1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/mpc85xx.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102 
103 #include "gianfar.h"
104 
105 #define TX_TIMEOUT      (1*HZ)
106 
107 const char gfar_driver_version[] = "1.3";
108 
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116 			   struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 static int gfar_poll_sq(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139 			       int amount_pull, struct napi_struct *napi);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145 				  const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147 
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151 
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 			    dma_addr_t buf)
154 {
155 	u32 lstatus;
156 
157 	bdp->bufPtr = buf;
158 
159 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 		lstatus |= BD_LFLAG(RXBD_WRAP);
162 
163 	eieio();
164 
165 	bdp->lstatus = lstatus;
166 }
167 
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 	struct gfar_private *priv = netdev_priv(ndev);
171 	struct gfar_priv_tx_q *tx_queue = NULL;
172 	struct gfar_priv_rx_q *rx_queue = NULL;
173 	struct txbd8 *txbdp;
174 	struct rxbd8 *rxbdp;
175 	int i, j;
176 
177 	for (i = 0; i < priv->num_tx_queues; i++) {
178 		tx_queue = priv->tx_queue[i];
179 		/* Initialize some variables in our dev structure */
180 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 		tx_queue->cur_tx = tx_queue->tx_bd_base;
183 		tx_queue->skb_curtx = 0;
184 		tx_queue->skb_dirtytx = 0;
185 
186 		/* Initialize Transmit Descriptor Ring */
187 		txbdp = tx_queue->tx_bd_base;
188 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 			txbdp->lstatus = 0;
190 			txbdp->bufPtr = 0;
191 			txbdp++;
192 		}
193 
194 		/* Set the last descriptor in the ring to indicate wrap */
195 		txbdp--;
196 		txbdp->status |= TXBD_WRAP;
197 	}
198 
199 	for (i = 0; i < priv->num_rx_queues; i++) {
200 		rx_queue = priv->rx_queue[i];
201 		rx_queue->cur_rx = rx_queue->rx_bd_base;
202 		rx_queue->skb_currx = 0;
203 		rxbdp = rx_queue->rx_bd_base;
204 
205 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
207 
208 			if (skb) {
209 				gfar_init_rxbdp(rx_queue, rxbdp,
210 						rxbdp->bufPtr);
211 			} else {
212 				skb = gfar_new_skb(ndev);
213 				if (!skb) {
214 					netdev_err(ndev, "Can't allocate RX buffers\n");
215 					return -ENOMEM;
216 				}
217 				rx_queue->rx_skbuff[j] = skb;
218 
219 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 			}
221 
222 			rxbdp++;
223 		}
224 
225 	}
226 
227 	return 0;
228 }
229 
230 static int gfar_alloc_skb_resources(struct net_device *ndev)
231 {
232 	void *vaddr;
233 	dma_addr_t addr;
234 	int i, j, k;
235 	struct gfar_private *priv = netdev_priv(ndev);
236 	struct device *dev = priv->dev;
237 	struct gfar_priv_tx_q *tx_queue = NULL;
238 	struct gfar_priv_rx_q *rx_queue = NULL;
239 
240 	priv->total_tx_ring_size = 0;
241 	for (i = 0; i < priv->num_tx_queues; i++)
242 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
243 
244 	priv->total_rx_ring_size = 0;
245 	for (i = 0; i < priv->num_rx_queues; i++)
246 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
247 
248 	/* Allocate memory for the buffer descriptors */
249 	vaddr = dma_alloc_coherent(dev,
250 				   (priv->total_tx_ring_size *
251 				    sizeof(struct txbd8)) +
252 				   (priv->total_rx_ring_size *
253 				    sizeof(struct rxbd8)),
254 				   &addr, GFP_KERNEL);
255 	if (!vaddr)
256 		return -ENOMEM;
257 
258 	for (i = 0; i < priv->num_tx_queues; i++) {
259 		tx_queue = priv->tx_queue[i];
260 		tx_queue->tx_bd_base = vaddr;
261 		tx_queue->tx_bd_dma_base = addr;
262 		tx_queue->dev = ndev;
263 		/* enet DMA only understands physical addresses */
264 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 	}
267 
268 	/* Start the rx descriptor ring where the tx ring leaves off */
269 	for (i = 0; i < priv->num_rx_queues; i++) {
270 		rx_queue = priv->rx_queue[i];
271 		rx_queue->rx_bd_base = vaddr;
272 		rx_queue->rx_bd_dma_base = addr;
273 		rx_queue->dev = ndev;
274 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 	}
277 
278 	/* Setup the skbuff rings */
279 	for (i = 0; i < priv->num_tx_queues; i++) {
280 		tx_queue = priv->tx_queue[i];
281 		tx_queue->tx_skbuff =
282 			kmalloc_array(tx_queue->tx_ring_size,
283 				      sizeof(*tx_queue->tx_skbuff),
284 				      GFP_KERNEL);
285 		if (!tx_queue->tx_skbuff)
286 			goto cleanup;
287 
288 		for (k = 0; k < tx_queue->tx_ring_size; k++)
289 			tx_queue->tx_skbuff[k] = NULL;
290 	}
291 
292 	for (i = 0; i < priv->num_rx_queues; i++) {
293 		rx_queue = priv->rx_queue[i];
294 		rx_queue->rx_skbuff =
295 			kmalloc_array(rx_queue->rx_ring_size,
296 				      sizeof(*rx_queue->rx_skbuff),
297 				      GFP_KERNEL);
298 		if (!rx_queue->rx_skbuff)
299 			goto cleanup;
300 
301 		for (j = 0; j < rx_queue->rx_ring_size; j++)
302 			rx_queue->rx_skbuff[j] = NULL;
303 	}
304 
305 	if (gfar_init_bds(ndev))
306 		goto cleanup;
307 
308 	return 0;
309 
310 cleanup:
311 	free_skb_resources(priv);
312 	return -ENOMEM;
313 }
314 
315 static void gfar_init_tx_rx_base(struct gfar_private *priv)
316 {
317 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
318 	u32 __iomem *baddr;
319 	int i;
320 
321 	baddr = &regs->tbase0;
322 	for (i = 0; i < priv->num_tx_queues; i++) {
323 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
324 		baddr += 2;
325 	}
326 
327 	baddr = &regs->rbase0;
328 	for (i = 0; i < priv->num_rx_queues; i++) {
329 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
330 		baddr += 2;
331 	}
332 }
333 
334 static void gfar_init_mac(struct net_device *ndev)
335 {
336 	struct gfar_private *priv = netdev_priv(ndev);
337 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
338 	u32 rctrl = 0;
339 	u32 tctrl = 0;
340 	u32 attrs = 0;
341 
342 	/* write the tx/rx base registers */
343 	gfar_init_tx_rx_base(priv);
344 
345 	/* Configure the coalescing support */
346 	gfar_configure_coalescing_all(priv);
347 
348 	/* set this when rx hw offload (TOE) functions are being used */
349 	priv->uses_rxfcb = 0;
350 
351 	if (priv->rx_filer_enable) {
352 		rctrl |= RCTRL_FILREN;
353 		/* Program the RIR0 reg with the required distribution */
354 		gfar_write(&regs->rir0, DEFAULT_RIR0);
355 	}
356 
357 	/* Restore PROMISC mode */
358 	if (ndev->flags & IFF_PROMISC)
359 		rctrl |= RCTRL_PROM;
360 
361 	if (ndev->features & NETIF_F_RXCSUM) {
362 		rctrl |= RCTRL_CHECKSUMMING;
363 		priv->uses_rxfcb = 1;
364 	}
365 
366 	if (priv->extended_hash) {
367 		rctrl |= RCTRL_EXTHASH;
368 
369 		gfar_clear_exact_match(ndev);
370 		rctrl |= RCTRL_EMEN;
371 	}
372 
373 	if (priv->padding) {
374 		rctrl &= ~RCTRL_PAL_MASK;
375 		rctrl |= RCTRL_PADDING(priv->padding);
376 	}
377 
378 	/* Insert receive time stamps into padding alignment bytes */
379 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
380 		rctrl &= ~RCTRL_PAL_MASK;
381 		rctrl |= RCTRL_PADDING(8);
382 		priv->padding = 8;
383 	}
384 
385 	/* Enable HW time stamping if requested from user space */
386 	if (priv->hwts_rx_en) {
387 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
388 		priv->uses_rxfcb = 1;
389 	}
390 
391 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
392 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
393 		priv->uses_rxfcb = 1;
394 	}
395 
396 	/* Init rctrl based on our settings */
397 	gfar_write(&regs->rctrl, rctrl);
398 
399 	if (ndev->features & NETIF_F_IP_CSUM)
400 		tctrl |= TCTRL_INIT_CSUM;
401 
402 	if (priv->prio_sched_en)
403 		tctrl |= TCTRL_TXSCHED_PRIO;
404 	else {
405 		tctrl |= TCTRL_TXSCHED_WRRS;
406 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
407 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
408 	}
409 
410 	gfar_write(&regs->tctrl, tctrl);
411 
412 	/* Set the extraction length and index */
413 	attrs = ATTRELI_EL(priv->rx_stash_size) |
414 		ATTRELI_EI(priv->rx_stash_index);
415 
416 	gfar_write(&regs->attreli, attrs);
417 
418 	/* Start with defaults, and add stashing or locking
419 	 * depending on the approprate variables
420 	 */
421 	attrs = ATTR_INIT_SETTINGS;
422 
423 	if (priv->bd_stash_en)
424 		attrs |= ATTR_BDSTASH;
425 
426 	if (priv->rx_stash_size != 0)
427 		attrs |= ATTR_BUFSTASH;
428 
429 	gfar_write(&regs->attr, attrs);
430 
431 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
432 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
433 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
434 }
435 
436 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
437 {
438 	struct gfar_private *priv = netdev_priv(dev);
439 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
440 	unsigned long tx_packets = 0, tx_bytes = 0;
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++) {
444 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
445 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
446 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
447 	}
448 
449 	dev->stats.rx_packets = rx_packets;
450 	dev->stats.rx_bytes   = rx_bytes;
451 	dev->stats.rx_dropped = rx_dropped;
452 
453 	for (i = 0; i < priv->num_tx_queues; i++) {
454 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
455 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
456 	}
457 
458 	dev->stats.tx_bytes   = tx_bytes;
459 	dev->stats.tx_packets = tx_packets;
460 
461 	return &dev->stats;
462 }
463 
464 static const struct net_device_ops gfar_netdev_ops = {
465 	.ndo_open = gfar_enet_open,
466 	.ndo_start_xmit = gfar_start_xmit,
467 	.ndo_stop = gfar_close,
468 	.ndo_change_mtu = gfar_change_mtu,
469 	.ndo_set_features = gfar_set_features,
470 	.ndo_set_rx_mode = gfar_set_multi,
471 	.ndo_tx_timeout = gfar_timeout,
472 	.ndo_do_ioctl = gfar_ioctl,
473 	.ndo_get_stats = gfar_get_stats,
474 	.ndo_set_mac_address = eth_mac_addr,
475 	.ndo_validate_addr = eth_validate_addr,
476 #ifdef CONFIG_NET_POLL_CONTROLLER
477 	.ndo_poll_controller = gfar_netpoll,
478 #endif
479 };
480 
481 void lock_rx_qs(struct gfar_private *priv)
482 {
483 	int i;
484 
485 	for (i = 0; i < priv->num_rx_queues; i++)
486 		spin_lock(&priv->rx_queue[i]->rxlock);
487 }
488 
489 void lock_tx_qs(struct gfar_private *priv)
490 {
491 	int i;
492 
493 	for (i = 0; i < priv->num_tx_queues; i++)
494 		spin_lock(&priv->tx_queue[i]->txlock);
495 }
496 
497 void unlock_rx_qs(struct gfar_private *priv)
498 {
499 	int i;
500 
501 	for (i = 0; i < priv->num_rx_queues; i++)
502 		spin_unlock(&priv->rx_queue[i]->rxlock);
503 }
504 
505 void unlock_tx_qs(struct gfar_private *priv)
506 {
507 	int i;
508 
509 	for (i = 0; i < priv->num_tx_queues; i++)
510 		spin_unlock(&priv->tx_queue[i]->txlock);
511 }
512 
513 static void free_tx_pointers(struct gfar_private *priv)
514 {
515 	int i;
516 
517 	for (i = 0; i < priv->num_tx_queues; i++)
518 		kfree(priv->tx_queue[i]);
519 }
520 
521 static void free_rx_pointers(struct gfar_private *priv)
522 {
523 	int i;
524 
525 	for (i = 0; i < priv->num_rx_queues; i++)
526 		kfree(priv->rx_queue[i]);
527 }
528 
529 static void unmap_group_regs(struct gfar_private *priv)
530 {
531 	int i;
532 
533 	for (i = 0; i < MAXGROUPS; i++)
534 		if (priv->gfargrp[i].regs)
535 			iounmap(priv->gfargrp[i].regs);
536 }
537 
538 static void free_gfar_dev(struct gfar_private *priv)
539 {
540 	int i, j;
541 
542 	for (i = 0; i < priv->num_grps; i++)
543 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
544 			kfree(priv->gfargrp[i].irqinfo[j]);
545 			priv->gfargrp[i].irqinfo[j] = NULL;
546 		}
547 
548 	free_netdev(priv->ndev);
549 }
550 
551 static void disable_napi(struct gfar_private *priv)
552 {
553 	int i;
554 
555 	for (i = 0; i < priv->num_grps; i++)
556 		napi_disable(&priv->gfargrp[i].napi);
557 }
558 
559 static void enable_napi(struct gfar_private *priv)
560 {
561 	int i;
562 
563 	for (i = 0; i < priv->num_grps; i++)
564 		napi_enable(&priv->gfargrp[i].napi);
565 }
566 
567 static int gfar_parse_group(struct device_node *np,
568 			    struct gfar_private *priv, const char *model)
569 {
570 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
571 	u32 *queue_mask;
572 	int i;
573 
574 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
575 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
576 					  GFP_KERNEL);
577 		if (!grp->irqinfo[i])
578 			return -ENOMEM;
579 	}
580 
581 	grp->regs = of_iomap(np, 0);
582 	if (!grp->regs)
583 		return -ENOMEM;
584 
585 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
586 
587 	/* If we aren't the FEC we have multiple interrupts */
588 	if (model && strcasecmp(model, "FEC")) {
589 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
590 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
591 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
592 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
593 		    gfar_irq(grp, ER)->irq == NO_IRQ)
594 			return -EINVAL;
595 	}
596 
597 	grp->priv = priv;
598 	spin_lock_init(&grp->grplock);
599 	if (priv->mode == MQ_MG_MODE) {
600 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
601 		grp->rx_bit_map = queue_mask ?
