xref: /openbmc/linux/drivers/net/ethernet/freescale/gianfar.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
652 		    gfar_irq(grp, ER)->irq == NO_IRQ)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	struct property *stash;
742 	u32 stash_len = 0;
743 	u32 stash_idx = 0;
744 	unsigned int num_tx_qs, num_rx_qs;
745 	unsigned short mode, poll_mode;
746 
747 	if (!np)
748 		return -ENODEV;
749 
750 	if (of_device_is_compatible(np, "fsl,etsec2")) {
751 		mode = MQ_MG_MODE;
752 		poll_mode = GFAR_SQ_POLLING;
753 	} else {
754 		mode = SQ_SG_MODE;
755 		poll_mode = GFAR_SQ_POLLING;
756 	}
757 
758 	if (mode == SQ_SG_MODE) {
759 		num_tx_qs = 1;
760 		num_rx_qs = 1;
761 	} else { /* MQ_MG_MODE */
762 		/* get the actual number of supported groups */
763 		unsigned int num_grps = gfar_of_group_count(np);
764 
765 		if (num_grps == 0 || num_grps > MAXGROUPS) {
766 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 				num_grps);
768 			pr_err("Cannot do alloc_etherdev, aborting\n");
769 			return -EINVAL;
770 		}
771 
772 		if (poll_mode == GFAR_SQ_POLLING) {
773 			num_tx_qs = num_grps; /* one txq per int group */
774 			num_rx_qs = num_grps; /* one rxq per int group */
775 		} else { /* GFAR_MQ_POLLING */
776 			u32 tx_queues, rx_queues;
777 			int ret;
778 
779 			/* parse the num of HW tx and rx queues */
780 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 						   &tx_queues);
782 			num_tx_qs = ret ? 1 : tx_queues;
783 
784 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 						   &rx_queues);
786 			num_rx_qs = ret ? 1 : rx_queues;
787 		}
788 	}
789 
790 	if (num_tx_qs > MAX_TX_QS) {
791 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 		       num_tx_qs, MAX_TX_QS);
793 		pr_err("Cannot do alloc_etherdev, aborting\n");
794 		return -EINVAL;
795 	}
796 
797 	if (num_rx_qs > MAX_RX_QS) {
798 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 		       num_rx_qs, MAX_RX_QS);
800 		pr_err("Cannot do alloc_etherdev, aborting\n");
801 		return -EINVAL;
802 	}
803 
804 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 	dev = *pdev;
806 	if (NULL == dev)
807 		return -ENOMEM;
808 
809 	priv = netdev_priv(dev);
810 	priv->ndev = dev;
811 
812 	priv->mode = mode;
813 	priv->poll_mode = poll_mode;
814 
815 	priv->num_tx_queues = num_tx_qs;
816 	netif_set_real_num_rx_queues(dev, num_rx_qs);
817 	priv->num_rx_queues = num_rx_qs;
818 
819 	err = gfar_alloc_tx_queues(priv);
820 	if (err)
821 		goto tx_alloc_failed;
822 
823 	err = gfar_alloc_rx_queues(priv);
824 	if (err)
825 		goto rx_alloc_failed;
826 
827 	err = of_property_read_string(np, "model", &model);
828 	if (err) {
829 		pr_err("Device model property missing, aborting\n");
830 		goto rx_alloc_failed;
831 	}
832 
833 	/* Init Rx queue filer rule set linked list */
834 	INIT_LIST_HEAD(&priv->rx_list.list);
835 	priv->rx_list.count = 0;
836 	mutex_init(&priv->rx_queue_access);
837 
838 	for (i = 0; i < MAXGROUPS; i++)
839 		priv->gfargrp[i].regs = NULL;
840 
841 	/* Parse and initialize group specific information */
842 	if (priv->mode == MQ_MG_MODE) {
843 		for_each_available_child_of_node(np, child) {
844 			if (of_node_cmp(child->name, "queue-group"))
845 				continue;
846 
847 			err = gfar_parse_group(child, priv, model);
848 			if (err)
849 				goto err_grp_init;
850 		}
851 	} else { /* SQ_SG_MODE */
852 		err = gfar_parse_group(np, priv, model);
853 		if (err)
854 			goto err_grp_init;
855 	}
856 
857 	stash = of_find_property(np, "bd-stash", NULL);
858 
859 	if (stash) {
860 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 		priv->bd_stash_en = 1;
862 	}
863 
864 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865 
866 	if (err == 0)
867 		priv->rx_stash_size = stash_len;
868 
869 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870 
871 	if (err == 0)
872 		priv->rx_stash_index = stash_idx;
873 
874 	if (stash_len || stash_idx)
875 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876 
877 	mac_addr = of_get_mac_address(np);
878 
879 	if (mac_addr)
880 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881 
882 	if (model && !strcasecmp(model, "TSEC"))
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 				     FSL_GIANFAR_DEV_HAS_COALESCE |
885 				     FSL_GIANFAR_DEV_HAS_RMON |
886 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887 
888 	if (model && !strcasecmp(model, "eTSEC"))
889 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 				     FSL_GIANFAR_DEV_HAS_COALESCE |
891 				     FSL_GIANFAR_DEV_HAS_RMON |
892 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 				     FSL_GIANFAR_DEV_HAS_CSUM |
894 				     FSL_GIANFAR_DEV_HAS_VLAN |
895 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 				     FSL_GIANFAR_DEV_HAS_TIMER;
898 
899 	err = of_property_read_string(np, "phy-connection-type", &ctype);
900 
901 	/* We only care about rgmii-id.  The rest are autodetected */
902 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 	else
905 		priv->interface = PHY_INTERFACE_MODE_MII;
906 
907 	if (of_find_property(np, "fsl,magic-packet", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909 
910 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911 
912 	/* In the case of a fixed PHY, the DT node associated
913 	 * to the PHY is the Ethernet MAC DT node.
914 	 */
915 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916 		err = of_phy_register_fixed_link(np);
917 		if (err)
918 			goto err_grp_init;
919 
920 		priv->phy_node = of_node_get(np);
921 	}
922 
923 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
924 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925 
926 	return 0;
927 
928 err_grp_init:
929 	unmap_group_regs(priv);
930 rx_alloc_failed:
931 	gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933 	gfar_free_tx_queues(priv);
934 	free_gfar_dev(priv);
935 	return err;
936 }
937 
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940 	struct hwtstamp_config config;
941 	struct gfar_private *priv = netdev_priv(netdev);
942 
943 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944 		return -EFAULT;
945 
946 	/* reserved for future extensions */
947 	if (config.flags)
948 		return -EINVAL;
949 
950 	switch (config.tx_type) {
951 	case HWTSTAMP_TX_OFF:
952 		priv->hwts_tx_en = 0;
953 		break;
954 	case HWTSTAMP_TX_ON:
955 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 			return -ERANGE;
957 		priv->hwts_tx_en = 1;
958 		break;
959 	default:
960 		return -ERANGE;
961 	}
962 
963 	switch (config.rx_filter) {
964 	case HWTSTAMP_FILTER_NONE:
965 		if (priv->hwts_rx_en) {
966 			priv->hwts_rx_en = 0;
967 			reset_gfar(netdev);
968 		}
969 		break;
970 	default:
971 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972 			return -ERANGE;
973 		if (!priv->hwts_rx_en) {
974 			priv->hwts_rx_en = 1;
975 			reset_gfar(netdev);
976 		}
977 		config.rx_filter = HWTSTAMP_FILTER_ALL;
978 		break;
979 	}
980 
981 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982 		-EFAULT : 0;
983 }
984 
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987 	struct hwtstamp_config config;
988 	struct gfar_private *priv = netdev_priv(netdev);
989 
990 	config.flags = 0;
991 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992 	config.rx_filter = (priv->hwts_rx_en ?
993 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994 
995 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996 		-EFAULT : 0;
997 }
998 
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001 	struct gfar_private *priv = netdev_priv(dev);
1002 
1003 	if (!netif_running(dev))
1004 		return -EINVAL;
1005 
1006 	if (cmd == SIOCSHWTSTAMP)
1007 		return gfar_hwtstamp_set(dev, rq);
1008 	if (cmd == SIOCGHWTSTAMP)
1009 		return gfar_hwtstamp_get(dev, rq);
1010 
1011 	if (!priv->phydev)
1012 		return -ENODEV;
1013 
1014 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1015 }
1016 
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018 				   u32 class)
1019 {
1020 	u32 rqfpr = FPR_FILER_MASK;
1021 	u32 rqfcr = 0x0;
1022 
1023 	rqfar--;
1024 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025 	priv->ftp_rqfpr[rqfar] = rqfpr;
1026 	priv->ftp_rqfcr[rqfar] = rqfcr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	rqfar--;
1030 	rqfcr = RQFCR_CMP_NOMATCH;
1031 	priv->ftp_rqfpr[rqfar] = rqfpr;
1032 	priv->ftp_rqfcr[rqfar] = rqfcr;
1033 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034 
1035 	rqfar--;
1036 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037 	rqfpr = class;
1038 	priv->ftp_rqfcr[rqfar] = rqfcr;
1039 	priv->ftp_rqfpr[rqfar] = rqfpr;
1040 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041 
1042 	rqfar--;
1043 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044 	rqfpr = class;
1045 	priv->ftp_rqfcr[rqfar] = rqfcr;
1046 	priv->ftp_rqfpr[rqfar] = rqfpr;
1047 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048 
1049 	return rqfar;
1050 }
1051 
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054 	int i = 0x0;
1055 	u32 rqfar = MAX_FILER_IDX;
1056 	u32 rqfcr = 0x0;
1057 	u32 rqfpr = FPR_FILER_MASK;
1058 
1059 	/* Default rule */
1060 	rqfcr = RQFCR_CMP_MATCH;
1061 	priv->ftp_rqfcr[rqfar] = rqfcr;
1062 	priv->ftp_rqfpr[rqfar] = rqfpr;
1063 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064 
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071 
1072 	/* cur_filer_idx indicated the first non-masked rule */
1073 	priv->cur_filer_idx = rqfar;
1074 
1075 	/* Rest are masked rules */
1076 	rqfcr = RQFCR_CMP_NOMATCH;
1077 	for (i = 0; i < rqfar; i++) {
1078 		priv->ftp_rqfcr[i] = rqfcr;
1079 		priv->ftp_rqfpr[i] = rqfpr;
1080 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1081 	}
1082 }
1083 
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087 	unsigned int pvr = mfspr(SPRN_PVR);
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090 	unsigned int rev = svr & 0xffff;
1091 
1092 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1093 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095 		priv->errata |= GFAR_ERRATA_74;
1096 
1097 	/* MPC8313 and MPC837x all rev */
1098 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100 		priv->errata |= GFAR_ERRATA_76;
1101 
1102 	/* MPC8313 Rev < 2.0 */
1103 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104 		priv->errata |= GFAR_ERRATA_12;
1105 }
1106 
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109 	unsigned int svr = mfspr(SPRN_SVR);
1110 
1111 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112 		priv->errata |= GFAR_ERRATA_12;
1113 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1115 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1116 }
1117 #endif
1118 
1119 static void gfar_detect_errata(struct gfar_private *priv)
1120 {
1121 	struct device *dev = &priv->ofdev->dev;
1122 
1123 	/* no plans to fix */
1124 	priv->errata |= GFAR_ERRATA_A002;
1125 
1126 #ifdef CONFIG_PPC
1127 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1128 		__gfar_detect_errata_85xx(priv);
1129 	else /* non-mpc85xx parts, i.e. e300 core based */
1130 		__gfar_detect_errata_83xx(priv);
1131 #endif
1132 
1133 	if (priv->errata)
1134 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1135 			 priv->errata);
1136 }
1137 
1138 void gfar_mac_reset(struct gfar_private *priv)
1139 {
1140 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1141 	u32 tempval;
1142 
1143 	/* Reset MAC layer */
1144 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1145 
1146 	/* We need to delay at least 3 TX clocks */
1147 	udelay(3);
1148 
1149 	/* the soft reset bit is not self-resetting, so we need to
1150 	 * clear it before resuming normal operation
1151 	 */
1152 	gfar_write(&regs->maccfg1, 0);
1153 
1154 	udelay(3);
1155 
1156 	gfar_rx_offload_en(priv);
1157 
1158 	/* Initialize the max receive frame/buffer lengths */
1159 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1160 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1161 
1162 	/* Initialize the Minimum Frame Length Register */
1163 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1164 
1165 	/* Initialize MACCFG2. */
1166 	tempval = MACCFG2_INIT_SETTINGS;
1167 
1168 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1169 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1170 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1171 	 */
1172 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1173 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1174 
1175 	gfar_write(&regs->maccfg2, tempval);
1176 
1177 	/* Clear mac addr hash registers */
1178 	gfar_write(&regs->igaddr0, 0);
1179 	gfar_write(&regs->igaddr1, 0);
1180 	gfar_write(&regs->igaddr2, 0);
1181 	gfar_write(&regs->igaddr3, 0);
1182 	gfar_write(&regs->igaddr4, 0);
1183 	gfar_write(&regs->igaddr5, 0);
1184 	gfar_write(&regs->igaddr6, 0);
1185 	gfar_write(&regs->igaddr7, 0);
1186 
1187 	gfar_write(&regs->gaddr0, 0);
1188 	gfar_write(&regs->gaddr1, 0);
1189 	gfar_write(&regs->gaddr2, 0);
1190 	gfar_write(&regs->gaddr3, 0);
1191 	gfar_write(&regs->gaddr4, 0);
1192 	gfar_write(&regs->gaddr5, 0);
1193 	gfar_write(&regs->gaddr6, 0);
1194 	gfar_write(&regs->gaddr7, 0);
1195 
1196 	if (priv->extended_hash)
1197 		gfar_clear_exact_match(priv->ndev);
1198 
1199 	gfar_mac_rx_config(priv);
1200 
1201 	gfar_mac_tx_config(priv);
1202 
1203 	gfar_set_mac_address(priv->ndev);
1204 
1205 	gfar_set_multi(priv->ndev);
1206 
1207 	/* clear ievent and imask before configuring coalescing */
1208 	gfar_ints_disable(priv);
1209 
1210 	/* Configure the coalescing support */
1211 	gfar_configure_coalescing_all(priv);
1212 }
1213 
1214 static void gfar_hw_init(struct gfar_private *priv)
1215 {
1216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217 	u32 attrs;
1218 
1219 	/* Stop the DMA engine now, in case it was running before
1220 	 * (The firmware could have used it, and left it running).
