
3043 		return val;
3044 
3045 	if (!priv->pause_aneg_en) {
3046 		if (priv->tx_pause_en)
3047 			val |= MACCFG1_TX_FLOW;
3048 		if (priv->rx_pause_en)
3049 			val |= MACCFG1_RX_FLOW;
3050 	} else {
3051 		u16 lcl_adv, rmt_adv;
3052 		u8 flowctrl;
3053 		/* get link partner capabilities */
3054 		rmt_adv = 0;
3055 		if (phydev->pause)
3056 			rmt_adv = LPA_PAUSE_CAP;
3057 		if (phydev->asym_pause)
3058 			rmt_adv |= LPA_PAUSE_ASYM;
3059 
3060 		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3061 
3062 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3063 		if (flowctrl & FLOW_CTRL_TX)
3064 			val |= MACCFG1_TX_FLOW;
3065 		if (flowctrl & FLOW_CTRL_RX)
3066 			val |= MACCFG1_RX_FLOW;
3067 	}
3068 
3069 	return val;
3070 }
3071 
3072 /* Called every time the controller might need to be made
3073  * aware of new link state.  The PHY code conveys this
3074  * information through variables in the phydev structure, and this
3075  * function converts those variables into the appropriate
3076  * register values, and can bring down the device if needed.
3077  */
3078 static void adjust_link(struct net_device *dev)
3079 {
3080 	struct gfar_private *priv = netdev_priv(dev);
3081 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3082 	unsigned long flags;
3083 	struct phy_device *phydev = priv->phydev;
3084 	int new_state = 0;
3085 
3086 	local_irq_save(flags);
3087 	lock_tx_qs(priv);
3088 
3089 	if (phydev->link) {
3090 		u32 tempval1 = gfar_read(&regs->maccfg1);
3091 		u32 tempval = gfar_read(&regs->maccfg2);
3092 		u32 ecntrl = gfar_read(&regs->ecntrl);
3093 
3094 		/* Now we make sure that we can be in full duplex mode.
3095 		 * If not, we operate in half-duplex mode.
3096 		 */
3097 		if (phydev->duplex != priv->oldduplex) {
3098 			new_state = 1;
3099 			if (!(phydev->duplex))
3100 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3101 			else
3102 				tempval |= MACCFG2_FULL_DUPLEX;
3103 
3104 			priv->oldduplex = phydev->duplex;
3105 		}
3106 
3107 		if (phydev->speed != priv->oldspeed) {
3108 			new_state = 1;
3109 			switch (phydev->speed) {
3110 			case 1000:
3111 				tempval =
3112 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3113 
3114 				ecntrl &= ~(ECNTRL_R100);
3115 				break;
3116 			case 100:
3117 			case 10:
3118 				tempval =
3119 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3120 
3121 				/* Reduced mode distinguishes
3122 				 * between 10 and 100
3123 				 */
3124 				if (phydev->speed == SPEED_100)
3125 					ecntrl |= ECNTRL_R100;
3126 				else
3127 					ecntrl &= ~(ECNTRL_R100);
3128 				break;
3129 			default:
3130 				netif_warn(priv, link, dev,
3131 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3132 					   phydev->speed);
3133 				break;
3134 			}
3135 
3136 			priv->oldspeed = phydev->speed;
3137 		}
3138 
3139 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3140 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3141 
3142 		gfar_write(&regs->maccfg1, tempval1);
3143 		gfar_write(&regs->maccfg2, tempval);
3144 		gfar_write(&regs->ecntrl, ecntrl);
3145 
3146 		if (!priv->oldlink) {
3147 			new_state = 1;
3148 			priv->oldlink = 1;
3149 		}
3150 	} else if (priv->oldlink) {
3151 		new_state = 1;
3152 		priv->oldlink = 0;
3153 		priv->oldspeed = 0;
3154 		priv->oldduplex = -1;
3155 	}
3156 
3157 	if (new_state && netif_msg_link(priv))
3158 		phy_print_status(phydev);
3159 	unlock_tx_qs(priv);
3160 	local_irq_restore(flags);
3161 }
3162 
3163 /* Update the hash table based on the current list of multicast
3164  * addresses we subscribe to.  Also, change the promiscuity of
3165  * the device based on the flags (this function is called
3166  * whenever dev->flags is changed
3167  */
3168 static void gfar_set_multi(struct net_device *dev)
3169 {
3170 	struct netdev_hw_addr *ha;
3171 	struct gfar_private *priv = netdev_priv(dev);
