1 /*
2  * drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
67 
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102 
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
105 
106 #define TX_TIMEOUT      (1*HZ)
107 
108 const char gfar_driver_version[] = "1.3";
109 
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 		struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139 			      int amount_pull);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145 				  const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147 
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151 
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 			    dma_addr_t buf)
154 {
155 	u32 lstatus;
156 
157 	bdp->bufPtr = buf;
158 
159 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 		lstatus |= BD_LFLAG(RXBD_WRAP);
162 
163 	eieio();
164 
165 	bdp->lstatus = lstatus;
166 }
167 
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 	struct gfar_private *priv = netdev_priv(ndev);
171 	struct gfar_priv_tx_q *tx_queue = NULL;
172 	struct gfar_priv_rx_q *rx_queue = NULL;
173 	struct txbd8 *txbdp;
174 	struct rxbd8 *rxbdp;
175 	int i, j;
176 
177 	for (i = 0; i < priv->num_tx_queues; i++) {
178 		tx_queue = priv->tx_queue[i];
179 		/* Initialize some variables in our dev structure */
180 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 		tx_queue->cur_tx = tx_queue->tx_bd_base;
183 		tx_queue->skb_curtx = 0;
184 		tx_queue->skb_dirtytx = 0;
185 
186 		/* Initialize Transmit Descriptor Ring */
187 		txbdp = tx_queue->tx_bd_base;
188 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 			txbdp->lstatus = 0;
190 			txbdp->bufPtr = 0;
191 			txbdp++;
192 		}
193 
194 		/* Set the last descriptor in the ring to indicate wrap */
195 		txbdp--;
196 		txbdp->status |= TXBD_WRAP;
197 	}
198 
199 	for (i = 0; i < priv->num_rx_queues; i++) {
200 		rx_queue = priv->rx_queue[i];
201 		rx_queue->cur_rx = rx_queue->rx_bd_base;
202 		rx_queue->skb_currx = 0;
203 		rxbdp = rx_queue->rx_bd_base;
204 
205 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
207 
208 			if (skb) {
209 				gfar_init_rxbdp(rx_queue, rxbdp,
210 						rxbdp->bufPtr);
211 			} else {
212 				skb = gfar_new_skb(ndev);
213 				if (!skb) {
214 					netdev_err(ndev, "Can't allocate RX buffers\n");
215 					goto err_rxalloc_fail;
216 				}
217 				rx_queue->rx_skbuff[j] = skb;
218 
219 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 			}
221 
222 			rxbdp++;
223 		}
224 
225 	}
226 
227 	return 0;
228 
229 err_rxalloc_fail:
230 	free_skb_resources(priv);
231 	return -ENOMEM;
232 }
233 
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236 	void *vaddr;
237 	dma_addr_t addr;
238 	int i, j, k;
239 	struct gfar_private *priv = netdev_priv(ndev);
240 	struct device *dev = &priv->ofdev->dev;
241 	struct gfar_priv_tx_q *tx_queue = NULL;
242 	struct gfar_priv_rx_q *rx_queue = NULL;
243 
244 	priv->total_tx_ring_size = 0;
245 	for (i = 0; i < priv->num_tx_queues; i++)
246 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247 
248 	priv->total_rx_ring_size = 0;
249 	for (i = 0; i < priv->num_rx_queues; i++)
250 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251 
252 	/* Allocate memory for the buffer descriptors */
253 	vaddr = dma_alloc_coherent(dev,
254 			sizeof(struct txbd8) * priv->total_tx_ring_size +
255 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
256 			&addr, GFP_KERNEL);
257 	if (!vaddr) {
258 		netif_err(priv, ifup, ndev,
259 			  "Could not allocate buffer descriptors!\n");
260 		return -ENOMEM;
261 	}
262 
263 	for (i = 0; i < priv->num_tx_queues; i++) {
264 		tx_queue = priv->tx_queue[i];
265 		tx_queue->tx_bd_base = vaddr;
266 		tx_queue->tx_bd_dma_base = addr;
267 		tx_queue->dev = ndev;
268 		/* enet DMA only understands physical addresses */
269 		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
270 		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271 	}
272 
273 	/* Start the rx descriptor ring where the tx ring leaves off */
274 	for (i = 0; i < priv->num_rx_queues; i++) {
275 		rx_queue = priv->rx_queue[i];
276 		rx_queue->rx_bd_base = vaddr;
277 		rx_queue->rx_bd_dma_base = addr;
278 		rx_queue->dev = ndev;
279 		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
280 		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281 	}
282 
283 	/* Setup the skbuff rings */
284 	for (i = 0; i < priv->num_tx_queues; i++) {
285 		tx_queue = priv->tx_queue[i];
286 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
287 				  tx_queue->tx_ring_size, GFP_KERNEL);
288 		if (!tx_queue->tx_skbuff) {
289 			netif_err(priv, ifup, ndev,
290 				  "Could not allocate tx_skbuff\n");
291 			goto cleanup;
292 		}
293 
294 		for (k = 0; k < tx_queue->tx_ring_size; k++)
295 			tx_queue->tx_skbuff[k] = NULL;
296 	}
297 
298 	for (i = 0; i < priv->num_rx_queues; i++) {
299 		rx_queue = priv->rx_queue[i];
300 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301 				  rx_queue->rx_ring_size, GFP_KERNEL);
302 
303 		if (!rx_queue->rx_skbuff) {
304 			netif_err(priv, ifup, ndev,
305 				  "Could not allocate rx_skbuff\n");
306 			goto cleanup;
307 		}
308 
309 		for (j = 0; j < rx_queue->rx_ring_size; j++)
310 			rx_queue->rx_skbuff[j] = NULL;
311 	}
312 
313 	if (gfar_init_bds(ndev))
314 		goto cleanup;
315 
316 	return 0;
317 
318 cleanup:
319 	free_skb_resources(priv);
320 	return -ENOMEM;
321 }
322 
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 	u32 __iomem *baddr;
327 	int i;
328 
329 	baddr = &regs->tbase0;
330 	for(i = 0; i < priv->num_tx_queues; i++) {
331 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 		baddr	+= 2;
333 	}
334 
335 	baddr = &regs->rbase0;
336 	for(i = 0; i < priv->num_rx_queues; i++) {
337 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 		baddr   += 2;
339 	}
340 }
341 
342 static void gfar_init_mac(struct net_device *ndev)
343 {
344 	struct gfar_private *priv = netdev_priv(ndev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 rctrl = 0;
347 	u32 tctrl = 0;
348 	u32 attrs = 0;
349 
350 	/* write the tx/rx base registers */
351 	gfar_init_tx_rx_base(priv);
352 
353 	/* Configure the coalescing support */
354 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
355 
356 	if (priv->rx_filer_enable) {
357 		rctrl |= RCTRL_FILREN;
358 		/* Program the RIR0 reg with the required distribution */
359 		gfar_write(&regs->rir0, DEFAULT_RIR0);
360 	}
361 
362 	if (ndev->features & NETIF_F_RXCSUM)
363 		rctrl |= RCTRL_CHECKSUMMING;
364 
365 	if (priv->extended_hash) {
366 		rctrl |= RCTRL_EXTHASH;
367 
368 		gfar_clear_exact_match(ndev);
369 		rctrl |= RCTRL_EMEN;
370 	}
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Insert receive time stamps into padding alignment bytes */
378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 		rctrl &= ~RCTRL_PAL_MASK;
380 		rctrl |= RCTRL_PADDING(8);
381 		priv->padding = 8;
382 	}
383 
384 	/* Enable HW time stamping if requested from user space */
385 	if (priv->hwts_rx_en)
386 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 
388 	if (ndev->features & NETIF_F_HW_VLAN_RX)
389 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 
394 	if (ndev->features & NETIF_F_IP_CSUM)
395 		tctrl |= TCTRL_INIT_CSUM;
396 
397 	tctrl |= TCTRL_TXSCHED_PRIO;
398 
399 	gfar_write(&regs->tctrl, tctrl);
400 
401 	/* Set the extraction length and index */
402 	attrs = ATTRELI_EL(priv->rx_stash_size) |
403 		ATTRELI_EI(priv->rx_stash_index);
404 
405 	gfar_write(&regs->attreli, attrs);
406 
407 	/* Start with defaults, and add stashing or locking
408 	 * depending on the approprate variables */
409 	attrs = ATTR_INIT_SETTINGS;
410 
411 	if (priv->bd_stash_en)
412 		attrs |= ATTR_BDSTASH;
413 
414 	if (priv->rx_stash_size != 0)
415 		attrs |= ATTR_BUFSTASH;
416 
417 	gfar_write(&regs->attr, attrs);
418 
419 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
420 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
421 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
422 }
423 
424 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
425 {
426 	struct gfar_private *priv = netdev_priv(dev);
427 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
428 	unsigned long tx_packets = 0, tx_bytes = 0;
429 	int i = 0;
430 
431 	for (i = 0; i < priv->num_rx_queues; i++) {
432 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
433 		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
434 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
435 	}
436 
437 	dev->stats.rx_packets = rx_packets;
438 	dev->stats.rx_bytes = rx_bytes;
439 	dev->stats.rx_dropped = rx_dropped;
440 
441 	for (i = 0; i < priv->num_tx_queues; i++) {
442 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
443 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
444 	}
445 
446 	dev->stats.tx_bytes = tx_bytes;
447 	dev->stats.tx_packets = tx_packets;
448 
449 	return &dev->stats;
450 }
451 
452 static const struct net_device_ops gfar_netdev_ops = {
453 	.ndo_open = gfar_enet_open,
454 	.ndo_start_xmit = gfar_start_xmit,
455 	.ndo_stop = gfar_close,
456 	.ndo_change_mtu = gfar_change_mtu,
457 	.ndo_set_features = gfar_set_features,
458 	.ndo_set_rx_mode = gfar_set_multi,
459 	.ndo_tx_timeout = gfar_timeout,
460 	.ndo_do_ioctl = gfar_ioctl,
461 	.ndo_get_stats = gfar_get_stats,
462 	.ndo_set_mac_address = eth_mac_addr,
463 	.ndo_validate_addr = eth_validate_addr,
464 #ifdef CONFIG_NET_POLL_CONTROLLER
465 	.ndo_poll_controller = gfar_netpoll,
466 #endif
467 };
468 
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471 	int i = 0x0;
472 
473 	for (i = 0; i < priv->num_rx_queues; i++)
474 		spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476 
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479 	int i = 0x0;
480 
481 	for (i = 0; i < priv->num_tx_queues; i++)
482 		spin_lock(&priv->tx_queue[i]->txlock);
483 }
484 
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487 	int i = 0x0;
488 
489 	for (i = 0; i < priv->num_rx_queues; i++)
490 		spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492 
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495 	int i = 0x0;
496 
497 	for (i = 0; i < priv->num_tx_queues; i++)
498 		spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500 
501 static bool gfar_is_vlan_on(struct gfar_private *priv)
502 {
503 	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
504 	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
505 }
506 
507 /* Returns 1 if incoming frames use an FCB */
508 static inline int gfar_uses_fcb(struct gfar_private *priv)
509 {
510 	return gfar_is_vlan_on(priv) ||
511 		(priv->ndev->features & NETIF_F_RXCSUM) ||
512 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
513 }
514 
515 static void free_tx_pointers(struct gfar_private *priv)
516 {
517 	int i = 0;
518 
519 	for (i = 0; i < priv->num_tx_queues; i++)
520 		kfree(priv->tx_queue[i]);
521 }
522 
523 static void free_rx_pointers(struct gfar_private *priv)
524 {
525 	int i = 0;
526 
527 	for (i = 0; i < priv->num_rx_queues; i++)
528 		kfree(priv->rx_queue[i]);
529 }
530 
531 static void unmap_group_regs(struct gfar_private *priv)
532 {
533 	int i = 0;
534 
535 	for (i = 0; i < MAXGROUPS; i++)
536 		if (priv->gfargrp[i].regs)
537 			iounmap(priv->gfargrp[i].regs);
538 }
539 
540 static void disable_napi(struct gfar_private *priv)
541 {
542 	int i = 0;
543 
544 	for (i = 0; i < priv->num_grps; i++)
545 		napi_disable(&priv->gfargrp[i].napi);
546 }
547 
548 static void enable_napi(struct gfar_private *priv)
549 {
550 	int i = 0;
551 
552 	for (i = 0; i < priv->num_grps; i++)
553 		napi_enable(&priv->gfargrp[i].napi);
554 }
555 
556 static int gfar_parse_group(struct device_node *np,
557 		struct gfar_private *priv, const char *model)
558 {
559 	u32 *queue_mask;
560 
561 	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
562 	if (!priv->gfargrp[priv->num_grps].regs)
563 		return -ENOMEM;
564 
565 	priv->gfargrp[priv->num_grps].interruptTransmit =
566 			irq_of_parse_and_map(np, 0);
567 
568 	/* If we aren't the FEC we have multiple interrupts */
569 	if (model && strcasecmp(model, "FEC")) {
570 		priv->gfargrp[priv->num_grps].interruptReceive =
571 			irq_of_parse_and_map(np, 1);
572 		priv->gfargrp[priv->num_grps].interruptError =
573 			irq_of_parse_and_map(np,2);
574 		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
575 		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
576 		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
577 			return -EINVAL;
578 	}
579 
580 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
581 	priv->gfargrp[priv->num_grps].priv = priv;
