1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
652 		    gfar_irq(grp, ER)->irq == NO_IRQ)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	struct property *stash;
742 	u32 stash_len = 0;
743 	u32 stash_idx = 0;
744 	unsigned int num_tx_qs, num_rx_qs;
745 	unsigned short mode, poll_mode;
746 
747 	if (!np)
748 		return -ENODEV;
749 
750 	if (of_device_is_compatible(np, "fsl,etsec2")) {
751 		mode = MQ_MG_MODE;
752 		poll_mode = GFAR_SQ_POLLING;
753 	} else {
754 		mode = SQ_SG_MODE;
755 		poll_mode = GFAR_SQ_POLLING;
756 	}
757 
758 	if (mode == SQ_SG_MODE) {
759 		num_tx_qs = 1;
760 		num_rx_qs = 1;
761 	} else { /* MQ_MG_MODE */
762 		/* get the actual number of supported groups */
763 		unsigned int num_grps = gfar_of_group_count(np);
764 
765 		if (num_grps == 0 || num_grps > MAXGROUPS) {
766 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 				num_grps);
768 			pr_err("Cannot do alloc_etherdev, aborting\n");
769 			return -EINVAL;
770 		}
771 
772 		if (poll_mode == GFAR_SQ_POLLING) {
773 			num_tx_qs = num_grps; /* one txq per int group */
774 			num_rx_qs = num_grps; /* one rxq per int group */
775 		} else { /* GFAR_MQ_POLLING */
776 			u32 tx_queues, rx_queues;
777 			int ret;
778 
779 			/* parse the num of HW tx and rx queues */
780 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 						   &tx_queues);
782 			num_tx_qs = ret ? 1 : tx_queues;
783 
784 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 						   &rx_queues);
786 			num_rx_qs = ret ? 1 : rx_queues;
787 		}
788 	}
789 
790 	if (num_tx_qs > MAX_TX_QS) {
791 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 		       num_tx_qs, MAX_TX_QS);
793 		pr_err("Cannot do alloc_etherdev, aborting\n");
794 		return -EINVAL;
795 	}
796 
797 	if (num_rx_qs > MAX_RX_QS) {
798 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 		       num_rx_qs, MAX_RX_QS);
800 		pr_err("Cannot do alloc_etherdev, aborting\n");
801 		return -EINVAL;
802 	}
803 
804 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 	dev = *pdev;
806 	if (NULL == dev)
807 		return -ENOMEM;
808 
809 	priv = netdev_priv(dev);
810 	priv->ndev = dev;
811 
812 	priv->mode = mode;
813 	priv->poll_mode = poll_mode;
814 
815 	priv->num_tx_queues = num_tx_qs;
816 	netif_set_real_num_rx_queues(dev, num_rx_qs);
817 	priv->num_rx_queues = num_rx_qs;
818 
819 	err = gfar_alloc_tx_queues(priv);
820 	if (err)
821 		goto tx_alloc_failed;
822 
823 	err = gfar_alloc_rx_queues(priv);
824 	if (err)
825 		goto rx_alloc_failed;
826 
827 	err = of_property_read_string(np, "model", &model);
828 	if (err) {
829 		pr_err("Device model property missing, aborting\n");
830 		goto rx_alloc_failed;
831 	}
832 
833 	/* Init Rx queue filer rule set linked list */
834 	INIT_LIST_HEAD(&priv->rx_list.list);
835 	priv->rx_list.count = 0;
836 	mutex_init(&priv->rx_queue_access);
837 
838 	for (i = 0; i < MAXGROUPS; i++)
839 		priv->gfargrp[i].regs = NULL;
840 
841 	/* Parse and initialize group specific information */
842 	if (priv->mode == MQ_MG_MODE) {
843 		for_each_available_child_of_node(np, child) {
844 			if (of_node_cmp(child->name, "queue-group"))
845 				continue;
846 
847 			err = gfar_parse_group(child, priv, model);
848 			if (err)
849 				goto err_grp_init;
850 		}
851 	} else { /* SQ_SG_MODE */
852 		err = gfar_parse_group(np, priv, model);
853 		if (err)
854 			goto err_grp_init;
855 	}
856 
857 	stash = of_find_property(np, "bd-stash", NULL);
858 
859 	if (stash) {
860 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 		priv->bd_stash_en = 1;
862 	}
863 
864 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865 
866 	if (err == 0)
867 		priv->rx_stash_size = stash_len;
868 
869 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870 
871 	if (err == 0)
872 		priv->rx_stash_index = stash_idx;
873 
874 	if (stash_len || stash_idx)
875 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876 
877 	mac_addr = of_get_mac_address(np);
878 
879 	if (mac_addr)
880 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881 
882 	if (model && !strcasecmp(model, "TSEC"))
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 				     FSL_GIANFAR_DEV_HAS_COALESCE |
885 				     FSL_GIANFAR_DEV_HAS_RMON |
886 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887 
888 	if (model && !strcasecmp(model, "eTSEC"))
889 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 				     FSL_GIANFAR_DEV_HAS_COALESCE |
891 				     FSL_GIANFAR_DEV_HAS_RMON |
892 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 				     FSL_GIANFAR_DEV_HAS_CSUM |
894 				     FSL_GIANFAR_DEV_HAS_VLAN |
895 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 				     FSL_GIANFAR_DEV_HAS_TIMER;
898 
899 	err = of_property_read_string(np, "phy-connection-type", &ctype);
900 
901 	/* We only care about rgmii-id.  The rest are autodetected */
902 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 	else
905 		priv->interface = PHY_INTERFACE_MODE_MII;
906 
907 	if (of_find_property(np, "fsl,magic-packet", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909 
910 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911 
912 	/* In the case of a fixed PHY, the DT node associated
913 	 * to the PHY is the Ethernet MAC DT node.
914 	 */
915 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916 		err = of_phy_register_fixed_link(np);
917 		if (err)
918 			goto err_grp_init;
919 
920 		priv->phy_node = of_node_get(np);
921 	}
922 
923 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
924 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925 
926 	return 0;
927 
928 err_grp_init:
929 	unmap_group_regs(priv);
930 rx_alloc_failed:
931 	gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933 	gfar_free_tx_queues(priv);
934 	free_gfar_dev(priv);
935 	return err;
936 }
937 
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940 	struct hwtstamp_config config;
941 	struct gfar_private *priv = netdev_priv(netdev);
942 
943 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944 		return -EFAULT;
945 
946 	/* reserved for future extensions */
947 	if (config.flags)
948 		return -EINVAL;
949 
950 	switch (config.tx_type) {
951 	case HWTSTAMP_TX_OFF:
952 		priv->hwts_tx_en = 0;
953 		break;
954 	case HWTSTAMP_TX_ON:
955 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 			return -ERANGE;
957 		priv->hwts_tx_en = 1;
958 		break;
959 	default:
960 		return -ERANGE;
961 	}
962 
963 	switch (config.rx_filter) {
964 	case HWTSTAMP_FILTER_NONE:
965 		if (priv->hwts_rx_en) {
966 			priv->hwts_rx_en = 0;
967 			reset_gfar(netdev);
968 		}
969 		break;
970 	default:
971 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972 			return -ERANGE;
973 		if (!priv->hwts_rx_en) {
974 			priv->hwts_rx_en = 1;
975 			reset_gfar(netdev);
976 		}
977 		config.rx_filter = HWTSTAMP_FILTER_ALL;
978 		break;
979 	}
980 
981 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982 		-EFAULT : 0;
983 }
984 
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987 	struct hwtstamp_config config;
988 	struct gfar_private *priv = netdev_priv(netdev);
989 
990 	config.flags = 0;
991 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992 	config.rx_filter = (priv->hwts_rx_en ?