1221 	 */
1222 	gfar_halt(priv);
1223 
1224 	gfar_mac_reset(priv);
1225 
1226 	/* Zero out the rmon mib registers if it has them */
1227 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1228 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1229 
1230 		/* Mask off the CAM interrupts */
1231 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1232 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1233 	}
1234 
1235 	/* Initialize ECNTRL */
1236 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1237 
1238 	/* Set the extraction length and index */
1239 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1240 		ATTRELI_EI(priv->rx_stash_index);
1241 
1242 	gfar_write(&regs->attreli, attrs);
1243 
1244 	/* Start with defaults, and add stashing
1245 	 * depending on driver parameters
1246 	 */
1247 	attrs = ATTR_INIT_SETTINGS;
1248 
1249 	if (priv->bd_stash_en)
1250 		attrs |= ATTR_BDSTASH;
1251 
1252 	if (priv->rx_stash_size != 0)
1253 		attrs |= ATTR_BUFSTASH;
1254 
1255 	gfar_write(&regs->attr, attrs);
1256 
1257 	/* FIFO configs */
1258 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1259 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1260 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1261 
1262 	/* Program the interrupt steering regs, only for MG devices */
1263 	if (priv->num_grps > 1)
1264 		gfar_write_isrg(priv);
1265 }
1266 
1267 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1268 {
1269 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270 
1271 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1272 		priv->extended_hash = 1;
1273 		priv->hash_width = 9;
1274 
1275 		priv->hash_regs[0] = &regs->igaddr0;
1276 		priv->hash_regs[1] = &regs->igaddr1;
1277 		priv->hash_regs[2] = &regs->igaddr2;
1278 		priv->hash_regs[3] = &regs->igaddr3;
1279 		priv->hash_regs[4] = &regs->igaddr4;
1280 		priv->hash_regs[5] = &regs->igaddr5;
1281 		priv->hash_regs[6] = &regs->igaddr6;
1282 		priv->hash_regs[7] = &regs->igaddr7;
1283 		priv->hash_regs[8] = &regs->gaddr0;
1284 		priv->hash_regs[9] = &regs->gaddr1;
1285 		priv->hash_regs[10] = &regs->gaddr2;
1286 		priv->hash_regs[11] = &regs->gaddr3;
1287 		priv->hash_regs[12] = &regs->gaddr4;
1288 		priv->hash_regs[13] = &regs->gaddr5;
1289 		priv->hash_regs[14] = &regs->gaddr6;
1290 		priv->hash_regs[15] = &regs->gaddr7;
1291 
1292 	} else {
1293 		priv->extended_hash = 0;
1294 		priv->hash_width = 8;
1295 
1296 		priv->hash_regs[0] = &regs->gaddr0;
1297 		priv->hash_regs[1] = &regs->gaddr1;
1298 		priv->hash_regs[2] = &regs->gaddr2;
1299 		priv->hash_regs[3] = &regs->gaddr3;
1300 		priv->hash_regs[4] = &regs->gaddr4;
1301 		priv->hash_regs[5] = &regs->gaddr5;
1302 		priv->hash_regs[6] = &regs->gaddr6;
1303 		priv->hash_regs[7] = &regs->gaddr7;
1304 	}
1305 }
1306 
1307 /* Set up the ethernet device structure, private data,
1308  * and anything else we need before we start
1309  */
1310 static int gfar_probe(struct platform_device *ofdev)
1311 {
1312 	struct net_device *dev = NULL;
1313 	struct gfar_private *priv = NULL;
1314 	int err = 0, i;
1315 
1316 	err = gfar_of_init(ofdev, &dev);
1317 
1318 	if (err)
1319 		return err;
1320 
1321 	priv = netdev_priv(dev);
1322 	priv->ndev = dev;
1323 	priv->ofdev = ofdev;
1324 	priv->dev = &ofdev->dev;
1325 	SET_NETDEV_DEV(dev, &ofdev->dev);
1326 
1327 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1328 
1329 	platform_set_drvdata(ofdev, priv);
1330 
1331 	gfar_detect_errata(priv);
1332 
1333 	/* Set the dev->base_addr to the gfar reg region */
1334 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1335 
1336 	/* Fill in the dev structure */
1337 	dev->watchdog_timeo = TX_TIMEOUT;
1338 	dev->mtu = 1500;
1339 	dev->netdev_ops = &gfar_netdev_ops;
1340 	dev->ethtool_ops = &gfar_ethtool_ops;
1341 
1342 	/* Register for napi ...We are registering NAPI for each grp */
1343 	for (i = 0; i < priv->num_grps; i++) {
1344 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1345 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1346 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1347 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1348 				       gfar_poll_tx_sq, 2);
1349 		} else {
1350 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1352 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353 				       gfar_poll_tx, 2);
1354 		}
1355 	}
1356 
1357 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1358 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1359 				   NETIF_F_RXCSUM;
1360 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1361 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1362 	}
1363 
1364 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1365 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1366 				    NETIF_F_HW_VLAN_CTAG_RX;
1367 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1368 	}
1369 
1370 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1371 
1372 	gfar_init_addr_hash_table(priv);
1373 
1374 	/* Insert receive time stamps into padding alignment bytes */
1375 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1376 		priv->padding = 8;
1377 
1378 	if (dev->features & NETIF_F_IP_CSUM ||
1379 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 		dev->needed_headroom = GMAC_FCB_LEN;
1381 
1382 	/* Initializing some of the rx/tx queue level parameters */
1383 	for (i = 0; i < priv->num_tx_queues; i++) {
1384 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1385 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1386 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1387 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1388 	}
1389 
1390 	for (i = 0; i < priv->num_rx_queues; i++) {
1391 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1392 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1393 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1394 	}
1395 
1396 	/* always enable rx filer */
1397 	priv->rx_filer_enable = 1;
1398 	/* Enable most messages by default */
1399 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1400 	/* use pritority h/w tx queue scheduling for single queue devices */
1401 	if (priv->num_tx_queues == 1)
1402 		priv->prio_sched_en = 1;
1403 
1404 	set_bit(GFAR_DOWN, &priv->state);
1405 
1406 	gfar_hw_init(priv);
1407 
1408 	/* Carrier starts down, phylib will bring it up */
1409 	netif_carrier_off(dev);
1410 
1411 	err = register_netdev(dev);
1412 
1413 	if (err) {
1414 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1415 		goto register_fail;
1416 	}
1417 
1418 	device_set_wakeup_capable(&dev->dev, priv->device_flags &
1419 				  FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1420 
1421 	/* fill out IRQ number and name fields */
1422 	for (i = 0; i < priv->num_grps; i++) {
1423 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1424 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1425 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1426 				dev->name, "_g", '0' + i, "_tx");
1427 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1428 				dev->name, "_g", '0' + i, "_rx");
1429 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1430 				dev->name, "_g", '0' + i, "_er");
1431 		} else
1432 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1433 	}
1434 
1435 	/* Initialize the filer table */
1436 	gfar_init_filer_table(priv);
1437 
1438 	/* Print out the device info */
1439 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1440 
1441 	/* Even more device info helps when determining which kernel
1442 	 * provided which set of benchmarks.