582 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
583 	if(priv->mode == MQ_MG_MODE) {
584 		queue_mask = (u32 *)of_get_property(np,
585 					"fsl,rx-bit-map", NULL);
586 		priv->gfargrp[priv->num_grps].rx_bit_map =
587 			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
588 		queue_mask = (u32 *)of_get_property(np,
589 					"fsl,tx-bit-map", NULL);
590 		priv->gfargrp[priv->num_grps].tx_bit_map =
591 			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592 	} else {
593 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595 	}
596 	priv->num_grps++;
597 
598 	return 0;
599 }
600 
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603 	const char *model;
604 	const char *ctype;
605 	const void *mac_addr;
606 	int err = 0, i;
607 	struct net_device *dev = NULL;
608 	struct gfar_private *priv = NULL;
609 	struct device_node *np = ofdev->dev.of_node;
610 	struct device_node *child = NULL;
611 	const u32 *stash;
612 	const u32 *stash_len;
613 	const u32 *stash_idx;
614 	unsigned int num_tx_qs, num_rx_qs;
615 	u32 *tx_queues, *rx_queues;
616 
617 	if (!np || !of_device_is_available(np))
618 		return -ENODEV;
619 
620 	/* parse the num of tx and rx queues */
621 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622 	num_tx_qs = tx_queues ? *tx_queues : 1;
623 
624 	if (num_tx_qs > MAX_TX_QS) {
625 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626 		       num_tx_qs, MAX_TX_QS);
627 		pr_err("Cannot do alloc_etherdev, aborting\n");
628 		return -EINVAL;
629 	}
630 
631 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632 	num_rx_qs = rx_queues ? *rx_queues : 1;
633 
634 	if (num_rx_qs > MAX_RX_QS) {
635 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636 		       num_rx_qs, MAX_RX_QS);
637 		pr_err("Cannot do alloc_etherdev, aborting\n");
638 		return -EINVAL;
639 	}
640 
641 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642 	dev = *pdev;
643 	if (NULL == dev)
644 		return -ENOMEM;
645 
646 	priv = netdev_priv(dev);
647 	priv->node = ofdev->dev.of_node;
648 	priv->ndev = dev;
649 
650 	priv->num_tx_queues = num_tx_qs;
651 	netif_set_real_num_rx_queues(dev, num_rx_qs);
652 	priv->num_rx_queues = num_rx_qs;
653 	priv->num_grps = 0x0;
654 
655 	/* Init Rx queue filer rule set linked list*/
656 	INIT_LIST_HEAD(&priv->rx_list.list);
657 	priv->rx_list.count = 0;
658 	mutex_init(&priv->rx_queue_access);
659 
660 	model = of_get_property(np, "model", NULL);
661 
662 	for (i = 0; i < MAXGROUPS; i++)
663 		priv->gfargrp[i].regs = NULL;
664 
665 	/* Parse and initialize group specific information */
666 	if (of_device_is_compatible(np, "fsl,etsec2")) {
667 		priv->mode = MQ_MG_MODE;
668 		for_each_child_of_node(np, child) {
669 			err = gfar_parse_group(child, priv, model);
670 			if (err)
671 				goto err_grp_init;
672 		}
673 	} else {
674 		priv->mode = SQ_SG_MODE;
675 		err = gfar_parse_group(np, priv, model);
676 		if(err)
677 			goto err_grp_init;
678 	}
679 
680 	for (i = 0; i < priv->num_tx_queues; i++)
681 	       priv->tx_queue[i] = NULL;
682 	for (i = 0; i < priv->num_rx_queues; i++)
683 		priv->rx_queue[i] = NULL;
684 
685 	for (i = 0; i < priv->num_tx_queues; i++) {
686 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687 					    GFP_KERNEL);
688 		if (!priv->tx_queue[i]) {
689 			err = -ENOMEM;
690 			goto tx_alloc_failed;
691 		}
692 		priv->tx_queue[i]->tx_skbuff = NULL;
693 		priv->tx_queue[i]->qindex = i;
694 		priv->tx_queue[i]->dev = dev;
695 		spin_lock_init(&(priv->tx_queue[i]->txlock));
696 	}
697 
698 	for (i = 0; i < priv->num_rx_queues; i++) {
699 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700 					    GFP_KERNEL);
701 		if (!priv->rx_queue[i]) {
702 			err = -ENOMEM;
703 			goto rx_alloc_failed;
704 		}
705 		priv->rx_queue[i]->rx_skbuff = NULL;
706 		priv->rx_queue[i]->qindex = i;
707 		priv->rx_queue[i]->dev = dev;
708 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
709 	}
710 
711 
712 	stash = of_get_property(np, "bd-stash", NULL);
713 
714 	if (stash) {
715 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716 		priv->bd_stash_en = 1;
717 	}
718 
719 	stash_len = of_get_property(np, "rx-stash-len", NULL);
720 
721 	if (stash_len)
722 		priv->rx_stash_size = *stash_len;
723 
724 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725 
726 	if (stash_idx)
727 		priv->rx_stash_index = *stash_idx;
728 
729 	if (stash_len || stash_idx)
730 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731 
732 	mac_addr = of_get_mac_address(np);
733 	if (mac_addr)
734 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
735 
736 	if (model && !strcasecmp(model, "TSEC"))
737 		priv->device_flags =
738 			FSL_GIANFAR_DEV_HAS_GIGABIT |
739 			FSL_GIANFAR_DEV_HAS_COALESCE |
740 			FSL_GIANFAR_DEV_HAS_RMON |
741 			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742 	if (model && !strcasecmp(model, "eTSEC"))
743 		priv->device_flags =
744 			FSL_GIANFAR_DEV_HAS_GIGABIT |
745 			FSL_GIANFAR_DEV_HAS_COALESCE |
746 			FSL_GIANFAR_DEV_HAS_RMON |
747 			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748 			FSL_GIANFAR_DEV_HAS_PADDING |
749 			FSL_GIANFAR_DEV_HAS_CSUM |
750 			FSL_GIANFAR_DEV_HAS_VLAN |
751 			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752 			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753 			FSL_GIANFAR_DEV_HAS_TIMER;
754 
755 	ctype = of_get_property(np, "phy-connection-type", NULL);
756 
757 	/* We only care about rgmii-id.  The rest are autodetected */
758 	if (ctype && !strcmp(ctype, "rgmii-id"))
759 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760 	else
761 		priv->interface = PHY_INTERFACE_MODE_MII;
762 
763 	if (of_get_property(np, "fsl,magic-packet", NULL))
764 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765 
766 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767 
768 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
769 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770 
771 	return 0;
772 
773 rx_alloc_failed:
774 	free_rx_pointers(priv);
775 tx_alloc_failed:
776 	free_tx_pointers(priv);
777 err_grp_init:
778 	unmap_group_regs(priv);
779 	free_netdev(dev);
780 	return err;
781 }
782 
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784 			struct ifreq *ifr, int cmd)
785 {
786 	struct hwtstamp_config config;
787 	struct gfar_private *priv = netdev_priv(netdev);
788 
789 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790 		return -EFAULT;
791 
792 	/* reserved for future extensions */
793 	if (config.flags)
794 		return -EINVAL;
795 
796 	switch (config.tx_type) {
797 	case HWTSTAMP_TX_OFF:
798 		priv->hwts_tx_en = 0;
799 		break;
800 	case HWTSTAMP_TX_ON:
801 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802 			return -ERANGE;
803 		priv->hwts_tx_en = 1;
804 		break;
805 	default:
806 		return -ERANGE;
807 	}
808 
809 	switch (config.rx_filter) {
810 	case HWTSTAMP_FILTER_NONE:
811 		if (priv->hwts_rx_en) {
812 			stop_gfar(netdev);
813 			priv->hwts_rx_en = 0;
814 			startup_gfar(netdev);
815 		}
816 		break;
817 	default:
818 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819 			return -ERANGE;
820 		if (!priv->hwts_rx_en) {
821 			stop_gfar(netdev);
822 			priv->hwts_rx_en = 1;
823 			startup_gfar(netdev);
824 		}
825 		config.rx_filter = HWTSTAMP_FILTER_ALL;
826 		break;
827 	}
828 
829 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830 		-EFAULT : 0;
831 }
832 
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836 	struct gfar_private *priv = netdev_priv(dev);
837 
838 	if (!netif_running(dev))
839 		return -EINVAL;
840 
841 	if (cmd == SIOCSHWTSTAMP)
842 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
843 
844 	if (!priv->phydev)
845 		return -ENODEV;
846 
847 	return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849 
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852 	unsigned int new_bit_map = 0x0;
853 	int mask = 0x1 << (max_qs - 1), i;
854 	for (i = 0; i < max_qs; i++) {
855 		if (bit_map & mask)
856 			new_bit_map = new_bit_map + (1 << i);
857 		mask = mask >> 0x1;
858 	}
859 	return new_bit_map;
860 }
861 
862 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
863 				   u32 class)
864 {
865 	u32 rqfpr = FPR_FILER_MASK;
866 	u32 rqfcr = 0x0;
867 
868 	rqfar--;
869 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
870 	priv->ftp_rqfpr[rqfar] = rqfpr;
871 	priv->ftp_rqfcr[rqfar] = rqfcr;
872 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873 
874 	rqfar--;
875 	rqfcr = RQFCR_CMP_NOMATCH;
876 	priv->ftp_rqfpr[rqfar] = rqfpr;
877 	priv->ftp_rqfcr[rqfar] = rqfcr;
878 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879 
880 	rqfar--;
881 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
882 	rqfpr = class;
883 	priv->ftp_rqfcr[rqfar] = rqfcr;
884 	priv->ftp_rqfpr[rqfar] = rqfpr;
885 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886 
887 	rqfar--;
888 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
889 	rqfpr = class;
890 	priv->ftp_rqfcr[rqfar] = rqfcr;
891 	priv->ftp_rqfpr[rqfar] = rqfpr;
892 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893 
894 	return rqfar;
895 }
896 
897 static void gfar_init_filer_table(struct gfar_private *priv)
898 {
899 	int i = 0x0;
900 	u32 rqfar = MAX_FILER_IDX;
901 	u32 rqfcr = 0x0;
902 	u32 rqfpr = FPR_FILER_MASK;
903 
904 	/* Default rule */
905 	rqfcr = RQFCR_CMP_MATCH;
906 	priv->ftp_rqfcr[rqfar] = rqfcr;
907 	priv->ftp_rqfpr[rqfar] = rqfpr;
908 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909 
910 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
911 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
912 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
913 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
914 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
915 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
916 
917 	/* cur_filer_idx indicated the first non-masked rule */
918 	priv->cur_filer_idx = rqfar;
919 
920 	/* Rest are masked rules */
921 	rqfcr = RQFCR_CMP_NOMATCH;
922 	for (i = 0; i < rqfar; i++) {
923 		priv->ftp_rqfcr[i] = rqfcr;
924 		priv->ftp_rqfpr[i] = rqfpr;
925 		gfar_write_filer(priv, i, rqfcr, rqfpr);
926 	}
927 }
928 
929 static void gfar_detect_errata(struct gfar_private *priv)
930 {
931 	struct device *dev = &priv->ofdev->dev;
932 	unsigned int pvr = mfspr(SPRN_PVR);
933 	unsigned int svr = mfspr(SPRN_SVR);
934 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
935 	unsigned int rev = svr & 0xffff;
936 
937 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
938 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
939 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940 		priv->errata |= GFAR_ERRATA_74;
941 
942 	/* MPC8313 and MPC837x all rev */
943 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
944 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
945 		priv->errata |= GFAR_ERRATA_76;
946 
947 	/* MPC8313 and MPC837x all rev */
948 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
949 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
950 		priv->errata |= GFAR_ERRATA_A002;
951 
952 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
953 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
954 			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
955 		priv->errata |= GFAR_ERRATA_12;
956 
957 	if (priv->errata)
958 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
959 			 priv->errata);
960 }
961 
962 /* Set up the ethernet device structure, private data,
963  * and anything else we need before we start */
964 static int gfar_probe(struct platform_device *ofdev)
965 {
966 	u32 tempval;
967 	struct net_device *dev = NULL;
968 	struct gfar_private *priv = NULL;
969 	struct gfar __iomem *regs = NULL;
970 	int err = 0, i, grp_idx = 0;
971 	int len_devname;
972 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
973 	u32 isrg = 0;
974 	u32 __iomem *baddr;
975 
976 	err = gfar_of_init(ofdev, &dev);
977 
978 	if (err)
979 		return err;
980 
981 	priv = netdev_priv(dev);
982 	priv->ndev = dev;
983 	priv->ofdev = ofdev;
984 	priv->node = ofdev->dev.of_node;
985 	SET_NETDEV_DEV(dev, &ofdev->dev);
986 
987 	spin_lock_init(&priv->bflock);
988 	INIT_WORK(&priv->reset_task, gfar_reset_task);
989 
990 	dev_set_drvdata(&ofdev->dev, priv);
991 	regs = priv->gfargrp[0].regs;
992 
993 	gfar_detect_errata(priv);
994 
995 	/* Stop the DMA engine now, in case it was running before */
996 	/* (The firmware could have used it, and left it running). */
997 	gfar_halt(dev);
998 
999 	/* Reset MAC layer */
1000 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1001 
1002 	/* We need to delay at least 3 TX clocks */