993 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994 
995 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996 		-EFAULT : 0;
997 }
998 
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001 	struct gfar_private *priv = netdev_priv(dev);
1002 
1003 	if (!netif_running(dev))
1004 		return -EINVAL;
1005 
1006 	if (cmd == SIOCSHWTSTAMP)
1007 		return gfar_hwtstamp_set(dev, rq);
1008 	if (cmd == SIOCGHWTSTAMP)
1009 		return gfar_hwtstamp_get(dev, rq);
1010 
1011 	if (!priv->phydev)
1012 		return -ENODEV;
1013 
1014 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1015 }
1016 
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018 				   u32 class)
1019 {
1020 	u32 rqfpr = FPR_FILER_MASK;
1021 	u32 rqfcr = 0x0;
1022 
1023 	rqfar--;
1024 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025 	priv->ftp_rqfpr[rqfar] = rqfpr;
1026 	priv->ftp_rqfcr[rqfar] = rqfcr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	rqfar--;
1030 	rqfcr = RQFCR_CMP_NOMATCH;
1031 	priv->ftp_rqfpr[rqfar] = rqfpr;
1032 	priv->ftp_rqfcr[rqfar] = rqfcr;
1033 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034 
1035 	rqfar--;
1036 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037 	rqfpr = class;
1038 	priv->ftp_rqfcr[rqfar] = rqfcr;
1039 	priv->ftp_rqfpr[rqfar] = rqfpr;
1040 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041 
1042 	rqfar--;
1043 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044 	rqfpr = class;
1045 	priv->ftp_rqfcr[rqfar] = rqfcr;
1046 	priv->ftp_rqfpr[rqfar] = rqfpr;
1047 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048 
1049 	return rqfar;
1050 }
1051 
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054 	int i = 0x0;
1055 	u32 rqfar = MAX_FILER_IDX;
1056 	u32 rqfcr = 0x0;
1057 	u32 rqfpr = FPR_FILER_MASK;
1058 
1059 	/* Default rule */
1060 	rqfcr = RQFCR_CMP_MATCH;
1061 	priv->ftp_rqfcr[rqfar] = rqfcr;
1062 	priv->ftp_rqfpr[rqfar] = rqfpr;
1063 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064 
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071 
1072 	/* cur_filer_idx indicated the first non-masked rule */
1073 	priv->cur_filer_idx = rqfar;
1074 
1075 	/* Rest are masked rules */
1076 	rqfcr = RQFCR_CMP_NOMATCH;
1077 	for (i = 0; i < rqfar; i++) {
1078 		priv->ftp_rqfcr[i] = rqfcr;
1079 		priv->ftp_rqfpr[i] = rqfpr;
1080 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1081 	}
1082 }
1083 
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087 	unsigned int pvr = mfspr(SPRN_PVR);
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090 	unsigned int rev = svr & 0xffff;
1091 
1092 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1093 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095 		priv->errata |= GFAR_ERRATA_74;
1096 
1097 	/* MPC8313 and MPC837x all rev */
1098 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100 		priv->errata |= GFAR_ERRATA_76;
1101 
1102 	/* MPC8313 Rev < 2.0 */
1103 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104 		priv->errata |= GFAR_ERRATA_12;
1105 }
1106 
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109 	unsigned int svr = mfspr(SPRN_SVR);
1110 
1111 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112 		priv->errata |= GFAR_ERRATA_12;
1113 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1115 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1116 }
1117 #endif
1118 
1119 static void gfar_detect_errata(struct gfar_private *priv)
1120 {
1121 	struct device *dev = &priv->ofdev->dev;
1122 
1123 	/* no plans to fix */
1124 	priv->errata |= GFAR_ERRATA_A002;
1125 
1126 #ifdef CONFIG_PPC
1127 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1128 		__gfar_detect_errata_85xx(priv);
1129 	else /* non-mpc85xx parts, i.e. e300 core based */
1130 		__gfar_detect_errata_83xx(priv);
1131 #endif
1132 
1133 	if (priv->errata)
1134 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1135 			 priv->errata);
1136 }
1137 
1138 void gfar_mac_reset(struct gfar_private *priv)
1139 {
1140 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1141 	u32 tempval;
1142 
1143 	/* Reset MAC layer */
1144 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1145 
1146 	/* We need to delay at least 3 TX clocks */
1147 	udelay(3);
1148 
1149 	/* the soft reset bit is not self-resetting, so we need to
1150 	 * clear it before resuming normal operation
1151 	 */
1152 	gfar_write(&regs->maccfg1, 0);
1153 
1154 	udelay(3);
1155 
1156 	gfar_rx_offload_en(priv);
1157 
1158 	/* Initialize the max receive frame/buffer lengths */
1159 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1160 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1161 
1162 	/* Initialize the Minimum Frame Length Register */
1163 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1164 
1165 	/* Initialize MACCFG2. */
1166 	tempval = MACCFG2_INIT_SETTINGS;
1167 
1168 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1169 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1170 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1171 	 */
1172 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1173 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1174 
1175 	gfar_write(&regs->maccfg2, tempval);
1176 
1177 	/* Clear mac addr hash registers */
1178 	gfar_write(&regs->igaddr0, 0);
1179 	gfar_write(&regs->igaddr1, 0);
1180 	gfar_write(&regs->igaddr2, 0);
1181 	gfar_write(&regs->igaddr3, 0);
1182 	gfar_write(&regs->igaddr4, 0);
1183 	gfar_write(&regs->igaddr5, 0);
1184 	gfar_write(&regs->igaddr6, 0);
1185 	gfar_write(&regs->igaddr7, 0);
1186 
1187 	gfar_write(&regs->gaddr0, 0);
1188 	gfar_write(&regs->gaddr1, 0);
1189 	gfar_write(&regs->gaddr2, 0);
1190 	gfar_write(&regs->gaddr3, 0);
1191 	gfar_write(&regs->gaddr4, 0);
1192 	gfar_write(&regs->gaddr5, 0);
1193 	gfar_write(&regs->gaddr6, 0);
1194 	gfar_write(&regs->gaddr7, 0);
1195 
1196 	if (priv->extended_hash)
1197 		gfar_clear_exact_match(priv->ndev);
1198 
1199 	gfar_mac_rx_config(priv);
1200 
1201 	gfar_mac_tx_config(priv);
1202 
1203 	gfar_set_mac_address(priv->ndev);
1204 
1205 	gfar_set_multi(priv->ndev);
1206 
1207 	/* clear ievent and imask before configuring coalescing */
1208 	gfar_ints_disable(priv);
1209 
1210 	/* Configure the coalescing support */
1211 	gfar_configure_coalescing_all(priv);
1212 }
1213 
1214 static void gfar_hw_init(struct gfar_private *priv)
1215 {
1216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217 	u32 attrs;
1218 
1219 	/* Stop the DMA engine now, in case it was running before
1220 	 * (The firmware could have used it, and left it running).