602 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
603 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
604 		grp->tx_bit_map = queue_mask ?
605 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
606 	} else {
607 		grp->rx_bit_map = 0xFF;
608 		grp->tx_bit_map = 0xFF;
609 	}
610 	priv->num_grps++;
611 
612 	return 0;
613 }
614 
615 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
616 {
617 	const char *model;
618 	const char *ctype;
619 	const void *mac_addr;
620 	int err = 0, i;
621 	struct net_device *dev = NULL;
622 	struct gfar_private *priv = NULL;
623 	struct device_node *np = ofdev->dev.of_node;
624 	struct device_node *child = NULL;
625 	const u32 *stash;
626 	const u32 *stash_len;
627 	const u32 *stash_idx;
628 	unsigned int num_tx_qs, num_rx_qs;
629 	u32 *tx_queues, *rx_queues;
630 
631 	if (!np || !of_device_is_available(np))
632 		return -ENODEV;
633 
634 	/* parse the num of tx and rx queues */
635 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
636 	num_tx_qs = tx_queues ? *tx_queues : 1;
637 
638 	if (num_tx_qs > MAX_TX_QS) {
639 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
640 		       num_tx_qs, MAX_TX_QS);
641 		pr_err("Cannot do alloc_etherdev, aborting\n");
642 		return -EINVAL;
643 	}
644 
645 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
646 	num_rx_qs = rx_queues ? *rx_queues : 1;
647 
648 	if (num_rx_qs > MAX_RX_QS) {
649 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
650 		       num_rx_qs, MAX_RX_QS);
651 		pr_err("Cannot do alloc_etherdev, aborting\n");
652 		return -EINVAL;
653 	}
654 
655 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
656 	dev = *pdev;
657 	if (NULL == dev)
658 		return -ENOMEM;
659 
660 	priv = netdev_priv(dev);
661 	priv->ndev = dev;
662 
663 	priv->num_tx_queues = num_tx_qs;
664 	netif_set_real_num_rx_queues(dev, num_rx_qs);
665 	priv->num_rx_queues = num_rx_qs;
666 	priv->num_grps = 0x0;
667 
668 	/* Init Rx queue filer rule set linked list */
669 	INIT_LIST_HEAD(&priv->rx_list.list);
670 	priv->rx_list.count = 0;
671 	mutex_init(&priv->rx_queue_access);
672 
673 	model = of_get_property(np, "model", NULL);
674 
675 	for (i = 0; i < MAXGROUPS; i++)
676 		priv->gfargrp[i].regs = NULL;
677 
678 	/* Parse and initialize group specific information */
679 	if (of_device_is_compatible(np, "fsl,etsec2")) {
680 		priv->mode = MQ_MG_MODE;
681 		for_each_child_of_node(np, child) {
682 			err = gfar_parse_group(child, priv, model);
683 			if (err)
684 				goto err_grp_init;
685 		}
686 	} else {
687 		priv->mode = SQ_SG_MODE;
688 		err = gfar_parse_group(np, priv, model);
689 		if (err)
690 			goto err_grp_init;
691 	}
692 
693 	for (i = 0; i < priv->num_tx_queues; i++)
694 		priv->tx_queue[i] = NULL;
695 	for (i = 0; i < priv->num_rx_queues; i++)
696 		priv->rx_queue[i] = NULL;
697 
698 	for (i = 0; i < priv->num_tx_queues; i++) {
699 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
700 					    GFP_KERNEL);
701 		if (!priv->tx_queue[i]) {
702 			err = -ENOMEM;
703 			goto tx_alloc_failed;
704 		}
705 		priv->tx_queue[i]->tx_skbuff = NULL;
706 		priv->tx_queue[i]->qindex = i;
707 		priv->tx_queue[i]->dev = dev;
708 		spin_lock_init(&(priv->tx_queue[i]->txlock));
709 	}
710 
711 	for (i = 0; i < priv->num_rx_queues; i++) {
712 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
713 					    GFP_KERNEL);
714 		if (!priv->rx_queue[i]) {
715 			err = -ENOMEM;
716 			goto rx_alloc_failed;
717 		}
718 		priv->rx_queue[i]->rx_skbuff = NULL;
719 		priv->rx_queue[i]->qindex = i;
720 		priv->rx_queue[i]->dev = dev;
721 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
722 	}
723 
724 
725 	stash = of_get_property(np, "bd-stash", NULL);
726 
727 	if (stash) {
728 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
729 		priv->bd_stash_en = 1;
730 	}
731 
732 	stash_len = of_get_property(np, "rx-stash-len", NULL);
733 
734 	if (stash_len)
735 		priv->rx_stash_size = *stash_len;
736 
737 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
738 
739 	if (stash_idx)
740 		priv->rx_stash_index = *stash_idx;
741 
742 	if (stash_len || stash_idx)
743 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
744 
745 	mac_addr = of_get_mac_address(np);
746 
747 	if (mac_addr)
748 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
749 
750 	if (model && !strcasecmp(model, "TSEC"))
751 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
752 				     FSL_GIANFAR_DEV_HAS_COALESCE |
753 				     FSL_GIANFAR_DEV_HAS_RMON |
754 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
755 
756 	if (model && !strcasecmp(model, "eTSEC"))
757 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
758 				     FSL_GIANFAR_DEV_HAS_COALESCE |
759 				     FSL_GIANFAR_DEV_HAS_RMON |
760 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
761 				     FSL_GIANFAR_DEV_HAS_PADDING |
762 				     FSL_GIANFAR_DEV_HAS_CSUM |
763 				     FSL_GIANFAR_DEV_HAS_VLAN |
764 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
765 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
766 				     FSL_GIANFAR_DEV_HAS_TIMER;
767 
768 	ctype = of_get_property(np, "phy-connection-type", NULL);
769 
770 	/* We only care about rgmii-id.  The rest are autodetected */
771 	if (ctype && !strcmp(ctype, "rgmii-id"))
772 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
773 	else
774 		priv->interface = PHY_INTERFACE_MODE_MII;
775 
776 	if (of_get_property(np, "fsl,magic-packet", NULL))
777 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
778 
779 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
780 
781 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
782 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
783 
784 	return 0;
785 
786 rx_alloc_failed:
787 	free_rx_pointers(priv);
788 tx_alloc_failed:
789 	free_tx_pointers(priv);
790 err_grp_init:
791 	unmap_group_regs(priv);
792 	free_gfar_dev(priv);
793 	return err;
794 }
795 
796 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
797 			       struct ifreq *ifr, int cmd)
798 {
799 	struct hwtstamp_config config;
800 	struct gfar_private *priv = netdev_priv(netdev);
801 
802 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
803 		return -EFAULT;
804 
805 	/* reserved for future extensions */
806 	if (config.flags)
807 		return -EINVAL;
808 
809 	switch (config.tx_type) {
810 	case HWTSTAMP_TX_OFF:
811 		priv->hwts_tx_en = 0;
812 		break;
813 	case HWTSTAMP_TX_ON:
814 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
815 			return -ERANGE;
816 		priv->hwts_tx_en = 1;
817 		break;
818 	default:
819 		return -ERANGE;
820 	}
821 
822 	switch (config.rx_filter) {
823 	case HWTSTAMP_FILTER_NONE:
824 		if (priv->hwts_rx_en) {
825 			stop_gfar(netdev);
826 			priv->hwts_rx_en = 0;
827 			startup_gfar(netdev);
828 		}
829 		break;
830 	default:
831 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
832 			return -ERANGE;
833 		if (!priv->hwts_rx_en) {
834 			stop_gfar(netdev);
835 			priv->hwts_rx_en = 1;
836 			startup_gfar(netdev);
837 		}
838 		config.rx_filter = HWTSTAMP_FILTER_ALL;
839 		break;
840 	}
841 
842 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
843 		-EFAULT : 0;
844 }
845 
846 /* Ioctl MII Interface */
847 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
848 {
849 	struct gfar_private *priv = netdev_priv(dev);
850 
851 	if (!netif_running(dev))
852 		return -EINVAL;
853 
854 	if (cmd == SIOCSHWTSTAMP)
855 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
856 
857 	if (!priv->phydev)
858 		return -ENODEV;
859 
860 	return phy_mii_ioctl(priv->phydev, rq, cmd);
861 }
862 
863 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
864 {
865 	unsigned int new_bit_map = 0x0;
866 	int mask = 0x1 << (max_qs - 1), i;
867 
868 	for (i = 0; i < max_qs; i++) {
869 		if (bit_map & mask)
870 			new_bit_map = new_bit_map + (1 << i);
871 		mask = mask >> 0x1;
872 	}
873 	return new_bit_map;
874 }
875 
876 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
877 				   u32 class)
878 {
879 	u32 rqfpr = FPR_FILER_MASK;
880 	u32 rqfcr = 0x0;
881 
882 	rqfar--;
883 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
884 	priv->ftp_rqfpr[rqfar] = rqfpr;
885 	priv->ftp_rqfcr[rqfar] = rqfcr;
886 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887 
888 	rqfar--;
889 	rqfcr = RQFCR_CMP_NOMATCH;
890 	priv->ftp_rqfpr[rqfar] = rqfpr;
891 	priv->ftp_rqfcr[rqfar] = rqfcr;
892 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893 
894 	rqfar--;
895 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
896 	rqfpr = class;
897 	priv->ftp_rqfcr[rqfar] = rqfcr;
898 	priv->ftp_rqfpr[rqfar] = rqfpr;
899 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900 
901 	rqfar--;
902 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
903 	rqfpr = class;
904 	priv->ftp_rqfcr[rqfar] = rqfcr;
905 	priv->ftp_rqfpr[rqfar] = rqfpr;
906 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
907 
908 	return rqfar;
909 }
910 
911 static void gfar_init_filer_table(struct gfar_private *priv)
912 {
913 	int i = 0x0;
914 	u32 rqfar = MAX_FILER_IDX;
915 	u32 rqfcr = 0x0;
916 	u32 rqfpr = FPR_FILER_MASK;
917 
918 	/* Default rule */
919 	rqfcr = RQFCR_CMP_MATCH;
920 	priv->ftp_rqfcr[rqfar] = rqfcr;
921 	priv->ftp_rqfpr[rqfar] = rqfpr;
922 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
923 
924 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
925 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
926 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
927 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
928 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
929 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
930 
931 	/* cur_filer_idx indicated the first non-masked rule */
932 	priv->cur_filer_idx = rqfar;
933 
934 	/* Rest are masked rules */
935 	rqfcr = RQFCR_CMP_NOMATCH;
936 	for (i = 0; i < rqfar; i++) {
937 		priv->ftp_rqfcr[i] = rqfcr;
938 		priv->ftp_rqfpr[i] = rqfpr;
939 		gfar_write_filer(priv, i, rqfcr, rqfpr);
940 	}
941 }
942 
943 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
944 {
945 	unsigned int pvr = mfspr(SPRN_PVR);
946 	unsigned int svr = mfspr(SPRN_SVR);
947 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948 	unsigned int rev = svr & 0xffff;
949 
950 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
951 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 		priv->errata |= GFAR_ERRATA_74;
954 
955 	/* MPC8313 and MPC837x all rev */
956 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
957 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958 		priv->errata |= GFAR_ERRATA_76;
959 
960 	/* MPC8313 Rev < 2.0 */
961 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
962 		priv->errata |= GFAR_ERRATA_12;
963 }
964 
965 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
966 {
967 	unsigned int svr = mfspr(SPRN_SVR);
968 
969 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
970 		priv->errata |= GFAR_ERRATA_12;
971 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
972 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
973 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
974 }
975 
976 static void gfar_detect_errata(struct gfar_private *priv)
977 {
978 	struct device *dev = &priv->ofdev->dev;
979 
980 	/* no plans to fix */
981 	priv->errata |= GFAR_ERRATA_A002;
982 
983 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
984 		__gfar_detect_errata_85xx(priv);
985 	else /* non-mpc85xx parts, i.e. e300 core based */
986 		__gfar_detect_errata_83xx(priv);
987 
988 	if (priv->errata)
989 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
990 			 priv->errata);
991 }
992 
993 /* Set up the ethernet device structure, private data,
994  * and anything else we need before we start
995  */
996 static int gfar_probe(struct platform_device *ofdev)
997 {
998 	u32 tempval;
999 	struct net_device *dev = NULL;
1000 	struct gfar_private *priv = NULL;
1001 	struct gfar __iomem *regs = NULL;
1002 	int err = 0, i, grp_idx = 0;
1003 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
1004 	u32 isrg = 0;
1005 	u32 __iomem *baddr;
1006 
1007 	err = gfar_of_init(ofdev, &dev);
1008 
1009 	if (err)
1010 		return err;
1011 
1012 	priv = netdev_priv(dev);
1013 	priv->ndev = dev;
1014 	priv->ofdev = ofdev;
1015 	priv->dev = &ofdev->dev;
1016 	SET_NETDEV_DEV(dev, &ofdev->dev);
1017 
1018 	spin_lock_init(&priv->bflock);
1019 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1020 
1021 	platform_set_drvdata(ofdev, priv);
1022 	regs = priv->gfargrp[0].regs;
1023 
1024 	gfar_detect_errata(priv);
1025 
1026 	/* Stop the DMA engine now, in case it was running before
1027 	 * (The firmware could have used it, and left it running).