1003 	udelay(2);
1004 
1005 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1006 	gfar_write(&regs->maccfg1, tempval);
1007 
1008 	/* Initialize MACCFG2. */
1009 	tempval = MACCFG2_INIT_SETTINGS;
1010 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1011 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1012 	gfar_write(&regs->maccfg2, tempval);
1013 
1014 	/* Initialize ECNTRL */
1015 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1016 
1017 	/* Set the dev->base_addr to the gfar reg region */
1018 	dev->base_addr = (unsigned long) regs;
1019 
1020 	SET_NETDEV_DEV(dev, &ofdev->dev);
1021 
1022 	/* Fill in the dev structure */
1023 	dev->watchdog_timeo = TX_TIMEOUT;
1024 	dev->mtu = 1500;
1025 	dev->netdev_ops = &gfar_netdev_ops;
1026 	dev->ethtool_ops = &gfar_ethtool_ops;
1027 
1028 	/* Register for napi ...We are registering NAPI for each grp */
1029 	for (i = 0; i < priv->num_grps; i++)
1030 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1031 
1032 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1033 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1034 			NETIF_F_RXCSUM;
1035 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1036 			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1037 	}
1038 
1039 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1040 		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1042 	}
1043 
1044 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1045 		priv->extended_hash = 1;
1046 		priv->hash_width = 9;
1047 
1048 		priv->hash_regs[0] = &regs->igaddr0;
1049 		priv->hash_regs[1] = &regs->igaddr1;
1050 		priv->hash_regs[2] = &regs->igaddr2;
1051 		priv->hash_regs[3] = &regs->igaddr3;
1052 		priv->hash_regs[4] = &regs->igaddr4;
1053 		priv->hash_regs[5] = &regs->igaddr5;
1054 		priv->hash_regs[6] = &regs->igaddr6;
1055 		priv->hash_regs[7] = &regs->igaddr7;
1056 		priv->hash_regs[8] = &regs->gaddr0;
1057 		priv->hash_regs[9] = &regs->gaddr1;
1058 		priv->hash_regs[10] = &regs->gaddr2;
1059 		priv->hash_regs[11] = &regs->gaddr3;
1060 		priv->hash_regs[12] = &regs->gaddr4;
1061 		priv->hash_regs[13] = &regs->gaddr5;
1062 		priv->hash_regs[14] = &regs->gaddr6;
1063 		priv->hash_regs[15] = &regs->gaddr7;
1064 
1065 	} else {
1066 		priv->extended_hash = 0;
1067 		priv->hash_width = 8;
1068 
1069 		priv->hash_regs[0] = &regs->gaddr0;
1070 		priv->hash_regs[1] = &regs->gaddr1;
1071 		priv->hash_regs[2] = &regs->gaddr2;
1072 		priv->hash_regs[3] = &regs->gaddr3;
1073 		priv->hash_regs[4] = &regs->gaddr4;
1074 		priv->hash_regs[5] = &regs->gaddr5;
1075 		priv->hash_regs[6] = &regs->gaddr6;
1076 		priv->hash_regs[7] = &regs->gaddr7;
1077 	}
1078 
1079 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1080 		priv->padding = DEFAULT_PADDING;
1081 	else
1082 		priv->padding = 0;
1083 
1084 	if (dev->features & NETIF_F_IP_CSUM ||
1085 			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1086 		dev->hard_header_len += GMAC_FCB_LEN;
1087 
1088 	/* Program the isrg regs only if number of grps > 1 */
1089 	if (priv->num_grps > 1) {
1090 		baddr = &regs->isrg0;
1091 		for (i = 0; i < priv->num_grps; i++) {
1092 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1093 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1094 			gfar_write(baddr, isrg);
1095 			baddr++;
1096 			isrg = 0x0;
1097 		}
1098 	}
1099 
1100 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1101 	 * but, for_each_set_bit parses from right to left, which
1102 	 * basically reverses the queue numbers */
1103 	for (i = 0; i< priv->num_grps; i++) {
1104 		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1105 				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1106 		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1107 				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1108 	}
1109 
1110 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1111 	 * also assign queues to groups */
1112 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1113 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1114 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1115 				priv->num_rx_queues) {
1116 			priv->gfargrp[grp_idx].num_rx_queues++;
1117 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1118 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1119 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1120 		}
1121 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1122 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1123 				priv->num_tx_queues) {
1124 			priv->gfargrp[grp_idx].num_tx_queues++;
1125 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1126 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1127 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1128 		}
1129 		priv->gfargrp[grp_idx].rstat = rstat;
1130 		priv->gfargrp[grp_idx].tstat = tstat;
1131 		rstat = tstat =0;
1132 	}
1133 
1134 	gfar_write(&regs->rqueue, rqueue);
1135 	gfar_write(&regs->tqueue, tqueue);
1136 
1137 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1138 
1139 	/* Initializing some of the rx/tx queue level parameters */
1140 	for (i = 0; i < priv->num_tx_queues; i++) {
1141 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1142 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1143 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1144 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1145 	}
1146 
1147 	for (i = 0; i < priv->num_rx_queues; i++) {
1148 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1149 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1150 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1151 	}
1152 
1153 	/* always enable rx filer*/
1154 	priv->rx_filer_enable = 1;
1155 	/* Enable most messages by default */
1156 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1157 
1158 	/* Carrier starts down, phylib will bring it up */
1159 	netif_carrier_off(dev);
1160 
1161 	err = register_netdev(dev);
1162 
1163 	if (err) {
1164 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1165 		goto register_fail;
1166 	}
1167 
1168 	device_init_wakeup(&dev->dev,
1169 		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1170 
1171 	/* fill out IRQ number and name fields */
1172 	len_devname = strlen(dev->name);
1173 	for (i = 0; i < priv->num_grps; i++) {
1174 		strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1175 				len_devname);
1176 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1177 			strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1178 				"_g", sizeof("_g"));
1179 			priv->gfargrp[i].int_name_tx[
1180 				strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1181 			strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1182 				priv->gfargrp[i].int_name_tx)],
1183 				"_tx", sizeof("_tx") + 1);
1184 
1185 			strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1186 					len_devname);
1187 			strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1188 					"_g", sizeof("_g"));
1189 			priv->gfargrp[i].int_name_rx[
1190 				strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1191 			strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1192 				priv->gfargrp[i].int_name_rx)],
1193 				"_rx", sizeof("_rx") + 1);
1194 
1195 			strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1196 					len_devname);
1197 			strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1198 				"_g", sizeof("_g"));
1199 			priv->gfargrp[i].int_name_er[strlen(
1200 					priv->gfargrp[i].int_name_er)] = i+48;
1201 			strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1202 				priv->gfargrp[i].int_name_er)],
1203 				"_er", sizeof("_er") + 1);
1204 		} else
1205 			priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206 	}
1207 
1208 	/* Initialize the filer table */
1209 	gfar_init_filer_table(priv);
1210 
1211 	/* Create all the sysfs files */
1212 	gfar_init_sysfs(dev);
1213 
1214 	/* Print out the device info */
1215 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1216 
1217 	/* Even more device info helps when determining which kernel */
1218 	/* provided which set of benchmarks. */
1219 	netdev_info(dev, "Running with NAPI enabled\n");
1220 	for (i = 0; i < priv->num_rx_queues; i++)
1221 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1222 			    i, priv->rx_queue[i]->rx_ring_size);
1223 	for(i = 0; i < priv->num_tx_queues; i++)
1224 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1225 			    i, priv->tx_queue[i]->tx_ring_size);
1226 
1227 	return 0;
1228 
1229 register_fail:
1230 	unmap_group_regs(priv);
1231 	free_tx_pointers(priv);
1232 	free_rx_pointers(priv);
1233 	if (priv->phy_node)
1234 		of_node_put(priv->phy_node);
1235 	if (priv->tbi_node)
1236 		of_node_put(priv->tbi_node);
1237 	free_netdev(dev);
1238 	return err;
1239 }
1240 
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244 
1245 	if (priv->phy_node)
1246 		of_node_put(priv->phy_node);
1247 	if (priv->tbi_node)
1248 		of_node_put(priv->tbi_node);
1249 
1250 	dev_set_drvdata(&ofdev->dev, NULL);
1251 
1252 	unregister_netdev(priv->ndev);
1253 	unmap_group_regs(priv);
1254 	free_netdev(priv->ndev);
1255 
1256 	return 0;
1257 }
1258 
1259 #ifdef CONFIG_PM
1260 
1261 static int gfar_suspend(struct device *dev)
1262 {
1263 	struct gfar_private *priv = dev_get_drvdata(dev);
1264 	struct net_device *ndev = priv->ndev;
1265 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266 	unsigned long flags;
1267 	u32 tempval;
1268 
1269 	int magic_packet = priv->wol_en &&
1270 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271 
1272 	netif_device_detach(ndev);
1273 
1274 	if (netif_running(ndev)) {
1275 
1276 		local_irq_save(flags);
1277 		lock_tx_qs(priv);
1278 		lock_rx_qs(priv);
1279 
1280 		gfar_halt_nodisable(ndev);
1281 
1282 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283 		tempval = gfar_read(&regs->maccfg1);
1284 
1285 		tempval &= ~MACCFG1_TX_EN;
1286 
1287 		if (!magic_packet)
1288 			tempval &= ~MACCFG1_RX_EN;
1289 
1290 		gfar_write(&regs->maccfg1, tempval);
1291 
1292 		unlock_rx_qs(priv);
1293 		unlock_tx_qs(priv);
1294 		local_irq_restore(flags);
1295 
1296 		disable_napi(priv);
1297 
1298 		if (magic_packet) {
1299 			/* Enable interrupt on Magic Packet */
1300 			gfar_write(&regs->imask, IMASK_MAG);
1301 
1302 			/* Enable Magic Packet mode */
1303 			tempval = gfar_read(&regs->maccfg2);
1304 			tempval |= MACCFG2_MPEN;
1305 			gfar_write(&regs->maccfg2, tempval);
1306 		} else {
1307 			phy_stop(priv->phydev);
1308 		}
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static int gfar_resume(struct device *dev)
1315 {
1316 	struct gfar_private *priv = dev_get_drvdata(dev);
1317 	struct net_device *ndev = priv->ndev;
1318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319 	unsigned long flags;
1320 	u32 tempval;
1321 	int magic_packet = priv->wol_en &&
1322 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1323 
1324 	if (!netif_running(ndev)) {
1325 		netif_device_attach(ndev);
1326 		return 0;
1327 	}
1328 
1329 	if (!magic_packet && priv->phydev)
1330 		phy_start(priv->phydev);
1331 
1332 	/* Disable Magic Packet mode, in case something
1333 	 * else woke us up.
1334 	 */
1335 	local_irq_save(flags);
1336 	lock_tx_qs(priv);
1337 	lock_rx_qs(priv);
1338 
1339 	tempval = gfar_read(&regs->maccfg2);
1340 	tempval &= ~MACCFG2_MPEN;
1341 	gfar_write(&regs->maccfg2, tempval);
1342 
1343 	gfar_start(ndev);
1344 
1345 	unlock_rx_qs(priv);
1346 	unlock_tx_qs(priv);
1347 	local_irq_restore(flags);
1348 
1349 	netif_device_attach(ndev);
1350 
1351 	enable_napi(priv);
1352 
1353 	return 0;
1354 }
1355 
1356 static int gfar_restore(struct device *dev)
1357 {
1358 	struct gfar_private *priv = dev_get_drvdata(dev);
1359 	struct net_device *ndev = priv->ndev;
1360 
1361 	if (!netif_running(ndev))
1362 		return 0;
1363 
1364 	gfar_init_bds(ndev);
1365 	init_registers(ndev);
1366 	gfar_set_mac_address(ndev);
1367 	gfar_init_mac(ndev);
1368 	gfar_start(ndev);
1369 
1370 	priv->oldlink = 0;
1371 	priv->oldspeed = 0;
1372 	priv->oldduplex = -1;
1373 
1374 	if (priv->phydev)
1375 		phy_start(priv->phydev);
1376 
1377 	netif_device_attach(ndev);
1378 	enable_napi(priv);
1379 
1380 	return 0;
1381 }
1382 
1383 static struct dev_pm_ops gfar_pm_ops = {
1384 	.suspend = gfar_suspend,
1385 	.resume = gfar_resume,
1386 	.freeze = gfar_suspend,
1387 	.thaw = gfar_resume,
1388 	.restore = gfar_restore,
1389 };
1390 
1391 #define GFAR_PM_OPS (&gfar_pm_ops)
1392 
1393 #else
1394 
1395 #define GFAR_PM_OPS NULL
1396 
1397 #endif
1398 
1399 /* Reads the controller's registers to determine what interface
1400  * connects it to the PHY.