1221 	 */
1222 	gfar_halt(priv);
1223 
1224 	gfar_mac_reset(priv);
1225 
1226 	/* Zero out the rmon mib registers if it has them */
1227 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1228 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1229 
1230 		/* Mask off the CAM interrupts */
1231 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1232 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1233 	}
1234 
1235 	/* Initialize ECNTRL */
1236 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1237 
1238 	/* Set the extraction length and index */
1239 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1240 		ATTRELI_EI(priv->rx_stash_index);
1241 
1242 	gfar_write(&regs->attreli, attrs);
1243 
1244 	/* Start with defaults, and add stashing
1245 	 * depending on driver parameters
1246 	 */
1247 	attrs = ATTR_INIT_SETTINGS;
1248 
1249 	if (priv->bd_stash_en)
1250 		attrs |= ATTR_BDSTASH;
1251 
1252 	if (priv->rx_stash_size != 0)
1253 		attrs |= ATTR_BUFSTASH;
1254 
1255 	gfar_write(&regs->attr, attrs);
1256 
1257 	/* FIFO configs */
1258 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1259 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1260 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1261 
1262 	/* Program the interrupt steering regs, only for MG devices */
1263 	if (priv->num_grps > 1)
1264 		gfar_write_isrg(priv);
1265 }
1266 
1267 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1268 {
1269 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270 
1271 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1272 		priv->extended_hash = 1;
1273 		priv->hash_width = 9;
1274 
1275 		priv->hash_regs[0] = &regs->igaddr0;
1276 		priv->hash_regs[1] = &regs->igaddr1;
1277 		priv->hash_regs[2] = &regs->igaddr2;
1278 		priv->hash_regs[3] = &regs->igaddr3;
1279 		priv->hash_regs[4] = &regs->igaddr4;
1280 		priv->hash_regs[5] = &regs->igaddr5;
1281 		priv->hash_regs[6] = &regs->igaddr6;
1282 		priv->hash_regs[7] = &regs->igaddr7;
1283 		priv->hash_regs[8] = &regs->gaddr0;
1284 		priv->hash_regs[9] = &regs->gaddr1;
1285 		priv->hash_regs[10] = &regs->gaddr2;
1286 		priv->hash_regs[11] = &regs->gaddr3;
1287 		priv->hash_regs[12] = &regs->gaddr4;
1288 		priv->hash_regs[13] = &regs->gaddr5;
1289 		priv->hash_regs[14] = &regs->gaddr6;
1290 		priv->hash_regs[15] = &regs->gaddr7;
1291 
1292 	} else {
1293 		priv->extended_hash = 0;
1294 		priv->hash_width = 8;
1295 
1296 		priv->hash_regs[0] = &regs->gaddr0;
1297 		priv->hash_regs[1] = &regs->gaddr1;
1298 		priv->hash_regs[2] = &regs->gaddr2;
1299 		priv->hash_regs[3] = &regs->gaddr3;
1300 		priv->hash_regs[4] = &regs->gaddr4;
1301 		priv->hash_regs[5] = &regs->gaddr5;
1302 		priv->hash_regs[6] = &regs->gaddr6;
1303 		priv->hash_regs[7] = &regs->gaddr7;
1304 	}
1305 }
1306 
1307 /* Set up the ethernet device structure, private data,
1308  * and anything else we need before we start
1309  */
1310 static int gfar_probe(struct platform_device *ofdev)
1311 {
1312 	struct net_device *dev = NULL;
1313 	struct gfar_private *priv = NULL;
1314 	int err = 0, i;
1315 
1316 	err = gfar_of_init(ofdev, &dev);
1317 
1318 	if (err)
1319 		return err;
1320 
1321 	priv = netdev_priv(dev);
1322 	priv->ndev = dev;
1323 	priv->ofdev = ofdev;
1324 	priv->dev = &ofdev->dev;
1325 	SET_NETDEV_DEV(dev, &ofdev->dev);
1326 
1327 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1328 
1329 	platform_set_drvdata(ofdev, priv);
1330 
1331 	gfar_detect_errata(priv);
1332 
1333 	/* Set the dev->base_addr to the gfar reg region */
1334 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1335 
1336 	/* Fill in the dev structure */
1337 	dev->watchdog_timeo = TX_TIMEOUT;
1338 	dev->mtu = 1500;
1339 	dev->netdev_ops = &gfar_netdev_ops;
1340 	dev->ethtool_ops = &gfar_ethtool_ops;
1341 
1342 	/* Register for napi ...We are registering NAPI for each grp */
1343 	for (i = 0; i < priv->num_grps; i++) {
1344 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1345 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1346 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1347 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1348 				       gfar_poll_tx_sq, 2);
1349 		} else {
1350 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1352 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353 				       gfar_poll_tx, 2);
1354 		}
1355 	}
1356 
1357 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1358 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1359 				   NETIF_F_RXCSUM;
1360 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1361 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1362 	}
1363 
1364 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1365 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1366 				    NETIF_F_HW_VLAN_CTAG_RX;
1367 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1368 	}
1369 
1370 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1371 
1372 	gfar_init_addr_hash_table(priv);
1373 
1374 	/* Insert receive time stamps into padding alignment bytes */
1375 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1376 		priv->padding = 8;
1377 
1378 	if (dev->features & NETIF_F_IP_CSUM ||
1379 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 		dev->needed_headroom = GMAC_FCB_LEN;
1381 
1382 	/* Initializing some of the rx/tx queue level parameters */
1383 	for (i = 0; i < priv->num_tx_queues; i++) {
1384 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1385 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1386 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1387 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1388 	}
1389 
1390 	for (i = 0; i < priv->num_rx_queues; i++) {
1391 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1392 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1393 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1394 	}
1395 
1396 	/* always enable rx filer */
1397 	priv->rx_filer_enable = 1;
1398 	/* Enable most messages by default */
1399 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1400 	/* use pritority h/w tx queue scheduling for single queue devices */
1401 	if (priv->num_tx_queues == 1)
1402 		priv->prio_sched_en = 1;
1403 
1404 	set_bit(GFAR_DOWN, &priv->state);
1405 
1406 	gfar_hw_init(priv);
1407 
1408 	/* Carrier starts down, phylib will bring it up */
1409 	netif_carrier_off(dev);
1410 
1411 	err = register_netdev(dev);
1412 
1413 	if (err) {
1414 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1415 		goto register_fail;
1416 	}
1417 
1418 	device_set_wakeup_capable(&dev->dev, priv->device_flags &
1419 				  FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1420 
1421 	/* fill out IRQ number and name fields */
1422 	for (i = 0; i < priv->num_grps; i++) {
1423 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1424 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1425 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1426 				dev->name, "_g", '0' + i, "_tx");
1427 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1428 				dev->name, "_g", '0' + i, "_rx");
1429 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1430 				dev->name, "_g", '0' + i, "_er");
1431 		} else
1432 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1433 	}
1434 
1435 	/* Initialize the filer table */
1436 	gfar_init_filer_table(priv);
1437 
1438 	/* Print out the device info */
1439 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1440 
1441 	/* Even more device info helps when determining which kernel
1442 	 * provided which set of benchmarks.