1028 	 */
1029 	gfar_halt(dev);
1030 
1031 	/* Reset MAC layer */
1032 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1033 
1034 	/* We need to delay at least 3 TX clocks */
1035 	udelay(2);
1036 
1037 	tempval = 0;
1038 	if (!priv->pause_aneg_en && priv->tx_pause_en)
1039 		tempval |= MACCFG1_TX_FLOW;
1040 	if (!priv->pause_aneg_en && priv->rx_pause_en)
1041 		tempval |= MACCFG1_RX_FLOW;
1042 	/* the soft reset bit is not self-resetting, so we need to
1043 	 * clear it before resuming normal operation
1044 	 */
1045 	gfar_write(&regs->maccfg1, tempval);
1046 
1047 	/* Initialize MACCFG2. */
1048 	tempval = MACCFG2_INIT_SETTINGS;
1049 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1050 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1051 	gfar_write(&regs->maccfg2, tempval);
1052 
1053 	/* Initialize ECNTRL */
1054 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1055 
1056 	/* Set the dev->base_addr to the gfar reg region */
1057 	dev->base_addr = (unsigned long) regs;
1058 
1059 	/* Fill in the dev structure */
1060 	dev->watchdog_timeo = TX_TIMEOUT;
1061 	dev->mtu = 1500;
1062 	dev->netdev_ops = &gfar_netdev_ops;
1063 	dev->ethtool_ops = &gfar_ethtool_ops;
1064 
1065 	/* Register for napi ...We are registering NAPI for each grp */
1066 	if (priv->mode == SQ_SG_MODE)
1067 		netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1068 			       GFAR_DEV_WEIGHT);
1069 	else
1070 		for (i = 0; i < priv->num_grps; i++)
1071 			netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1072 				       GFAR_DEV_WEIGHT);
1073 
1074 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1075 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1076 				   NETIF_F_RXCSUM;
1077 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1078 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1079 	}
1080 
1081 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1082 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1083 				    NETIF_F_HW_VLAN_CTAG_RX;
1084 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1085 	}
1086 
1087 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1088 		priv->extended_hash = 1;
1089 		priv->hash_width = 9;
1090 
1091 		priv->hash_regs[0] = &regs->igaddr0;
1092 		priv->hash_regs[1] = &regs->igaddr1;
1093 		priv->hash_regs[2] = &regs->igaddr2;
1094 		priv->hash_regs[3] = &regs->igaddr3;
1095 		priv->hash_regs[4] = &regs->igaddr4;
1096 		priv->hash_regs[5] = &regs->igaddr5;
1097 		priv->hash_regs[6] = &regs->igaddr6;
1098 		priv->hash_regs[7] = &regs->igaddr7;
1099 		priv->hash_regs[8] = &regs->gaddr0;
1100 		priv->hash_regs[9] = &regs->gaddr1;
1101 		priv->hash_regs[10] = &regs->gaddr2;
1102 		priv->hash_regs[11] = &regs->gaddr3;
1103 		priv->hash_regs[12] = &regs->gaddr4;
1104 		priv->hash_regs[13] = &regs->gaddr5;
1105 		priv->hash_regs[14] = &regs->gaddr6;
1106 		priv->hash_regs[15] = &regs->gaddr7;
1107 
1108 	} else {
1109 		priv->extended_hash = 0;
1110 		priv->hash_width = 8;
1111 
1112 		priv->hash_regs[0] = &regs->gaddr0;
1113 		priv->hash_regs[1] = &regs->gaddr1;
1114 		priv->hash_regs[2] = &regs->gaddr2;
1115 		priv->hash_regs[3] = &regs->gaddr3;
1116 		priv->hash_regs[4] = &regs->gaddr4;
1117 		priv->hash_regs[5] = &regs->gaddr5;
1118 		priv->hash_regs[6] = &regs->gaddr6;
1119 		priv->hash_regs[7] = &regs->gaddr7;
1120 	}
1121 
1122 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1123 		priv->padding = DEFAULT_PADDING;
1124 	else
1125 		priv->padding = 0;
1126 
1127 	if (dev->features & NETIF_F_IP_CSUM ||
1128 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1129 		dev->needed_headroom = GMAC_FCB_LEN;
1130 
1131 	/* Program the isrg regs only if number of grps > 1 */
1132 	if (priv->num_grps > 1) {
1133 		baddr = &regs->isrg0;
1134 		for (i = 0; i < priv->num_grps; i++) {
1135 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1136 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1137 			gfar_write(baddr, isrg);
1138 			baddr++;
1139 			isrg = 0x0;
1140 		}
1141 	}
1142 
1143 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1144 	 * but, for_each_set_bit parses from right to left, which
1145 	 * basically reverses the queue numbers
1146 	 */
1147 	for (i = 0; i< priv->num_grps; i++) {
1148 		priv->gfargrp[i].tx_bit_map =
1149 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1150 		priv->gfargrp[i].rx_bit_map =
1151 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1152 	}
1153 
1154 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1155 	 * also assign queues to groups
1156 	 */
1157 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1158 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1159 
1160 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1161 				 priv->num_rx_queues) {
1162 			priv->gfargrp[grp_idx].num_rx_queues++;
1163 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1164 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1165 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1166 		}
1167 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1168 
1169 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1170 				 priv->num_tx_queues) {
1171 			priv->gfargrp[grp_idx].num_tx_queues++;
1172 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1173 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1174 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1175 		}
1176 		priv->gfargrp[grp_idx].rstat = rstat;
1177 		priv->gfargrp[grp_idx].tstat = tstat;
1178 		rstat = tstat =0;
1179 	}
1180 
1181 	gfar_write(&regs->rqueue, rqueue);
1182 	gfar_write(&regs->tqueue, tqueue);
1183 
1184 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1185 
1186 	/* Initializing some of the rx/tx queue level parameters */
1187 	for (i = 0; i < priv->num_tx_queues; i++) {
1188 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1189 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1190 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1191 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1192 	}
1193 
1194 	for (i = 0; i < priv->num_rx_queues; i++) {
1195 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1196 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1197 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1198 	}
1199 
1200 	/* always enable rx filer */
1201 	priv->rx_filer_enable = 1;
1202 	/* Enable most messages by default */
1203 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1204 	/* use pritority h/w tx queue scheduling for single queue devices */
1205 	if (priv->num_tx_queues == 1)
1206 		priv->prio_sched_en = 1;
1207 
1208 	/* Carrier starts down, phylib will bring it up */
1209 	netif_carrier_off(dev);
1210 
1211 	err = register_netdev(dev);
1212 
1213 	if (err) {
1214 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1215 		goto register_fail;
1216 	}
1217 
1218 	device_init_wakeup(&dev->dev,
1219 			   priv->device_flags &
1220 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1221 
1222 	/* fill out IRQ number and name fields */
1223 	for (i = 0; i < priv->num_grps; i++) {
1224 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1225 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1226 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1227 				dev->name, "_g", '0' + i, "_tx");
1228 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1229 				dev->name, "_g", '0' + i, "_rx");
1230 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1231 				dev->name, "_g", '0' + i, "_er");
1232 		} else
1233 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1234 	}
1235 
1236 	/* Initialize the filer table */
1237 	gfar_init_filer_table(priv);
1238 
1239 	/* Create all the sysfs files */
1240 	gfar_init_sysfs(dev);
1241 
1242 	/* Print out the device info */
1243 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1244 
1245 	/* Even more device info helps when determining which kernel
1246 	 * provided which set of benchmarks.
1247 	 */
1248 	netdev_info(dev, "Running with NAPI enabled\n");
1249 	for (i = 0; i < priv->num_rx_queues; i++)
1250 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1251 			    i, priv->rx_queue[i]->rx_ring_size);
1252 	for (i = 0; i < priv->num_tx_queues; i++)
1253 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1254 			    i, priv->tx_queue[i]->tx_ring_size);
1255 
1256 	return 0;
1257 
1258 register_fail:
1259 	unmap_group_regs(priv);
1260 	free_tx_pointers(priv);
1261 	free_rx_pointers(priv);
1262 	if (priv->phy_node)
1263 		of_node_put(priv->phy_node);
1264 	if (priv->tbi_node)
1265 		of_node_put(priv->tbi_node);
1266 	free_gfar_dev(priv);
1267 	return err;
1268 }
1269 
1270 static int gfar_remove(struct platform_device *ofdev)
1271 {
1272 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1273 
1274 	if (priv->phy_node)
1275 		of_node_put(priv->phy_node);
1276 	if (priv->tbi_node)
1277 		of_node_put(priv->tbi_node);
1278 
1279 	unregister_netdev(priv->ndev);
1280 	unmap_group_regs(priv);
1281 	free_gfar_dev(priv);
1282 
1283 	return 0;
1284 }
1285 
1286 #ifdef CONFIG_PM
1287 
1288 static int gfar_suspend(struct device *dev)
1289 {
1290 	struct gfar_private *priv = dev_get_drvdata(dev);
1291 	struct net_device *ndev = priv->ndev;
1292 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1293 	unsigned long flags;
1294 	u32 tempval;
1295 
1296 	int magic_packet = priv->wol_en &&
1297 			   (priv->device_flags &
1298 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1299 
1300 	netif_device_detach(ndev);
1301 
1302 	if (netif_running(ndev)) {
1303 
1304 		local_irq_save(flags);
1305 		lock_tx_qs(priv);
1306 		lock_rx_qs(priv);
1307 
1308 		gfar_halt_nodisable(ndev);
1309 
1310 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1311 		tempval = gfar_read(&regs->maccfg1);
1312 
1313 		tempval &= ~MACCFG1_TX_EN;
1314 
1315 		if (!magic_packet)
1316 			tempval &= ~MACCFG1_RX_EN;
1317 
1318 		gfar_write(&regs->maccfg1, tempval);
1319 
1320 		unlock_rx_qs(priv);
1321 		unlock_tx_qs(priv);
1322 		local_irq_restore(flags);
1323 
1324 		disable_napi(priv);
1325 
1326 		if (magic_packet) {
1327 			/* Enable interrupt on Magic Packet */
1328 			gfar_write(&regs->imask, IMASK_MAG);
1329 
1330 			/* Enable Magic Packet mode */
1331 			tempval = gfar_read(&regs->maccfg2);
1332 			tempval |= MACCFG2_MPEN;
1333 			gfar_write(&regs->maccfg2, tempval);
1334 		} else {
1335 			phy_stop(priv->phydev);
1336 		}
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static int gfar_resume(struct device *dev)
1343 {
1344 	struct gfar_private *priv = dev_get_drvdata(dev);
1345 	struct net_device *ndev = priv->ndev;
1346 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1347 	unsigned long flags;
1348 	u32 tempval;
1349 	int magic_packet = priv->wol_en &&
1350 			   (priv->device_flags &
1351 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1352 
1353 	if (!netif_running(ndev)) {
1354 		netif_device_attach(ndev);
1355 		return 0;
1356 	}
1357 
1358 	if (!magic_packet && priv->phydev)
1359 		phy_start(priv->phydev);
1360 
1361 	/* Disable Magic Packet mode, in case something
1362 	 * else woke us up.
1363 	 */
1364 	local_irq_save(flags);
1365 	lock_tx_qs(priv);
1366 	lock_rx_qs(priv);
1367 
1368 	tempval = gfar_read(&regs->maccfg2);
1369 	tempval &= ~MACCFG2_MPEN;
1370 	gfar_write(&regs->maccfg2, tempval);
1371 
1372 	gfar_start(ndev);
1373 
1374 	unlock_rx_qs(priv);
1375 	unlock_tx_qs(priv);
1376 	local_irq_restore(flags);
1377 
1378 	netif_device_attach(ndev);
1379 
1380 	enable_napi(priv);
1381 
1382 	return 0;
1383 }
1384 
1385 static int gfar_restore(struct device *dev)
1386 {
1387 	struct gfar_private *priv = dev_get_drvdata(dev);
1388 	struct net_device *ndev = priv->ndev;
1389 
1390 	if (!netif_running(ndev)) {
1391 		netif_device_attach(ndev);
1392 
1393 		return 0;
1394 	}
1395 
1396 	if (gfar_init_bds(ndev)) {
1397 		free_skb_resources(priv);
1398 		return -ENOMEM;
1399 	}
1400 
1401 	init_registers(ndev);
1402 	gfar_set_mac_address(ndev);
1403 	gfar_init_mac(ndev);
1404 	gfar_start(ndev);
1405 
1406 	priv->oldlink = 0;
1407 	priv->oldspeed = 0;
1408 	priv->oldduplex = -1;
1409 
1410 	if (priv->phydev)
1411 		phy_start(priv->phydev);
1412 
1413 	netif_device_attach(ndev);
1414 	enable_napi(priv);
1415 
1416 	return 0;
1417 }
1418 
1419 static struct dev_pm_ops gfar_pm_ops = {
1420 	.suspend = gfar_suspend,
1421 	.resume = gfar_resume,
1422 	.freeze = gfar_suspend,
1423 	.thaw = gfar_resume,
1424 	.restore = gfar_restore,
1425 };
1426 
1427 #define GFAR_PM_OPS (&gfar_pm_ops)
1428 
1429 #else
1430 
1431 #define GFAR_PM_OPS NULL
1432 
1433 #endif
1434 
1435 /* Reads the controller's registers to determine what interface
1436  * connects it to the PHY.