1443 	 */
1444 	netdev_info(dev, "Running with NAPI enabled\n");
1445 	for (i = 0; i < priv->num_rx_queues; i++)
1446 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1447 			    i, priv->rx_queue[i]->rx_ring_size);
1448 	for (i = 0; i < priv->num_tx_queues; i++)
1449 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1450 			    i, priv->tx_queue[i]->tx_ring_size);
1451 
1452 	return 0;
1453 
1454 register_fail:
1455 	unmap_group_regs(priv);
1456 	gfar_free_rx_queues(priv);
1457 	gfar_free_tx_queues(priv);
1458 	of_node_put(priv->phy_node);
1459 	of_node_put(priv->tbi_node);
1460 	free_gfar_dev(priv);
1461 	return err;
1462 }
1463 
1464 static int gfar_remove(struct platform_device *ofdev)
1465 {
1466 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1467 
1468 	of_node_put(priv->phy_node);
1469 	of_node_put(priv->tbi_node);
1470 
1471 	unregister_netdev(priv->ndev);
1472 	unmap_group_regs(priv);
1473 	gfar_free_rx_queues(priv);
1474 	gfar_free_tx_queues(priv);
1475 	free_gfar_dev(priv);
1476 
1477 	return 0;
1478 }
1479 
1480 #ifdef CONFIG_PM
1481 
1482 static int gfar_suspend(struct device *dev)
1483 {
1484 	struct gfar_private *priv = dev_get_drvdata(dev);
1485 	struct net_device *ndev = priv->ndev;
1486 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487 	u32 tempval;
1488 	int magic_packet = priv->wol_en &&
1489 			   (priv->device_flags &
1490 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1491 
1492 	if (!netif_running(ndev))
1493 		return 0;
1494 
1495 	disable_napi(priv);
1496 	netif_tx_lock(ndev);
1497 	netif_device_detach(ndev);
1498 	netif_tx_unlock(ndev);
1499 
1500 	gfar_halt(priv);
1501 
1502 	if (magic_packet) {
1503 		/* Enable interrupt on Magic Packet */
1504 		gfar_write(&regs->imask, IMASK_MAG);
1505 
1506 		/* Enable Magic Packet mode */
1507 		tempval = gfar_read(&regs->maccfg2);
1508 		tempval |= MACCFG2_MPEN;
1509 		gfar_write(&regs->maccfg2, tempval);
1510 
1511 		/* re-enable the Rx block */
1512 		tempval = gfar_read(&regs->maccfg1);
1513 		tempval |= MACCFG1_RX_EN;
1514 		gfar_write(&regs->maccfg1, tempval);
1515 
1516 	} else {
1517 		phy_stop(priv->phydev);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int gfar_resume(struct device *dev)
1524 {
1525 	struct gfar_private *priv = dev_get_drvdata(dev);
1526 	struct net_device *ndev = priv->ndev;
1527 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1528 	u32 tempval;
1529 	int magic_packet = priv->wol_en &&
1530 			   (priv->device_flags &
1531 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532 
1533 	if (!netif_running(ndev))
1534 		return 0;
1535 
1536 	if (magic_packet) {
1537 		/* Disable Magic Packet mode */
1538 		tempval = gfar_read(&regs->maccfg2);
1539 		tempval &= ~MACCFG2_MPEN;
1540 		gfar_write(&regs->maccfg2, tempval);
1541 	} else {
1542 		phy_start(priv->phydev);
1543 	}
1544 
1545 	gfar_start(priv);
1546 
1547 	netif_device_attach(ndev);
1548 	enable_napi(priv);
1549 
1550 	return 0;
1551 }
1552 
1553 static int gfar_restore(struct device *dev)
1554 {
1555 	struct gfar_private *priv = dev_get_drvdata(dev);
1556 	struct net_device *ndev = priv->ndev;
1557 
1558 	if (!netif_running(ndev)) {
1559 		netif_device_attach(ndev);
1560 
1561 		return 0;
1562 	}
1563 
1564 	gfar_init_bds(ndev);
1565 
1566 	gfar_mac_reset(priv);
1567 
1568 	gfar_init_tx_rx_base(priv);
1569 
1570 	gfar_start(priv);
1571 
1572 	priv->oldlink = 0;
1573 	priv->oldspeed = 0;
1574 	priv->oldduplex = -1;
1575 
1576 	if (priv->phydev)
1577 		phy_start(priv->phydev);
1578 
1579 	netif_device_attach(ndev);
1580 	enable_napi(priv);
1581 
1582 	return 0;
1583 }
1584 
1585 static struct dev_pm_ops gfar_pm_ops = {
1586 	.suspend = gfar_suspend,
1587 	.resume = gfar_resume,
1588 	.freeze = gfar_suspend,
1589 	.thaw = gfar_resume,
1590 	.restore = gfar_restore,
1591 };
1592 
1593 #define GFAR_PM_OPS (&gfar_pm_ops)
1594 
1595 #else
1596 
1597 #define GFAR_PM_OPS NULL
1598 
1599 #endif
1600 
1601 /* Reads the controller's registers to determine what interface
1602  * connects it to the PHY.
1603  */
1604 static phy_interface_t gfar_get_interface(struct net_device *dev)
1605 {
1606 	struct gfar_private *priv = netdev_priv(dev);
1607 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1608 	u32 ecntrl;
1609 
1610 	ecntrl = gfar_read(&regs->ecntrl);
1611 
1612 	if (ecntrl & ECNTRL_SGMII_MODE)
1613 		return PHY_INTERFACE_MODE_SGMII;
1614 
1615 	if (ecntrl & ECNTRL_TBI_MODE) {
1616 		if (ecntrl & ECNTRL_REDUCED_MODE)
1617 			return PHY_INTERFACE_MODE_RTBI;
1618 		else
1619 			return PHY_INTERFACE_MODE_TBI;
1620 	}
1621 
1622 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1623 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1624 			return PHY_INTERFACE_MODE_RMII;
1625 		}
1626 		else {
1627 			phy_interface_t interface = priv->interface;
1628 
1629 			/* This isn't autodetected right now, so it must
1630 			 * be set by the device tree or platform code.
1631 			 */
1632 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1633 				return PHY_INTERFACE_MODE_RGMII_ID;
1634 
1635 			return PHY_INTERFACE_MODE_RGMII;
1636 		}
1637 	}
1638 
1639 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1640 		return PHY_INTERFACE_MODE_GMII;
1641 
1642 	return PHY_INTERFACE_MODE_MII;
1643 }
1644 
1645 
1646 /* Initializes driver's PHY state, and attaches to the PHY.
1647  * Returns 0 on success.
1648  */
1649 static int init_phy(struct net_device *dev)
1650 {
1651 	struct gfar_private *priv = netdev_priv(dev);
1652 	uint gigabit_support =
1653 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1654 		GFAR_SUPPORTED_GBIT : 0;
1655 	phy_interface_t interface;
1656 
1657 	priv->oldlink = 0;
1658 	priv->oldspeed = 0;
1659 	priv->oldduplex = -1;
1660 
1661 	interface = gfar_get_interface(dev);
1662 
1663 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1664 				      interface);
1665 	if (!priv->phydev) {
1666 		dev_err(&dev->dev, "could not attach to PHY\n");
1667 		return -ENODEV;
1668 	}
1669 
1670 	if (interface == PHY_INTERFACE_MODE_SGMII)
1671 		gfar_configure_serdes(dev);
1672 
1673 	/* Remove any features not supported by the controller */
1674 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1675 	priv->phydev->advertising = priv->phydev->supported;
1676 
1677 	/* Add support for flow control, but don't advertise it by default */
1678 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1679 
1680 	return 0;
1681 }
1682 
1683 /* Initialize TBI PHY interface for communicating with the
1684  * SERDES lynx PHY on the chip.  We communicate with this PHY
1685  * through the MDIO bus on each controller, treating it as a
1686  * "normal" PHY at the address found in the TBIPA register.  We assume
1687  * that the TBIPA register is valid.  Either the MDIO bus code will set
1688  * it to a value that doesn't conflict with other PHYs on the bus, or the
1689  * value doesn't matter, as there are no other PHYs on the bus.
1690  */
1691 static void gfar_configure_serdes(struct net_device *dev)
1692 {
1693 	struct gfar_private *priv = netdev_priv(dev);
1694 	struct phy_device *tbiphy;
1695 
1696 	if (!priv->tbi_node) {
1697 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1698 				    "device tree specify a tbi-handle\n");
1699 		return;
1700 	}
1701 
1702 	tbiphy = of_phy_find_device(priv->tbi_node);
1703 	if (!tbiphy) {
1704 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1705 		return;
1706 	}
1707 
1708 	/* If the link is already up, we must already be ok, and don't need to
1709 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1710 	 * everything for us?  Resetting it takes the link down and requires
1711 	 * several seconds for it to come back.
1712 	 */
1713 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1714 		return;
1715 
1716 	/* Single clk mode, mii mode off(for serdes communication) */
1717 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1718 
1719 	phy_write(tbiphy, MII_ADVERTISE,
1720 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1721 		  ADVERTISE_1000XPSE_ASYM);
1722 
1723 	phy_write(tbiphy, MII_BMCR,
1724 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1725 		  BMCR_SPEED1000);
1726 }
1727 
1728 static int __gfar_is_rx_idle(struct gfar_private *priv)
1729 {
1730 	u32 res;
1731 
1732 	/* Normaly TSEC should not hang on GRS commands, so we should
1733 	 * actually wait for IEVENT_GRSC flag.
1734 	 */
1735 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1736 		return 0;
1737 
1738 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1739 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1740 	 * and the Rx can be safely reset.
1741 	 */
1742 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1743 	res &= 0x7f807f80;
1744 	if ((res & 0xffff) == (res >> 16))
1745 		return 1;
1746 
1747 	return 0;
1748 }
1749 
1750 /* Halt the receive and transmit queues */
1751 static void gfar_halt_nodisable(struct gfar_private *priv)
1752 {
1753 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1754 	u32 tempval;
1755 	unsigned int timeout;
1756 	int stopped;
1757 
1758 	gfar_ints_disable(priv);
1759 
1760 	if (gfar_is_dma_stopped(priv))
1761 		return;
1762 
1763 	/* Stop the DMA, and wait for it to stop */
1764 	tempval = gfar_read(&regs->dmactrl);
1765 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1766 	gfar_write(&regs->dmactrl, tempval);
1767 
1768 retry:
1769 	timeout = 1000;
1770 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1771 		cpu_relax();
1772 		timeout--;
1773 	}
1774 
1775 	if (!timeout)
1776 		stopped = gfar_is_dma_stopped(priv);
1777 
1778 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1779 	    !__gfar_is_rx_idle(priv))
1780 		goto retry;
1781 }
1782 
1783 /* Halt the receive and transmit queues */
1784 void gfar_halt(struct gfar_private *priv)
1785 {
1786 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1787 	u32 tempval;
1788 
1789 	/* Dissable the Rx/Tx hw queues */
1790 	gfar_write(&regs->rqueue, 0);
1791 	gfar_write(&regs->tqueue, 0);
1792 
1793 	mdelay(10);
1794 
1795 	gfar_halt_nodisable(priv);
1796 
1797 	/* Disable Rx/Tx DMA */
1798 	tempval = gfar_read(&regs->maccfg1);
1799 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1800 	gfar_write(&regs->maccfg1, tempval);
1801 }
1802 
1803 void stop_gfar(struct net_device *dev)
1804 {
1805 	struct gfar_private *priv = netdev_priv(dev);
1806 
1807 	netif_tx_stop_all_queues(dev);
1808 
1809 	smp_mb__before_atomic();
1810 	set_bit(GFAR_DOWN, &priv->state);
1811 	smp_mb__after_atomic();
1812 
1813 	disable_napi(priv);
1814 
1815 	/* disable ints and gracefully shut down Rx/Tx DMA */
1816 	gfar_halt(priv);
1817 
1818 	phy_stop(priv->phydev);
1819 
1820 	free_skb_resources(priv);
1821 }
1822 
1823 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1824 {
1825 	struct txbd8 *txbdp;
1826 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1827 	int i, j;
1828 
1829 	txbdp = tx_queue->tx_bd_base;
1830 
1831 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1832 		if (!tx_queue->tx_skbuff[i])
1833 			continue;
1834 
1835 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1836 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1837 		txbdp->lstatus = 0;
1838 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1839 		     j++) {
1840 			txbdp++;
1841 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1842 				       be16_to_cpu(txbdp->length),
1843 				       DMA_TO_DEVICE);
1844 		}
1845 		txbdp++;
1846 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1847 		tx_queue->tx_skbuff[i] = NULL;
1848 	}
1849 	kfree(tx_queue->tx_skbuff);
1850 	tx_queue->tx_skbuff = NULL;
1851 }
1852 
1853 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1854 {
1855 	int i;
1856 
1857 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1858 
1859 	if (rx_queue->skb)
1860 		dev_kfree_skb(rx_queue->skb);
1861 
1862 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1863 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1864 
1865 		rxbdp->lstatus = 0;
1866 		rxbdp->bufPtr = 0;
1867 		rxbdp++;
1868 
1869 		if (!rxb->page)
1870 			continue;
1871 
1872 		dma_unmap_single(rx_queue->dev, rxb->dma,
1873 				 PAGE_SIZE, DMA_FROM_DEVICE);
1874 		__free_page(rxb->page);
1875 
1876 		rxb->page = NULL;
1877 	}
1878 
1879 	kfree(rx_queue->rx_buff);
1880 	rx_queue->rx_buff = NULL;
1881 }
1882 
1883 /* If there are any tx skbs or rx skbs still around, free them.