1401  */
1402 static phy_interface_t gfar_get_interface(struct net_device *dev)
1403 {
1404 	struct gfar_private *priv = netdev_priv(dev);
1405 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1406 	u32 ecntrl;
1407 
1408 	ecntrl = gfar_read(&regs->ecntrl);
1409 
1410 	if (ecntrl & ECNTRL_SGMII_MODE)
1411 		return PHY_INTERFACE_MODE_SGMII;
1412 
1413 	if (ecntrl & ECNTRL_TBI_MODE) {
1414 		if (ecntrl & ECNTRL_REDUCED_MODE)
1415 			return PHY_INTERFACE_MODE_RTBI;
1416 		else
1417 			return PHY_INTERFACE_MODE_TBI;
1418 	}
1419 
1420 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1421 		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1422 			return PHY_INTERFACE_MODE_RMII;
1423 		else {
1424 			phy_interface_t interface = priv->interface;
1425 
1426 			/*
1427 			 * This isn't autodetected right now, so it must
1428 			 * be set by the device tree or platform code.
1429 			 */
1430 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1431 				return PHY_INTERFACE_MODE_RGMII_ID;
1432 
1433 			return PHY_INTERFACE_MODE_RGMII;
1434 		}
1435 	}
1436 
1437 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1438 		return PHY_INTERFACE_MODE_GMII;
1439 
1440 	return PHY_INTERFACE_MODE_MII;
1441 }
1442 
1443 
1444 /* Initializes driver's PHY state, and attaches to the PHY.
1445  * Returns 0 on success.
1446  */
1447 static int init_phy(struct net_device *dev)
1448 {
1449 	struct gfar_private *priv = netdev_priv(dev);
1450 	uint gigabit_support =
1451 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1452 		SUPPORTED_1000baseT_Full : 0;
1453 	phy_interface_t interface;
1454 
1455 	priv->oldlink = 0;
1456 	priv->oldspeed = 0;
1457 	priv->oldduplex = -1;
1458 
1459 	interface = gfar_get_interface(dev);
1460 
1461 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1462 				      interface);
1463 	if (!priv->phydev)
1464 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1465 							 interface);
1466 	if (!priv->phydev) {
1467 		dev_err(&dev->dev, "could not attach to PHY\n");
1468 		return -ENODEV;
1469 	}
1470 
1471 	if (interface == PHY_INTERFACE_MODE_SGMII)
1472 		gfar_configure_serdes(dev);
1473 
1474 	/* Remove any features not supported by the controller */
1475 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1476 	priv->phydev->advertising = priv->phydev->supported;
1477 
1478 	return 0;
1479 }
1480 
1481 /*
1482  * Initialize TBI PHY interface for communicating with the
1483  * SERDES lynx PHY on the chip.  We communicate with this PHY
1484  * through the MDIO bus on each controller, treating it as a
1485  * "normal" PHY at the address found in the TBIPA register.  We assume
1486  * that the TBIPA register is valid.  Either the MDIO bus code will set
1487  * it to a value that doesn't conflict with other PHYs on the bus, or the
1488  * value doesn't matter, as there are no other PHYs on the bus.
1489  */
1490 static void gfar_configure_serdes(struct net_device *dev)
1491 {
1492 	struct gfar_private *priv = netdev_priv(dev);
1493 	struct phy_device *tbiphy;
1494 
1495 	if (!priv->tbi_node) {
1496 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1497 				    "device tree specify a tbi-handle\n");
1498 		return;
1499 	}
1500 
1501 	tbiphy = of_phy_find_device(priv->tbi_node);
1502 	if (!tbiphy) {
1503 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * If the link is already up, we must already be ok, and don't need to
1509 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1510 	 * everything for us?  Resetting it takes the link down and requires
1511 	 * several seconds for it to come back.
1512 	 */
1513 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1514 		return;
1515 
1516 	/* Single clk mode, mii mode off(for serdes communication) */
1517 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1518 
1519 	phy_write(tbiphy, MII_ADVERTISE,
1520 			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1521 			ADVERTISE_1000XPSE_ASYM);
1522 
1523 	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1524 			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525 }
1526 
1527 static void init_registers(struct net_device *dev)
1528 {
1529 	struct gfar_private *priv = netdev_priv(dev);
1530 	struct gfar __iomem *regs = NULL;
1531 	int i = 0;
1532 
1533 	for (i = 0; i < priv->num_grps; i++) {
1534 		regs = priv->gfargrp[i].regs;
1535 		/* Clear IEVENT */
1536 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1537 
1538 		/* Initialize IMASK */
1539 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540 	}
1541 
1542 	regs = priv->gfargrp[0].regs;
1543 	/* Init hash registers to zero */
1544 	gfar_write(&regs->igaddr0, 0);
1545 	gfar_write(&regs->igaddr1, 0);
1546 	gfar_write(&regs->igaddr2, 0);
1547 	gfar_write(&regs->igaddr3, 0);
1548 	gfar_write(&regs->igaddr4, 0);
1549 	gfar_write(&regs->igaddr5, 0);
1550 	gfar_write(&regs->igaddr6, 0);
1551 	gfar_write(&regs->igaddr7, 0);
1552 
1553 	gfar_write(&regs->gaddr0, 0);
1554 	gfar_write(&regs->gaddr1, 0);
1555 	gfar_write(&regs->gaddr2, 0);
1556 	gfar_write(&regs->gaddr3, 0);
1557 	gfar_write(&regs->gaddr4, 0);
1558 	gfar_write(&regs->gaddr5, 0);
1559 	gfar_write(&regs->gaddr6, 0);
1560 	gfar_write(&regs->gaddr7, 0);
1561 
1562 	/* Zero out the rmon mib registers if it has them */
1563 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1564 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1565 
1566 		/* Mask off the CAM interrupts */
1567 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1568 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1569 	}
1570 
1571 	/* Initialize the max receive buffer length */
1572 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1573 
1574 	/* Initialize the Minimum Frame Length Register */
1575 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576 }
1577 
1578 static int __gfar_is_rx_idle(struct gfar_private *priv)
1579 {
1580 	u32 res;
1581 
1582 	/*
1583 	 * Normaly TSEC should not hang on GRS commands, so we should
1584 	 * actually wait for IEVENT_GRSC flag.
1585 	 */
1586 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1587 		return 0;
1588 
1589 	/*
1590 	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592 	 * and the Rx can be safely reset.
1593 	 */
1594 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1595 	res &= 0x7f807f80;
1596 	if ((res & 0xffff) == (res >> 16))
1597 		return 1;
1598 
1599 	return 0;
1600 }
1601 
1602 /* Halt the receive and transmit queues */
1603 static void gfar_halt_nodisable(struct net_device *dev)
1604 {
1605 	struct gfar_private *priv = netdev_priv(dev);
1606 	struct gfar __iomem *regs = NULL;
1607 	u32 tempval;
1608 	int i = 0;
1609 
1610 	for (i = 0; i < priv->num_grps; i++) {
1611 		regs = priv->gfargrp[i].regs;
1612 		/* Mask all interrupts */
1613 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1614 
1615 		/* Clear all interrupts */
1616 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617 	}
1618 
1619 	regs = priv->gfargrp[0].regs;
1620 	/* Stop the DMA, and wait for it to stop */
1621 	tempval = gfar_read(&regs->dmactrl);
1622 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1623 	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1624 		int ret;
1625 
1626 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1627 		gfar_write(&regs->dmactrl, tempval);
1628 
1629 		do {
1630 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1631 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1632 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1633 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1634 				ret = __gfar_is_rx_idle(priv);
1635 		} while (!ret);
1636 	}
1637 }
1638 
1639 /* Halt the receive and transmit queues */
1640 void gfar_halt(struct net_device *dev)
1641 {
1642 	struct gfar_private *priv = netdev_priv(dev);
1643 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1644 	u32 tempval;
1645 
1646 	gfar_halt_nodisable(dev);
1647 
1648 	/* Disable Rx and Tx */
1649 	tempval = gfar_read(&regs->maccfg1);
1650 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1651 	gfar_write(&regs->maccfg1, tempval);
1652 }
1653 
1654 static void free_grp_irqs(struct gfar_priv_grp *grp)
1655 {
1656 	free_irq(grp->interruptError, grp);
1657 	free_irq(grp->interruptTransmit, grp);
1658 	free_irq(grp->interruptReceive, grp);
1659 }
1660 
1661 void stop_gfar(struct net_device *dev)
1662 {
1663 	struct gfar_private *priv = netdev_priv(dev);
1664 	unsigned long flags;
1665 	int i;
1666 
1667 	phy_stop(priv->phydev);
1668 
1669 
1670 	/* Lock it down */
1671 	local_irq_save(flags);
1672 	lock_tx_qs(priv);
1673 	lock_rx_qs(priv);
1674 
1675 	gfar_halt(dev);
1676 
1677 	unlock_rx_qs(priv);
1678 	unlock_tx_qs(priv);
1679 	local_irq_restore(flags);
1680 
1681 	/* Free the IRQs */
1682 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1683 		for (i = 0; i < priv->num_grps; i++)
1684 			free_grp_irqs(&priv->gfargrp[i]);
1685 	} else {
1686 		for (i = 0; i < priv->num_grps; i++)
1687 			free_irq(priv->gfargrp[i].interruptTransmit,
1688 					&priv->gfargrp[i]);
1689 	}
1690 
1691 	free_skb_resources(priv);
1692 }
1693 
1694 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1695 {
1696 	struct txbd8 *txbdp;
1697 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1698 	int i, j;
1699 
1700 	txbdp = tx_queue->tx_bd_base;
1701 
1702 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1703 		if (!tx_queue->tx_skbuff[i])
1704 			continue;
1705 
1706 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1707 				txbdp->length, DMA_TO_DEVICE);
1708 		txbdp->lstatus = 0;
1709 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1710 				j++) {
1711 			txbdp++;
1712 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1713 					txbdp->length, DMA_TO_DEVICE);
1714 		}
1715 		txbdp++;
1716 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1717 		tx_queue->tx_skbuff[i] = NULL;
1718 	}
1719 	kfree(tx_queue->tx_skbuff);
1720 }
1721 
1722 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1723 {
1724 	struct rxbd8 *rxbdp;
1725 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1726 	int i;
1727 
1728 	rxbdp = rx_queue->rx_bd_base;
1729 
1730 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1731 		if (rx_queue->rx_skbuff[i]) {
1732 			dma_unmap_single(&priv->ofdev->dev,
1733 					rxbdp->bufPtr, priv->rx_buffer_size,
1734 					DMA_FROM_DEVICE);
1735 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1736 			rx_queue->rx_skbuff[i] = NULL;
1737 		}
1738 		rxbdp->lstatus = 0;
1739 		rxbdp->bufPtr = 0;
1740 		rxbdp++;
1741 	}
1742 	kfree(rx_queue->rx_skbuff);
1743 }
1744 
1745 /* If there are any tx skbs or rx skbs still around, free them.