1443 	 */
1444 	netdev_info(dev, "Running with NAPI enabled\n");
1445 	for (i = 0; i < priv->num_rx_queues; i++)
1446 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1447 			    i, priv->rx_queue[i]->rx_ring_size);
1448 	for (i = 0; i < priv->num_tx_queues; i++)
1449 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1450 			    i, priv->tx_queue[i]->tx_ring_size);
1451 
1452 	return 0;
1453 
1454 register_fail:
1455 	unmap_group_regs(priv);
1456 	gfar_free_rx_queues(priv);
1457 	gfar_free_tx_queues(priv);
1458 	of_node_put(priv->phy_node);
1459 	of_node_put(priv->tbi_node);
1460 	free_gfar_dev(priv);
1461 	return err;
1462 }
1463 
1464 static int gfar_remove(struct platform_device *ofdev)
1465 {
1466 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1467 
1468 	of_node_put(priv->phy_node);
1469 	of_node_put(priv->tbi_node);
1470 
1471 	unregister_netdev(priv->ndev);
1472 	unmap_group_regs(priv);
1473 	gfar_free_rx_queues(priv);
1474 	gfar_free_tx_queues(priv);
1475 	free_gfar_dev(priv);
1476 
1477 	return 0;
1478 }
1479 
1480 #ifdef CONFIG_PM
1481 
1482 static int gfar_suspend(struct device *dev)
1483 {
1484 	struct gfar_private *priv = dev_get_drvdata(dev);
1485 	struct net_device *ndev = priv->ndev;
1486 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487 	u32 tempval;
1488 	int magic_packet = priv->wol_en &&
1489 			   (priv->device_flags &
1490 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1491 
1492 	if (!netif_running(ndev))
1493 		return 0;
1494 
1495 	disable_napi(priv);
1496 	netif_tx_lock(ndev);
1497 	netif_device_detach(ndev);
1498 	netif_tx_unlock(ndev);
1499 
1500 	gfar_halt(priv);
1501 
1502 	if (magic_packet) {
1503 		/* Enable interrupt on Magic Packet */
1504 		gfar_write(&regs->imask, IMASK_MAG);
1505 
1506 		/* Enable Magic Packet mode */
1507 		tempval = gfar_read(&regs->maccfg2);
1508 		tempval |= MACCFG2_MPEN;
1509 		gfar_write(&regs->maccfg2, tempval);
1510 
1511 		/* re-enable the Rx block */
1512 		tempval = gfar_read(&regs->maccfg1);
1513 		tempval |= MACCFG1_RX_EN;
1514 		gfar_write(&regs->maccfg1, tempval);
1515 
1516 	} else {
1517 		phy_stop(priv->phydev);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int gfar_resume(struct device *dev)
1524 {
1525 	struct gfar_private *priv = dev_get_drvdata(dev);
1526 	struct net_device *ndev = priv->ndev;
1527 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1528 	u32 tempval;
1529 	int magic_packet = priv->wol_en &&
1530 			   (priv->device_flags &
1531 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1532 
1533 	if (!netif_running(ndev))
1534 		return 0;
1535 
1536 	if (magic_packet) {
1537 		/* Disable Magic Packet mode */
1538 		tempval = gfar_read(&regs->maccfg2);
1539 		tempval &= ~MACCFG2_MPEN;
1540 		gfar_write(&regs->maccfg2, tempval);
1541 	} else {
1542 		phy_start(priv->phydev);
1543 	}
1544 
1545 	gfar_start(priv);
1546 
1547 	netif_device_attach(ndev);
1548 	enable_napi(priv);
1549 
1550 	return 0;
1551 }
1552 
1553 static int gfar_restore(struct device *dev)
1554 {
1555 	struct gfar_private *priv = dev_get_drvdata(dev);
1556 	struct net_device *ndev = priv->ndev;
1557 
1558 	if (!netif_running(ndev)) {
1559 		netif_device_attach(ndev);
1560 
1561 		return 0;
1562 	}
1563 
1564 	gfar_init_bds(ndev);
1565 
1566 	gfar_mac_reset(priv);
1567 
1568 	gfar_init_tx_rx_base(priv);
1569 
1570 	gfar_start(priv);
1571 
1572 	priv->oldlink = 0;
1573 	priv->oldspeed = 0;
1574 	priv->oldduplex = -1;
1575 
1576 	if (priv->phydev)
1577 		phy_start(priv->phydev);
1578 
1579 	netif_device_attach(ndev);
1580 	enable_napi(priv);
1581 
1582 	return 0;
1583 }
1584 
1585 static struct dev_pm_ops gfar_pm_ops = {
1586 	.suspend = gfar_suspend,
1587 	.resume = gfar_resume,
1588 	.freeze = gfar_suspend,
1589 	.thaw = gfar_resume,
1590 	.restore = gfar_restore,
1591 };
1592 
1593 #define GFAR_PM_OPS (&gfar_pm_ops)
1594 
1595 #else
1596 
1597 #define GFAR_PM_OPS NULL
1598 
1599 #endif
1600 
1601 /* Reads the controller's registers to determine what interface
1602  * connects it to the PHY.
1603  */
1604 static phy_interface_t gfar_get_interface(struct net_device *dev)
1605 {
1606 	struct gfar_private *priv = netdev_priv(dev);
1607 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1608 	u32 ecntrl;
1609 
1610 	ecntrl = gfar_read(&regs->ecntrl);
1611 
1612 	if (ecntrl & ECNTRL_SGMII_MODE)
1613 		return PHY_INTERFACE_MODE_SGMII;
1614 
1615 	if (ecntrl & ECNTRL_TBI_MODE) {
1616 		if (ecntrl & ECNTRL_REDUCED_MODE)
1617 			return PHY_INTERFACE_MODE_RTBI;
1618 		else
1619 			return PHY_INTERFACE_MODE_TBI;
1620 	}
1621 
1622 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1623 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1624 			return PHY_INTERFACE_MODE_RMII;
1625 		}
1626 		else {
1627 			phy_interface_t interface = priv->interface;
1628 
1629 			/* This isn't autodetected right now, so it must
1630 			 * be set by the device tree or platform code.
1631 			 */
1632 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1633 				return PHY_INTERFACE_MODE_RGMII_ID;
1634 
1635 			return PHY_INTERFACE_MODE_RGMII;
1636 		}
1637 	}
1638 
1639 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1640 		return PHY_INTERFACE_MODE_GMII;
1641 
1642 	return PHY_INTERFACE_MODE_MII;
1643 }
1644 
1645 
1646 /* Initializes driver's PHY state, and attaches to the PHY.
1647  * Returns 0 on success.
1648  */
1649 static int init_phy(struct net_device *dev)
1650 {
1651 	struct gfar_private *priv = netdev_priv(dev);
1652 	uint gigabit_support =
1653 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1654 		GFAR_SUPPORTED_GBIT : 0;
1655 	phy_interface_t interface;
1656 
1657 	priv->oldlink = 0;
1658 	priv->oldspeed = 0;
1659 	priv->oldduplex = -1;
1660 
1661 	interface = gfar_get_interface(dev);
1662 
1663 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1664 				      interface);
1665 	if (!priv->phydev) {
1666 		dev_err(&dev->dev, "could not attach to PHY\n");
1667 		return -ENODEV;
1668 	}
1669 
1670 	if (interface == PHY_INTERFACE_MODE_SGMII)
1671 		gfar_configure_serdes(dev);
1672 
1673 	/* Remove any features not supported by the controller */
1674 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1675 	priv->phydev->advertising = priv->phydev->supported;
1676 
1677 	/* Add support for flow control, but don't advertise it by default */
1678 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1679 
1680 	return 0;
1681 }
1682 
1683 /* Initialize TBI PHY interface for communicating with the
1684  * SERDES lynx PHY on the chip.  We communicate with this PHY
1685  * through the MDIO bus on each controller, treating it as a
1686  * "normal" PHY at the address found in the TBIPA register.  We assume
1687  * that the TBIPA register is valid.  Either the MDIO bus code will set
1688  * it to a value that doesn't conflict with other PHYs on the bus, or the
1689  * value doesn't matter, as there are no other PHYs on the bus.
1690  */
1691 static void gfar_configure_serdes(struct net_device *dev)
1692 {
1693 	struct gfar_private *priv = netdev_priv(dev);
1694 	struct phy_device *tbiphy;
1695 
1696 	if (!priv->tbi_node) {
1697 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1698 				    "device tree specify a tbi-handle\n");
1699 		return;
1700 	}
1701 
1702 	tbiphy = of_phy_find_device(priv->tbi_node);
1703 	if (!tbiphy) {
1704 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1705 		return;
1706 	}
1707 
1708 	/* If the link is already up, we must already be ok, and don't need to
1709 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1710 	 * everything for us?  Resetting it takes the link down and requires
1711 	 * several seconds for it to come back.
1712 	 */
1713 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1714 		put_device(&tbiphy->dev);
1715 		return;
1716 	}
1717 
1718 	/* Single clk mode, mii mode off(for serdes communication) */
1719 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1720 
1721 	phy_write(tbiphy, MII_ADVERTISE,
1722 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1723 		  ADVERTISE_1000XPSE_ASYM);
1724 
1725 	phy_write(tbiphy, MII_BMCR,
1726 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1727 		  BMCR_SPEED1000);
1728 
1729 	put_device(&tbiphy->dev);
1730 }
1731 
1732 static int __gfar_is_rx_idle(struct gfar_private *priv)
1733 {
1734 	u32 res;
1735 
1736 	/* Normaly TSEC should not hang on GRS commands, so we should
1737 	 * actually wait for IEVENT_GRSC flag.
1738 	 */
1739 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1740 		return 0;
1741 
1742 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1743 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1744 	 * and the Rx can be safely reset.