1884  * Then free tx_skbuff and rx_skbuff
1885  */
1886 static void free_skb_resources(struct gfar_private *priv)
1887 {
1888 	struct gfar_priv_tx_q *tx_queue = NULL;
1889 	struct gfar_priv_rx_q *rx_queue = NULL;
1890 	int i;
1891 
1892 	/* Go through all the buffer descriptors and free their data buffers */
1893 	for (i = 0; i < priv->num_tx_queues; i++) {
1894 		struct netdev_queue *txq;
1895 
1896 		tx_queue = priv->tx_queue[i];
1897 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1898 		if (tx_queue->tx_skbuff)
1899 			free_skb_tx_queue(tx_queue);
1900 		netdev_tx_reset_queue(txq);
1901 	}
1902 
1903 	for (i = 0; i < priv->num_rx_queues; i++) {
1904 		rx_queue = priv->rx_queue[i];
1905 		if (rx_queue->rx_buff)
1906 			free_skb_rx_queue(rx_queue);
1907 	}
1908 
1909 	dma_free_coherent(priv->dev,
1910 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1911 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1912 			  priv->tx_queue[0]->tx_bd_base,
1913 			  priv->tx_queue[0]->tx_bd_dma_base);
1914 }
1915 
1916 void gfar_start(struct gfar_private *priv)
1917 {
1918 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1919 	u32 tempval;
1920 	int i = 0;
1921 
1922 	/* Enable Rx/Tx hw queues */
1923 	gfar_write(&regs->rqueue, priv->rqueue);
1924 	gfar_write(&regs->tqueue, priv->tqueue);
1925 
1926 	/* Initialize DMACTRL to have WWR and WOP */
1927 	tempval = gfar_read(&regs->dmactrl);
1928 	tempval |= DMACTRL_INIT_SETTINGS;
1929 	gfar_write(&regs->dmactrl, tempval);
1930 
1931 	/* Make sure we aren't stopped */
1932 	tempval = gfar_read(&regs->dmactrl);
1933 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1934 	gfar_write(&regs->dmactrl, tempval);
1935 
1936 	for (i = 0; i < priv->num_grps; i++) {
1937 		regs = priv->gfargrp[i].regs;
1938 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1939 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1940 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1941 	}
1942 
1943 	/* Enable Rx/Tx DMA */
1944 	tempval = gfar_read(&regs->maccfg1);
1945 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1946 	gfar_write(&regs->maccfg1, tempval);
1947 
1948 	gfar_ints_enable(priv);
1949 
1950 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1951 }
1952 
1953 static void free_grp_irqs(struct gfar_priv_grp *grp)
1954 {
1955 	free_irq(gfar_irq(grp, TX)->irq, grp);
1956 	free_irq(gfar_irq(grp, RX)->irq, grp);
1957 	free_irq(gfar_irq(grp, ER)->irq, grp);
1958 }
1959 
1960 static int register_grp_irqs(struct gfar_priv_grp *grp)
1961 {
1962 	struct gfar_private *priv = grp->priv;
1963 	struct net_device *dev = priv->ndev;
1964 	int err;
1965 
1966 	/* If the device has multiple interrupts, register for
1967 	 * them.  Otherwise, only register for the one
1968 	 */
1969 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970 		/* Install our interrupt handlers for Error,
1971 		 * Transmit, and Receive
1972 		 */
1973 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error,
1974 				  IRQF_NO_SUSPEND,
1975 				  gfar_irq(grp, ER)->name, grp);
1976 		if (err < 0) {
1977 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1978 				  gfar_irq(grp, ER)->irq);
1979 
1980 			goto err_irq_fail;
1981 		}
1982 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1983 				  gfar_irq(grp, TX)->name, grp);
1984 		if (err < 0) {
1985 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1986 				  gfar_irq(grp, TX)->irq);
1987 			goto tx_irq_fail;
1988 		}
1989 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1990 				  gfar_irq(grp, RX)->name, grp);
1991 		if (err < 0) {
1992 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1993 				  gfar_irq(grp, RX)->irq);
1994 			goto rx_irq_fail;
1995 		}
1996 	} else {
1997 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt,
1998 				  IRQF_NO_SUSPEND,
1999 				  gfar_irq(grp, TX)->name, grp);
2000 		if (err < 0) {
2001 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2002 				  gfar_irq(grp, TX)->irq);
2003 			goto err_irq_fail;
2004 		}
2005 	}
2006 
2007 	return 0;
2008 
2009 rx_irq_fail:
2010 	free_irq(gfar_irq(grp, TX)->irq, grp);
2011 tx_irq_fail:
2012 	free_irq(gfar_irq(grp, ER)->irq, grp);
2013 err_irq_fail:
2014 	return err;
2015 
2016 }
2017 
2018 static void gfar_free_irq(struct gfar_private *priv)
2019 {
2020 	int i;
2021 
2022 	/* Free the IRQs */
2023 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2024 		for (i = 0; i < priv->num_grps; i++)
2025 			free_grp_irqs(&priv->gfargrp[i]);
2026 	} else {
2027 		for (i = 0; i < priv->num_grps; i++)
2028 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2029 				 &priv->gfargrp[i]);
2030 	}
2031 }
2032 
2033 static int gfar_request_irq(struct gfar_private *priv)
2034 {
2035 	int err, i, j;
2036 
2037 	for (i = 0; i < priv->num_grps; i++) {
2038 		err = register_grp_irqs(&priv->gfargrp[i]);
2039 		if (err) {
2040 			for (j = 0; j < i; j++)
2041 				free_grp_irqs(&priv->gfargrp[j]);
2042 			return err;
2043 		}
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 /* Bring the controller up and running */
2050 int startup_gfar(struct net_device *ndev)
2051 {
2052 	struct gfar_private *priv = netdev_priv(ndev);
2053 	int err;
2054 
2055 	gfar_mac_reset(priv);
2056 
2057 	err = gfar_alloc_skb_resources(ndev);
2058 	if (err)
2059 		return err;
2060 
2061 	gfar_init_tx_rx_base(priv);
2062 
2063 	smp_mb__before_atomic();
2064 	clear_bit(GFAR_DOWN, &priv->state);
2065 	smp_mb__after_atomic();
2066 
2067 	/* Start Rx/Tx DMA and enable the interrupts */
2068 	gfar_start(priv);
2069 
2070 	phy_start(priv->phydev);
2071 
2072 	enable_napi(priv);
2073 
2074 	netif_tx_wake_all_queues(ndev);
2075 
2076 	return 0;
2077 }
2078 
2079 /* Called when something needs to use the ethernet device
2080  * Returns 0 for success.
2081  */
2082 static int gfar_enet_open(struct net_device *dev)
2083 {
2084 	struct gfar_private *priv = netdev_priv(dev);
2085 	int err;
2086 
2087 	err = init_phy(dev);
2088 	if (err)
2089 		return err;
2090 
2091 	err = gfar_request_irq(priv);
2092 	if (err)
2093 		return err;
2094 
2095 	err = startup_gfar(dev);
2096 	if (err)
2097 		return err;
2098 
2099 	return err;
2100 }
2101 
2102 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2103 {
2104 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2105 
2106 	memset(fcb, 0, GMAC_FCB_LEN);
2107 
2108 	return fcb;
2109 }
2110 
2111 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2112 				    int fcb_length)
2113 {
2114 	/* If we're here, it's a IP packet with a TCP or UDP
2115 	 * payload.  We set it to checksum, using a pseudo-header
2116 	 * we provide
2117 	 */
2118 	u8 flags = TXFCB_DEFAULT;
2119 
2120 	/* Tell the controller what the protocol is
2121 	 * And provide the already calculated phcs
2122 	 */
2123 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2124 		flags |= TXFCB_UDP;
2125 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2126 	} else
2127 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2128 
2129 	/* l3os is the distance between the start of the
2130 	 * frame (skb->data) and the start of the IP hdr.
2131 	 * l4os is the distance between the start of the
2132 	 * l3 hdr and the l4 hdr
2133 	 */
2134 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2135 	fcb->l4os = skb_network_header_len(skb);
2136 
2137 	fcb->flags = flags;
2138 }
2139 
2140 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2141 {
2142 	fcb->flags |= TXFCB_VLN;
2143 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2144 }
2145 
2146 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2147 				      struct txbd8 *base, int ring_size)
2148 {
2149 	struct txbd8 *new_bd = bdp + stride;
2150 
2151 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2152 }
2153 
2154 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2155 				      int ring_size)
2156 {
2157 	return skip_txbd(bdp, 1, base, ring_size);
2158 }
2159 
2160 /* eTSEC12: csum generation not supported for some fcb offsets */
2161 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2162 				       unsigned long fcb_addr)
2163 {
2164 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2165 	       (fcb_addr % 0x20) > 0x18);
2166 }
2167 
2168 /* eTSEC76: csum generation for frames larger than 2500 may
2169  * cause excess delays before start of transmission
2170  */
2171 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2172 				       unsigned int len)
2173 {
2174 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2175 	       (len > 2500));
2176 }
2177 
2178 /* This is called by the kernel when a frame is ready for transmission.