1746  * Then free tx_skbuff and rx_skbuff */
1747 static void free_skb_resources(struct gfar_private *priv)
1748 {
1749 	struct gfar_priv_tx_q *tx_queue = NULL;
1750 	struct gfar_priv_rx_q *rx_queue = NULL;
1751 	int i;
1752 
1753 	/* Go through all the buffer descriptors and free their data buffers */
1754 	for (i = 0; i < priv->num_tx_queues; i++) {
1755 		struct netdev_queue *txq;
1756 		tx_queue = priv->tx_queue[i];
1757 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1758 		if(tx_queue->tx_skbuff)
1759 			free_skb_tx_queue(tx_queue);
1760 		netdev_tx_reset_queue(txq);
1761 	}
1762 
1763 	for (i = 0; i < priv->num_rx_queues; i++) {
1764 		rx_queue = priv->rx_queue[i];
1765 		if(rx_queue->rx_skbuff)
1766 			free_skb_rx_queue(rx_queue);
1767 	}
1768 
1769 	dma_free_coherent(&priv->ofdev->dev,
1770 			sizeof(struct txbd8) * priv->total_tx_ring_size +
1771 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772 			priv->tx_queue[0]->tx_bd_base,
1773 			priv->tx_queue[0]->tx_bd_dma_base);
1774 	skb_queue_purge(&priv->rx_recycle);
1775 }
1776 
1777 void gfar_start(struct net_device *dev)
1778 {
1779 	struct gfar_private *priv = netdev_priv(dev);
1780 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781 	u32 tempval;
1782 	int i = 0;
1783 
1784 	/* Enable Rx and Tx in MACCFG1 */
1785 	tempval = gfar_read(&regs->maccfg1);
1786 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787 	gfar_write(&regs->maccfg1, tempval);
1788 
1789 	/* Initialize DMACTRL to have WWR and WOP */
1790 	tempval = gfar_read(&regs->dmactrl);
1791 	tempval |= DMACTRL_INIT_SETTINGS;
1792 	gfar_write(&regs->dmactrl, tempval);
1793 
1794 	/* Make sure we aren't stopped */
1795 	tempval = gfar_read(&regs->dmactrl);
1796 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797 	gfar_write(&regs->dmactrl, tempval);
1798 
1799 	for (i = 0; i < priv->num_grps; i++) {
1800 		regs = priv->gfargrp[i].regs;
1801 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1802 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804 		/* Unmask the interrupts we look for */
1805 		gfar_write(&regs->imask, IMASK_DEFAULT);
1806 	}
1807 
1808 	dev->trans_start = jiffies; /* prevent tx timeout */
1809 }
1810 
1811 void gfar_configure_coalescing(struct gfar_private *priv,
1812 	unsigned long tx_mask, unsigned long rx_mask)
1813 {
1814 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815 	u32 __iomem *baddr;
1816 	int i = 0;
1817 
1818 	/* Backward compatible case ---- even if we enable
1819 	 * multiple queues, there's only single reg to program
1820 	 */
1821 	gfar_write(&regs->txic, 0);
1822 	if(likely(priv->tx_queue[0]->txcoalescing))
1823 		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1824 
1825 	gfar_write(&regs->rxic, 0);
1826 	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827 		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1828 
1829 	if (priv->mode == MQ_MG_MODE) {
1830 		baddr = &regs->txic0;
1831 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832 			if (likely(priv->tx_queue[i]->txcoalescing)) {
1833 				gfar_write(baddr + i, 0);
1834 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1835 			}
1836 		}
1837 
1838 		baddr = &regs->rxic0;
1839 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840 			if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841 				gfar_write(baddr + i, 0);
1842 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1843 			}
1844 		}
1845 	}
1846 }
1847 
1848 static int register_grp_irqs(struct gfar_priv_grp *grp)
1849 {
1850 	struct gfar_private *priv = grp->priv;
1851 	struct net_device *dev = priv->ndev;
1852 	int err;
1853 
1854 	/* If the device has multiple interrupts, register for
1855 	 * them.  Otherwise, only register for the one */
1856 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857 		/* Install our interrupt handlers for Error,
1858 		 * Transmit, and Receive */
1859 		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860 				grp->int_name_er,grp)) < 0) {
1861 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1862 				  grp->interruptError);
1863 
1864 			goto err_irq_fail;
1865 		}
1866 
1867 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1868 				0, grp->int_name_tx, grp)) < 0) {
1869 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870 				  grp->interruptTransmit);
1871 			goto tx_irq_fail;
1872 		}
1873 
1874 		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1875 				grp->int_name_rx, grp)) < 0) {
1876 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877 				  grp->interruptReceive);
1878 			goto rx_irq_fail;
1879 		}
1880 	} else {
1881 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882 				grp->int_name_tx, grp)) < 0) {
1883 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884 				  grp->interruptTransmit);
1885 			goto err_irq_fail;
1886 		}
1887 	}
1888 
1889 	return 0;
1890 
1891 rx_irq_fail:
1892 	free_irq(grp->interruptTransmit, grp);
1893 tx_irq_fail:
1894 	free_irq(grp->interruptError, grp);
1895 err_irq_fail:
1896 	return err;
1897 
1898 }
1899 
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device *ndev)
1902 {
1903 	struct gfar_private *priv = netdev_priv(ndev);
1904 	struct gfar __iomem *regs = NULL;
1905 	int err, i, j;
1906 
1907 	for (i = 0; i < priv->num_grps; i++) {
1908 		regs= priv->gfargrp[i].regs;
1909 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1910 	}
1911 
1912 	regs= priv->gfargrp[0].regs;
1913 	err = gfar_alloc_skb_resources(ndev);
1914 	if (err)
1915 		return err;
1916 
1917 	gfar_init_mac(ndev);
1918 
1919 	for (i = 0; i < priv->num_grps; i++) {
1920 		err = register_grp_irqs(&priv->gfargrp[i]);
1921 		if (err) {
1922 			for (j = 0; j < i; j++)
1923 				free_grp_irqs(&priv->gfargrp[j]);
1924 			goto irq_fail;
1925 		}
1926 	}
1927 
1928 	/* Start the controller */
1929 	gfar_start(ndev);
1930 
1931 	phy_start(priv->phydev);
1932 
1933 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934 
1935 	return 0;
1936 
1937 irq_fail:
1938 	free_skb_resources(priv);
1939 	return err;
1940 }
1941 
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device *dev)
1945 {
1946 	struct gfar_private *priv = netdev_priv(dev);
1947 	int err;
1948 
1949 	enable_napi(priv);
1950 
1951 	skb_queue_head_init(&priv->rx_recycle);
1952 
1953 	/* Initialize a bunch of registers */
1954 	init_registers(dev);
1955 
1956 	gfar_set_mac_address(dev);
1957 
1958 	err = init_phy(dev);
1959 
1960 	if (err) {
1961 		disable_napi(priv);
1962 		return err;
1963 	}
1964 
1965 	err = startup_gfar(dev);
1966 	if (err) {
1967 		disable_napi(priv);
1968 		return err;
1969 	}
1970 
1971 	netif_tx_start_all_queues(dev);
1972 
1973 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974 
1975 	return err;
1976 }
1977 
1978 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979 {
1980 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981 
1982 	memset(fcb, 0, GMAC_FCB_LEN);
1983 
1984 	return fcb;
1985 }
1986 
1987 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1988 		int fcb_length)
1989 {
1990 	u8 flags = 0;
1991 
1992 	/* If we're here, it's a IP packet with a TCP or UDP
1993 	 * payload.  We set it to checksum, using a pseudo-header
1994 	 * we provide
1995 	 */
1996 	flags = TXFCB_DEFAULT;
1997 
1998 	/* Tell the controller what the protocol is */
1999 	/* And provide the already calculated phcs */
2000 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001 		flags |= TXFCB_UDP;
2002 		fcb->phcs = udp_hdr(skb)->check;
2003 	} else
2004 		fcb->phcs = tcp_hdr(skb)->check;
2005 
2006 	/* l3os is the distance between the start of the
2007 	 * frame (skb->data) and the start of the IP hdr.
2008 	 * l4os is the distance between the start of the
2009 	 * l3 hdr and the l4 hdr */
2010 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2011 	fcb->l4os = skb_network_header_len(skb);
2012 
2013 	fcb->flags = flags;
2014 }
2015 
2016 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017 {
2018 	fcb->flags |= TXFCB_VLN;
2019 	fcb->vlctl = vlan_tx_tag_get(skb);
2020 }
2021 
2022 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023 			       struct txbd8 *base, int ring_size)
2024 {
2025 	struct txbd8 *new_bd = bdp + stride;
2026 
2027 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028 }
2029 
2030 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031 		int ring_size)
2032 {
2033 	return skip_txbd(bdp, 1, base, ring_size);
2034 }
2035 
2036 /* This is called by the kernel when a frame is ready for transmission. */
2037 /* It is pointed to by the dev->hard_start_xmit function pointer */
2038 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039 {
2040 	struct gfar_private *priv = netdev_priv(dev);
2041 	struct gfar_priv_tx_q *tx_queue = NULL;
2042 	struct netdev_queue *txq;
2043 	struct gfar __iomem *regs = NULL;
2044 	struct txfcb *fcb = NULL;
2045 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046 	u32 lstatus;
2047 	int i, rq = 0, do_tstamp = 0;
2048 	u32 bufaddr;
2049 	unsigned long flags;
2050 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2051 
2052 	/*
2053 	 * TOE=1 frames larger than 2500 bytes may see excess delays
2054 	 * before start of transmission.
2055 	 */
2056 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2057 			skb->ip_summed == CHECKSUM_PARTIAL &&
2058 			skb->len > 2500)) {
2059 		int ret;
2060 
2061 		ret = skb_checksum_help(skb);
2062 		if (ret)
2063 			return ret;
2064 	}
2065 
2066 	rq = skb->queue_mapping;
2067 	tx_queue = priv->tx_queue[rq];
2068 	txq = netdev_get_tx_queue(dev, rq);
2069 	base = tx_queue->tx_bd_base;
2070 	regs = tx_queue->grp->regs;
2071 
2072 	/* check if time stamp should be generated */
2073 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2074 			priv->hwts_tx_en)) {
2075 		do_tstamp = 1;
2076 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2077 	}
2078 
2079 	/* make space for additional header when fcb is needed */
2080 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2081 			vlan_tx_tag_present(skb) ||
2082 			unlikely(do_tstamp)) &&
2083 			(skb_headroom(skb) < fcb_length)) {
2084 		struct sk_buff *skb_new;
2085 
2086 		skb_new = skb_realloc_headroom(skb, fcb_length);
2087 		if (!skb_new) {
2088 			dev->stats.tx_errors++;
2089 			kfree_skb(skb);
2090 			return NETDEV_TX_OK;
2091 		}
2092 
2093 		/* Steal sock reference for processing TX time stamps */
2094 		swap(skb_new->sk, skb->sk);
2095 		swap(skb_new->destructor, skb->destructor);
2096 		kfree_skb(skb);
2097 		skb = skb_new;
2098 	}
2099 
2100 	/* total number of fragments in the SKB */
2101 	nr_frags = skb_shinfo(skb)->nr_frags;
2102 
2103 	/* calculate the required number of TxBDs for this skb */
2104 	if (unlikely(do_tstamp))
2105 		nr_txbds = nr_frags + 2;
2106 	else
2107 		nr_txbds = nr_frags + 1;
2108 
2109 	/* check if there is space to queue this packet */
2110 	if (nr_txbds > tx_queue->num_txbdfree) {
2111 		/* no space, stop the queue */
2112 		netif_tx_stop_queue(txq);
2113 		dev->stats.tx_fifo_errors++;
2114 		return NETDEV_TX_BUSY;
2115 	}
2116 
2117 	/* Update transmit stats */
2118 	tx_queue->stats.tx_bytes += skb->len;
2119 	tx_queue->stats.tx_packets++;
2120 
2121 	txbdp = txbdp_start = tx_queue->cur_tx;
2122 	lstatus = txbdp->lstatus;
2123 
2124 	/* Time stamp insertion requires one additional TxBD */
2125 	if (unlikely(do_tstamp))
2126 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2127 				tx_queue->tx_ring_size);
2128 
2129 	if (nr_frags == 0) {
2130 		if (unlikely(do_tstamp))
2131 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2132 					TXBD_INTERRUPT);
2133 		else
2134 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2135 	} else {
2136 		/* Place the fragment addresses and lengths into the TxBDs */
2137 		for (i = 0; i < nr_frags; i++) {
2138 			/* Point at the next BD, wrapping as needed */
2139 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2140 
2141 			length = skb_shinfo(skb)->frags[i].size;
2142 
2143 			lstatus = txbdp->lstatus | length |
2144 				BD_LFLAG(TXBD_READY);
2145 
2146 			/* Handle the last BD specially */
2147 			if (i == nr_frags - 1)
2148 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2149 
2150 			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2151 						   &skb_shinfo(skb)->frags[i],
2152 						   0,
2153 						   length,
2154 						   DMA_TO_DEVICE);
2155 
2156 			/* set the TxBD length and buffer pointer */
2157 			txbdp->bufPtr = bufaddr;
2158 			txbdp->lstatus = lstatus;
2159 		}
2160 
2161 		lstatus = txbdp_start->lstatus;
2162 	}
2163 
2164 	/* Add TxPAL between FCB and frame if required */
2165 	if (unlikely(do_tstamp)) {
2166 		skb_push(skb, GMAC_TXPAL_LEN);
2167 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2168 	}
2169 
2170 	/* Set up checksumming */
2171 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2172 		fcb = gfar_add_fcb(skb);
2173 		/* as specified by errata */
2174 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2175 			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2176 			__skb_pull(skb, GMAC_FCB_LEN);
2177 			skb_checksum_help(skb);
2178 		} else {
2179 			lstatus |= BD_LFLAG(TXBD_TOE);
2180 			gfar_tx_checksum(skb, fcb, fcb_length);
2181 		}
2182 	}
2183 
2184 	if (vlan_tx_tag_present(skb)) {
2185 		if (unlikely(NULL == fcb)) {
2186 			fcb = gfar_add_fcb(skb);
2187 			lstatus |= BD_LFLAG(TXBD_TOE);
2188 		}
2189 
2190 		gfar_tx_vlan(skb, fcb);
2191 	}
2192 
2193 	/* Setup tx hardware time stamping if requested */
2194 	if (unlikely(do_tstamp)) {
2195 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2196 		if (fcb == NULL)
2197 			fcb = gfar_add_fcb(skb);
2198 		fcb->ptp = 1;
2199 		lstatus |= BD_LFLAG(TXBD_TOE);
2200 	}
2201 
2202 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2203 			skb_headlen(skb), DMA_TO_DEVICE);
2204 
2205 	/*
2206 	 * If time stamping is requested one additional TxBD must be set up. The
2207 	 * first TxBD points to the FCB and must have a data length of
2208 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2209 	 * the full frame length.