1745 	 */
1746 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1747 	res &= 0x7f807f80;
1748 	if ((res & 0xffff) == (res >> 16))
1749 		return 1;
1750 
1751 	return 0;
1752 }
1753 
1754 /* Halt the receive and transmit queues */
1755 static void gfar_halt_nodisable(struct gfar_private *priv)
1756 {
1757 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1758 	u32 tempval;
1759 	unsigned int timeout;
1760 	int stopped;
1761 
1762 	gfar_ints_disable(priv);
1763 
1764 	if (gfar_is_dma_stopped(priv))
1765 		return;
1766 
1767 	/* Stop the DMA, and wait for it to stop */
1768 	tempval = gfar_read(&regs->dmactrl);
1769 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1770 	gfar_write(&regs->dmactrl, tempval);
1771 
1772 retry:
1773 	timeout = 1000;
1774 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1775 		cpu_relax();
1776 		timeout--;
1777 	}
1778 
1779 	if (!timeout)
1780 		stopped = gfar_is_dma_stopped(priv);
1781 
1782 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1783 	    !__gfar_is_rx_idle(priv))
1784 		goto retry;
1785 }
1786 
1787 /* Halt the receive and transmit queues */
1788 void gfar_halt(struct gfar_private *priv)
1789 {
1790 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1791 	u32 tempval;
1792 
1793 	/* Dissable the Rx/Tx hw queues */
1794 	gfar_write(&regs->rqueue, 0);
1795 	gfar_write(&regs->tqueue, 0);
1796 
1797 	mdelay(10);
1798 
1799 	gfar_halt_nodisable(priv);
1800 
1801 	/* Disable Rx/Tx DMA */
1802 	tempval = gfar_read(&regs->maccfg1);
1803 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1804 	gfar_write(&regs->maccfg1, tempval);
1805 }
1806 
1807 void stop_gfar(struct net_device *dev)
1808 {
1809 	struct gfar_private *priv = netdev_priv(dev);
1810 
1811 	netif_tx_stop_all_queues(dev);
1812 
1813 	smp_mb__before_atomic();
1814 	set_bit(GFAR_DOWN, &priv->state);
1815 	smp_mb__after_atomic();
1816 
1817 	disable_napi(priv);
1818 
1819 	/* disable ints and gracefully shut down Rx/Tx DMA */
1820 	gfar_halt(priv);
1821 
1822 	phy_stop(priv->phydev);
1823 
1824 	free_skb_resources(priv);
1825 }
1826 
1827 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1828 {
1829 	struct txbd8 *txbdp;
1830 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1831 	int i, j;
1832 
1833 	txbdp = tx_queue->tx_bd_base;
1834 
1835 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1836 		if (!tx_queue->tx_skbuff[i])
1837 			continue;
1838 
1839 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1840 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1841 		txbdp->lstatus = 0;
1842 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1843 		     j++) {
1844 			txbdp++;
1845 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1846 				       be16_to_cpu(txbdp->length),
1847 				       DMA_TO_DEVICE);
1848 		}
1849 		txbdp++;
1850 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1851 		tx_queue->tx_skbuff[i] = NULL;
1852 	}
1853 	kfree(tx_queue->tx_skbuff);
1854 	tx_queue->tx_skbuff = NULL;
1855 }
1856 
1857 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1858 {
1859 	int i;
1860 
1861 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1862 
1863 	if (rx_queue->skb)
1864 		dev_kfree_skb(rx_queue->skb);
1865 
1866 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1867 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1868 
1869 		rxbdp->lstatus = 0;
1870 		rxbdp->bufPtr = 0;
1871 		rxbdp++;
1872 
1873 		if (!rxb->page)
1874 			continue;
1875 
1876 		dma_unmap_single(rx_queue->dev, rxb->dma,
1877 				 PAGE_SIZE, DMA_FROM_DEVICE);
1878 		__free_page(rxb->page);
1879 
1880 		rxb->page = NULL;
1881 	}
1882 
1883 	kfree(rx_queue->rx_buff);
1884 	rx_queue->rx_buff = NULL;
1885 }
1886 
1887 /* If there are any tx skbs or rx skbs still around, free them.
1888  * Then free tx_skbuff and rx_skbuff
1889  */
1890 static void free_skb_resources(struct gfar_private *priv)
1891 {
1892 	struct gfar_priv_tx_q *tx_queue = NULL;
1893 	struct gfar_priv_rx_q *rx_queue = NULL;
1894 	int i;
1895 
1896 	/* Go through all the buffer descriptors and free their data buffers */
1897 	for (i = 0; i < priv->num_tx_queues; i++) {
1898 		struct netdev_queue *txq;
1899 
1900 		tx_queue = priv->tx_queue[i];
1901 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1902 		if (tx_queue->tx_skbuff)
1903 			free_skb_tx_queue(tx_queue);
1904 		netdev_tx_reset_queue(txq);
1905 	}
1906 
1907 	for (i = 0; i < priv->num_rx_queues; i++) {
1908 		rx_queue = priv->rx_queue[i];
1909 		if (rx_queue->rx_buff)
1910 			free_skb_rx_queue(rx_queue);
1911 	}
1912 
1913 	dma_free_coherent(priv->dev,
1914 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1915 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1916 			  priv->tx_queue[0]->tx_bd_base,
1917 			  priv->tx_queue[0]->tx_bd_dma_base);
1918 }
1919 
1920 void gfar_start(struct gfar_private *priv)
1921 {
1922 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1923 	u32 tempval;
1924 	int i = 0;
1925 
1926 	/* Enable Rx/Tx hw queues */
1927 	gfar_write(&regs->rqueue, priv->rqueue);
1928 	gfar_write(&regs->tqueue, priv->tqueue);
1929 
1930 	/* Initialize DMACTRL to have WWR and WOP */
1931 	tempval = gfar_read(&regs->dmactrl);
1932 	tempval |= DMACTRL_INIT_SETTINGS;
1933 	gfar_write(&regs->dmactrl, tempval);
1934 
1935 	/* Make sure we aren't stopped */
1936 	tempval = gfar_read(&regs->dmactrl);
1937 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1938 	gfar_write(&regs->dmactrl, tempval);
1939 
1940 	for (i = 0; i < priv->num_grps; i++) {
1941 		regs = priv->gfargrp[i].regs;
1942 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1943 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1944 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1945 	}
1946 
1947 	/* Enable Rx/Tx DMA */
1948 	tempval = gfar_read(&regs->maccfg1);
1949 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1950 	gfar_write(&regs->maccfg1, tempval);
1951 
1952 	gfar_ints_enable(priv);
1953 
1954 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1955 }
1956 
1957 static void free_grp_irqs(struct gfar_priv_grp *grp)
1958 {
1959 	free_irq(gfar_irq(grp, TX)->irq, grp);
1960 	free_irq(gfar_irq(grp, RX)->irq, grp);
1961 	free_irq(gfar_irq(grp, ER)->irq, grp);
1962 }
1963 
1964 static int register_grp_irqs(struct gfar_priv_grp *grp)
1965 {
1966 	struct gfar_private *priv = grp->priv;
1967 	struct net_device *dev = priv->ndev;
1968 	int err;
1969 
1970 	/* If the device has multiple interrupts, register for
1971 	 * them.  Otherwise, only register for the one
1972 	 */
1973 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1974 		/* Install our interrupt handlers for Error,
1975 		 * Transmit, and Receive
1976 		 */
1977 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1978 				  gfar_irq(grp, ER)->name, grp);
1979 		if (err < 0) {
1980 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1981 				  gfar_irq(grp, ER)->irq);
1982 
1983 			goto err_irq_fail;
1984 		}
1985 		enable_irq_wake(gfar_irq(grp, ER)->irq);
1986 
1987 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1988 				  gfar_irq(grp, TX)->name, grp);
1989 		if (err < 0) {
1990 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1991 				  gfar_irq(grp, TX)->irq);
1992 			goto tx_irq_fail;
1993 		}
1994 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1995 				  gfar_irq(grp, RX)->name, grp);
1996 		if (err < 0) {
1997 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1998 				  gfar_irq(grp, RX)->irq);
1999 			goto rx_irq_fail;
2000 		}
2001 	} else {
2002 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2003 				  gfar_irq(grp, TX)->name, grp);
2004 		if (err < 0) {
2005 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2006 				  gfar_irq(grp, TX)->irq);
2007 			goto err_irq_fail;
2008 		}
2009 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2010 	}
2011 
2012 	return 0;
2013 
2014 rx_irq_fail:
2015 	free_irq(gfar_irq(grp, TX)->irq, grp);
2016 tx_irq_fail:
2017 	free_irq(gfar_irq(grp, ER)->irq, grp);
2018 err_irq_fail:
2019 	return err;
2020 
2021 }
2022 
2023 static void gfar_free_irq(struct gfar_private *priv)
2024 {
2025 	int i;
2026 
2027 	/* Free the IRQs */
2028 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2029 		for (i = 0; i < priv->num_grps; i++)
2030 			free_grp_irqs(&priv->gfargrp[i]);
2031 	} else {
2032 		for (i = 0; i < priv->num_grps; i++)
2033 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2034 				 &priv->gfargrp[i]);
2035 	}
2036 }
2037 
2038 static int gfar_request_irq(struct gfar_private *priv)
2039 {
2040 	int err, i, j;
2041 
2042 	for (i = 0; i < priv->num_grps; i++) {
2043 		err = register_grp_irqs(&priv->gfargrp[i]);
2044 		if (err) {
2045 			for (j = 0; j < i; j++)
2046 				free_grp_irqs(&priv->gfargrp[j]);
2047 			return err;
2048 		}
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /* Bring the controller up and running */
2055 int startup_gfar(struct net_device *ndev)
2056 {
2057 	struct gfar_private *priv = netdev_priv(ndev);
2058 	int err;
2059 
2060 	gfar_mac_reset(priv);
2061 
2062 	err = gfar_alloc_skb_resources(ndev);
2063 	if (err)
2064 		return err;
2065 
2066 	gfar_init_tx_rx_base(priv);
2067 
2068 	smp_mb__before_atomic();
2069 	clear_bit(GFAR_DOWN, &priv->state);
2070 	smp_mb__after_atomic();
2071 
2072 	/* Start Rx/Tx DMA and enable the interrupts */
2073 	gfar_start(priv);
2074 
2075 	/* force link state update after mac reset */
2076 	priv->oldlink = 0;
2077 	priv->oldspeed = 0;
2078 	priv->oldduplex = -1;
2079 
2080 	phy_start(priv->phydev);
2081 
2082 	enable_napi(priv);
2083 
2084 	netif_tx_wake_all_queues(ndev);
2085 
2086 	return 0;
2087 }
2088 
2089 /* Called when something needs to use the ethernet device
2090  * Returns 0 for success.