2179  * It is pointed to by the dev->hard_start_xmit function pointer
2180  */
2181 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2182 {
2183 	struct gfar_private *priv = netdev_priv(dev);
2184 	struct gfar_priv_tx_q *tx_queue = NULL;
2185 	struct netdev_queue *txq;
2186 	struct gfar __iomem *regs = NULL;
2187 	struct txfcb *fcb = NULL;
2188 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2189 	u32 lstatus;
2190 	int i, rq = 0;
2191 	int do_tstamp, do_csum, do_vlan;
2192 	u32 bufaddr;
2193 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2194 
2195 	rq = skb->queue_mapping;
2196 	tx_queue = priv->tx_queue[rq];
2197 	txq = netdev_get_tx_queue(dev, rq);
2198 	base = tx_queue->tx_bd_base;
2199 	regs = tx_queue->grp->regs;
2200 
2201 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2202 	do_vlan = skb_vlan_tag_present(skb);
2203 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2204 		    priv->hwts_tx_en;
2205 
2206 	if (do_csum || do_vlan)
2207 		fcb_len = GMAC_FCB_LEN;
2208 
2209 	/* check if time stamp should be generated */
2210 	if (unlikely(do_tstamp))
2211 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2212 
2213 	/* make space for additional header when fcb is needed */
2214 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2215 		struct sk_buff *skb_new;
2216 
2217 		skb_new = skb_realloc_headroom(skb, fcb_len);
2218 		if (!skb_new) {
2219 			dev->stats.tx_errors++;
2220 			dev_kfree_skb_any(skb);
2221 			return NETDEV_TX_OK;
2222 		}
2223 
2224 		if (skb->sk)
2225 			skb_set_owner_w(skb_new, skb->sk);
2226 		dev_consume_skb_any(skb);
2227 		skb = skb_new;
2228 	}
2229 
2230 	/* total number of fragments in the SKB */
2231 	nr_frags = skb_shinfo(skb)->nr_frags;
2232 
2233 	/* calculate the required number of TxBDs for this skb */
2234 	if (unlikely(do_tstamp))
2235 		nr_txbds = nr_frags + 2;
2236 	else
2237 		nr_txbds = nr_frags + 1;
2238 
2239 	/* check if there is space to queue this packet */
2240 	if (nr_txbds > tx_queue->num_txbdfree) {
2241 		/* no space, stop the queue */
2242 		netif_tx_stop_queue(txq);
2243 		dev->stats.tx_fifo_errors++;
2244 		return NETDEV_TX_BUSY;
2245 	}
2246 
2247 	/* Update transmit stats */
2248 	bytes_sent = skb->len;
2249 	tx_queue->stats.tx_bytes += bytes_sent;
2250 	/* keep Tx bytes on wire for BQL accounting */
2251 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2252 	tx_queue->stats.tx_packets++;
2253 
2254 	txbdp = txbdp_start = tx_queue->cur_tx;
2255 	lstatus = be32_to_cpu(txbdp->lstatus);
2256 
2257 	/* Time stamp insertion requires one additional TxBD */
2258 	if (unlikely(do_tstamp))
2259 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2260 						 tx_queue->tx_ring_size);
2261 
2262 	if (nr_frags == 0) {
2263 		if (unlikely(do_tstamp)) {
2264 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2265 
2266 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2267 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2268 		} else {
2269 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2270 		}
2271 	} else {
2272 		/* Place the fragment addresses and lengths into the TxBDs */
2273 		for (i = 0; i < nr_frags; i++) {
2274 			unsigned int frag_len;
2275 			/* Point at the next BD, wrapping as needed */
2276 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2277 
2278 			frag_len = skb_shinfo(skb)->frags[i].size;
2279 
2280 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2281 				  BD_LFLAG(TXBD_READY);
2282 
2283 			/* Handle the last BD specially */
2284 			if (i == nr_frags - 1)
2285 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2286 
2287 			bufaddr = skb_frag_dma_map(priv->dev,
2288 						   &skb_shinfo(skb)->frags[i],
2289 						   0,
2290 						   frag_len,
2291 						   DMA_TO_DEVICE);
2292 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2293 				goto dma_map_err;
2294 
2295 			/* set the TxBD length and buffer pointer */
2296 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2297 			txbdp->lstatus = cpu_to_be32(lstatus);
2298 		}
2299 
2300 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2301 	}
2302 
2303 	/* Add TxPAL between FCB and frame if required */
2304 	if (unlikely(do_tstamp)) {
2305 		skb_push(skb, GMAC_TXPAL_LEN);
2306 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2307 	}
2308 
2309 	/* Add TxFCB if required */
2310 	if (fcb_len) {
2311 		fcb = gfar_add_fcb(skb);
2312 		lstatus |= BD_LFLAG(TXBD_TOE);
2313 	}
2314 
2315 	/* Set up checksumming */
2316 	if (do_csum) {
2317 		gfar_tx_checksum(skb, fcb, fcb_len);
2318 
2319 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2320 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2321 			__skb_pull(skb, GMAC_FCB_LEN);
2322 			skb_checksum_help(skb);
2323 			if (do_vlan || do_tstamp) {
2324 				/* put back a new fcb for vlan/tstamp TOE */
2325 				fcb = gfar_add_fcb(skb);
2326 			} else {
2327 				/* Tx TOE not used */
2328 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2329 				fcb = NULL;
2330 			}
2331 		}
2332 	}
2333 
2334 	if (do_vlan)
2335 		gfar_tx_vlan(skb, fcb);
2336 
2337 	/* Setup tx hardware time stamping if requested */
2338 	if (unlikely(do_tstamp)) {
2339 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2340 		fcb->ptp = 1;
2341 	}
2342 
2343 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2344 				 DMA_TO_DEVICE);
2345 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2346 		goto dma_map_err;
2347 
2348 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2349 
2350 	/* If time stamping is requested one additional TxBD must be set up. The
2351 	 * first TxBD points to the FCB and must have a data length of
2352 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2353 	 * the full frame length.
2354 	 */
2355 	if (unlikely(do_tstamp)) {
2356 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2357 
2358 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2359 		bufaddr += fcb_len;
2360 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2361 			      (skb_headlen(skb) - fcb_len);
2362 
2363 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2364 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2365 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2366 	} else {
2367 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2368 	}
2369 
2370 	netdev_tx_sent_queue(txq, bytes_sent);
2371 
2372 	gfar_wmb();
2373 
2374 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2375 
2376 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2377 
2378 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2379 
2380 	/* Update the current skb pointer to the next entry we will use
2381 	 * (wrapping if necessary)
2382 	 */
2383 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2384 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2385 
2386 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2387 
2388 	/* We can work in parallel with gfar_clean_tx_ring(), except
2389 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2390 	 * when we were reading the num_txbdfree and checking for available
2391 	 * space, that's because outside of this function it can only grow.
2392 	 */
2393 	spin_lock_bh(&tx_queue->txlock);
2394 	/* reduce TxBD free count */
2395 	tx_queue->num_txbdfree -= (nr_txbds);
2396 	spin_unlock_bh(&tx_queue->txlock);
2397 
2398 	/* If the next BD still needs to be cleaned up, then the bds
2399 	 * are full.  We need to tell the kernel to stop sending us stuff.
2400 	 */
2401 	if (!tx_queue->num_txbdfree) {
2402 		netif_tx_stop_queue(txq);
2403 
2404 		dev->stats.tx_fifo_errors++;
2405 	}
2406 
2407 	/* Tell the DMA to go go go */
2408 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2409 
2410 	return NETDEV_TX_OK;
2411 
2412 dma_map_err:
2413 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2414 	if (do_tstamp)
2415 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2416 	for (i = 0; i < nr_frags; i++) {
2417 		lstatus = be32_to_cpu(txbdp->lstatus);
2418 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2419 			break;
2420 
2421 		lstatus &= ~BD_LFLAG(TXBD_READY);
2422 		txbdp->lstatus = cpu_to_be32(lstatus);
2423 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2424 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2425 			       DMA_TO_DEVICE);
2426 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2427 	}
2428 	gfar_wmb();
2429 	dev_kfree_skb_any(skb);
2430 	return NETDEV_TX_OK;
2431 }
2432 
2433 /* Stops the kernel queue, and halts the controller */
2434 static int gfar_close(struct net_device *dev)
2435 {
2436 	struct gfar_private *priv = netdev_priv(dev);
2437 
2438 	cancel_work_sync(&priv->reset_task);
2439 	stop_gfar(dev);
2440 
2441 	/* Disconnect from the PHY */
2442 	phy_disconnect(priv->phydev);
2443 	priv->phydev = NULL;
2444 
2445 	gfar_free_irq(priv);
2446 
2447 	return 0;
2448 }
2449 
2450 /* Changes the mac address if the controller is not running. */
2451 static int gfar_set_mac_address(struct net_device *dev)
2452 {
2453 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2454 
2455 	return 0;
2456 }
2457 
2458 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2459 {
2460 	struct gfar_private *priv = netdev_priv(dev);
2461 	int frame_size = new_mtu + ETH_HLEN;
2462 
2463 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2464 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2465 		return -EINVAL;
2466 	}
2467 
2468 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2469 		cpu_relax();
2470 
2471 	if (dev->flags & IFF_UP)
2472 		stop_gfar(dev);
2473 
2474 	dev->mtu = new_mtu;
2475 
2476 	if (dev->flags & IFF_UP)
2477 		startup_gfar(dev);
2478 
2479 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2480 
2481 	return 0;
2482 }
2483 
2484 void reset_gfar(struct net_device *ndev)
2485 {
2486 	struct gfar_private *priv = netdev_priv(ndev);
2487 
2488 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2489 		cpu_relax();
2490 
2491 	stop_gfar(ndev);
2492 	startup_gfar(ndev);
2493 
2494 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2495 }
2496 
2497 /* gfar_reset_task gets scheduled when a packet has not been
2498  * transmitted after a set amount of time.
2499  * For now, assume that clearing out all the structures, and
2500  * starting over will fix the problem.
2501  */
2502 static void gfar_reset_task(struct work_struct *work)
2503 {
2504 	struct gfar_private *priv = container_of(work, struct gfar_private,
2505 						 reset_task);
2506 	reset_gfar(priv->ndev);
2507 }
2508 
2509 static void gfar_timeout(struct net_device *dev)
2510 {
2511 	struct gfar_private *priv = netdev_priv(dev);
2512 
2513 	dev->stats.tx_errors++;
2514 	schedule_work(&priv->reset_task);
2515 }
2516 
2517 /* Interrupt Handler for Transmit complete */
2518 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2519 {
2520 	struct net_device *dev = tx_queue->dev;
2521 	struct netdev_queue *txq;
2522 	struct gfar_private *priv = netdev_priv(dev);
2523 	struct txbd8 *bdp, *next = NULL;
2524 	struct txbd8 *lbdp = NULL;
2525 	struct txbd8 *base = tx_queue->tx_bd_base;
2526 	struct sk_buff *skb;
2527 	int skb_dirtytx;
2528 	int tx_ring_size = tx_queue->tx_ring_size;
2529 	int frags = 0, nr_txbds = 0;
2530 	int i;
2531 	int howmany = 0;
2532 	int tqi = tx_queue->qindex;
2533 	unsigned int bytes_sent = 0;
2534 	u32 lstatus;
2535 	size_t buflen;
2536 
2537 	txq = netdev_get_tx_queue(dev, tqi);
2538 	bdp = tx_queue->dirty_tx;
2539 	skb_dirtytx = tx_queue->skb_dirtytx;
2540 
2541 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2542 
2543 		frags = skb_shinfo(skb)->nr_frags;
2544 
2545 		/* When time stamping, one additional TxBD must be freed.
2546 		 * Also, we need to dma_unmap_single() the TxPAL.