1437  */
1438 static phy_interface_t gfar_get_interface(struct net_device *dev)
1439 {
1440 	struct gfar_private *priv = netdev_priv(dev);
1441 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1442 	u32 ecntrl;
1443 
1444 	ecntrl = gfar_read(&regs->ecntrl);
1445 
1446 	if (ecntrl & ECNTRL_SGMII_MODE)
1447 		return PHY_INTERFACE_MODE_SGMII;
1448 
1449 	if (ecntrl & ECNTRL_TBI_MODE) {
1450 		if (ecntrl & ECNTRL_REDUCED_MODE)
1451 			return PHY_INTERFACE_MODE_RTBI;
1452 		else
1453 			return PHY_INTERFACE_MODE_TBI;
1454 	}
1455 
1456 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1457 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1458 			return PHY_INTERFACE_MODE_RMII;
1459 		}
1460 		else {
1461 			phy_interface_t interface = priv->interface;
1462 
1463 			/* This isn't autodetected right now, so it must
1464 			 * be set by the device tree or platform code.
1465 			 */
1466 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1467 				return PHY_INTERFACE_MODE_RGMII_ID;
1468 
1469 			return PHY_INTERFACE_MODE_RGMII;
1470 		}
1471 	}
1472 
1473 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1474 		return PHY_INTERFACE_MODE_GMII;
1475 
1476 	return PHY_INTERFACE_MODE_MII;
1477 }
1478 
1479 
1480 /* Initializes driver's PHY state, and attaches to the PHY.
1481  * Returns 0 on success.
1482  */
1483 static int init_phy(struct net_device *dev)
1484 {
1485 	struct gfar_private *priv = netdev_priv(dev);
1486 	uint gigabit_support =
1487 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1488 		GFAR_SUPPORTED_GBIT : 0;
1489 	phy_interface_t interface;
1490 
1491 	priv->oldlink = 0;
1492 	priv->oldspeed = 0;
1493 	priv->oldduplex = -1;
1494 
1495 	interface = gfar_get_interface(dev);
1496 
1497 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1498 				      interface);
1499 	if (!priv->phydev)
1500 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1501 							 interface);
1502 	if (!priv->phydev) {
1503 		dev_err(&dev->dev, "could not attach to PHY\n");
1504 		return -ENODEV;
1505 	}
1506 
1507 	if (interface == PHY_INTERFACE_MODE_SGMII)
1508 		gfar_configure_serdes(dev);
1509 
1510 	/* Remove any features not supported by the controller */
1511 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1512 	priv->phydev->advertising = priv->phydev->supported;
1513 
1514 	return 0;
1515 }
1516 
1517 /* Initialize TBI PHY interface for communicating with the
1518  * SERDES lynx PHY on the chip.  We communicate with this PHY
1519  * through the MDIO bus on each controller, treating it as a
1520  * "normal" PHY at the address found in the TBIPA register.  We assume
1521  * that the TBIPA register is valid.  Either the MDIO bus code will set
1522  * it to a value that doesn't conflict with other PHYs on the bus, or the
1523  * value doesn't matter, as there are no other PHYs on the bus.
1524  */
1525 static void gfar_configure_serdes(struct net_device *dev)
1526 {
1527 	struct gfar_private *priv = netdev_priv(dev);
1528 	struct phy_device *tbiphy;
1529 
1530 	if (!priv->tbi_node) {
1531 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1532 				    "device tree specify a tbi-handle\n");
1533 		return;
1534 	}
1535 
1536 	tbiphy = of_phy_find_device(priv->tbi_node);
1537 	if (!tbiphy) {
1538 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1539 		return;
1540 	}
1541 
1542 	/* If the link is already up, we must already be ok, and don't need to
1543 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1544 	 * everything for us?  Resetting it takes the link down and requires
1545 	 * several seconds for it to come back.
1546 	 */
1547 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1548 		return;
1549 
1550 	/* Single clk mode, mii mode off(for serdes communication) */
1551 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1552 
1553 	phy_write(tbiphy, MII_ADVERTISE,
1554 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1555 		  ADVERTISE_1000XPSE_ASYM);
1556 
1557 	phy_write(tbiphy, MII_BMCR,
1558 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1559 		  BMCR_SPEED1000);
1560 }
1561 
1562 static void init_registers(struct net_device *dev)
1563 {
1564 	struct gfar_private *priv = netdev_priv(dev);
1565 	struct gfar __iomem *regs = NULL;
1566 	int i;
1567 
1568 	for (i = 0; i < priv->num_grps; i++) {
1569 		regs = priv->gfargrp[i].regs;
1570 		/* Clear IEVENT */
1571 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1572 
1573 		/* Initialize IMASK */
1574 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1575 	}
1576 
1577 	regs = priv->gfargrp[0].regs;
1578 	/* Init hash registers to zero */
1579 	gfar_write(&regs->igaddr0, 0);
1580 	gfar_write(&regs->igaddr1, 0);
1581 	gfar_write(&regs->igaddr2, 0);
1582 	gfar_write(&regs->igaddr3, 0);
1583 	gfar_write(&regs->igaddr4, 0);
1584 	gfar_write(&regs->igaddr5, 0);
1585 	gfar_write(&regs->igaddr6, 0);
1586 	gfar_write(&regs->igaddr7, 0);
1587 
1588 	gfar_write(&regs->gaddr0, 0);
1589 	gfar_write(&regs->gaddr1, 0);
1590 	gfar_write(&regs->gaddr2, 0);
1591 	gfar_write(&regs->gaddr3, 0);
1592 	gfar_write(&regs->gaddr4, 0);
1593 	gfar_write(&regs->gaddr5, 0);
1594 	gfar_write(&regs->gaddr6, 0);
1595 	gfar_write(&regs->gaddr7, 0);
1596 
1597 	/* Zero out the rmon mib registers if it has them */
1598 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1599 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1600 
1601 		/* Mask off the CAM interrupts */
1602 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1603 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1604 	}
1605 
1606 	/* Initialize the max receive buffer length */
1607 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1608 
1609 	/* Initialize the Minimum Frame Length Register */
1610 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1611 }
1612 
1613 static int __gfar_is_rx_idle(struct gfar_private *priv)
1614 {
1615 	u32 res;
1616 
1617 	/* Normaly TSEC should not hang on GRS commands, so we should
1618 	 * actually wait for IEVENT_GRSC flag.
1619 	 */
1620 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1621 		return 0;
1622 
1623 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1624 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1625 	 * and the Rx can be safely reset.
1626 	 */
1627 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1628 	res &= 0x7f807f80;
1629 	if ((res & 0xffff) == (res >> 16))
1630 		return 1;
1631 
1632 	return 0;
1633 }
1634 
1635 /* Halt the receive and transmit queues */
1636 static void gfar_halt_nodisable(struct net_device *dev)
1637 {
1638 	struct gfar_private *priv = netdev_priv(dev);
1639 	struct gfar __iomem *regs = NULL;
1640 	u32 tempval;
1641 	int i;
1642 
1643 	for (i = 0; i < priv->num_grps; i++) {
1644 		regs = priv->gfargrp[i].regs;
1645 		/* Mask all interrupts */
1646 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1647 
1648 		/* Clear all interrupts */
1649 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1650 	}
1651 
1652 	regs = priv->gfargrp[0].regs;
1653 	/* Stop the DMA, and wait for it to stop */
1654 	tempval = gfar_read(&regs->dmactrl);
1655 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1656 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1657 		int ret;
1658 
1659 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1660 		gfar_write(&regs->dmactrl, tempval);
1661 
1662 		do {
1663 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1664 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1665 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1666 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1667 				ret = __gfar_is_rx_idle(priv);
1668 		} while (!ret);
1669 	}
1670 }
1671 
1672 /* Halt the receive and transmit queues */
1673 void gfar_halt(struct net_device *dev)
1674 {
1675 	struct gfar_private *priv = netdev_priv(dev);
1676 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1677 	u32 tempval;
1678 
1679 	gfar_halt_nodisable(dev);
1680 
1681 	/* Disable Rx and Tx */
1682 	tempval = gfar_read(&regs->maccfg1);
1683 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1684 	gfar_write(&regs->maccfg1, tempval);
1685 }
1686 
1687 static void free_grp_irqs(struct gfar_priv_grp *grp)
1688 {
1689 	free_irq(gfar_irq(grp, TX)->irq, grp);
1690 	free_irq(gfar_irq(grp, RX)->irq, grp);
1691 	free_irq(gfar_irq(grp, ER)->irq, grp);
1692 }
1693 
1694 void stop_gfar(struct net_device *dev)
1695 {
1696 	struct gfar_private *priv = netdev_priv(dev);
1697 	unsigned long flags;
1698 	int i;
1699 
1700 	phy_stop(priv->phydev);
1701 
1702 
1703 	/* Lock it down */
1704 	local_irq_save(flags);
1705 	lock_tx_qs(priv);
1706 	lock_rx_qs(priv);
1707 
1708 	gfar_halt(dev);
1709 
1710 	unlock_rx_qs(priv);
1711 	unlock_tx_qs(priv);
1712 	local_irq_restore(flags);
1713 
1714 	/* Free the IRQs */
1715 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1716 		for (i = 0; i < priv->num_grps; i++)
1717 			free_grp_irqs(&priv->gfargrp[i]);
1718 	} else {
1719 		for (i = 0; i < priv->num_grps; i++)
1720 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1721 				 &priv->gfargrp[i]);
1722 	}
1723 
1724 	free_skb_resources(priv);
1725 }
1726 
1727 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1728 {
1729 	struct txbd8 *txbdp;
1730 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1731 	int i, j;
1732 
1733 	txbdp = tx_queue->tx_bd_base;
1734 
1735 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1736 		if (!tx_queue->tx_skbuff[i])
1737 			continue;
1738 
1739 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1740 				 txbdp->length, DMA_TO_DEVICE);
1741 		txbdp->lstatus = 0;
1742 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1743 		     j++) {
1744 			txbdp++;
1745 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1746 				       txbdp->length, DMA_TO_DEVICE);
1747 		}
1748 		txbdp++;
1749 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1750 		tx_queue->tx_skbuff[i] = NULL;
1751 	}
1752 	kfree(tx_queue->tx_skbuff);
1753 	tx_queue->tx_skbuff = NULL;
1754 }
1755 
1756 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1757 {
1758 	struct rxbd8 *rxbdp;
1759 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1760 	int i;
1761 
1762 	rxbdp = rx_queue->rx_bd_base;
1763 
1764 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1765 		if (rx_queue->rx_skbuff[i]) {
1766 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1767 					 priv->rx_buffer_size,
1768 					 DMA_FROM_DEVICE);
1769 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1770 			rx_queue->rx_skbuff[i] = NULL;
1771 		}
1772 		rxbdp->lstatus = 0;
1773 		rxbdp->bufPtr = 0;
1774 		rxbdp++;
1775 	}
1776 	kfree(rx_queue->rx_skbuff);
1777 	rx_queue->rx_skbuff = NULL;
1778 }
1779 
1780 /* If there are any tx skbs or rx skbs still around, free them.