2091  */
2092 static int gfar_enet_open(struct net_device *dev)
2093 {
2094 	struct gfar_private *priv = netdev_priv(dev);
2095 	int err;
2096 
2097 	err = init_phy(dev);
2098 	if (err)
2099 		return err;
2100 
2101 	err = gfar_request_irq(priv);
2102 	if (err)
2103 		return err;
2104 
2105 	err = startup_gfar(dev);
2106 	if (err)
2107 		return err;
2108 
2109 	return err;
2110 }
2111 
2112 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2113 {
2114 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2115 
2116 	memset(fcb, 0, GMAC_FCB_LEN);
2117 
2118 	return fcb;
2119 }
2120 
2121 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2122 				    int fcb_length)
2123 {
2124 	/* If we're here, it's a IP packet with a TCP or UDP
2125 	 * payload.  We set it to checksum, using a pseudo-header
2126 	 * we provide
2127 	 */
2128 	u8 flags = TXFCB_DEFAULT;
2129 
2130 	/* Tell the controller what the protocol is
2131 	 * And provide the already calculated phcs
2132 	 */
2133 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2134 		flags |= TXFCB_UDP;
2135 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2136 	} else
2137 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2138 
2139 	/* l3os is the distance between the start of the
2140 	 * frame (skb->data) and the start of the IP hdr.
2141 	 * l4os is the distance between the start of the
2142 	 * l3 hdr and the l4 hdr
2143 	 */
2144 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2145 	fcb->l4os = skb_network_header_len(skb);
2146 
2147 	fcb->flags = flags;
2148 }
2149 
2150 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2151 {
2152 	fcb->flags |= TXFCB_VLN;
2153 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2154 }
2155 
2156 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2157 				      struct txbd8 *base, int ring_size)
2158 {
2159 	struct txbd8 *new_bd = bdp + stride;
2160 
2161 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2162 }
2163 
2164 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2165 				      int ring_size)
2166 {
2167 	return skip_txbd(bdp, 1, base, ring_size);
2168 }
2169 
2170 /* eTSEC12: csum generation not supported for some fcb offsets */
2171 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2172 				       unsigned long fcb_addr)
2173 {
2174 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2175 	       (fcb_addr % 0x20) > 0x18);
2176 }
2177 
2178 /* eTSEC76: csum generation for frames larger than 2500 may
2179  * cause excess delays before start of transmission
2180  */
2181 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2182 				       unsigned int len)
2183 {
2184 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2185 	       (len > 2500));
2186 }
2187 
2188 /* This is called by the kernel when a frame is ready for transmission.
2189  * It is pointed to by the dev->hard_start_xmit function pointer
2190  */
2191 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2192 {
2193 	struct gfar_private *priv = netdev_priv(dev);
2194 	struct gfar_priv_tx_q *tx_queue = NULL;
2195 	struct netdev_queue *txq;
2196 	struct gfar __iomem *regs = NULL;
2197 	struct txfcb *fcb = NULL;
2198 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2199 	u32 lstatus;
2200 	int i, rq = 0;
2201 	int do_tstamp, do_csum, do_vlan;
2202 	u32 bufaddr;
2203 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2204 
2205 	rq = skb->queue_mapping;
2206 	tx_queue = priv->tx_queue[rq];
2207 	txq = netdev_get_tx_queue(dev, rq);
2208 	base = tx_queue->tx_bd_base;
2209 	regs = tx_queue->grp->regs;
2210 
2211 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2212 	do_vlan = skb_vlan_tag_present(skb);
2213 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2214 		    priv->hwts_tx_en;
2215 
2216 	if (do_csum || do_vlan)
2217 		fcb_len = GMAC_FCB_LEN;
2218 
2219 	/* check if time stamp should be generated */
2220 	if (unlikely(do_tstamp))
2221 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2222 
2223 	/* make space for additional header when fcb is needed */
2224 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2225 		struct sk_buff *skb_new;
2226 
2227 		skb_new = skb_realloc_headroom(skb, fcb_len);
2228 		if (!skb_new) {
2229 			dev->stats.tx_errors++;
2230 			dev_kfree_skb_any(skb);
2231 			return NETDEV_TX_OK;
2232 		}
2233 
2234 		if (skb->sk)
2235 			skb_set_owner_w(skb_new, skb->sk);
2236 		dev_consume_skb_any(skb);
2237 		skb = skb_new;
2238 	}
2239 
2240 	/* total number of fragments in the SKB */
2241 	nr_frags = skb_shinfo(skb)->nr_frags;
2242 
2243 	/* calculate the required number of TxBDs for this skb */
2244 	if (unlikely(do_tstamp))
2245 		nr_txbds = nr_frags + 2;
2246 	else
2247 		nr_txbds = nr_frags + 1;
2248 
2249 	/* check if there is space to queue this packet */
2250 	if (nr_txbds > tx_queue->num_txbdfree) {
2251 		/* no space, stop the queue */
2252 		netif_tx_stop_queue(txq);
2253 		dev->stats.tx_fifo_errors++;
2254 		return NETDEV_TX_BUSY;
2255 	}
2256 
2257 	/* Update transmit stats */
2258 	bytes_sent = skb->len;
2259 	tx_queue->stats.tx_bytes += bytes_sent;
2260 	/* keep Tx bytes on wire for BQL accounting */
2261 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2262 	tx_queue->stats.tx_packets++;
2263 
2264 	txbdp = txbdp_start = tx_queue->cur_tx;
2265 	lstatus = be32_to_cpu(txbdp->lstatus);
2266 
2267 	/* Time stamp insertion requires one additional TxBD */
2268 	if (unlikely(do_tstamp))
2269 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2270 						 tx_queue->tx_ring_size);
2271 
2272 	if (nr_frags == 0) {
2273 		if (unlikely(do_tstamp)) {
2274 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2275 
2276 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2277 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2278 		} else {
2279 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2280 		}
2281 	} else {
2282 		/* Place the fragment addresses and lengths into the TxBDs */
2283 		for (i = 0; i < nr_frags; i++) {
2284 			unsigned int frag_len;
2285 			/* Point at the next BD, wrapping as needed */
2286 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2287 
2288 			frag_len = skb_shinfo(skb)->frags[i].size;
2289 
2290 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2291 				  BD_LFLAG(TXBD_READY);
2292 
2293 			/* Handle the last BD specially */
2294 			if (i == nr_frags - 1)
2295 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2296 
2297 			bufaddr = skb_frag_dma_map(priv->dev,
2298 						   &skb_shinfo(skb)->frags[i],
2299 						   0,
2300 						   frag_len,
2301 						   DMA_TO_DEVICE);
2302 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2303 				goto dma_map_err;
2304 
2305 			/* set the TxBD length and buffer pointer */
2306 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2307 			txbdp->lstatus = cpu_to_be32(lstatus);
2308 		}
2309 
2310 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2311 	}
2312 
2313 	/* Add TxPAL between FCB and frame if required */
2314 	if (unlikely(do_tstamp)) {
2315 		skb_push(skb, GMAC_TXPAL_LEN);
2316 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2317 	}
2318 
2319 	/* Add TxFCB if required */
2320 	if (fcb_len) {
2321 		fcb = gfar_add_fcb(skb);
2322 		lstatus |= BD_LFLAG(TXBD_TOE);