2210 	 */
2211 	if (unlikely(do_tstamp)) {
2212 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2213 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2214 				(skb_headlen(skb) - fcb_length);
2215 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2216 	} else {
2217 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2218 	}
2219 
2220 	netdev_tx_sent_queue(txq, skb->len);
2221 
2222 	/*
2223 	 * We can work in parallel with gfar_clean_tx_ring(), except
2224 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2225 	 * when we were reading the num_txbdfree and checking for available
2226 	 * space, that's because outside of this function it can only grow,
2227 	 * and once we've got needed space, it cannot suddenly disappear.
2228 	 *
2229 	 * The lock also protects us from gfar_error(), which can modify
2230 	 * regs->tstat and thus retrigger the transfers, which is why we
2231 	 * also must grab the lock before setting ready bit for the first
2232 	 * to be transmitted BD.
2233 	 */
2234 	spin_lock_irqsave(&tx_queue->txlock, flags);
2235 
2236 	/*
2237 	 * The powerpc-specific eieio() is used, as wmb() has too strong
2238 	 * semantics (it requires synchronization between cacheable and
2239 	 * uncacheable mappings, which eieio doesn't provide and which we
2240 	 * don't need), thus requiring a more expensive sync instruction.  At
2241 	 * some point, the set of architecture-independent barrier functions
2242 	 * should be expanded to include weaker barriers.
2243 	 */
2244 	eieio();
2245 
2246 	txbdp_start->lstatus = lstatus;
2247 
2248 	eieio(); /* force lstatus write before tx_skbuff */
2249 
2250 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2251 
2252 	/* Update the current skb pointer to the next entry we will use
2253 	 * (wrapping if necessary) */
2254 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2255 		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2256 
2257 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2258 
2259 	/* reduce TxBD free count */
2260 	tx_queue->num_txbdfree -= (nr_txbds);
2261 
2262 	/* If the next BD still needs to be cleaned up, then the bds
2263 	   are full.  We need to tell the kernel to stop sending us stuff. */
2264 	if (!tx_queue->num_txbdfree) {
2265 		netif_tx_stop_queue(txq);
2266 
2267 		dev->stats.tx_fifo_errors++;
2268 	}
2269 
2270 	/* Tell the DMA to go go go */
2271 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2272 
2273 	/* Unlock priv */
2274 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2275 
2276 	return NETDEV_TX_OK;
2277 }
2278 
2279 /* Stops the kernel queue, and halts the controller */
2280 static int gfar_close(struct net_device *dev)
2281 {
2282 	struct gfar_private *priv = netdev_priv(dev);
2283 
2284 	disable_napi(priv);
2285 
2286 	cancel_work_sync(&priv->reset_task);
2287 	stop_gfar(dev);
2288 
2289 	/* Disconnect from the PHY */
2290 	phy_disconnect(priv->phydev);
2291 	priv->phydev = NULL;
2292 
2293 	netif_tx_stop_all_queues(dev);
2294 
2295 	return 0;
2296 }
2297 
2298 /* Changes the mac address if the controller is not running. */
2299 static int gfar_set_mac_address(struct net_device *dev)
2300 {
2301 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2302 
2303 	return 0;
2304 }
2305 
2306 /* Check if rx parser should be activated */
2307 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2308 {
2309 	struct gfar __iomem *regs;
2310 	u32 tempval;
2311 
2312 	regs = priv->gfargrp[0].regs;
2313 
2314 	tempval = gfar_read(&regs->rctrl);
2315 	/* If parse is no longer required, then disable parser */
2316 	if (tempval & RCTRL_REQ_PARSER)
2317 		tempval |= RCTRL_PRSDEP_INIT;
2318 	else
2319 		tempval &= ~RCTRL_PRSDEP_INIT;
2320 	gfar_write(&regs->rctrl, tempval);
2321 }
2322 
2323 /* Enables and disables VLAN insertion/extraction */
2324 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2325 {
2326 	struct gfar_private *priv = netdev_priv(dev);
2327 	struct gfar __iomem *regs = NULL;
2328 	unsigned long flags;
2329 	u32 tempval;
2330 
2331 	regs = priv->gfargrp[0].regs;
2332 	local_irq_save(flags);
2333 	lock_rx_qs(priv);
2334 
2335 	if (features & NETIF_F_HW_VLAN_TX) {
2336 		/* Enable VLAN tag insertion */
2337 		tempval = gfar_read(&regs->tctrl);
2338 		tempval |= TCTRL_VLINS;
2339 		gfar_write(&regs->tctrl, tempval);
2340 	} else {
2341 		/* Disable VLAN tag insertion */
2342 		tempval = gfar_read(&regs->tctrl);
2343 		tempval &= ~TCTRL_VLINS;
2344 		gfar_write(&regs->tctrl, tempval);
2345 	}
2346 
2347 	if (features & NETIF_F_HW_VLAN_RX) {
2348 		/* Enable VLAN tag extraction */
2349 		tempval = gfar_read(&regs->rctrl);
2350 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2351 		gfar_write(&regs->rctrl, tempval);
2352 	} else {
2353 		/* Disable VLAN tag extraction */
2354 		tempval = gfar_read(&regs->rctrl);
2355 		tempval &= ~RCTRL_VLEX;
2356 		gfar_write(&regs->rctrl, tempval);
2357 
2358 		gfar_check_rx_parser_mode(priv);
2359 	}
2360 
2361 	gfar_change_mtu(dev, dev->mtu);
2362 
2363 	unlock_rx_qs(priv);
2364 	local_irq_restore(flags);
2365 }
2366 
2367 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2368 {
2369 	int tempsize, tempval;
2370 	struct gfar_private *priv = netdev_priv(dev);
2371 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2372 	int oldsize = priv->rx_buffer_size;
2373 	int frame_size = new_mtu + ETH_HLEN;
2374 
2375 	if (gfar_is_vlan_on(priv))
2376 		frame_size += VLAN_HLEN;
2377 
2378 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2379 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2380 		return -EINVAL;
2381 	}
2382 
2383 	if (gfar_uses_fcb(priv))
2384 		frame_size += GMAC_FCB_LEN;
2385 
2386 	frame_size += priv->padding;
2387 
2388 	tempsize =
2389 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2390 	    INCREMENTAL_BUFFER_SIZE;
2391 
2392 	/* Only stop and start the controller if it isn't already
2393 	 * stopped, and we changed something */
2394 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2395 		stop_gfar(dev);
2396 
2397 	priv->rx_buffer_size = tempsize;
2398 
2399 	dev->mtu = new_mtu;
2400 
2401 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2402 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2403 
2404 	/* If the mtu is larger than the max size for standard
2405 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2406 	 * to allow huge frames, and to check the length */
2407 	tempval = gfar_read(&regs->maccfg2);
2408 
2409 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2410 			gfar_has_errata(priv, GFAR_ERRATA_74))
2411 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2412 	else
2413 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2414 
2415 	gfar_write(&regs->maccfg2, tempval);
2416 
2417 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2418 		startup_gfar(dev);
2419 
2420 	return 0;
2421 }
2422 
2423 /* gfar_reset_task gets scheduled when a packet has not been
2424  * transmitted after a set amount of time.
2425  * For now, assume that clearing out all the structures, and
2426  * starting over will fix the problem.
2427  */
2428 static void gfar_reset_task(struct work_struct *work)
2429 {
2430 	struct gfar_private *priv = container_of(work, struct gfar_private,
2431 			reset_task);
2432 	struct net_device *dev = priv->ndev;
2433 
2434 	if (dev->flags & IFF_UP) {
2435 		netif_tx_stop_all_queues(dev);
2436 		stop_gfar(dev);
2437 		startup_gfar(dev);
2438 		netif_tx_start_all_queues(dev);
2439 	}
2440 
2441 	netif_tx_schedule_all(dev);
2442 }
2443 
2444 static void gfar_timeout(struct net_device *dev)
2445 {
2446 	struct gfar_private *priv = netdev_priv(dev);
2447 
2448 	dev->stats.tx_errors++;
2449 	schedule_work(&priv->reset_task);
2450 }
2451 
2452 static void gfar_align_skb(struct sk_buff *skb)
2453 {
2454 	/* We need the data buffer to be aligned properly.  We will reserve
2455 	 * as many bytes as needed to align the data properly
2456 	 */
2457 	skb_reserve(skb, RXBUF_ALIGNMENT -
2458 		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2459 }
2460 
2461 /* Interrupt Handler for Transmit complete */
2462 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2463 {
2464 	struct net_device *dev = tx_queue->dev;
2465 	struct netdev_queue *txq;
2466 	struct gfar_private *priv = netdev_priv(dev);
2467 	struct gfar_priv_rx_q *rx_queue = NULL;
2468 	struct txbd8 *bdp, *next = NULL;
2469 	struct txbd8 *lbdp = NULL;
2470 	struct txbd8 *base = tx_queue->tx_bd_base;
2471 	struct sk_buff *skb;
2472 	int skb_dirtytx;
2473 	int tx_ring_size = tx_queue->tx_ring_size;
2474 	int frags = 0, nr_txbds = 0;
2475 	int i;
2476 	int howmany = 0;
2477 	int tqi = tx_queue->qindex;
2478 	unsigned int bytes_sent = 0;
2479 	u32 lstatus;
2480 	size_t buflen;
2481 
2482 	rx_queue = priv->rx_queue[tqi];
2483 	txq = netdev_get_tx_queue(dev, tqi);
2484 	bdp = tx_queue->dirty_tx;
2485 	skb_dirtytx = tx_queue->skb_dirtytx;
2486 
2487 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2488 		unsigned long flags;
2489 
2490 		frags = skb_shinfo(skb)->nr_frags;
2491 
2492 		/*
2493 		 * When time stamping, one additional TxBD must be freed.
2494 		 * Also, we need to dma_unmap_single() the TxPAL.
2495 		 */
2496 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2497 			nr_txbds = frags + 2;
2498 		else
2499 			nr_txbds = frags + 1;
2500 
2501 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2502 
2503 		lstatus = lbdp->lstatus;
2504 
2505 		/* Only clean completed frames */
2506 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2507 				(lstatus & BD_LENGTH_MASK))
2508 			break;
2509 
2510 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2511 			next = next_txbd(bdp, base, tx_ring_size);
2512 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2513 		} else
2514 			buflen = bdp->length;
2515 
2516 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2517 				buflen, DMA_TO_DEVICE);
2518 
2519 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2520 			struct skb_shared_hwtstamps shhwtstamps;
2521 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2522 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2523 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2524 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2525 			skb_tstamp_tx(skb, &shhwtstamps);
2526 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2527 			bdp = next;
2528 		}
2529 
2530 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2531 		bdp = next_txbd(bdp, base, tx_ring_size);
2532 
2533 		for (i = 0; i < frags; i++) {
2534 			dma_unmap_page(&priv->ofdev->dev,
2535 					bdp->bufPtr,
2536 					bdp->length,
2537 					DMA_TO_DEVICE);
2538 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2539 			bdp = next_txbd(bdp, base, tx_ring_size);
2540 		}
2541 
2542 		bytes_sent += skb->len;
2543 
2544 		/*
2545 		 * If there's room in the queue (limit it to rx_buffer_size)
2546 		 * we add this skb back into the pool, if it's the right size
2547 		 */
2548 		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2549 				skb_recycle_check(skb, priv->rx_buffer_size +
2550 					RXBUF_ALIGNMENT)) {
2551 			gfar_align_skb(skb);
2552 			skb_queue_head(&priv->rx_recycle, skb);
2553 		} else
2554 			dev_kfree_skb_any(skb);
2555 
2556 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2557 
2558 		skb_dirtytx = (skb_dirtytx + 1) &
2559 			TX_RING_MOD_MASK(tx_ring_size);
2560 
2561 		howmany++;
2562 		spin_lock_irqsave(&tx_queue->txlock, flags);
2563 		tx_queue->num_txbdfree += nr_txbds;
2564 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2565 	}
2566 
2567 	/* If we freed a buffer, we can restart transmission, if necessary */
2568 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2569 		netif_wake_subqueue(dev, tqi);
2570 
2571 	/* Update dirty indicators */
2572 	tx_queue->skb_dirtytx = skb_dirtytx;
2573 	tx_queue->dirty_tx = bdp;
2574 
2575 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2576 
2577 	return howmany;
2578 }
2579 
2580 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2581 {
2582 	unsigned long flags;
2583 
2584 	spin_lock_irqsave(&gfargrp->grplock, flags);
2585 	if (napi_schedule_prep(&gfargrp->napi)) {
2586 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2587 		__napi_schedule(&gfargrp->napi);
2588 	} else {
2589 		/*
2590 		 * Clear IEVENT, so interrupts aren't called again
2591 		 * because of the packets that have already arrived.