1781  * Then free tx_skbuff and rx_skbuff
1782  */
1783 static void free_skb_resources(struct gfar_private *priv)
1784 {
1785 	struct gfar_priv_tx_q *tx_queue = NULL;
1786 	struct gfar_priv_rx_q *rx_queue = NULL;
1787 	int i;
1788 
1789 	/* Go through all the buffer descriptors and free their data buffers */
1790 	for (i = 0; i < priv->num_tx_queues; i++) {
1791 		struct netdev_queue *txq;
1792 
1793 		tx_queue = priv->tx_queue[i];
1794 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1795 		if (tx_queue->tx_skbuff)
1796 			free_skb_tx_queue(tx_queue);
1797 		netdev_tx_reset_queue(txq);
1798 	}
1799 
1800 	for (i = 0; i < priv->num_rx_queues; i++) {
1801 		rx_queue = priv->rx_queue[i];
1802 		if (rx_queue->rx_skbuff)
1803 			free_skb_rx_queue(rx_queue);
1804 	}
1805 
1806 	dma_free_coherent(priv->dev,
1807 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1808 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1809 			  priv->tx_queue[0]->tx_bd_base,
1810 			  priv->tx_queue[0]->tx_bd_dma_base);
1811 }
1812 
1813 void gfar_start(struct net_device *dev)
1814 {
1815 	struct gfar_private *priv = netdev_priv(dev);
1816 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1817 	u32 tempval;
1818 	int i = 0;
1819 
1820 	/* Enable Rx and Tx in MACCFG1 */
1821 	tempval = gfar_read(&regs->maccfg1);
1822 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1823 	gfar_write(&regs->maccfg1, tempval);
1824 
1825 	/* Initialize DMACTRL to have WWR and WOP */
1826 	tempval = gfar_read(&regs->dmactrl);
1827 	tempval |= DMACTRL_INIT_SETTINGS;
1828 	gfar_write(&regs->dmactrl, tempval);
1829 
1830 	/* Make sure we aren't stopped */
1831 	tempval = gfar_read(&regs->dmactrl);
1832 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1833 	gfar_write(&regs->dmactrl, tempval);
1834 
1835 	for (i = 0; i < priv->num_grps; i++) {
1836 		regs = priv->gfargrp[i].regs;
1837 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1838 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1839 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1840 		/* Unmask the interrupts we look for */
1841 		gfar_write(&regs->imask, IMASK_DEFAULT);
1842 	}
1843 
1844 	dev->trans_start = jiffies; /* prevent tx timeout */
1845 }
1846 
1847 static void gfar_configure_coalescing(struct gfar_private *priv,
1848 			       unsigned long tx_mask, unsigned long rx_mask)
1849 {
1850 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1851 	u32 __iomem *baddr;
1852 
1853 	if (priv->mode == MQ_MG_MODE) {
1854 		int i = 0;
1855 
1856 		baddr = &regs->txic0;
1857 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1858 			gfar_write(baddr + i, 0);
1859 			if (likely(priv->tx_queue[i]->txcoalescing))
1860 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1861 		}
1862 
1863 		baddr = &regs->rxic0;
1864 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1865 			gfar_write(baddr + i, 0);
1866 			if (likely(priv->rx_queue[i]->rxcoalescing))
1867 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1868 		}
1869 	} else {
1870 		/* Backward compatible case -- even if we enable
1871 		 * multiple queues, there's only single reg to program
1872 		 */
1873 		gfar_write(&regs->txic, 0);
1874 		if (likely(priv->tx_queue[0]->txcoalescing))
1875 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1876 
1877 		gfar_write(&regs->rxic, 0);
1878 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
1879 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1880 	}
1881 }
1882 
1883 void gfar_configure_coalescing_all(struct gfar_private *priv)
1884 {
1885 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1886 }
1887 
1888 static int register_grp_irqs(struct gfar_priv_grp *grp)
1889 {
1890 	struct gfar_private *priv = grp->priv;
1891 	struct net_device *dev = priv->ndev;
1892 	int err;
1893 
1894 	/* If the device has multiple interrupts, register for
1895 	 * them.  Otherwise, only register for the one
1896 	 */
1897 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1898 		/* Install our interrupt handlers for Error,
1899 		 * Transmit, and Receive
1900 		 */
1901 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1902 				  gfar_irq(grp, ER)->name, grp);
1903 		if (err < 0) {
1904 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1905 				  gfar_irq(grp, ER)->irq);
1906 
1907 			goto err_irq_fail;
1908 		}
1909 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1910 				  gfar_irq(grp, TX)->name, grp);
1911 		if (err < 0) {
1912 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1913 				  gfar_irq(grp, TX)->irq);
1914 			goto tx_irq_fail;
1915 		}
1916 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1917 				  gfar_irq(grp, RX)->name, grp);
1918 		if (err < 0) {
1919 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1920 				  gfar_irq(grp, RX)->irq);
1921 			goto rx_irq_fail;
1922 		}
1923 	} else {
1924 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1925 				  gfar_irq(grp, TX)->name, grp);
1926 		if (err < 0) {
1927 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1928 				  gfar_irq(grp, TX)->irq);
1929 			goto err_irq_fail;
1930 		}
1931 	}
1932 
1933 	return 0;
1934 
1935 rx_irq_fail:
1936 	free_irq(gfar_irq(grp, TX)->irq, grp);
1937 tx_irq_fail:
1938 	free_irq(gfar_irq(grp, ER)->irq, grp);
1939 err_irq_fail:
1940 	return err;
1941 
1942 }
1943 
1944 /* Bring the controller up and running */
1945 int startup_gfar(struct net_device *ndev)
1946 {
1947 	struct gfar_private *priv = netdev_priv(ndev);
1948 	struct gfar __iomem *regs = NULL;
1949 	int err, i, j;
1950 
1951 	for (i = 0; i < priv->num_grps; i++) {
1952 		regs= priv->gfargrp[i].regs;
1953 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1954 	}
1955 
1956 	regs= priv->gfargrp[0].regs;
1957 	err = gfar_alloc_skb_resources(ndev);
1958 	if (err)
1959 		return err;
1960 
1961 	gfar_init_mac(ndev);
1962 
1963 	for (i = 0; i < priv->num_grps; i++) {
1964 		err = register_grp_irqs(&priv->gfargrp[i]);
1965 		if (err) {
1966 			for (j = 0; j < i; j++)
1967 				free_grp_irqs(&priv->gfargrp[j]);
1968 			goto irq_fail;
1969 		}
1970 	}
1971 
1972 	/* Start the controller */
1973 	gfar_start(ndev);
1974 
1975 	phy_start(priv->phydev);
1976 
1977 	gfar_configure_coalescing_all(priv);
1978 
1979 	return 0;
1980 
1981 irq_fail:
1982 	free_skb_resources(priv);
1983 	return err;
1984 }
1985 
1986 /* Called when something needs to use the ethernet device
1987  * Returns 0 for success.
1988  */
1989 static int gfar_enet_open(struct net_device *dev)
1990 {
1991 	struct gfar_private *priv = netdev_priv(dev);
1992 	int err;
1993 
1994 	enable_napi(priv);
1995 
1996 	/* Initialize a bunch of registers */
1997 	init_registers(dev);
1998 
1999 	gfar_set_mac_address(dev);
2000 
2001 	err = init_phy(dev);
2002 
2003 	if (err) {
2004 		disable_napi(priv);
2005 		return err;
2006 	}
2007 
2008 	err = startup_gfar(dev);
2009 	if (err) {
2010 		disable_napi(priv);
2011 		return err;
2012 	}
2013 
2014 	netif_tx_start_all_queues(dev);
2015 
2016 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2017 
2018 	return err;
2019 }
2020 
2021 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2022 {
2023 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2024 
2025 	memset(fcb, 0, GMAC_FCB_LEN);
2026 
2027 	return fcb;
2028 }
2029 
2030 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2031 				    int fcb_length)
2032 {
2033 	/* If we're here, it's a IP packet with a TCP or UDP
2034 	 * payload.  We set it to checksum, using a pseudo-header
2035 	 * we provide
2036 	 */
2037 	u8 flags = TXFCB_DEFAULT;
2038 
2039 	/* Tell the controller what the protocol is
2040 	 * And provide the already calculated phcs
2041 	 */
2042 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2043 		flags |= TXFCB_UDP;
2044 		fcb->phcs = udp_hdr(skb)->check;
2045 	} else
2046 		fcb->phcs = tcp_hdr(skb)->check;
2047 
2048 	/* l3os is the distance between the start of the
2049 	 * frame (skb->data) and the start of the IP hdr.
2050 	 * l4os is the distance between the start of the
2051 	 * l3 hdr and the l4 hdr
2052 	 */
2053 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2054 	fcb->l4os = skb_network_header_len(skb);
2055 
2056 	fcb->flags = flags;
2057 }
2058 
2059 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2060 {
2061 	fcb->flags |= TXFCB_VLN;
2062 	fcb->vlctl = vlan_tx_tag_get(skb);
2063 }
2064 
2065 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2066 				      struct txbd8 *base, int ring_size)
2067 {
2068 	struct txbd8 *new_bd = bdp + stride;
2069 
2070 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2071 }
2072 
2073 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2074 				      int ring_size)
2075 {
2076 	return skip_txbd(bdp, 1, base, ring_size);
2077 }
2078 
2079 /* eTSEC12: csum generation not supported for some fcb offsets */
2080 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2081 				       unsigned long fcb_addr)
2082 {
2083 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2084 	       (fcb_addr % 0x20) > 0x18);
2085 }
2086 
2087 /* eTSEC76: csum generation for frames larger than 2500 may
2088  * cause excess delays before start of transmission
2089  */
2090 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2091 				       unsigned int len)
2092 {
2093 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2094 	       (len > 2500));
2095 }
2096 
2097 /* This is called by the kernel when a frame is ready for transmission.
2098  * It is pointed to by the dev->hard_start_xmit function pointer
2099  */
2100 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2101 {
2102 	struct gfar_private *priv = netdev_priv(dev);
2103 	struct gfar_priv_tx_q *tx_queue = NULL;
2104 	struct netdev_queue *txq;
2105 	struct gfar __iomem *regs = NULL;
2106 	struct txfcb *fcb = NULL;
2107 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2108 	u32 lstatus;
2109 	int i, rq = 0;
2110 	int do_tstamp, do_csum, do_vlan;
2111 	u32 bufaddr;
2112 	unsigned long flags;
2113 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2114 
2115 	rq = skb->queue_mapping;
2116 	tx_queue = priv->tx_queue[rq];
2117 	txq = netdev_get_tx_queue(dev, rq);
2118 	base = tx_queue->tx_bd_base;
2119 	regs = tx_queue->grp->regs;
2120 
2121 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2122 	do_vlan = vlan_tx_tag_present(skb);
2123 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2124 		    priv->hwts_tx_en;
2125 
2126 	if (do_csum || do_vlan)
2127 		fcb_len = GMAC_FCB_LEN;
2128 
2129 	/* check if time stamp should be generated */
2130 	if (unlikely(do_tstamp))
2131 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2132 
2133 	/* make space for additional header when fcb is needed */
2134 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2135 		struct sk_buff *skb_new;
2136 
2137 		skb_new = skb_realloc_headroom(skb, fcb_len);
2138 		if (!skb_new) {
2139 			dev->stats.tx_errors++;
2140 			kfree_skb(skb);
2141 			return NETDEV_TX_OK;
2142 		}
2143 
2144 		if (skb->sk)
2145 			skb_set_owner_w(skb_new, skb->sk);
2146 		consume_skb(skb);
2147 		skb = skb_new;
2148 	}
2149 
2150 	/* total number of fragments in the SKB */
2151 	nr_frags = skb_shinfo(skb)->nr_frags;
2152 
2153 	/* calculate the required number of TxBDs for this skb */
2154 	if (unlikely(do_tstamp))
2155 		nr_txbds = nr_frags + 2;
2156 	else
2157 		nr_txbds = nr_frags + 1;
2158 
2159 	/* check if there is space to queue this packet */
2160 	if (nr_txbds > tx_queue->num_txbdfree) {
2161 		/* no space, stop the queue */
2162 		netif_tx_stop_queue(txq);
2163 		dev->stats.tx_fifo_errors++;
2164 		return NETDEV_TX_BUSY;
2165 	}
2166 
2167 	/* Update transmit stats */
2168 	bytes_sent = skb->len;
2169 	tx_queue->stats.tx_bytes += bytes_sent;
2170 	/* keep Tx bytes on wire for BQL accounting */
2171 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2172 	tx_queue->stats.tx_packets++;
2173 
2174 	txbdp = txbdp_start = tx_queue->cur_tx;
2175 	lstatus = txbdp->lstatus;
2176 
2177 	/* Time stamp insertion requires one additional TxBD */
2178 	if (unlikely(do_tstamp))
2179 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2180 						 tx_queue->tx_ring_size);
2181 
2182 	if (nr_frags == 0) {
2183 		if (unlikely(do_tstamp))
2184 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2185 							  TXBD_INTERRUPT);
2186 		else
2187 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2188 	} else {
2189 		/* Place the fragment addresses and lengths into the TxBDs */
2190 		for (i = 0; i < nr_frags; i++) {
2191 			unsigned int frag_len;
2192 			/* Point at the next BD, wrapping as needed */
2193 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2194 
2195 			frag_len = skb_shinfo(skb)->frags[i].size;
2196 
2197 			lstatus = txbdp->lstatus | frag_len |
2198 				  BD_LFLAG(TXBD_READY);
2199 
2200 			/* Handle the last BD specially */
2201 			if (i == nr_frags - 1)
2202 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2203 
2204 			bufaddr = skb_frag_dma_map(priv->dev,
2205 						   &skb_shinfo(skb)->frags[i],
2206 						   0,
2207 						   frag_len,
2208 						   DMA_TO_DEVICE);
2209 
2210 			/* set the TxBD length and buffer pointer */
2211 			txbdp->bufPtr = bufaddr;
2212 			txbdp->lstatus = lstatus;
2213 		}
2214 
2215 		lstatus = txbdp_start->lstatus;
2216 	}
2217 
2218 	/* Add TxPAL between FCB and frame if required */
2219 	if (unlikely(do_tstamp)) {
2220 		skb_push(skb, GMAC_TXPAL_LEN);
2221 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2222 	}
2223 
2224 	/* Add TxFCB if required */
2225 	if (fcb_len) {
2226 		fcb = gfar_add_fcb(skb);
2227 		lstatus |= BD_LFLAG(TXBD_TOE);
2228 	}
2229 
2230 	/* Set up checksumming */
2231 	if (do_csum) {
2232 		gfar_tx_checksum(skb, fcb, fcb_len);
2233 
2234 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2235 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2236 			__skb_pull(skb, GMAC_FCB_LEN);
2237 			skb_checksum_help(skb);
2238 			if (do_vlan || do_tstamp) {
2239 				/* put back a new fcb for vlan/tstamp TOE */
2240 				fcb = gfar_add_fcb(skb);
2241 			} else {
2242 				/* Tx TOE not used */
2243 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2244 				fcb = NULL;
2245 			}
2246 		}
2247 	}
2248 
2249 	if (do_vlan)
2250 		gfar_tx_vlan(skb, fcb);
2251 
2252 	/* Setup tx hardware time stamping if requested */
2253 	if (unlikely(do_tstamp)) {
2254 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2255 		fcb->ptp = 1;
2256 	}
2257 
2258 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2259 					     skb_headlen(skb), DMA_TO_DEVICE);
2260 
2261 	/* If time stamping is requested one additional TxBD must be set up. The
2262 	 * first TxBD points to the FCB and must have a data length of
2263 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2264 	 * the full frame length.