2323 	}
2324 
2325 	/* Set up checksumming */
2326 	if (do_csum) {
2327 		gfar_tx_checksum(skb, fcb, fcb_len);
2328 
2329 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2330 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2331 			__skb_pull(skb, GMAC_FCB_LEN);
2332 			skb_checksum_help(skb);
2333 			if (do_vlan || do_tstamp) {
2334 				/* put back a new fcb for vlan/tstamp TOE */
2335 				fcb = gfar_add_fcb(skb);
2336 			} else {
2337 				/* Tx TOE not used */
2338 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2339 				fcb = NULL;
2340 			}
2341 		}
2342 	}
2343 
2344 	if (do_vlan)
2345 		gfar_tx_vlan(skb, fcb);
2346 
2347 	/* Setup tx hardware time stamping if requested */
2348 	if (unlikely(do_tstamp)) {
2349 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2350 		fcb->ptp = 1;
2351 	}
2352 
2353 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2354 				 DMA_TO_DEVICE);
2355 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2356 		goto dma_map_err;
2357 
2358 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2359 
2360 	/* If time stamping is requested one additional TxBD must be set up. The
2361 	 * first TxBD points to the FCB and must have a data length of
2362 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2363 	 * the full frame length.
2364 	 */
2365 	if (unlikely(do_tstamp)) {
2366 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2367 
2368 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2369 		bufaddr += fcb_len;
2370 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2371 			      (skb_headlen(skb) - fcb_len);
2372 
2373 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2374 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2375 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2376 	} else {
2377 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2378 	}
2379 
2380 	netdev_tx_sent_queue(txq, bytes_sent);
2381 
2382 	gfar_wmb();
2383 
2384 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2385 
2386 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2387 
2388 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2389 
2390 	/* Update the current skb pointer to the next entry we will use
2391 	 * (wrapping if necessary)
2392 	 */
2393 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2394 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2395 
2396 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2397 
2398 	/* We can work in parallel with gfar_clean_tx_ring(), except
2399 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2400 	 * when we were reading the num_txbdfree and checking for available
2401 	 * space, that's because outside of this function it can only grow.
2402 	 */
2403 	spin_lock_bh(&tx_queue->txlock);
2404 	/* reduce TxBD free count */
2405 	tx_queue->num_txbdfree -= (nr_txbds);
2406 	spin_unlock_bh(&tx_queue->txlock);
2407 
2408 	/* If the next BD still needs to be cleaned up, then the bds
2409 	 * are full.  We need to tell the kernel to stop sending us stuff.
2410 	 */
2411 	if (!tx_queue->num_txbdfree) {
2412 		netif_tx_stop_queue(txq);
2413 
2414 		dev->stats.tx_fifo_errors++;
2415 	}
2416 
2417 	/* Tell the DMA to go go go */
2418 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2419 
2420 	return NETDEV_TX_OK;
2421 
2422 dma_map_err:
2423 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2424 	if (do_tstamp)
2425 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2426 	for (i = 0; i < nr_frags; i++) {
2427 		lstatus = be32_to_cpu(txbdp->lstatus);
2428 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2429 			break;
2430 
2431 		lstatus &= ~BD_LFLAG(TXBD_READY);
2432 		txbdp->lstatus = cpu_to_be32(lstatus);
2433 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2434 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2435 			       DMA_TO_DEVICE);
2436 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2437 	}
2438 	gfar_wmb();
2439 	dev_kfree_skb_any(skb);
2440 	return NETDEV_TX_OK;
2441 }
2442 
2443 /* Stops the kernel queue, and halts the controller */
2444 static int gfar_close(struct net_device *dev)
2445 {
2446 	struct gfar_private *priv = netdev_priv(dev);
2447 
2448 	cancel_work_sync(&priv->reset_task);
2449 	stop_gfar(dev);
2450 
2451 	/* Disconnect from the PHY */
2452 	phy_disconnect(priv->phydev);
2453 	priv->phydev = NULL;
2454 
2455 	gfar_free_irq(priv);
2456 
2457 	return 0;
2458 }
2459 
2460 /* Changes the mac address if the controller is not running. */
2461 static int gfar_set_mac_address(struct net_device *dev)
2462 {
2463 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2464 
2465 	return 0;
2466 }
2467 
2468 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2469 {
2470 	struct gfar_private *priv = netdev_priv(dev);
2471 	int frame_size = new_mtu + ETH_HLEN;
2472 
2473 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2474 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2475 		return -EINVAL;
2476 	}
2477 
2478 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2479 		cpu_relax();
2480 
2481 	if (dev->flags & IFF_UP)
2482 		stop_gfar(dev);
2483 
2484 	dev->mtu = new_mtu;
2485 
2486 	if (dev->flags & IFF_UP)
2487 		startup_gfar(dev);
2488 
2489 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2490 
2491 	return 0;
2492 }
2493 
2494 void reset_gfar(struct net_device *ndev)
2495 {
2496 	struct gfar_private *priv = netdev_priv(ndev);
2497 
2498 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2499 		cpu_relax();
2500 
2501 	stop_gfar(ndev);
2502 	startup_gfar(ndev);
2503 
2504 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2505 }
2506 
2507 /* gfar_reset_task gets scheduled when a packet has not been
2508  * transmitted after a set amount of time.
2509  * For now, assume that clearing out all the structures, and
2510  * starting over will fix the problem.
2511  */
2512 static void gfar_reset_task(struct work_struct *work)
2513 {
2514 	struct gfar_private *priv = container_of(work, struct gfar_private,
2515 						 reset_task);
2516 	reset_gfar(priv->ndev);
2517 }
2518 
2519 static void gfar_timeout(struct net_device *dev)
2520 {
2521 	struct gfar_private *priv = netdev_priv(dev);
2522 
2523 	dev->stats.tx_errors++;
2524 	schedule_work(&priv->reset_task);
2525 }
2526 
2527 /* Interrupt Handler for Transmit complete */
2528 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2529 {
2530 	struct net_device *dev = tx_queue->dev;
2531 	struct netdev_queue *txq;
2532 	struct gfar_private *priv = netdev_priv(dev);
2533 	struct txbd8 *bdp, *next = NULL;
2534 	struct txbd8 *lbdp = NULL;
2535 	struct txbd8 *base = tx_queue->tx_bd_base;
2536 	struct sk_buff *skb;
2537 	int skb_dirtytx;
2538 	int tx_ring_size = tx_queue->tx_ring_size;
2539 	int frags = 0, nr_txbds = 0;
2540 	int i;
2541 	int howmany = 0;
2542 	int tqi = tx_queue->qindex;
2543 	unsigned int bytes_sent = 0;
2544 	u32 lstatus;
2545 	size_t buflen;
2546 
2547 	txq = netdev_get_tx_queue(dev, tqi);
2548 	bdp = tx_queue->dirty_tx;
2549 	skb_dirtytx = tx_queue->skb_dirtytx;
2550 
2551 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2552 
2553 		frags = skb_shinfo(skb)->nr_frags;
2554 
2555 		/* When time stamping, one additional TxBD must be freed.