2547 		 */
2548 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2549 			nr_txbds = frags + 2;
2550 		else
2551 			nr_txbds = frags + 1;
2552 
2553 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2554 
2555 		lstatus = be32_to_cpu(lbdp->lstatus);
2556 
2557 		/* Only clean completed frames */
2558 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2559 		    (lstatus & BD_LENGTH_MASK))
2560 			break;
2561 
2562 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2563 			next = next_txbd(bdp, base, tx_ring_size);
2564 			buflen = be16_to_cpu(next->length) +
2565 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2566 		} else
2567 			buflen = be16_to_cpu(bdp->length);
2568 
2569 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2570 				 buflen, DMA_TO_DEVICE);
2571 
2572 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2573 			struct skb_shared_hwtstamps shhwtstamps;
2574 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2575 					  ~0x7UL);
2576 
2577 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2578 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2579 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2580 			skb_tstamp_tx(skb, &shhwtstamps);
2581 			gfar_clear_txbd_status(bdp);
2582 			bdp = next;
2583 		}
2584 
2585 		gfar_clear_txbd_status(bdp);
2586 		bdp = next_txbd(bdp, base, tx_ring_size);
2587 
2588 		for (i = 0; i < frags; i++) {
2589 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2590 				       be16_to_cpu(bdp->length),
2591 				       DMA_TO_DEVICE);
2592 			gfar_clear_txbd_status(bdp);
2593 			bdp = next_txbd(bdp, base, tx_ring_size);
2594 		}
2595 
2596 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2597 
2598 		dev_kfree_skb_any(skb);
2599 
2600 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2601 
2602 		skb_dirtytx = (skb_dirtytx + 1) &
2603 			      TX_RING_MOD_MASK(tx_ring_size);
2604 
2605 		howmany++;
2606 		spin_lock(&tx_queue->txlock);
2607 		tx_queue->num_txbdfree += nr_txbds;
2608 		spin_unlock(&tx_queue->txlock);
2609 	}
2610 
2611 	/* If we freed a buffer, we can restart transmission, if necessary */
2612 	if (tx_queue->num_txbdfree &&
2613 	    netif_tx_queue_stopped(txq) &&
2614 	    !(test_bit(GFAR_DOWN, &priv->state)))
2615 		netif_wake_subqueue(priv->ndev, tqi);
2616 
2617 	/* Update dirty indicators */
2618 	tx_queue->skb_dirtytx = skb_dirtytx;
2619 	tx_queue->dirty_tx = bdp;
2620 
2621 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2622 }
2623 
2624 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2625 {
2626 	struct page *page;
2627 	dma_addr_t addr;
2628 
2629 	page = dev_alloc_page();
2630 	if (unlikely(!page))
2631 		return false;
2632 
2633 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2634 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2635 		__free_page(page);
2636 
2637 		return false;
2638 	}
2639 
2640 	rxb->dma = addr;
2641 	rxb->page = page;
2642 	rxb->page_offset = 0;
2643 
2644 	return true;
2645 }
2646 
2647 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2648 {
2649 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2650 	struct gfar_extra_stats *estats = &priv->extra_stats;
2651 
2652 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2653 	atomic64_inc(&estats->rx_alloc_err);
2654 }
2655 
2656 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2657 				int alloc_cnt)
2658 {
2659 	struct rxbd8 *bdp;
2660 	struct gfar_rx_buff *rxb;
2661 	int i;
2662 
2663 	i = rx_queue->next_to_use;
2664 	bdp = &rx_queue->rx_bd_base[i];
2665 	rxb = &rx_queue->rx_buff[i];
2666 
2667 	while (alloc_cnt--) {
2668 		/* try reuse page */
2669 		if (unlikely(!rxb->page)) {
2670 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2671 				gfar_rx_alloc_err(rx_queue);
2672 				break;
2673 			}
2674 		}
2675 
2676 		/* Setup the new RxBD */
2677 		gfar_init_rxbdp(rx_queue, bdp,
2678 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2679 
2680 		/* Update to the next pointer */
2681 		bdp++;
2682 		rxb++;
2683 
2684 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2685 			i = 0;
2686 			bdp = rx_queue->rx_bd_base;
2687 			rxb = rx_queue->rx_buff;
2688 		}
2689 	}
2690 
2691 	rx_queue->next_to_use = i;
2692 	rx_queue->next_to_alloc = i;
2693 }
2694 
2695 static void count_errors(u32 lstatus, struct net_device *ndev)
2696 {
2697 	struct gfar_private *priv = netdev_priv(ndev);
2698 	struct net_device_stats *stats = &ndev->stats;
2699 	struct gfar_extra_stats *estats = &priv->extra_stats;
2700 
2701 	/* If the packet was truncated, none of the other errors matter */
2702 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2703 		stats->rx_length_errors++;
2704 
2705 		atomic64_inc(&estats->rx_trunc);
2706 
2707 		return;
2708 	}
2709 	/* Count the errors, if there were any */
2710 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2711 		stats->rx_length_errors++;
2712 
2713 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2714 			atomic64_inc(&estats->rx_large);
2715 		else
2716 			atomic64_inc(&estats->rx_short);
2717 	}
2718 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2719 		stats->rx_frame_errors++;
2720 		atomic64_inc(&estats->rx_nonoctet);
2721 	}
2722 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2723 		atomic64_inc(&estats->rx_crcerr);
2724 		stats->rx_crc_errors++;
2725 	}
2726 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2727 		atomic64_inc(&estats->rx_overrun);
2728 		stats->rx_over_errors++;
2729 	}
2730 }
2731 
2732 irqreturn_t gfar_receive(int irq, void *grp_id)
2733 {
2734 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2735 	unsigned long flags;
2736 	u32 imask;
2737 
2738 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2739 		spin_lock_irqsave(&grp->grplock, flags);
2740 		imask = gfar_read(&grp->regs->imask);
2741 		imask &= IMASK_RX_DISABLED;
2742 		gfar_write(&grp->regs->imask, imask);
2743 		spin_unlock_irqrestore(&grp->grplock, flags);
2744 		__napi_schedule(&grp->napi_rx);
2745 	} else {
2746 		/* Clear IEVENT, so interrupts aren't called again
2747 		 * because of the packets that have already arrived.
2748 		 */
2749 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2750 	}
2751 
2752 	return IRQ_HANDLED;
2753 }
2754 
2755 /* Interrupt Handler for Transmit complete */
2756 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2757 {
2758 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2759 	unsigned long flags;
2760 	u32 imask;
2761 
2762 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2763 		spin_lock_irqsave(&grp->grplock, flags);
2764 		imask = gfar_read(&grp->regs->imask);
2765 		imask &= IMASK_TX_DISABLED;
2766 		gfar_write(&grp->regs->imask, imask);
2767 		spin_unlock_irqrestore(&grp->grplock, flags);
2768 		__napi_schedule(&grp->napi_tx);
2769 	} else {
2770 		/* Clear IEVENT, so interrupts aren't called again
2771 		 * because of the packets that have already arrived.
2772 		 */
2773 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2774 	}
2775 
2776 	return IRQ_HANDLED;
2777 }
2778 
2779 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2780 			     struct sk_buff *skb, bool first)
2781 {
2782 	unsigned int size = lstatus & BD_LENGTH_MASK;
2783 	struct page *page = rxb->page;
2784 
2785 	/* Remove the FCS from the packet length */
2786 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2787 		size -= ETH_FCS_LEN;
2788 
2789 	if (likely(first))
2790 		skb_put(skb, size);
2791 	else
2792 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2793 				rxb->page_offset + RXBUF_ALIGNMENT,
2794 				size, GFAR_RXB_TRUESIZE);
2795 
2796 	/* try reuse page */
2797 	if (unlikely(page_count(page) != 1))
2798 		return false;
2799 
2800 	/* change offset to the other half */
2801 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2802 
2803 	atomic_inc(&page->_count);
2804 
2805 	return true;
2806 }
2807 
2808 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2809 			       struct gfar_rx_buff *old_rxb)
2810 {
2811 	struct gfar_rx_buff *new_rxb;
2812 	u16 nta = rxq->next_to_alloc;
2813 
2814 	new_rxb = &rxq->rx_buff[nta];
2815 
2816 	/* find next buf that can reuse a page */
2817 	nta++;
2818 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2819 
2820 	/* copy page reference */
2821 	*new_rxb = *old_rxb;
2822 
2823 	/* sync for use by the device */
2824 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2825 					 old_rxb->page_offset,
2826 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2827 }
2828 
2829 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2830 					    u32 lstatus, struct sk_buff *skb)
2831 {
2832 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2833 	struct page *page = rxb->page;
2834 	bool first = false;
2835 
2836 	if (likely(!skb)) {
2837 		void *buff_addr = page_address(page) + rxb->page_offset;
2838 
2839 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2840 		if (unlikely(!skb)) {
2841 			gfar_rx_alloc_err(rx_queue);
2842 			return NULL;
2843 		}
2844 		skb_reserve(skb, RXBUF_ALIGNMENT);
2845 		first = true;
2846 	}
2847 
2848 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2849 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2850 
2851 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2852 		/* reuse the free half of the page */
2853 		gfar_reuse_rx_page(rx_queue, rxb);
2854 	} else {
2855 		/* page cannot be reused, unmap it */
2856 		dma_unmap_page(rx_queue->dev, rxb->dma,
2857 			       PAGE_SIZE, DMA_FROM_DEVICE);
2858 	}
2859 
2860 	/* clear rxb content */
2861 	rxb->page = NULL;
2862 
2863 	return skb;
2864 }
2865 
2866 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2867 {
2868 	/* If valid headers were found, and valid sums
2869 	 * were verified, then we tell the kernel that no
2870 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2871 	 */
2872 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2873 	    (RXFCB_CIP | RXFCB_CTU))
2874 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2875 	else
2876 		skb_checksum_none_assert(skb);
2877 }
2878 
2879 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2880 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2881 {
2882 	struct gfar_private *priv = netdev_priv(ndev);
2883 	struct rxfcb *fcb = NULL;
2884 
2885 	/* fcb is at the beginning if exists */
2886 	fcb = (struct rxfcb *)skb->data;
2887 
2888 	/* Remove the FCB from the skb
2889 	 * Remove the padded bytes, if there are any
2890 	 */
2891 	if (priv->uses_rxfcb)
2892 		skb_pull(skb, GMAC_FCB_LEN);
2893 
2894 	/* Get receive timestamp from the skb */
2895 	if (priv->hwts_rx_en) {
2896 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2897 		u64 *ns = (u64 *) skb->data;
2898 
2899 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2900 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2901 	}
2902 
2903 	if (priv->padding)
2904 		skb_pull(skb, priv->padding);
2905 
2906 	if (ndev->features & NETIF_F_RXCSUM)
2907 		gfar_rx_checksum(skb, fcb);
2908 
2909 	/* Tell the skb what kind of packet this is */
2910 	skb->protocol = eth_type_trans(skb, ndev);
2911 
2912 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2913 	 * Even if vlan rx accel is disabled, on some chips
2914 	 * RXFCB_VLN is pseudo randomly set.