2265 	 */
2266 	if (unlikely(do_tstamp)) {
2267 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2268 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2269 					 (skb_headlen(skb) - fcb_len);
2270 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2271 	} else {
2272 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2273 	}
2274 
2275 	netdev_tx_sent_queue(txq, bytes_sent);
2276 
2277 	/* We can work in parallel with gfar_clean_tx_ring(), except
2278 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2279 	 * when we were reading the num_txbdfree and checking for available
2280 	 * space, that's because outside of this function it can only grow,
2281 	 * and once we've got needed space, it cannot suddenly disappear.
2282 	 *
2283 	 * The lock also protects us from gfar_error(), which can modify
2284 	 * regs->tstat and thus retrigger the transfers, which is why we
2285 	 * also must grab the lock before setting ready bit for the first
2286 	 * to be transmitted BD.
2287 	 */
2288 	spin_lock_irqsave(&tx_queue->txlock, flags);
2289 
2290 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2291 	 * semantics (it requires synchronization between cacheable and
2292 	 * uncacheable mappings, which eieio doesn't provide and which we
2293 	 * don't need), thus requiring a more expensive sync instruction.  At
2294 	 * some point, the set of architecture-independent barrier functions
2295 	 * should be expanded to include weaker barriers.
2296 	 */
2297 	eieio();
2298 
2299 	txbdp_start->lstatus = lstatus;
2300 
2301 	eieio(); /* force lstatus write before tx_skbuff */
2302 
2303 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2304 
2305 	/* Update the current skb pointer to the next entry we will use
2306 	 * (wrapping if necessary)
2307 	 */
2308 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2309 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2310 
2311 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2312 
2313 	/* reduce TxBD free count */
2314 	tx_queue->num_txbdfree -= (nr_txbds);
2315 
2316 	/* If the next BD still needs to be cleaned up, then the bds
2317 	 * are full.  We need to tell the kernel to stop sending us stuff.
2318 	 */
2319 	if (!tx_queue->num_txbdfree) {
2320 		netif_tx_stop_queue(txq);
2321 
2322 		dev->stats.tx_fifo_errors++;
2323 	}
2324 
2325 	/* Tell the DMA to go go go */
2326 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2327 
2328 	/* Unlock priv */
2329 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2330 
2331 	return NETDEV_TX_OK;
2332 }
2333 
2334 /* Stops the kernel queue, and halts the controller */
2335 static int gfar_close(struct net_device *dev)
2336 {
2337 	struct gfar_private *priv = netdev_priv(dev);
2338 
2339 	disable_napi(priv);
2340 
2341 	cancel_work_sync(&priv->reset_task);
2342 	stop_gfar(dev);
2343 
2344 	/* Disconnect from the PHY */
2345 	phy_disconnect(priv->phydev);
2346 	priv->phydev = NULL;
2347 
2348 	netif_tx_stop_all_queues(dev);
2349 
2350 	return 0;
2351 }
2352 
2353 /* Changes the mac address if the controller is not running. */
2354 static int gfar_set_mac_address(struct net_device *dev)
2355 {
2356 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2357 
2358 	return 0;
2359 }
2360 
2361 /* Check if rx parser should be activated */
2362 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2363 {
2364 	struct gfar __iomem *regs;
2365 	u32 tempval;
2366 
2367 	regs = priv->gfargrp[0].regs;
2368 
2369 	tempval = gfar_read(&regs->rctrl);
2370 	/* If parse is no longer required, then disable parser */
2371 	if (tempval & RCTRL_REQ_PARSER) {
2372 		tempval |= RCTRL_PRSDEP_INIT;
2373 		priv->uses_rxfcb = 1;
2374 	} else {
2375 		tempval &= ~RCTRL_PRSDEP_INIT;
2376 		priv->uses_rxfcb = 0;
2377 	}
2378 	gfar_write(&regs->rctrl, tempval);
2379 }
2380 
2381 /* Enables and disables VLAN insertion/extraction */
2382 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2383 {
2384 	struct gfar_private *priv = netdev_priv(dev);
2385 	struct gfar __iomem *regs = NULL;
2386 	unsigned long flags;
2387 	u32 tempval;
2388 
2389 	regs = priv->gfargrp[0].regs;
2390 	local_irq_save(flags);
2391 	lock_rx_qs(priv);
2392 
2393 	if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2394 		/* Enable VLAN tag insertion */
2395 		tempval = gfar_read(&regs->tctrl);
2396 		tempval |= TCTRL_VLINS;
2397 		gfar_write(&regs->tctrl, tempval);
2398 	} else {
2399 		/* Disable VLAN tag insertion */
2400 		tempval = gfar_read(&regs->tctrl);
2401 		tempval &= ~TCTRL_VLINS;
2402 		gfar_write(&regs->tctrl, tempval);
2403 	}
2404 
2405 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2406 		/* Enable VLAN tag extraction */
2407 		tempval = gfar_read(&regs->rctrl);
2408 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2409 		gfar_write(&regs->rctrl, tempval);
2410 		priv->uses_rxfcb = 1;
2411 	} else {
2412 		/* Disable VLAN tag extraction */
2413 		tempval = gfar_read(&regs->rctrl);
2414 		tempval &= ~RCTRL_VLEX;
2415 		gfar_write(&regs->rctrl, tempval);
2416 
2417 		gfar_check_rx_parser_mode(priv);
2418 	}
2419 
2420 	gfar_change_mtu(dev, dev->mtu);
2421 
2422 	unlock_rx_qs(priv);
2423 	local_irq_restore(flags);
2424 }
2425 
2426 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2427 {
2428 	int tempsize, tempval;
2429 	struct gfar_private *priv = netdev_priv(dev);
2430 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2431 	int oldsize = priv->rx_buffer_size;
2432 	int frame_size = new_mtu + ETH_HLEN;
2433 
2434 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2435 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	if (priv->uses_rxfcb)
2440 		frame_size += GMAC_FCB_LEN;
2441 
2442 	frame_size += priv->padding;
2443 
2444 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2445 		   INCREMENTAL_BUFFER_SIZE;
2446 
2447 	/* Only stop and start the controller if it isn't already
2448 	 * stopped, and we changed something
2449 	 */
2450 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2451 		stop_gfar(dev);
2452 
2453 	priv->rx_buffer_size = tempsize;
2454 
2455 	dev->mtu = new_mtu;
2456 
2457 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2458 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2459 
2460 	/* If the mtu is larger than the max size for standard
2461 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2462 	 * to allow huge frames, and to check the length
2463 	 */
2464 	tempval = gfar_read(&regs->maccfg2);
2465 
2466 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2467 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2468 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2469 	else
2470 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2471 
2472 	gfar_write(&regs->maccfg2, tempval);
2473 
2474 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2475 		startup_gfar(dev);
2476 
2477 	return 0;
2478 }
2479 
2480 /* gfar_reset_task gets scheduled when a packet has not been
2481  * transmitted after a set amount of time.
2482  * For now, assume that clearing out all the structures, and
2483  * starting over will fix the problem.
2484  */
2485 static void gfar_reset_task(struct work_struct *work)
2486 {
2487 	struct gfar_private *priv = container_of(work, struct gfar_private,
2488 						 reset_task);
2489 	struct net_device *dev = priv->ndev;
2490 
2491 	if (dev->flags & IFF_UP) {
2492 		netif_tx_stop_all_queues(dev);
2493 		stop_gfar(dev);
2494 		startup_gfar(dev);
2495 		netif_tx_start_all_queues(dev);
2496 	}
2497 
2498 	netif_tx_schedule_all(dev);
2499 }
2500 
2501 static void gfar_timeout(struct net_device *dev)
2502 {
2503 	struct gfar_private *priv = netdev_priv(dev);
2504 
2505 	dev->stats.tx_errors++;
2506 	schedule_work(&priv->reset_task);
2507 }
2508 
2509 static void gfar_align_skb(struct sk_buff *skb)
2510 {
2511 	/* We need the data buffer to be aligned properly.  We will reserve
2512 	 * as many bytes as needed to align the data properly
2513 	 */
2514 	skb_reserve(skb, RXBUF_ALIGNMENT -
2515 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2516 }
2517 
2518 /* Interrupt Handler for Transmit complete */
2519 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2520 {
2521 	struct net_device *dev = tx_queue->dev;
2522 	struct netdev_queue *txq;
2523 	struct gfar_private *priv = netdev_priv(dev);
2524 	struct txbd8 *bdp, *next = NULL;
2525 	struct txbd8 *lbdp = NULL;
2526 	struct txbd8 *base = tx_queue->tx_bd_base;
2527 	struct sk_buff *skb;
2528 	int skb_dirtytx;
2529 	int tx_ring_size = tx_queue->tx_ring_size;
2530 	int frags = 0, nr_txbds = 0;
2531 	int i;
2532 	int howmany = 0;
2533 	int tqi = tx_queue->qindex;
2534 	unsigned int bytes_sent = 0;
2535 	u32 lstatus;
2536 	size_t buflen;
2537 
2538 	txq = netdev_get_tx_queue(dev, tqi);
2539 	bdp = tx_queue->dirty_tx;
2540 	skb_dirtytx = tx_queue->skb_dirtytx;
2541 
2542 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2543 		unsigned long flags;
2544 
2545 		frags = skb_shinfo(skb)->nr_frags;
2546 
2547 		/* When time stamping, one additional TxBD must be freed.
2548 		 * Also, we need to dma_unmap_single() the TxPAL.
2549 		 */
2550 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2551 			nr_txbds = frags + 2;
2552 		else
2553 			nr_txbds = frags + 1;
2554 
2555 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2556 
2557 		lstatus = lbdp->lstatus;
2558 
2559 		/* Only clean completed frames */
2560 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2561 		    (lstatus & BD_LENGTH_MASK))
2562 			break;
2563 
2564 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2565 			next = next_txbd(bdp, base, tx_ring_size);
2566 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2567 		} else
2568 			buflen = bdp->length;
2569 
2570 		dma_unmap_single(priv->dev, bdp->bufPtr,
2571 				 buflen, DMA_TO_DEVICE);
2572 
2573 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2574 			struct skb_shared_hwtstamps shhwtstamps;
2575 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2576 
2577 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2578 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2579 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2580 			skb_tstamp_tx(skb, &shhwtstamps);
2581 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2582 			bdp = next;
2583 		}
2584 
2585 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2586 		bdp = next_txbd(bdp, base, tx_ring_size);
2587 
2588 		for (i = 0; i < frags; i++) {
2589 			dma_unmap_page(priv->dev, bdp->bufPtr,
2590 				       bdp->length, DMA_TO_DEVICE);
2591 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2592 			bdp = next_txbd(bdp, base, tx_ring_size);
2593 		}
2594 
2595 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2596 
2597 		dev_kfree_skb_any(skb);
2598 
2599 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2600 
2601 		skb_dirtytx = (skb_dirtytx + 1) &
2602 			      TX_RING_MOD_MASK(tx_ring_size);
2603 
2604 		howmany++;
2605 		spin_lock_irqsave(&tx_queue->txlock, flags);
2606 		tx_queue->num_txbdfree += nr_txbds;
2607 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2608 	}
2609 
2610 	/* If we freed a buffer, we can restart transmission, if necessary */
2611 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2612 		netif_wake_subqueue(dev, tqi);
2613 
2614 	/* Update dirty indicators */
2615 	tx_queue->skb_dirtytx = skb_dirtytx;
2616 	tx_queue->dirty_tx = bdp;
2617 
2618 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2619 }
2620 
2621 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2622 {
2623 	unsigned long flags;
2624 
2625 	spin_lock_irqsave(&gfargrp->grplock, flags);
2626 	if (napi_schedule_prep(&gfargrp->napi)) {
2627 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2628 		__napi_schedule(&gfargrp->napi);
2629 	} else {
2630 		/* Clear IEVENT, so interrupts aren't called again
2631 		 * because of the packets that have already arrived.