3172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3173 	u32 tempval;
3174 
3175 	if (dev->flags & IFF_PROMISC) {
3176 		/* Set RCTRL to PROM */
3177 		tempval = gfar_read(&regs->rctrl);
3178 		tempval |= RCTRL_PROM;
3179 		gfar_write(&regs->rctrl, tempval);
3180 	} else {
3181 		/* Set RCTRL to not PROM */
3182 		tempval = gfar_read(&regs->rctrl);
3183 		tempval &= ~(RCTRL_PROM);
3184 		gfar_write(&regs->rctrl, tempval);
3185 	}
3186 
3187 	if (dev->flags & IFF_ALLMULTI) {
3188 		/* Set the hash to rx all multicast frames */
3189 		gfar_write(&regs->igaddr0, 0xffffffff);
3190 		gfar_write(&regs->igaddr1, 0xffffffff);
3191 		gfar_write(&regs->igaddr2, 0xffffffff);
3192 		gfar_write(&regs->igaddr3, 0xffffffff);
3193 		gfar_write(&regs->igaddr4, 0xffffffff);
3194 		gfar_write(&regs->igaddr5, 0xffffffff);
3195 		gfar_write(&regs->igaddr6, 0xffffffff);
3196 		gfar_write(&regs->igaddr7, 0xffffffff);
3197 		gfar_write(&regs->gaddr0, 0xffffffff);
3198 		gfar_write(&regs->gaddr1, 0xffffffff);
3199 		gfar_write(&regs->gaddr2, 0xffffffff);
3200 		gfar_write(&regs->gaddr3, 0xffffffff);
3201 		gfar_write(&regs->gaddr4, 0xffffffff);
3202 		gfar_write(&regs->gaddr5, 0xffffffff);
3203 		gfar_write(&regs->gaddr6, 0xffffffff);
3204 		gfar_write(&regs->gaddr7, 0xffffffff);
3205 	} else {
3206 		int em_num;
3207 		int idx;
3208 
3209 		/* zero out the hash */
3210 		gfar_write(&regs->igaddr0, 0x0);
3211 		gfar_write(&regs->igaddr1, 0x0);
3212 		gfar_write(&regs->igaddr2, 0x0);
3213 		gfar_write(&regs->igaddr3, 0x0);
3214 		gfar_write(&regs->igaddr4, 0x0);
3215 		gfar_write(&regs->igaddr5, 0x0);
3216 		gfar_write(&regs->igaddr6, 0x0);
3217 		gfar_write(&regs->igaddr7, 0x0);
3218 		gfar_write(&regs->gaddr0, 0x0);
3219 		gfar_write(&regs->gaddr1, 0x0);
3220 		gfar_write(&regs->gaddr2, 0x0);
3221 		gfar_write(&regs->gaddr3, 0x0);
3222 		gfar_write(&regs->gaddr4, 0x0);
3223 		gfar_write(&regs->gaddr5, 0x0);
3224 		gfar_write(&regs->gaddr6, 0x0);
3225 		gfar_write(&regs->gaddr7, 0x0);
3226 
3227 		/* If we have extended hash tables, we need to
3228 		 * clear the exact match registers to prepare for
3229 		 * setting them
3230 		 */
3231 		if (priv->extended_hash) {
3232 			em_num = GFAR_EM_NUM + 1;
3233 			gfar_clear_exact_match(dev);
3234 			idx = 1;
3235 		} else {
3236 			idx = 0;
3237 			em_num = 0;
3238 		}
3239 
3240 		if (netdev_mc_empty(dev))
3241 			return;
3242 
3243 		/* Parse the list, and set the appropriate bits */
3244 		netdev_for_each_mc_addr(ha, dev) {
3245 			if (idx < em_num) {
3246 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3247 				idx++;
3248 			} else
3249 				gfar_set_hash_for_addr(dev, ha->addr);
3250 		}
3251 	}
3252 }
3253 
3254 
3255 /* Clears each of the exact match registers to zero, so they
3256  * don't interfere with normal reception
3257  */
3258 static void gfar_clear_exact_match(struct net_device *dev)
3259 {
3260 	int idx;
3261 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3262 
3263 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3264 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3265 }
3266 
3267 /* Set the appropriate hash bit for the given addr */
3268 /* The algorithm works like so:
3269  * 1) Take the Destination Address (ie the multicast address), and
3270  * do a CRC on it (little endian), and reverse the bits of the
3271  * result.
3272  * 2) Use the 8 most significant bits as a hash into a 256-entry
3273  * table.  The table is controlled through 8 32-bit registers:
3274  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3275  * gaddr7.  This means that the 3 most significant bits in the
3276  * hash index which gaddr register to use, and the 5 other bits
3277  * indicate which bit (assuming an IBM numbering scheme, which
3278  * for PowerPC (tm) is usually the case) in the register holds
3279  * the entry.