2915 	 */
2916 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2917 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2918 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2919 				       be16_to_cpu(fcb->vlctl));
2920 }
2921 
2922 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2923  * until the budget/quota has been reached. Returns the number
2924  * of frames handled
2925  */
2926 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2927 {
2928 	struct net_device *ndev = rx_queue->ndev;
2929 	struct gfar_private *priv = netdev_priv(ndev);
2930 	struct rxbd8 *bdp;
2931 	int i, howmany = 0;
2932 	struct sk_buff *skb = rx_queue->skb;
2933 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2934 	unsigned int total_bytes = 0, total_pkts = 0;
2935 
2936 	/* Get the first full descriptor */
2937 	i = rx_queue->next_to_clean;
2938 
2939 	while (rx_work_limit--) {
2940 		u32 lstatus;
2941 
2942 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2943 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2944 			cleaned_cnt = 0;
2945 		}
2946 
2947 		bdp = &rx_queue->rx_bd_base[i];
2948 		lstatus = be32_to_cpu(bdp->lstatus);
2949 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2950 			break;
2951 
2952 		/* order rx buffer descriptor reads */
2953 		rmb();
2954 
2955 		/* fetch next to clean buffer from the ring */
2956 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2957 		if (unlikely(!skb))
2958 			break;
2959 
2960 		cleaned_cnt++;
2961 		howmany++;
2962 
2963 		if (unlikely(++i == rx_queue->rx_ring_size))
2964 			i = 0;
2965 
2966 		rx_queue->next_to_clean = i;
2967 
2968 		/* fetch next buffer if not the last in frame */
2969 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2970 			continue;
2971 
2972 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2973 			count_errors(lstatus, ndev);
2974 
2975 			/* discard faulty buffer */
2976 			dev_kfree_skb(skb);
2977 			skb = NULL;
2978 			rx_queue->stats.rx_dropped++;
2979 			continue;
2980 		}
2981 
2982 		/* Increment the number of packets */
2983 		total_pkts++;
2984 		total_bytes += skb->len;
2985 
2986 		skb_record_rx_queue(skb, rx_queue->qindex);
2987 
2988 		gfar_process_frame(ndev, skb);
2989 
2990 		/* Send the packet up the stack */
2991 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2992 
2993 		skb = NULL;
2994 	}
2995 
2996 	/* Store incomplete frames for completion */
2997 	rx_queue->skb = skb;
2998 
2999 	rx_queue->stats.rx_packets += total_pkts;
3000 	rx_queue->stats.rx_bytes += total_bytes;
3001 
3002 	if (cleaned_cnt)
3003 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3004 
3005 	/* Update Last Free RxBD pointer for LFC */
3006 	if (unlikely(priv->tx_actual_en)) {
3007 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3008 
3009 		gfar_write(rx_queue->rfbptr, bdp_dma);
3010 	}
3011 
3012 	return howmany;
3013 }
3014 
3015 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3016 {
3017 	struct gfar_priv_grp *gfargrp =
3018 		container_of(napi, struct gfar_priv_grp, napi_rx);
3019 	struct gfar __iomem *regs = gfargrp->regs;
3020 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3021 	int work_done = 0;
3022 
3023 	/* Clear IEVENT, so interrupts aren't called again
3024 	 * because of the packets that have already arrived
3025 	 */
3026 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3027 
3028 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3029 
3030 	if (work_done < budget) {
3031 		u32 imask;
3032 		napi_complete(napi);
3033 		/* Clear the halt bit in RSTAT */
3034 		gfar_write(&regs->rstat, gfargrp->rstat);
3035 
3036 		spin_lock_irq(&gfargrp->grplock);
3037 		imask = gfar_read(&regs->imask);
3038 		imask |= IMASK_RX_DEFAULT;
3039 		gfar_write(&regs->imask, imask);
3040 		spin_unlock_irq(&gfargrp->grplock);
3041 	}
3042 
3043 	return work_done;
3044 }
3045 
3046 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3047 {
3048 	struct gfar_priv_grp *gfargrp =
3049 		container_of(napi, struct gfar_priv_grp, napi_tx);
3050 	struct gfar __iomem *regs = gfargrp->regs;
3051 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3052 	u32 imask;
3053 
3054 	/* Clear IEVENT, so interrupts aren't called again
3055 	 * because of the packets that have already arrived
3056 	 */
3057 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3058 
3059 	/* run Tx cleanup to completion */
3060 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3061 		gfar_clean_tx_ring(tx_queue);
3062 
3063 	napi_complete(napi);
3064 
3065 	spin_lock_irq(&gfargrp->grplock);
3066 	imask = gfar_read(&regs->imask);
3067 	imask |= IMASK_TX_DEFAULT;
3068 	gfar_write(&regs->imask, imask);
3069 	spin_unlock_irq(&gfargrp->grplock);
3070 
3071 	return 0;
3072 }
3073 
3074 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3075 {
3076 	struct gfar_priv_grp *gfargrp =
3077 		container_of(napi, struct gfar_priv_grp, napi_rx);
3078 	struct gfar_private *priv = gfargrp->priv;
3079 	struct gfar __iomem *regs = gfargrp->regs;
3080 	struct gfar_priv_rx_q *rx_queue = NULL;
3081 	int work_done = 0, work_done_per_q = 0;
3082 	int i, budget_per_q = 0;
3083 	unsigned long rstat_rxf;
3084 	int num_act_queues;
3085 
3086 	/* Clear IEVENT, so interrupts aren't called again
3087 	 * because of the packets that have already arrived
3088 	 */
3089 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3090 
3091 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3092 
3093 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3094 	if (num_act_queues)
3095 		budget_per_q = budget/num_act_queues;
3096 
3097 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3098 		/* skip queue if not active */
3099 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3100 			continue;
3101 
3102 		rx_queue = priv->rx_queue[i];
3103 		work_done_per_q =
3104 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3105 		work_done += work_done_per_q;
3106 
3107 		/* finished processing this queue */
3108 		if (work_done_per_q < budget_per_q) {
3109 			/* clear active queue hw indication */
3110 			gfar_write(&regs->rstat,
3111 				   RSTAT_CLEAR_RXF0 >> i);
3112 			num_act_queues--;
3113 
3114 			if (!num_act_queues)
3115 				break;
3116 		}
3117 	}
3118 
3119 	if (!num_act_queues) {
3120 		u32 imask;
3121 		napi_complete(napi);
3122 
3123 		/* Clear the halt bit in RSTAT */
3124 		gfar_write(&regs->rstat, gfargrp->rstat);
3125 
3126 		spin_lock_irq(&gfargrp->grplock);
3127 		imask = gfar_read(&regs->imask);
3128 		imask |= IMASK_RX_DEFAULT;
3129 		gfar_write(&regs->imask, imask);
3130 		spin_unlock_irq(&gfargrp->grplock);
3131 	}
3132 
3133 	return work_done;
3134 }
3135 
3136 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3137 {
3138 	struct gfar_priv_grp *gfargrp =
3139 		container_of(napi, struct gfar_priv_grp, napi_tx);
3140 	struct gfar_private *priv = gfargrp->priv;
3141 	struct gfar __iomem *regs = gfargrp->regs;
3142 	struct gfar_priv_tx_q *tx_queue = NULL;
3143 	int has_tx_work = 0;
3144 	int i;
3145 
3146 	/* Clear IEVENT, so interrupts aren't called again
3147 	 * because of the packets that have already arrived
3148 	 */
3149 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3150 
3151 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3152 		tx_queue = priv->tx_queue[i];
3153 		/* run Tx cleanup to completion */
3154 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3155 			gfar_clean_tx_ring(tx_queue);
3156 			has_tx_work = 1;
3157 		}
3158 	}
3159 
3160 	if (!has_tx_work) {
3161 		u32 imask;
3162 		napi_complete(napi);
3163 
3164 		spin_lock_irq(&gfargrp->grplock);
3165 		imask = gfar_read(&regs->imask);
3166 		imask |= IMASK_TX_DEFAULT;
3167 		gfar_write(&regs->imask, imask);
3168 		spin_unlock_irq(&gfargrp->grplock);
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 
3175 #ifdef CONFIG_NET_POLL_CONTROLLER
3176 /* Polling 'interrupt' - used by things like netconsole to send skbs
3177  * without having to re-enable interrupts. It's not called while
3178  * the interrupt routine is executing.
3179  */
3180 static void gfar_netpoll(struct net_device *dev)
3181 {
3182 	struct gfar_private *priv = netdev_priv(dev);
3183 	int i;
3184 
3185 	/* If the device has multiple interrupts, run tx/rx */
3186 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3187 		for (i = 0; i < priv->num_grps; i++) {
3188 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3189 
3190 			disable_irq(gfar_irq(grp, TX)->irq);
3191 			disable_irq(gfar_irq(grp, RX)->irq);
3192 			disable_irq(gfar_irq(grp, ER)->irq);
3193 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3194 			enable_irq(gfar_irq(grp, ER)->irq);
3195 			enable_irq(gfar_irq(grp, RX)->irq);
3196 			enable_irq(gfar_irq(grp, TX)->irq);
3197 		}
3198 	} else {
3199 		for (i = 0; i < priv->num_grps; i++) {
3200 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3201 
3202 			disable_irq(gfar_irq(grp, TX)->irq);
3203 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3204 			enable_irq(gfar_irq(grp, TX)->irq);
3205 		}
3206 	}
3207 }
3208 #endif
3209 
3210 /* The interrupt handler for devices with one interrupt */
3211 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3212 {
3213 	struct gfar_priv_grp *gfargrp = grp_id;
3214 
3215 	/* Save ievent for future reference */
3216 	u32 events = gfar_read(&gfargrp->regs->ievent);
3217 
3218 	/* Check for reception */
3219 	if (events & IEVENT_RX_MASK)
3220 		gfar_receive(irq, grp_id);
3221 
3222 	/* Check for transmit completion */
3223 	if (events & IEVENT_TX_MASK)
3224 		gfar_transmit(irq, grp_id);
3225 
3226 	/* Check for errors */
3227 	if (events & IEVENT_ERR_MASK)
3228 		gfar_error(irq, grp_id);
3229 
3230 	return IRQ_HANDLED;
3231 }
3232 
3233 /* Called every time the controller might need to be made
3234  * aware of new link state.  The PHY code conveys this
3235  * information through variables in the phydev structure, and this
3236  * function converts those variables into the appropriate
3237  * register values, and can bring down the device if needed.
3238  */
3239 static void adjust_link(struct net_device *dev)
3240 {
3241 	struct gfar_private *priv = netdev_priv(dev);
3242 	struct phy_device *phydev = priv->phydev;
3243 
3244 	if (unlikely(phydev->link != priv->oldlink ||
3245 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3246 				       phydev->speed != priv->oldspeed))))
3247 		gfar_update_link_state(priv);
3248 }
3249 
3250 /* Update the hash table based on the current list of multicast
3251  * addresses we subscribe to.  Also, change the promiscuity of
3252  * the device based on the flags (this function is called
3253  * whenever dev->flags is changed
3254  */
3255 static void gfar_set_multi(struct net_device *dev)
3256 {
3257 	struct netdev_hw_addr *ha;
3258 	struct gfar_private *priv = netdev_priv(dev);
3259 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3260 	u32 tempval;
3261 
3262 	if (dev->flags & IFF_PROMISC) {
3263 		/* Set RCTRL to PROM */
3264 		tempval = gfar_read(&regs->rctrl);
3265 		tempval |= RCTRL_PROM;
3266 		gfar_write(&regs->rctrl, tempval);
3267 	} else {
3268 		/* Set RCTRL to not PROM */
3269 		tempval = gfar_read(&regs->rctrl);
3270 		tempval &= ~(RCTRL_PROM);
3271 		gfar_write(&regs->rctrl, tempval);
3272 	}
3273 
3274 	if (dev->flags & IFF_ALLMULTI) {
3275 		/* Set the hash to rx all multicast frames */
3276 		gfar_write(&regs->igaddr0, 0xffffffff);
3277 		gfar_write(&regs->igaddr1, 0xffffffff);
3278 		gfar_write(&regs->igaddr2, 0xffffffff);
3279 		gfar_write(&regs->igaddr3, 0xffffffff);
3280 		gfar_write(&regs->igaddr4, 0xffffffff);
3281 		gfar_write(&regs->igaddr5, 0xffffffff);
3282 		gfar_write(&regs->igaddr6, 0xffffffff);
3283 		gfar_write(&regs->igaddr7, 0xffffffff);
3284 		gfar_write(&regs->gaddr0, 0xffffffff);
3285 		gfar_write(&regs->gaddr1, 0xffffffff);
3286 		gfar_write(&regs->gaddr2, 0xffffffff);
3287 		gfar_write(&regs->gaddr3, 0xffffffff);
3288 		gfar_write(&regs->gaddr4, 0xffffffff);
3289 		gfar_write(&regs->gaddr5, 0xffffffff);
3290 		gfar_write(&regs->gaddr6, 0xffffffff);
3291 		gfar_write(&regs->gaddr7, 0xffffffff);
3292 	} else {
3293 		int em_num;
3294 		int idx;
3295 
3296 		/* zero out the hash */
3297 		gfar_write(&regs->igaddr0, 0x0);
3298 		gfar_write(&regs->igaddr1, 0x0);
3299 		gfar_write(&regs->igaddr2, 0x0);
3300 		gfar_write(&regs->igaddr3, 0x0);
3301 		gfar_write(&regs->igaddr4, 0x0);
3302 		gfar_write(&regs->igaddr5, 0x0);
3303 		gfar_write(&regs->igaddr6, 0x0);
3304 		gfar_write(&regs->igaddr7, 0x0);
3305 		gfar_write(&regs->gaddr0, 0x0);
3306 		gfar_write(&regs->gaddr1, 0x0);
3307 		gfar_write(&regs->gaddr2, 0x0);
3308 		gfar_write(&regs->gaddr3, 0x0);
3309 		gfar_write(&regs->gaddr4, 0x0);
3310 		gfar_write(&regs->gaddr5, 0x0);
3311 		gfar_write(&regs->gaddr6, 0x0);
3312 		gfar_write(&regs->gaddr7, 0x0);
3313 
3314 		/* If we have extended hash tables, we need to
3315 		 * clear the exact match registers to prepare for
3316 		 * setting them
3317 		 */
3318 		if (priv->extended_hash) {
3319 			em_num = GFAR_EM_NUM + 1;
3320 			gfar_clear_exact_match(dev);
3321 			idx = 1;
3322 		} else {
3323 			idx = 0;
3324 			em_num = 0;
3325 		}
3326 
3327 		if (netdev_mc_empty(dev))
3328 			return;
3329 
3330 		/* Parse the list, and set the appropriate bits */
3331 		netdev_for_each_mc_addr(ha, dev) {
3332 			if (idx < em_num) {
3333 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3334 				idx++;
3335 			} else
3336 				gfar_set_hash_for_addr(dev, ha->addr);
3337 		}
3338 	}
3339 }
3340 
3341 
3342 /* Clears each of the exact match registers to zero, so they
3343  * don't interfere with normal reception
3344  */
3345 static void gfar_clear_exact_match(struct net_device *dev)
3346 {
3347 	int idx;
3348 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3349 
3350 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3351 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3352 }
3353 
3354 /* Set the appropriate hash bit for the given addr */
3355 /* The algorithm works like so:
3356  * 1) Take the Destination Address (ie the multicast address), and
3357  * do a CRC on it (little endian), and reverse the bits of the
3358  * result.