2632 		 */
2633 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2634 	}
2635 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2636 
2637 }
2638 
2639 /* Interrupt Handler for Transmit complete */
2640 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2641 {
2642 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2643 	return IRQ_HANDLED;
2644 }
2645 
2646 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2647 			   struct sk_buff *skb)
2648 {
2649 	struct net_device *dev = rx_queue->dev;
2650 	struct gfar_private *priv = netdev_priv(dev);
2651 	dma_addr_t buf;
2652 
2653 	buf = dma_map_single(priv->dev, skb->data,
2654 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2655 	gfar_init_rxbdp(rx_queue, bdp, buf);
2656 }
2657 
2658 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2659 {
2660 	struct gfar_private *priv = netdev_priv(dev);
2661 	struct sk_buff *skb;
2662 
2663 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2664 	if (!skb)
2665 		return NULL;
2666 
2667 	gfar_align_skb(skb);
2668 
2669 	return skb;
2670 }
2671 
2672 struct sk_buff *gfar_new_skb(struct net_device *dev)
2673 {
2674 	return gfar_alloc_skb(dev);
2675 }
2676 
2677 static inline void count_errors(unsigned short status, struct net_device *dev)
2678 {
2679 	struct gfar_private *priv = netdev_priv(dev);
2680 	struct net_device_stats *stats = &dev->stats;
2681 	struct gfar_extra_stats *estats = &priv->extra_stats;
2682 
2683 	/* If the packet was truncated, none of the other errors matter */
2684 	if (status & RXBD_TRUNCATED) {
2685 		stats->rx_length_errors++;
2686 
2687 		atomic64_inc(&estats->rx_trunc);
2688 
2689 		return;
2690 	}
2691 	/* Count the errors, if there were any */
2692 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2693 		stats->rx_length_errors++;
2694 
2695 		if (status & RXBD_LARGE)
2696 			atomic64_inc(&estats->rx_large);
2697 		else
2698 			atomic64_inc(&estats->rx_short);
2699 	}
2700 	if (status & RXBD_NONOCTET) {
2701 		stats->rx_frame_errors++;
2702 		atomic64_inc(&estats->rx_nonoctet);
2703 	}
2704 	if (status & RXBD_CRCERR) {
2705 		atomic64_inc(&estats->rx_crcerr);
2706 		stats->rx_crc_errors++;
2707 	}
2708 	if (status & RXBD_OVERRUN) {
2709 		atomic64_inc(&estats->rx_overrun);
2710 		stats->rx_crc_errors++;
2711 	}
2712 }
2713 
2714 irqreturn_t gfar_receive(int irq, void *grp_id)
2715 {
2716 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2717 	return IRQ_HANDLED;
2718 }
2719 
2720 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2721 {
2722 	/* If valid headers were found, and valid sums
2723 	 * were verified, then we tell the kernel that no
2724 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2725 	 */
2726 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2727 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2728 	else
2729 		skb_checksum_none_assert(skb);
2730 }
2731 
2732 
2733 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2734 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2735 			       int amount_pull, struct napi_struct *napi)
2736 {
2737 	struct gfar_private *priv = netdev_priv(dev);
2738 	struct rxfcb *fcb = NULL;
2739 
2740 	/* fcb is at the beginning if exists */
2741 	fcb = (struct rxfcb *)skb->data;
2742 
2743 	/* Remove the FCB from the skb
2744 	 * Remove the padded bytes, if there are any
2745 	 */
2746 	if (amount_pull) {
2747 		skb_record_rx_queue(skb, fcb->rq);
2748 		skb_pull(skb, amount_pull);
2749 	}
2750 
2751 	/* Get receive timestamp from the skb */
2752 	if (priv->hwts_rx_en) {
2753 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2754 		u64 *ns = (u64 *) skb->data;
2755 
2756 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2757 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2758 	}
2759 
2760 	if (priv->padding)
2761 		skb_pull(skb, priv->padding);
2762 
2763 	if (dev->features & NETIF_F_RXCSUM)
2764 		gfar_rx_checksum(skb, fcb);
2765 
2766 	/* Tell the skb what kind of packet this is */
2767 	skb->protocol = eth_type_trans(skb, dev);
2768 
2769 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2770 	 * Even if vlan rx accel is disabled, on some chips
2771 	 * RXFCB_VLN is pseudo randomly set.
2772 	 */
2773 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2774 	    fcb->flags & RXFCB_VLN)
2775 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2776 
2777 	/* Send the packet up the stack */
2778 	napi_gro_receive(napi, skb);
2779 
2780 }
2781 
2782 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2783  * until the budget/quota has been reached. Returns the number
2784  * of frames handled
2785  */
2786 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2787 {
2788 	struct net_device *dev = rx_queue->dev;
2789 	struct rxbd8 *bdp, *base;
2790 	struct sk_buff *skb;
2791 	int pkt_len;
2792 	int amount_pull;
2793 	int howmany = 0;
2794 	struct gfar_private *priv = netdev_priv(dev);
2795 
2796 	/* Get the first full descriptor */
2797 	bdp = rx_queue->cur_rx;
2798 	base = rx_queue->rx_bd_base;
2799 
2800 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2801 
2802 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2803 		struct sk_buff *newskb;
2804 
2805 		rmb();
2806 
2807 		/* Add another skb for the future */
2808 		newskb = gfar_new_skb(dev);
2809 
2810 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2811 
2812 		dma_unmap_single(priv->dev, bdp->bufPtr,
2813 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2814 
2815 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2816 			     bdp->length > priv->rx_buffer_size))
2817 			bdp->status = RXBD_LARGE;
2818 
2819 		/* We drop the frame if we failed to allocate a new buffer */
2820 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2821 			     bdp->status & RXBD_ERR)) {
2822 			count_errors(bdp->status, dev);
2823 
2824 			if (unlikely(!newskb))
2825 				newskb = skb;
2826 			else if (skb)
2827 				dev_kfree_skb(skb);
2828 		} else {
2829 			/* Increment the number of packets */
2830 			rx_queue->stats.rx_packets++;
2831 			howmany++;
2832 
2833 			if (likely(skb)) {
2834 				pkt_len = bdp->length - ETH_FCS_LEN;
2835 				/* Remove the FCS from the packet length */
2836 				skb_put(skb, pkt_len);
2837 				rx_queue->stats.rx_bytes += pkt_len;
2838 				skb_record_rx_queue(skb, rx_queue->qindex);
2839 				gfar_process_frame(dev, skb, amount_pull,
2840 						   &rx_queue->grp->napi);
2841 
2842 			} else {
2843 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2844 				rx_queue->stats.rx_dropped++;
2845 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2846 			}
2847 
2848 		}
2849 
2850 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2851 
2852 		/* Setup the new bdp */
2853 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2854 
2855 		/* Update to the next pointer */
2856 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2857 
2858 		/* update to point at the next skb */
2859 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2860 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2861 	}
2862 
2863 	/* Update the current rxbd pointer to be the next one */
2864 	rx_queue->cur_rx = bdp;
2865 
2866 	return howmany;
2867 }
2868 
2869 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2870 {
2871 	struct gfar_priv_grp *gfargrp =
2872 		container_of(napi, struct gfar_priv_grp, napi);
2873 	struct gfar __iomem *regs = gfargrp->regs;
2874 	struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2875 	struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2876 	int work_done = 0;
2877 
2878 	/* Clear IEVENT, so interrupts aren't called again
2879 	 * because of the packets that have already arrived
2880 	 */
2881 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2882 
2883 	/* run Tx cleanup to completion */
2884 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2885 		gfar_clean_tx_ring(tx_queue);
2886 
2887 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2888 
2889 	if (work_done < budget) {
2890 		napi_complete(napi);
2891 		/* Clear the halt bit in RSTAT */
2892 		gfar_write(&regs->rstat, gfargrp->rstat);
2893 
2894 		gfar_write(&regs->imask, IMASK_DEFAULT);
2895 
2896 		/* If we are coalescing interrupts, update the timer
2897 		 * Otherwise, clear it
2898 		 */
2899 		gfar_write(&regs->txic, 0);
2900 		if (likely(tx_queue->txcoalescing))
2901 			gfar_write(&regs->txic, tx_queue->txic);
2902 
2903 		gfar_write(&regs->rxic, 0);
2904 		if (unlikely(rx_queue->rxcoalescing))
2905 			gfar_write(&regs->rxic, rx_queue->rxic);
2906 	}
2907 
2908 	return work_done;
2909 }
2910 
2911 static int gfar_poll(struct napi_struct *napi, int budget)
2912 {
2913 	struct gfar_priv_grp *gfargrp =
2914 		container_of(napi, struct gfar_priv_grp, napi);
2915 	struct gfar_private *priv = gfargrp->priv;
2916 	struct gfar __iomem *regs = gfargrp->regs;
2917 	struct gfar_priv_tx_q *tx_queue = NULL;
2918 	struct gfar_priv_rx_q *rx_queue = NULL;
2919 	int work_done = 0, work_done_per_q = 0;
2920 	int i, budget_per_q = 0;
2921 	int has_tx_work;
2922 	unsigned long rstat_rxf;
2923 	int num_act_queues;
2924 
2925 	/* Clear IEVENT, so interrupts aren't called again
2926 	 * because of the packets that have already arrived
2927 	 */
2928 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2929 
2930 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2931 
2932 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2933 	if (num_act_queues)
2934 		budget_per_q = budget/num_act_queues;
2935 
2936 	while (1) {
2937 		has_tx_work = 0;
2938 		for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2939 			tx_queue = priv->tx_queue[i];
2940 			/* run Tx cleanup to completion */
2941 			if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2942 				gfar_clean_tx_ring(tx_queue);
2943 				has_tx_work = 1;
2944 			}
2945 		}
2946 
2947 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2948 			/* skip queue if not active */
2949 			if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2950 				continue;
2951 
2952 			rx_queue = priv->rx_queue[i];
2953 			work_done_per_q =
2954 				gfar_clean_rx_ring(rx_queue, budget_per_q);
2955 			work_done += work_done_per_q;
2956 
2957 			/* finished processing this queue */
2958 			if (work_done_per_q < budget_per_q) {
2959 				/* clear active queue hw indication */
2960 				gfar_write(&regs->rstat,
2961 					   RSTAT_CLEAR_RXF0 >> i);
2962 				rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2963 				num_act_queues--;
2964 
2965 				if (!num_act_queues)
2966 					break;
2967 				/* recompute budget per Rx queue */
2968 				budget_per_q =
2969 					(budget - work_done) / num_act_queues;
2970 			}
2971 		}
2972 
2973 		if (work_done >= budget)
2974 			break;
2975 
2976 		if (!num_act_queues && !has_tx_work) {
2977 
2978 			napi_complete(napi);
2979 
2980 			/* Clear the halt bit in RSTAT */
2981 			gfar_write(&regs->rstat, gfargrp->rstat);
2982 
2983 			gfar_write(&regs->imask, IMASK_DEFAULT);
2984 
2985 			/* If we are coalescing interrupts, update the timer
2986 			 * Otherwise, clear it
2987 			 */
2988 			gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2989 						  gfargrp->tx_bit_map);
2990 			break;
2991 		}
2992 	}
2993 
2994 	return work_done;
2995 }
2996 
2997 #ifdef CONFIG_NET_POLL_CONTROLLER
2998 /* Polling 'interrupt' - used by things like netconsole to send skbs
2999  * without having to re-enable interrupts. It's not called while
3000  * the interrupt routine is executing.
3001  */
3002 static void gfar_netpoll(struct net_device *dev)
3003 {
3004 	struct gfar_private *priv = netdev_priv(dev);
3005 	int i;
3006 
3007 	/* If the device has multiple interrupts, run tx/rx */
3008 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3009 		for (i = 0; i < priv->num_grps; i++) {
3010 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3011 
3012 			disable_irq(gfar_irq(grp, TX)->irq);
3013 			disable_irq(gfar_irq(grp, RX)->irq);
3014 			disable_irq(gfar_irq(grp, ER)->irq);
3015 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3016 			enable_irq(gfar_irq(grp, ER)->irq);
3017 			enable_irq(gfar_irq(grp, RX)->irq);
3018 			enable_irq(gfar_irq(grp, TX)->irq);
3019 		}
3020 	} else {
3021 		for (i = 0; i < priv->num_grps; i++) {
3022 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3023 
3024 			disable_irq(gfar_irq(grp, TX)->irq);
3025 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3026 			enable_irq(gfar_irq(grp, TX)->irq);
3027 		}
3028 	}
3029 }
3030 #endif
3031 
3032 /* The interrupt handler for devices with one interrupt */
3033 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3034 {
3035 	struct gfar_priv_grp *gfargrp = grp_id;
3036 
3037 	/* Save ievent for future reference */
3038 	u32 events = gfar_read(&gfargrp->regs->ievent);
3039 
3040 	/* Check for reception */
3041 	if (events & IEVENT_RX_MASK)
3042 		gfar_receive(irq, grp_id);
3043 
3044 	/* Check for transmit completion */
3045 	if (events & IEVENT_TX_MASK)
3046 		gfar_transmit(irq, grp_id);
3047 
3048 	/* Check for errors */
3049 	if (events & IEVENT_ERR_MASK)
3050 		gfar_error(irq, grp_id);
3051 
3052 	return IRQ_HANDLED;
3053 }
3054 
3055 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3056 {
3057 	struct phy_device *phydev = priv->phydev;
3058 	u32 val = 0;
3059 
3060 	if (!phydev->duplex)
3061 		return val;
3062 
3063 	if (!priv->pause_aneg_en) {
3064 		if (priv->tx_pause_en)
3065 			val |= MACCFG1_TX_FLOW;
3066 		if (priv->rx_pause_en)
3067 			val |= MACCFG1_RX_FLOW;
3068 	} else {
3069 		u16 lcl_adv, rmt_adv;
3070 		u8 flowctrl;
3071 		/* get link partner capabilities */
3072 		rmt_adv = 0;
3073 		if (phydev->pause)
3074 			rmt_adv = LPA_PAUSE_CAP;
3075 		if (phydev->asym_pause)
3076 			rmt_adv |= LPA_PAUSE_ASYM;
3077 
3078 		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3079 
3080 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3081 		if (flowctrl & FLOW_CTRL_TX)
3082 			val |= MACCFG1_TX_FLOW;
3083 		if (flowctrl & FLOW_CTRL_RX)
3084 			val |= MACCFG1_RX_FLOW;
3085 	}
3086 
3087 	return val;
3088 }
3089 
3090 /* Called every time the controller might need to be made
3091  * aware of new link state.  The PHY code conveys this
3092  * information through variables in the phydev structure, and this
3093  * function converts those variables into the appropriate
3094  * register values, and can bring down the device if needed.