2592 		 */
2593 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2594 	}
2595 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2596 
2597 }
2598 
2599 /* Interrupt Handler for Transmit complete */
2600 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2601 {
2602 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2603 	return IRQ_HANDLED;
2604 }
2605 
2606 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2607 		struct sk_buff *skb)
2608 {
2609 	struct net_device *dev = rx_queue->dev;
2610 	struct gfar_private *priv = netdev_priv(dev);
2611 	dma_addr_t buf;
2612 
2613 	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2614 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2615 	gfar_init_rxbdp(rx_queue, bdp, buf);
2616 }
2617 
2618 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2619 {
2620 	struct gfar_private *priv = netdev_priv(dev);
2621 	struct sk_buff *skb = NULL;
2622 
2623 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2624 	if (!skb)
2625 		return NULL;
2626 
2627 	gfar_align_skb(skb);
2628 
2629 	return skb;
2630 }
2631 
2632 struct sk_buff * gfar_new_skb(struct net_device *dev)
2633 {
2634 	struct gfar_private *priv = netdev_priv(dev);
2635 	struct sk_buff *skb = NULL;
2636 
2637 	skb = skb_dequeue(&priv->rx_recycle);
2638 	if (!skb)
2639 		skb = gfar_alloc_skb(dev);
2640 
2641 	return skb;
2642 }
2643 
2644 static inline void count_errors(unsigned short status, struct net_device *dev)
2645 {
2646 	struct gfar_private *priv = netdev_priv(dev);
2647 	struct net_device_stats *stats = &dev->stats;
2648 	struct gfar_extra_stats *estats = &priv->extra_stats;
2649 
2650 	/* If the packet was truncated, none of the other errors
2651 	 * matter */
2652 	if (status & RXBD_TRUNCATED) {
2653 		stats->rx_length_errors++;
2654 
2655 		estats->rx_trunc++;
2656 
2657 		return;
2658 	}
2659 	/* Count the errors, if there were any */
2660 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2661 		stats->rx_length_errors++;
2662 
2663 		if (status & RXBD_LARGE)
2664 			estats->rx_large++;
2665 		else
2666 			estats->rx_short++;
2667 	}
2668 	if (status & RXBD_NONOCTET) {
2669 		stats->rx_frame_errors++;
2670 		estats->rx_nonoctet++;
2671 	}
2672 	if (status & RXBD_CRCERR) {
2673 		estats->rx_crcerr++;
2674 		stats->rx_crc_errors++;
2675 	}
2676 	if (status & RXBD_OVERRUN) {
2677 		estats->rx_overrun++;
2678 		stats->rx_crc_errors++;
2679 	}
2680 }
2681 
2682 irqreturn_t gfar_receive(int irq, void *grp_id)
2683 {
2684 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2685 	return IRQ_HANDLED;
2686 }
2687 
2688 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2689 {
2690 	/* If valid headers were found, and valid sums
2691 	 * were verified, then we tell the kernel that no
2692 	 * checksumming is necessary.  Otherwise, it is */
2693 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2694 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2695 	else
2696 		skb_checksum_none_assert(skb);
2697 }
2698 
2699 
2700 /* gfar_process_frame() -- handle one incoming packet if skb
2701  * isn't NULL.  */
2702 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2703 			      int amount_pull)
2704 {
2705 	struct gfar_private *priv = netdev_priv(dev);
2706 	struct rxfcb *fcb = NULL;
2707 
2708 	int ret;
2709 
2710 	/* fcb is at the beginning if exists */
2711 	fcb = (struct rxfcb *)skb->data;
2712 
2713 	/* Remove the FCB from the skb */
2714 	/* Remove the padded bytes, if there are any */
2715 	if (amount_pull) {
2716 		skb_record_rx_queue(skb, fcb->rq);
2717 		skb_pull(skb, amount_pull);
2718 	}
2719 
2720 	/* Get receive timestamp from the skb */
2721 	if (priv->hwts_rx_en) {
2722 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2723 		u64 *ns = (u64 *) skb->data;
2724 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2725 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2726 	}
2727 
2728 	if (priv->padding)
2729 		skb_pull(skb, priv->padding);
2730 
2731 	if (dev->features & NETIF_F_RXCSUM)
2732 		gfar_rx_checksum(skb, fcb);
2733 
2734 	/* Tell the skb what kind of packet this is */
2735 	skb->protocol = eth_type_trans(skb, dev);
2736 
2737 	/*
2738 	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2739 	 * Even if vlan rx accel is disabled, on some chips
2740 	 * RXFCB_VLN is pseudo randomly set.
2741 	 */
2742 	if (dev->features & NETIF_F_HW_VLAN_RX &&
2743 	    fcb->flags & RXFCB_VLN)
2744 		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2745 
2746 	/* Send the packet up the stack */
2747 	ret = netif_receive_skb(skb);
2748 
2749 	if (NET_RX_DROP == ret)
2750 		priv->extra_stats.kernel_dropped++;
2751 
2752 	return 0;
2753 }
2754 
2755 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2756  *   until the budget/quota has been reached. Returns the number
2757  *   of frames handled
2758  */
2759 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2760 {
2761 	struct net_device *dev = rx_queue->dev;
2762 	struct rxbd8 *bdp, *base;
2763 	struct sk_buff *skb;
2764 	int pkt_len;
2765 	int amount_pull;
2766 	int howmany = 0;
2767 	struct gfar_private *priv = netdev_priv(dev);
2768 
2769 	/* Get the first full descriptor */
2770 	bdp = rx_queue->cur_rx;
2771 	base = rx_queue->rx_bd_base;
2772 
2773 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2774 
2775 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2776 		struct sk_buff *newskb;
2777 		rmb();
2778 
2779 		/* Add another skb for the future */
2780 		newskb = gfar_new_skb(dev);
2781 
2782 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2783 
2784 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2785 				priv->rx_buffer_size, DMA_FROM_DEVICE);
2786 
2787 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2788 				bdp->length > priv->rx_buffer_size))
2789 			bdp->status = RXBD_LARGE;
2790 
2791 		/* We drop the frame if we failed to allocate a new buffer */
2792 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2793 				 bdp->status & RXBD_ERR)) {
2794 			count_errors(bdp->status, dev);
2795 
2796 			if (unlikely(!newskb))
2797 				newskb = skb;
2798 			else if (skb)
2799 				skb_queue_head(&priv->rx_recycle, skb);
2800 		} else {
2801 			/* Increment the number of packets */
2802 			rx_queue->stats.rx_packets++;
2803 			howmany++;
2804 
2805 			if (likely(skb)) {
2806 				pkt_len = bdp->length - ETH_FCS_LEN;
2807 				/* Remove the FCS from the packet length */
2808 				skb_put(skb, pkt_len);
2809 				rx_queue->stats.rx_bytes += pkt_len;
2810 				skb_record_rx_queue(skb, rx_queue->qindex);
2811 				gfar_process_frame(dev, skb, amount_pull);
2812 
2813 			} else {
2814 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2815 				rx_queue->stats.rx_dropped++;
2816 				priv->extra_stats.rx_skbmissing++;
2817 			}
2818 
2819 		}
2820 
2821 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2822 
2823 		/* Setup the new bdp */
2824 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2825 
2826 		/* Update to the next pointer */
2827 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2828 
2829 		/* update to point at the next skb */
2830 		rx_queue->skb_currx =
2831 		    (rx_queue->skb_currx + 1) &
2832 		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2833 	}
2834 
2835 	/* Update the current rxbd pointer to be the next one */
2836 	rx_queue->cur_rx = bdp;
2837 
2838 	return howmany;
2839 }
2840 
2841 static int gfar_poll(struct napi_struct *napi, int budget)
2842 {
2843 	struct gfar_priv_grp *gfargrp = container_of(napi,
2844 			struct gfar_priv_grp, napi);
2845 	struct gfar_private *priv = gfargrp->priv;
2846 	struct gfar __iomem *regs = gfargrp->regs;
2847 	struct gfar_priv_tx_q *tx_queue = NULL;
2848 	struct gfar_priv_rx_q *rx_queue = NULL;
2849 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2850 	int tx_cleaned = 0, i, left_over_budget = budget;
2851 	unsigned long serviced_queues = 0;
2852 	int num_queues = 0;
2853 
2854 	num_queues = gfargrp->num_rx_queues;
2855 	budget_per_queue = budget/num_queues;
2856 
2857 	/* Clear IEVENT, so interrupts aren't called again
2858 	 * because of the packets that have already arrived */
2859 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2860 
2861 	while (num_queues && left_over_budget) {
2862 
2863 		budget_per_queue = left_over_budget/num_queues;
2864 		left_over_budget = 0;
2865 
2866 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2867 			if (test_bit(i, &serviced_queues))
2868 				continue;
2869 			rx_queue = priv->rx_queue[i];
2870 			tx_queue = priv->tx_queue[rx_queue->qindex];
2871 
2872 			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2873 			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2874 							budget_per_queue);
2875 			rx_cleaned += rx_cleaned_per_queue;
2876 			if(rx_cleaned_per_queue < budget_per_queue) {
2877 				left_over_budget = left_over_budget +
2878 					(budget_per_queue - rx_cleaned_per_queue);
2879 				set_bit(i, &serviced_queues);
2880 				num_queues--;
2881 			}
2882 		}
2883 	}
2884 
2885 	if (tx_cleaned)
2886 		return budget;
2887 
2888 	if (rx_cleaned < budget) {
2889 		napi_complete(napi);
2890 
2891 		/* Clear the halt bit in RSTAT */
2892 		gfar_write(&regs->rstat, gfargrp->rstat);
2893 
2894 		gfar_write(&regs->imask, IMASK_DEFAULT);
2895 
2896 		/* If we are coalescing interrupts, update the timer */
2897 		/* Otherwise, clear it */
2898 		gfar_configure_coalescing(priv,
2899 				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2900 	}
2901 
2902 	return rx_cleaned;
2903 }
2904 
2905 #ifdef CONFIG_NET_POLL_CONTROLLER
2906 /*
2907  * Polling 'interrupt' - used by things like netconsole to send skbs
2908  * without having to re-enable interrupts. It's not called while
2909  * the interrupt routine is executing.
2910  */
2911 static void gfar_netpoll(struct net_device *dev)
2912 {
2913 	struct gfar_private *priv = netdev_priv(dev);
2914 	int i = 0;
2915 
2916 	/* If the device has multiple interrupts, run tx/rx */
2917 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2918 		for (i = 0; i < priv->num_grps; i++) {
2919 			disable_irq(priv->gfargrp[i].interruptTransmit);
2920 			disable_irq(priv->gfargrp[i].interruptReceive);
2921 			disable_irq(priv->gfargrp[i].interruptError);
2922 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2923 						&priv->gfargrp[i]);
2924 			enable_irq(priv->gfargrp[i].interruptError);
2925 			enable_irq(priv->gfargrp[i].interruptReceive);
2926 			enable_irq(priv->gfargrp[i].interruptTransmit);
2927 		}
2928 	} else {
2929 		for (i = 0; i < priv->num_grps; i++) {
2930 			disable_irq(priv->gfargrp[i].interruptTransmit);
2931 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2932 						&priv->gfargrp[i]);
2933 			enable_irq(priv->gfargrp[i].interruptTransmit);
2934 		}
2935 	}
2936 }
2937 #endif
2938 
2939 /* The interrupt handler for devices with one interrupt */
2940 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2941 {
2942 	struct gfar_priv_grp *gfargrp = grp_id;
2943 
2944 	/* Save ievent for future reference */
2945 	u32 events = gfar_read(&gfargrp->regs->ievent);
2946 
2947 	/* Check for reception */
2948 	if (events & IEVENT_RX_MASK)
2949 		gfar_receive(irq, grp_id);
2950 
2951 	/* Check for transmit completion */
2952 	if (events & IEVENT_TX_MASK)
2953 		gfar_transmit(irq, grp_id);
2954 
2955 	/* Check for errors */
2956 	if (events & IEVENT_ERR_MASK)
2957 		gfar_error(irq, grp_id);
2958 
2959 	return IRQ_HANDLED;
2960 }
2961 
2962 /* Called every time the controller might need to be made
2963  * aware of new link state.  The PHY code conveys this
2964  * information through variables in the phydev structure, and this
2965  * function converts those variables into the appropriate
2966  * register values, and can bring down the device if needed.