3280  */
3281 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3282 {
3283 	u32 tempval;
3284 	struct gfar_private *priv = netdev_priv(dev);
3285 	u32 result = ether_crc(ETH_ALEN, addr);
3286 	int width = priv->hash_width;
3287 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3288 	u8 whichreg = result >> (32 - width + 5);
3289 	u32 value = (1 << (31-whichbit));
3290 
3291 	tempval = gfar_read(priv->hash_regs[whichreg]);
3292 	tempval |= value;
3293 	gfar_write(priv->hash_regs[whichreg], tempval);
3294 }
3295 
3296 
3297 /* There are multiple MAC Address register pairs on some controllers
3298  * This function sets the numth pair to a given address
3299  */
3300 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3301 				  const u8 *addr)
3302 {
3303 	struct gfar_private *priv = netdev_priv(dev);
3304 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3305 	int idx;
3306 	char tmpbuf[ETH_ALEN];
3307 	u32 tempval;
3308 	u32 __iomem *macptr = &regs->macstnaddr1;
3309 
3310 	macptr += num*2;
3311 
3312 	/* Now copy it into the mac registers backwards, cuz
3313 	 * little endian is silly
3314 	 */
3315 	for (idx = 0; idx < ETH_ALEN; idx++)
3316 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3317 
3318 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3319 
3320 	tempval = *((u32 *) (tmpbuf + 4));
3321 
3322 	gfar_write(macptr+1, tempval);
3323 }
3324 
3325 /* GFAR error interrupt handler */
3326 static irqreturn_t gfar_error(int irq, void *grp_id)
3327 {
3328 	struct gfar_priv_grp *gfargrp = grp_id;
3329 	struct gfar __iomem *regs = gfargrp->regs;
3330 	struct gfar_private *priv= gfargrp->priv;
3331 	struct net_device *dev = priv->ndev;
3332 
3333 	/* Save ievent for future reference */
3334 	u32 events = gfar_read(&regs->ievent);
3335 
3336 	/* Clear IEVENT */
3337 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3338 
3339 	/* Magic Packet is not an error. */
3340 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3341 	    (events & IEVENT_MAG))
3342 		events &= ~IEVENT_MAG;
3343 
3344 	/* Hmm... */
3345 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3346 		netdev_dbg(dev,
3347 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3348 			   events, gfar_read(&regs->imask));
3349 
3350 	/* Update the error counters */
3351 	if (events & IEVENT_TXE) {
3352 		dev->stats.tx_errors++;
3353 
3354 		if (events & IEVENT_LC)
3355 			dev->stats.tx_window_errors++;
3356 		if (events & IEVENT_CRL)
3357 			dev->stats.tx_aborted_errors++;
3358 		if (events & IEVENT_XFUN) {
3359 			unsigned long flags;
3360 
3361 			netif_dbg(priv, tx_err, dev,
3362 				  "TX FIFO underrun, packet dropped\n");
3363 			dev->stats.tx_dropped++;
3364 			atomic64_inc(&priv->extra_stats.tx_underrun);
3365 
3366 			local_irq_save(flags);
3367 			lock_tx_qs(priv);
3368 
3369 			/* Reactivate the Tx Queues */
3370 			gfar_write(&regs->tstat, gfargrp->tstat);
3371 
3372 			unlock_tx_qs(priv);
3373 			local_irq_restore(flags);
3374 		}
3375 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3376 	}
3377 	if (events & IEVENT_BSY) {
3378 		dev->stats.rx_errors++;
3379 		atomic64_inc(&priv->extra_stats.rx_bsy);
3380 
3381 		gfar_receive(irq, grp_id);
3382 
3383 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3384 			  gfar_read(&regs->rstat));
3385 	}
3386 	if (events & IEVENT_BABR) {
3387 		dev->stats.rx_errors++;
3388 		atomic64_inc(&priv->extra_stats.rx_babr);
3389 
3390 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3391 	}
3392 	if (events & IEVENT_EBERR) {
3393 		atomic64_inc(&priv->extra_stats.eberr);
3394 		netif_dbg(priv, rx_err, dev, "bus error\n");
3395 	}
3396 	if (events & IEVENT_RXC)
3397 		netif_dbg(priv, rx_status, dev, "control frame\n");
3398 
3399 	if (events & IEVENT_BABT) {
3400 		atomic64_inc(&priv->extra_stats.tx_babt);
3401 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3402 	}
3403 	return IRQ_HANDLED;
3404 }
3405 
3406 static struct of_device_id gfar_match[] =
3407 {
3408 	{
3409 		.type = "network",
3410 		.compatible = "gianfar",
3411 	},
3412 	{
3413 		.compatible = "fsl,etsec2",
3414 	},
3415 	{},
3416 };
3417 MODULE_DEVICE_TABLE(of, gfar_match);
3418 
3419 /* Structure for a device driver */
3420 static struct platform_driver gfar_driver = {
3421 	.driver = {
3422 		.name = "fsl-gianfar",
3423 		.owner = THIS_MODULE,
3424 		.pm = GFAR_PM_OPS,
3425 		.of_match_table = gfar_match,
3426 	},
3427 	.probe = gfar_probe,
3428 	.remove = gfar_remove,
3429 };
3430 
3431 module_platform_driver(gfar_driver);
3432