3095  */
3096 static void adjust_link(struct net_device *dev)
3097 {
3098 	struct gfar_private *priv = netdev_priv(dev);
3099 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3100 	unsigned long flags;
3101 	struct phy_device *phydev = priv->phydev;
3102 	int new_state = 0;
3103 
3104 	local_irq_save(flags);
3105 	lock_tx_qs(priv);
3106 
3107 	if (phydev->link) {
3108 		u32 tempval1 = gfar_read(&regs->maccfg1);
3109 		u32 tempval = gfar_read(&regs->maccfg2);
3110 		u32 ecntrl = gfar_read(&regs->ecntrl);
3111 
3112 		/* Now we make sure that we can be in full duplex mode.
3113 		 * If not, we operate in half-duplex mode.
3114 		 */
3115 		if (phydev->duplex != priv->oldduplex) {
3116 			new_state = 1;
3117 			if (!(phydev->duplex))
3118 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3119 			else
3120 				tempval |= MACCFG2_FULL_DUPLEX;
3121 
3122 			priv->oldduplex = phydev->duplex;
3123 		}
3124 
3125 		if (phydev->speed != priv->oldspeed) {
3126 			new_state = 1;
3127 			switch (phydev->speed) {
3128 			case 1000:
3129 				tempval =
3130 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3131 
3132 				ecntrl &= ~(ECNTRL_R100);
3133 				break;
3134 			case 100:
3135 			case 10:
3136 				tempval =
3137 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3138 
3139 				/* Reduced mode distinguishes
3140 				 * between 10 and 100
3141 				 */
3142 				if (phydev->speed == SPEED_100)
3143 					ecntrl |= ECNTRL_R100;
3144 				else
3145 					ecntrl &= ~(ECNTRL_R100);
3146 				break;
3147 			default:
3148 				netif_warn(priv, link, dev,
3149 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3150 					   phydev->speed);
3151 				break;
3152 			}
3153 
3154 			priv->oldspeed = phydev->speed;
3155 		}
3156 
3157 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3158 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3159 
3160 		gfar_write(&regs->maccfg1, tempval1);
3161 		gfar_write(&regs->maccfg2, tempval);
3162 		gfar_write(&regs->ecntrl, ecntrl);
3163 
3164 		if (!priv->oldlink) {
3165 			new_state = 1;
3166 			priv->oldlink = 1;
3167 		}
3168 	} else if (priv->oldlink) {
3169 		new_state = 1;
3170 		priv->oldlink = 0;
3171 		priv->oldspeed = 0;
3172 		priv->oldduplex = -1;
3173 	}
3174 
3175 	if (new_state && netif_msg_link(priv))
3176 		phy_print_status(phydev);
3177 	unlock_tx_qs(priv);
3178 	local_irq_restore(flags);
3179 }
3180 
3181 /* Update the hash table based on the current list of multicast
3182  * addresses we subscribe to.  Also, change the promiscuity of
3183  * the device based on the flags (this function is called
3184  * whenever dev->flags is changed
3185  */
3186 static void gfar_set_multi(struct net_device *dev)
3187 {
3188 	struct netdev_hw_addr *ha;
3189 	struct gfar_private *priv = netdev_priv(dev);
3190 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3191 	u32 tempval;
3192 
3193 	if (dev->flags & IFF_PROMISC) {
3194 		/* Set RCTRL to PROM */
3195 		tempval = gfar_read(&regs->rctrl);
3196 		tempval |= RCTRL_PROM;
3197 		gfar_write(&regs->rctrl, tempval);
3198 	} else {
3199 		/* Set RCTRL to not PROM */
3200 		tempval = gfar_read(&regs->rctrl);
3201 		tempval &= ~(RCTRL_PROM);
3202 		gfar_write(&regs->rctrl, tempval);
3203 	}
3204 
3205 	if (dev->flags & IFF_ALLMULTI) {
3206 		/* Set the hash to rx all multicast frames */
3207 		gfar_write(&regs->igaddr0, 0xffffffff);
3208 		gfar_write(&regs->igaddr1, 0xffffffff);
3209 		gfar_write(&regs->igaddr2, 0xffffffff);
3210 		gfar_write(&regs->igaddr3, 0xffffffff);
3211 		gfar_write(&regs->igaddr4, 0xffffffff);
3212 		gfar_write(&regs->igaddr5, 0xffffffff);
3213 		gfar_write(&regs->igaddr6, 0xffffffff);
3214 		gfar_write(&regs->igaddr7, 0xffffffff);
3215 		gfar_write(&regs->gaddr0, 0xffffffff);
3216 		gfar_write(&regs->gaddr1, 0xffffffff);
3217 		gfar_write(&regs->gaddr2, 0xffffffff);
3218 		gfar_write(&regs->gaddr3, 0xffffffff);
3219 		gfar_write(&regs->gaddr4, 0xffffffff);
3220 		gfar_write(&regs->gaddr5, 0xffffffff);
3221 		gfar_write(&regs->gaddr6, 0xffffffff);
3222 		gfar_write(&regs->gaddr7, 0xffffffff);
3223 	} else {
3224 		int em_num;
3225 		int idx;
3226 
3227 		/* zero out the hash */
3228 		gfar_write(&regs->igaddr0, 0x0);
3229 		gfar_write(&regs->igaddr1, 0x0);
3230 		gfar_write(&regs->igaddr2, 0x0);
3231 		gfar_write(&regs->igaddr3, 0x0);
3232 		gfar_write(&regs->igaddr4, 0x0);
3233 		gfar_write(&regs->igaddr5, 0x0);
3234 		gfar_write(&regs->igaddr6, 0x0);
3235 		gfar_write(&regs->igaddr7, 0x0);
3236 		gfar_write(&regs->gaddr0, 0x0);
3237 		gfar_write(&regs->gaddr1, 0x0);
3238 		gfar_write(&regs->gaddr2, 0x0);
3239 		gfar_write(&regs->gaddr3, 0x0);
3240 		gfar_write(&regs->gaddr4, 0x0);
3241 		gfar_write(&regs->gaddr5, 0x0);
3242 		gfar_write(&regs->gaddr6, 0x0);
3243 		gfar_write(&regs->gaddr7, 0x0);
3244 
3245 		/* If we have extended hash tables, we need to
3246 		 * clear the exact match registers to prepare for
3247 		 * setting them
3248 		 */
3249 		if (priv->extended_hash) {
3250 			em_num = GFAR_EM_NUM + 1;
3251 			gfar_clear_exact_match(dev);
3252 			idx = 1;
3253 		} else {
3254 			idx = 0;
3255 			em_num = 0;
3256 		}
3257 
3258 		if (netdev_mc_empty(dev))
3259 			return;
3260 
3261 		/* Parse the list, and set the appropriate bits */
3262 		netdev_for_each_mc_addr(ha, dev) {
3263 			if (idx < em_num) {
3264 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3265 				idx++;
3266 			} else
3267 				gfar_set_hash_for_addr(dev, ha->addr);
3268 		}
3269 	}
3270 }
3271 
3272 
3273 /* Clears each of the exact match registers to zero, so they
3274  * don't interfere with normal reception
3275  */
3276 static void gfar_clear_exact_match(struct net_device *dev)
3277 {
3278 	int idx;
3279 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3280 
3281 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3282 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3283 }
3284 
3285 /* Set the appropriate hash bit for the given addr */
3286 /* The algorithm works like so:
3287  * 1) Take the Destination Address (ie the multicast address), and
3288  * do a CRC on it (little endian), and reverse the bits of the
3289  * result.
3290  * 2) Use the 8 most significant bits as a hash into a 256-entry
3291  * table.  The table is controlled through 8 32-bit registers:
3292  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3293  * gaddr7.  This means that the 3 most significant bits in the
3294  * hash index which gaddr register to use, and the 5 other bits
3295  * indicate which bit (assuming an IBM numbering scheme, which
3296  * for PowerPC (tm) is usually the case) in the register holds
3297  * the entry.
3298  */
3299 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3300 {
3301 	u32 tempval;
3302 	struct gfar_private *priv = netdev_priv(dev);
3303 	u32 result = ether_crc(ETH_ALEN, addr);
3304 	int width = priv->hash_width;
3305 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3306 	u8 whichreg = result >> (32 - width + 5);
3307 	u32 value = (1 << (31-whichbit));
3308 
3309 	tempval = gfar_read(priv->hash_regs[whichreg]);
3310 	tempval |= value;
3311 	gfar_write(priv->hash_regs[whichreg], tempval);
3312 }
3313 
3314 
3315 /* There are multiple MAC Address register pairs on some controllers
3316  * This function sets the numth pair to a given address
3317  */
3318 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3319 				  const u8 *addr)
3320 {
3321 	struct gfar_private *priv = netdev_priv(dev);
3322 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3323 	int idx;
3324 	char tmpbuf[ETH_ALEN];
3325 	u32 tempval;
3326 	u32 __iomem *macptr = &regs->macstnaddr1;
3327 
3328 	macptr += num*2;
3329 
3330 	/* Now copy it into the mac registers backwards, cuz
3331 	 * little endian is silly
3332 	 */
3333 	for (idx = 0; idx < ETH_ALEN; idx++)
3334 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3335 
3336 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3337 
3338 	tempval = *((u32 *) (tmpbuf + 4));
3339 
3340 	gfar_write(macptr+1, tempval);
3341 }
3342 
3343 /* GFAR error interrupt handler */
3344 static irqreturn_t gfar_error(int irq, void *grp_id)
3345 {
3346 	struct gfar_priv_grp *gfargrp = grp_id;
3347 	struct gfar __iomem *regs = gfargrp->regs;
3348 	struct gfar_private *priv= gfargrp->priv;
3349 	struct net_device *dev = priv->ndev;
3350 
3351 	/* Save ievent for future reference */
3352 	u32 events = gfar_read(&regs->ievent);
3353 
3354 	/* Clear IEVENT */
3355 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3356 
3357 	/* Magic Packet is not an error. */
3358 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3359 	    (events & IEVENT_MAG))
3360 		events &= ~IEVENT_MAG;
3361 
3362 	/* Hmm... */
3363 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3364 		netdev_dbg(dev,
3365 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3366 			   events, gfar_read(&regs->imask));
3367 
3368 	/* Update the error counters */
3369 	if (events & IEVENT_TXE) {
3370 		dev->stats.tx_errors++;
3371 
3372 		if (events & IEVENT_LC)
3373 			dev->stats.tx_window_errors++;
3374 		if (events & IEVENT_CRL)
3375 			dev->stats.tx_aborted_errors++;
3376 		if (events & IEVENT_XFUN) {
3377 			unsigned long flags;
3378 
3379 			netif_dbg(priv, tx_err, dev,
3380 				  "TX FIFO underrun, packet dropped\n");
3381 			dev->stats.tx_dropped++;
3382 			atomic64_inc(&priv->extra_stats.tx_underrun);
3383 
3384 			local_irq_save(flags);
3385 			lock_tx_qs(priv);
3386 
3387 			/* Reactivate the Tx Queues */
3388 			gfar_write(&regs->tstat, gfargrp->tstat);
3389 
3390 			unlock_tx_qs(priv);
3391 			local_irq_restore(flags);
3392 		}
3393 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3394 	}
3395 	if (events & IEVENT_BSY) {
3396 		dev->stats.rx_errors++;
3397 		atomic64_inc(&priv->extra_stats.rx_bsy);
3398 
3399 		gfar_receive(irq, grp_id);
3400 
3401 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3402 			  gfar_read(&regs->rstat));
3403 	}
3404 	if (events & IEVENT_BABR) {
3405 		dev->stats.rx_errors++;
3406 		atomic64_inc(&priv->extra_stats.rx_babr);
3407 
3408 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3409 	}
3410 	if (events & IEVENT_EBERR) {
3411 		atomic64_inc(&priv->extra_stats.eberr);
3412 		netif_dbg(priv, rx_err, dev, "bus error\n");
3413 	}
3414 	if (events & IEVENT_RXC)
3415 		netif_dbg(priv, rx_status, dev, "control frame\n");
3416 
3417 	if (events & IEVENT_BABT) {
3418 		atomic64_inc(&priv->extra_stats.tx_babt);
3419 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3420 	}
3421 	return IRQ_HANDLED;
3422 }
3423 
3424 static struct of_device_id gfar_match[] =
3425 {
3426 	{
3427 		.type = "network",
3428 		.compatible = "gianfar",
3429 	},
3430 	{
3431 		.compatible = "fsl,etsec2",
3432 	},
3433 	{},
3434 };
3435 MODULE_DEVICE_TABLE(of, gfar_match);
3436 
3437 /* Structure for a device driver */
3438 static struct platform_driver gfar_driver = {
3439 	.driver = {
3440 		.name = "fsl-gianfar",
3441 		.owner = THIS_MODULE,
3442 		.pm = GFAR_PM_OPS,
3443 		.of_match_table = gfar_match,
3444 	},
3445 	.probe = gfar_probe,
3446 	.remove = gfar_remove,
3447 };
3448 
3449 module_platform_driver(gfar_driver);
3450