2967  */
2968 static void adjust_link(struct net_device *dev)
2969 {
2970 	struct gfar_private *priv = netdev_priv(dev);
2971 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2972 	unsigned long flags;
2973 	struct phy_device *phydev = priv->phydev;
2974 	int new_state = 0;
2975 
2976 	local_irq_save(flags);
2977 	lock_tx_qs(priv);
2978 
2979 	if (phydev->link) {
2980 		u32 tempval = gfar_read(&regs->maccfg2);
2981 		u32 ecntrl = gfar_read(&regs->ecntrl);
2982 
2983 		/* Now we make sure that we can be in full duplex mode.
2984 		 * If not, we operate in half-duplex mode. */
2985 		if (phydev->duplex != priv->oldduplex) {
2986 			new_state = 1;
2987 			if (!(phydev->duplex))
2988 				tempval &= ~(MACCFG2_FULL_DUPLEX);
2989 			else
2990 				tempval |= MACCFG2_FULL_DUPLEX;
2991 
2992 			priv->oldduplex = phydev->duplex;
2993 		}
2994 
2995 		if (phydev->speed != priv->oldspeed) {
2996 			new_state = 1;
2997 			switch (phydev->speed) {
2998 			case 1000:
2999 				tempval =
3000 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3001 
3002 				ecntrl &= ~(ECNTRL_R100);
3003 				break;
3004 			case 100:
3005 			case 10:
3006 				tempval =
3007 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3008 
3009 				/* Reduced mode distinguishes
3010 				 * between 10 and 100 */
3011 				if (phydev->speed == SPEED_100)
3012 					ecntrl |= ECNTRL_R100;
3013 				else
3014 					ecntrl &= ~(ECNTRL_R100);
3015 				break;
3016 			default:
3017 				netif_warn(priv, link, dev,
3018 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3019 					   phydev->speed);
3020 				break;
3021 			}
3022 
3023 			priv->oldspeed = phydev->speed;
3024 		}
3025 
3026 		gfar_write(&regs->maccfg2, tempval);
3027 		gfar_write(&regs->ecntrl, ecntrl);
3028 
3029 		if (!priv->oldlink) {
3030 			new_state = 1;
3031 			priv->oldlink = 1;
3032 		}
3033 	} else if (priv->oldlink) {
3034 		new_state = 1;
3035 		priv->oldlink = 0;
3036 		priv->oldspeed = 0;
3037 		priv->oldduplex = -1;
3038 	}
3039 
3040 	if (new_state && netif_msg_link(priv))
3041 		phy_print_status(phydev);
3042 	unlock_tx_qs(priv);
3043 	local_irq_restore(flags);
3044 }
3045 
3046 /* Update the hash table based on the current list of multicast
3047  * addresses we subscribe to.  Also, change the promiscuity of
3048  * the device based on the flags (this function is called
3049  * whenever dev->flags is changed */
3050 static void gfar_set_multi(struct net_device *dev)
3051 {
3052 	struct netdev_hw_addr *ha;
3053 	struct gfar_private *priv = netdev_priv(dev);
3054 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3055 	u32 tempval;
3056 
3057 	if (dev->flags & IFF_PROMISC) {
3058 		/* Set RCTRL to PROM */
3059 		tempval = gfar_read(&regs->rctrl);
3060 		tempval |= RCTRL_PROM;
3061 		gfar_write(&regs->rctrl, tempval);
3062 	} else {
3063 		/* Set RCTRL to not PROM */
3064 		tempval = gfar_read(&regs->rctrl);
3065 		tempval &= ~(RCTRL_PROM);
3066 		gfar_write(&regs->rctrl, tempval);
3067 	}
3068 
3069 	if (dev->flags & IFF_ALLMULTI) {
3070 		/* Set the hash to rx all multicast frames */
3071 		gfar_write(&regs->igaddr0, 0xffffffff);
3072 		gfar_write(&regs->igaddr1, 0xffffffff);
3073 		gfar_write(&regs->igaddr2, 0xffffffff);
3074 		gfar_write(&regs->igaddr3, 0xffffffff);
3075 		gfar_write(&regs->igaddr4, 0xffffffff);
3076 		gfar_write(&regs->igaddr5, 0xffffffff);
3077 		gfar_write(&regs->igaddr6, 0xffffffff);
3078 		gfar_write(&regs->igaddr7, 0xffffffff);
3079 		gfar_write(&regs->gaddr0, 0xffffffff);
3080 		gfar_write(&regs->gaddr1, 0xffffffff);
3081 		gfar_write(&regs->gaddr2, 0xffffffff);
3082 		gfar_write(&regs->gaddr3, 0xffffffff);
3083 		gfar_write(&regs->gaddr4, 0xffffffff);
3084 		gfar_write(&regs->gaddr5, 0xffffffff);
3085 		gfar_write(&regs->gaddr6, 0xffffffff);
3086 		gfar_write(&regs->gaddr7, 0xffffffff);
3087 	} else {
3088 		int em_num;
3089 		int idx;
3090 
3091 		/* zero out the hash */
3092 		gfar_write(&regs->igaddr0, 0x0);
3093 		gfar_write(&regs->igaddr1, 0x0);
3094 		gfar_write(&regs->igaddr2, 0x0);
3095 		gfar_write(&regs->igaddr3, 0x0);
3096 		gfar_write(&regs->igaddr4, 0x0);
3097 		gfar_write(&regs->igaddr5, 0x0);
3098 		gfar_write(&regs->igaddr6, 0x0);
3099 		gfar_write(&regs->igaddr7, 0x0);
3100 		gfar_write(&regs->gaddr0, 0x0);
3101 		gfar_write(&regs->gaddr1, 0x0);
3102 		gfar_write(&regs->gaddr2, 0x0);
3103 		gfar_write(&regs->gaddr3, 0x0);
3104 		gfar_write(&regs->gaddr4, 0x0);
3105 		gfar_write(&regs->gaddr5, 0x0);
3106 		gfar_write(&regs->gaddr6, 0x0);
3107 		gfar_write(&regs->gaddr7, 0x0);
3108 
3109 		/* If we have extended hash tables, we need to
3110 		 * clear the exact match registers to prepare for
3111 		 * setting them */
3112 		if (priv->extended_hash) {
3113 			em_num = GFAR_EM_NUM + 1;
3114 			gfar_clear_exact_match(dev);
3115 			idx = 1;
3116 		} else {
3117 			idx = 0;
3118 			em_num = 0;
3119 		}
3120 
3121 		if (netdev_mc_empty(dev))
3122 			return;
3123 
3124 		/* Parse the list, and set the appropriate bits */
3125 		netdev_for_each_mc_addr(ha, dev) {
3126 			if (idx < em_num) {
3127 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3128 				idx++;
3129 			} else
3130 				gfar_set_hash_for_addr(dev, ha->addr);
3131 		}
3132 	}
3133 }
3134 
3135 
3136 /* Clears each of the exact match registers to zero, so they
3137  * don't interfere with normal reception */
3138 static void gfar_clear_exact_match(struct net_device *dev)
3139 {
3140 	int idx;
3141 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3142 
3143 	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3144 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3145 }
3146 
3147 /* Set the appropriate hash bit for the given addr */
3148 /* The algorithm works like so:
3149  * 1) Take the Destination Address (ie the multicast address), and
3150  * do a CRC on it (little endian), and reverse the bits of the
3151  * result.
3152  * 2) Use the 8 most significant bits as a hash into a 256-entry
3153  * table.  The table is controlled through 8 32-bit registers:
3154  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3155  * gaddr7.  This means that the 3 most significant bits in the
3156  * hash index which gaddr register to use, and the 5 other bits
3157  * indicate which bit (assuming an IBM numbering scheme, which
3158  * for PowerPC (tm) is usually the case) in the register holds
3159  * the entry. */
3160 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3161 {
3162 	u32 tempval;
3163 	struct gfar_private *priv = netdev_priv(dev);
3164 	u32 result = ether_crc(ETH_ALEN, addr);
3165 	int width = priv->hash_width;
3166 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3167 	u8 whichreg = result >> (32 - width + 5);
3168 	u32 value = (1 << (31-whichbit));
3169 
3170 	tempval = gfar_read(priv->hash_regs[whichreg]);
3171 	tempval |= value;
3172 	gfar_write(priv->hash_regs[whichreg], tempval);
3173 }
3174 
3175 
3176 /* There are multiple MAC Address register pairs on some controllers
3177  * This function sets the numth pair to a given address
3178  */
3179 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3180 				  const u8 *addr)
3181 {
3182 	struct gfar_private *priv = netdev_priv(dev);
3183 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3184 	int idx;
3185 	char tmpbuf[ETH_ALEN];
3186 	u32 tempval;
3187 	u32 __iomem *macptr = &regs->macstnaddr1;
3188 
3189 	macptr += num*2;
3190 
3191 	/* Now copy it into the mac registers backwards, cuz */
3192 	/* little endian is silly */
3193 	for (idx = 0; idx < ETH_ALEN; idx++)
3194 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3195 
3196 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3197 
3198 	tempval = *((u32 *) (tmpbuf + 4));
3199 
3200 	gfar_write(macptr+1, tempval);
3201 }
3202 
3203 /* GFAR error interrupt handler */
3204 static irqreturn_t gfar_error(int irq, void *grp_id)
3205 {
3206 	struct gfar_priv_grp *gfargrp = grp_id;
3207 	struct gfar __iomem *regs = gfargrp->regs;
3208 	struct gfar_private *priv= gfargrp->priv;
3209 	struct net_device *dev = priv->ndev;
3210 
3211 	/* Save ievent for future reference */
3212 	u32 events = gfar_read(&regs->ievent);
3213 
3214 	/* Clear IEVENT */
3215 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3216 
3217 	/* Magic Packet is not an error. */
3218 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3219 	    (events & IEVENT_MAG))
3220 		events &= ~IEVENT_MAG;
3221 
3222 	/* Hmm... */
3223 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3224 		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3225 			   events, gfar_read(&regs->imask));
3226 
3227 	/* Update the error counters */
3228 	if (events & IEVENT_TXE) {
3229 		dev->stats.tx_errors++;
3230 
3231 		if (events & IEVENT_LC)
3232 			dev->stats.tx_window_errors++;
3233 		if (events & IEVENT_CRL)
3234 			dev->stats.tx_aborted_errors++;
3235 		if (events & IEVENT_XFUN) {
3236 			unsigned long flags;
3237 
3238 			netif_dbg(priv, tx_err, dev,
3239 				  "TX FIFO underrun, packet dropped\n");
3240 			dev->stats.tx_dropped++;
3241 			priv->extra_stats.tx_underrun++;
3242 
3243 			local_irq_save(flags);
3244 			lock_tx_qs(priv);
3245 
3246 			/* Reactivate the Tx Queues */
3247 			gfar_write(&regs->tstat, gfargrp->tstat);
3248 
3249 			unlock_tx_qs(priv);
3250 			local_irq_restore(flags);
3251 		}
3252 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3253 	}
3254 	if (events & IEVENT_BSY) {
3255 		dev->stats.rx_errors++;
3256 		priv->extra_stats.rx_bsy++;
3257 
3258 		gfar_receive(irq, grp_id);
3259 
3260 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3261 			  gfar_read(&regs->rstat));
3262 	}
3263 	if (events & IEVENT_BABR) {
3264 		dev->stats.rx_errors++;
3265 		priv->extra_stats.rx_babr++;
3266 
3267 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3268 	}
3269 	if (events & IEVENT_EBERR) {
3270 		priv->extra_stats.eberr++;
3271 		netif_dbg(priv, rx_err, dev, "bus error\n");
3272 	}
3273 	if (events & IEVENT_RXC)
3274 		netif_dbg(priv, rx_status, dev, "control frame\n");
3275 
3276 	if (events & IEVENT_BABT) {
3277 		priv->extra_stats.tx_babt++;
3278 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3279 	}
3280 	return IRQ_HANDLED;
3281 }
3282 
3283 static struct of_device_id gfar_match[] =
3284 {
3285 	{
3286 		.type = "network",
3287 		.compatible = "gianfar",
3288 	},
3289 	{
3290 		.compatible = "fsl,etsec2",
3291 	},
3292 	{},
3293 };
3294 MODULE_DEVICE_TABLE(of, gfar_match);
3295 
3296 /* Structure for a device driver */
3297 static struct platform_driver gfar_driver = {
3298 	.driver = {
3299 		.name = "fsl-gianfar",
3300 		.owner = THIS_MODULE,
3301 		.pm = GFAR_PM_OPS,
3302 		.of_match_table = gfar_match,
3303 	},
3304 	.probe = gfar_probe,
3305 	.remove = gfar_remove,
3306 };
3307 
3308 module_platform_driver(gfar_driver);
3309