3359  * 2) Use the 8 most significant bits as a hash into a 256-entry
3360  * table.  The table is controlled through 8 32-bit registers:
3361  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3362  * gaddr7.  This means that the 3 most significant bits in the
3363  * hash index which gaddr register to use, and the 5 other bits
3364  * indicate which bit (assuming an IBM numbering scheme, which
3365  * for PowerPC (tm) is usually the case) in the register holds
3366  * the entry.
3367  */
3368 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3369 {
3370 	u32 tempval;
3371 	struct gfar_private *priv = netdev_priv(dev);
3372 	u32 result = ether_crc(ETH_ALEN, addr);
3373 	int width = priv->hash_width;
3374 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3375 	u8 whichreg = result >> (32 - width + 5);
3376 	u32 value = (1 << (31-whichbit));
3377 
3378 	tempval = gfar_read(priv->hash_regs[whichreg]);
3379 	tempval |= value;
3380 	gfar_write(priv->hash_regs[whichreg], tempval);
3381 }
3382 
3383 
3384 /* There are multiple MAC Address register pairs on some controllers
3385  * This function sets the numth pair to a given address
3386  */
3387 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3388 				  const u8 *addr)
3389 {
3390 	struct gfar_private *priv = netdev_priv(dev);
3391 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3392 	u32 tempval;
3393 	u32 __iomem *macptr = &regs->macstnaddr1;
3394 
3395 	macptr += num*2;
3396 
3397 	/* For a station address of 0x12345678ABCD in transmission
3398 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3399 	 * MACnADDR2 is set to 0x34120000.
3400 	 */
3401 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3402 		  (addr[3] << 8)  |  addr[2];
3403 
3404 	gfar_write(macptr, tempval);
3405 
3406 	tempval = (addr[1] << 24) | (addr[0] << 16);
3407 
3408 	gfar_write(macptr+1, tempval);
3409 }
3410 
3411 /* GFAR error interrupt handler */
3412 static irqreturn_t gfar_error(int irq, void *grp_id)
3413 {
3414 	struct gfar_priv_grp *gfargrp = grp_id;
3415 	struct gfar __iomem *regs = gfargrp->regs;
3416 	struct gfar_private *priv= gfargrp->priv;
3417 	struct net_device *dev = priv->ndev;
3418 
3419 	/* Save ievent for future reference */
3420 	u32 events = gfar_read(&regs->ievent);
3421 
3422 	/* Clear IEVENT */
3423 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3424 
3425 	/* Magic Packet is not an error. */
3426 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3427 	    (events & IEVENT_MAG))
3428 		events &= ~IEVENT_MAG;
3429 
3430 	/* Hmm... */
3431 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3432 		netdev_dbg(dev,
3433 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3434 			   events, gfar_read(&regs->imask));
3435 
3436 	/* Update the error counters */
3437 	if (events & IEVENT_TXE) {
3438 		dev->stats.tx_errors++;
3439 
3440 		if (events & IEVENT_LC)
3441 			dev->stats.tx_window_errors++;
3442 		if (events & IEVENT_CRL)
3443 			dev->stats.tx_aborted_errors++;
3444 		if (events & IEVENT_XFUN) {
3445 			netif_dbg(priv, tx_err, dev,
3446 				  "TX FIFO underrun, packet dropped\n");
3447 			dev->stats.tx_dropped++;
3448 			atomic64_inc(&priv->extra_stats.tx_underrun);
3449 
3450 			schedule_work(&priv->reset_task);
3451 		}
3452 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3453 	}
3454 	if (events & IEVENT_BSY) {
3455 		dev->stats.rx_errors++;
3456 		atomic64_inc(&priv->extra_stats.rx_bsy);
3457 
3458 		gfar_receive(irq, grp_id);
3459 
3460 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3461 			  gfar_read(&regs->rstat));
3462 	}
3463 	if (events & IEVENT_BABR) {
3464 		dev->stats.rx_errors++;
3465 		atomic64_inc(&priv->extra_stats.rx_babr);
3466 
3467 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3468 	}
3469 	if (events & IEVENT_EBERR) {
3470 		atomic64_inc(&priv->extra_stats.eberr);
3471 		netif_dbg(priv, rx_err, dev, "bus error\n");
3472 	}
3473 	if (events & IEVENT_RXC)
3474 		netif_dbg(priv, rx_status, dev, "control frame\n");
3475 
3476 	if (events & IEVENT_BABT) {
3477 		atomic64_inc(&priv->extra_stats.tx_babt);
3478 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3479 	}
3480 	return IRQ_HANDLED;
3481 }
3482 
3483 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3484 {
3485 	struct phy_device *phydev = priv->phydev;
3486 	u32 val = 0;
3487 
3488 	if (!phydev->duplex)
3489 		return val;
3490 
3491 	if (!priv->pause_aneg_en) {
3492 		if (priv->tx_pause_en)
3493 			val |= MACCFG1_TX_FLOW;
3494 		if (priv->rx_pause_en)
3495 			val |= MACCFG1_RX_FLOW;
3496 	} else {
3497 		u16 lcl_adv, rmt_adv;
3498 		u8 flowctrl;
3499 		/* get link partner capabilities */
3500 		rmt_adv = 0;
3501 		if (phydev->pause)
3502 			rmt_adv = LPA_PAUSE_CAP;
3503 		if (phydev->asym_pause)
3504 			rmt_adv |= LPA_PAUSE_ASYM;
3505 
3506 		lcl_adv = 0;
3507 		if (phydev->advertising & ADVERTISED_Pause)
3508 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3509 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3510 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3511 
3512 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3513 		if (flowctrl & FLOW_CTRL_TX)
3514 			val |= MACCFG1_TX_FLOW;
3515 		if (flowctrl & FLOW_CTRL_RX)
3516 			val |= MACCFG1_RX_FLOW;
3517 	}
3518 
3519 	return val;
3520 }
3521 
3522 static noinline void gfar_update_link_state(struct gfar_private *priv)
3523 {
3524 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3525 	struct phy_device *phydev = priv->phydev;
3526 	struct gfar_priv_rx_q *rx_queue = NULL;
3527 	int i;
3528 
3529 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3530 		return;
3531 
3532 	if (phydev->link) {
3533 		u32 tempval1 = gfar_read(&regs->maccfg1);
3534 		u32 tempval = gfar_read(&regs->maccfg2);
3535 		u32 ecntrl = gfar_read(&regs->ecntrl);
3536 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3537 
3538 		if (phydev->duplex != priv->oldduplex) {
3539 			if (!(phydev->duplex))
3540 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3541 			else
3542 				tempval |= MACCFG2_FULL_DUPLEX;
3543 
3544 			priv->oldduplex = phydev->duplex;
3545 		}
3546 
3547 		if (phydev->speed != priv->oldspeed) {
3548 			switch (phydev->speed) {
3549 			case 1000:
3550 				tempval =
3551 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3552 
3553 				ecntrl &= ~(ECNTRL_R100);
3554 				break;
3555 			case 100:
3556 			case 10:
3557 				tempval =
3558 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3559 
3560 				/* Reduced mode distinguishes
3561 				 * between 10 and 100
3562 				 */
3563 				if (phydev->speed == SPEED_100)
3564 					ecntrl |= ECNTRL_R100;
3565 				else
3566 					ecntrl &= ~(ECNTRL_R100);
3567 				break;
3568 			default:
3569 				netif_warn(priv, link, priv->ndev,
3570 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3571 					   phydev->speed);
3572 				break;
3573 			}
3574 
3575 			priv->oldspeed = phydev->speed;
3576 		}
3577 
3578 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3579 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3580 
3581 		/* Turn last free buffer recording on */
3582 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3583 			for (i = 0; i < priv->num_rx_queues; i++) {
3584 				u32 bdp_dma;
3585 
3586 				rx_queue = priv->rx_queue[i];
3587 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3588 				gfar_write(rx_queue->rfbptr, bdp_dma);
3589 			}
3590 
3591 			priv->tx_actual_en = 1;
3592 		}
3593 
3594 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3595 			priv->tx_actual_en = 0;
3596 
3597 		gfar_write(&regs->maccfg1, tempval1);
3598 		gfar_write(&regs->maccfg2, tempval);
3599 		gfar_write(&regs->ecntrl, ecntrl);
3600 
3601 		if (!priv->oldlink)
3602 			priv->oldlink = 1;
3603 
3604 	} else if (priv->oldlink) {
3605 		priv->oldlink = 0;
3606 		priv->oldspeed = 0;
3607 		priv->oldduplex = -1;
3608 	}
3609 
3610 	if (netif_msg_link(priv))
3611 		phy_print_status(phydev);
3612 }
3613 
3614 static const struct of_device_id gfar_match[] =
3615 {
3616 	{
3617 		.type = "network",
3618 		.compatible = "gianfar",
3619 	},
3620 	{
3621 		.compatible = "fsl,etsec2",
3622 	},
3623 	{},
3624 };
3625 MODULE_DEVICE_TABLE(of, gfar_match);
3626 
3627 /* Structure for a device driver */
3628 static struct platform_driver gfar_driver = {
3629 	.driver = {
3630 		.name = "fsl-gianfar",
3631 		.pm = GFAR_PM_OPS,
3632 		.of_match_table = gfar_match,
3633 	},
3634 	.probe = gfar_probe,
3635 	.remove = gfar_remove,
3636 };
3637 
3638 module_platform_driver(gfar_driver);
3639