2556 		 * Also, we need to dma_unmap_single() the TxPAL.
2557 		 */
2558 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2559 			nr_txbds = frags + 2;
2560 		else
2561 			nr_txbds = frags + 1;
2562 
2563 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2564 
2565 		lstatus = be32_to_cpu(lbdp->lstatus);
2566 
2567 		/* Only clean completed frames */
2568 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2569 		    (lstatus & BD_LENGTH_MASK))
2570 			break;
2571 
2572 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2573 			next = next_txbd(bdp, base, tx_ring_size);
2574 			buflen = be16_to_cpu(next->length) +
2575 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2576 		} else
2577 			buflen = be16_to_cpu(bdp->length);
2578 
2579 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2580 				 buflen, DMA_TO_DEVICE);
2581 
2582 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2583 			struct skb_shared_hwtstamps shhwtstamps;
2584 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2585 					  ~0x7UL);
2586 
2587 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2588 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2589 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2590 			skb_tstamp_tx(skb, &shhwtstamps);
2591 			gfar_clear_txbd_status(bdp);
2592 			bdp = next;
2593 		}
2594 
2595 		gfar_clear_txbd_status(bdp);
2596 		bdp = next_txbd(bdp, base, tx_ring_size);
2597 
2598 		for (i = 0; i < frags; i++) {
2599 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2600 				       be16_to_cpu(bdp->length),
2601 				       DMA_TO_DEVICE);
2602 			gfar_clear_txbd_status(bdp);
2603 			bdp = next_txbd(bdp, base, tx_ring_size);
2604 		}
2605 
2606 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2607 
2608 		dev_kfree_skb_any(skb);
2609 
2610 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2611 
2612 		skb_dirtytx = (skb_dirtytx + 1) &
2613 			      TX_RING_MOD_MASK(tx_ring_size);
2614 
2615 		howmany++;
2616 		spin_lock(&tx_queue->txlock);
2617 		tx_queue->num_txbdfree += nr_txbds;
2618 		spin_unlock(&tx_queue->txlock);
2619 	}
2620 
2621 	/* If we freed a buffer, we can restart transmission, if necessary */
2622 	if (tx_queue->num_txbdfree &&
2623 	    netif_tx_queue_stopped(txq) &&
2624 	    !(test_bit(GFAR_DOWN, &priv->state)))
2625 		netif_wake_subqueue(priv->ndev, tqi);
2626 
2627 	/* Update dirty indicators */
2628 	tx_queue->skb_dirtytx = skb_dirtytx;
2629 	tx_queue->dirty_tx = bdp;
2630 
2631 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2632 }
2633 
2634 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2635 {
2636 	struct page *page;
2637 	dma_addr_t addr;
2638 
2639 	page = dev_alloc_page();
2640 	if (unlikely(!page))
2641 		return false;
2642 
2643 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2644 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2645 		__free_page(page);
2646 
2647 		return false;
2648 	}
2649 
2650 	rxb->dma = addr;
2651 	rxb->page = page;
2652 	rxb->page_offset = 0;
2653 
2654 	return true;
2655 }
2656 
2657 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2658 {
2659 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2660 	struct gfar_extra_stats *estats = &priv->extra_stats;
2661 
2662 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2663 	atomic64_inc(&estats->rx_alloc_err);
2664 }
2665 
2666 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2667 				int alloc_cnt)
2668 {
2669 	struct rxbd8 *bdp;
2670 	struct gfar_rx_buff *rxb;
2671 	int i;
2672 
2673 	i = rx_queue->next_to_use;
2674 	bdp = &rx_queue->rx_bd_base[i];
2675 	rxb = &rx_queue->rx_buff[i];
2676 
2677 	while (alloc_cnt--) {
2678 		/* try reuse page */
2679 		if (unlikely(!rxb->page)) {
2680 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2681 				gfar_rx_alloc_err(rx_queue);
2682 				break;
2683 			}
2684 		}
2685 
2686 		/* Setup the new RxBD */
2687 		gfar_init_rxbdp(rx_queue, bdp,
2688 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2689 
2690 		/* Update to the next pointer */
2691 		bdp++;
2692 		rxb++;
2693 
2694 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2695 			i = 0;
2696 			bdp = rx_queue->rx_bd_base;
2697 			rxb = rx_queue->rx_buff;
2698 		}
2699 	}
2700 
2701 	rx_queue->next_to_use = i;
2702 	rx_queue->next_to_alloc = i;
2703 }
2704 
2705 static void count_errors(u32 lstatus, struct net_device *ndev)
2706 {
2707 	struct gfar_private *priv = netdev_priv(ndev);
2708 	struct net_device_stats *stats = &ndev->stats;
2709 	struct gfar_extra_stats *estats = &priv->extra_stats;
2710 
2711 	/* If the packet was truncated, none of the other errors matter */
2712 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2713 		stats->rx_length_errors++;
2714 
2715 		atomic64_inc(&estats->rx_trunc);
2716 
2717 		return;
2718 	}
2719 	/* Count the errors, if there were any */
2720 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2721 		stats->rx_length_errors++;
2722 
2723 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2724 			atomic64_inc(&estats->rx_large);
2725 		else
2726 			atomic64_inc(&estats->rx_short);
2727 	}
2728 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2729 		stats->rx_frame_errors++;
2730 		atomic64_inc(&estats->rx_nonoctet);
2731 	}
2732 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2733 		atomic64_inc(&estats->rx_crcerr);
2734 		stats->rx_crc_errors++;
2735 	}
2736 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2737 		atomic64_inc(&estats->rx_overrun);
2738 		stats->rx_over_errors++;
2739 	}
2740 }
2741 
2742 irqreturn_t gfar_receive(int irq, void *grp_id)
2743 {
2744 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2745 	unsigned long flags;
2746 	u32 imask;
2747 
2748 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2749 		spin_lock_irqsave(&grp->grplock, flags);
2750 		imask = gfar_read(&grp->regs->imask);
2751 		imask &= IMASK_RX_DISABLED;
2752 		gfar_write(&grp->regs->imask, imask);
2753 		spin_unlock_irqrestore(&grp->grplock, flags);
2754 		__napi_schedule(&grp->napi_rx);
2755 	} else {
2756 		/* Clear IEVENT, so interrupts aren't called again
2757 		 * because of the packets that have already arrived.
2758 		 */
2759 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2760 	}
2761 
2762 	return IRQ_HANDLED;
2763 }
2764 
2765 /* Interrupt Handler for Transmit complete */
2766 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2767 {
2768 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2769 	unsigned long flags;
2770 	u32 imask;
2771 
2772 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2773 		spin_lock_irqsave(&grp->grplock, flags);
2774 		imask = gfar_read(&grp->regs->imask);
2775 		imask &= IMASK_TX_DISABLED;
2776 		gfar_write(&grp->regs->imask, imask);
2777 		spin_unlock_irqrestore(&grp->grplock, flags);
2778 		__napi_schedule(&grp->napi_tx);
2779 	} else {
2780 		/* Clear IEVENT, so interrupts aren't called again
2781 		 * because of the packets that have already arrived.
2782 		 */
2783 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2784 	}
2785 
2786 	return IRQ_HANDLED;
2787 }
2788 
2789 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2790 			     struct sk_buff *skb, bool first)
2791 {
2792 	unsigned int size = lstatus & BD_LENGTH_MASK;
2793 	struct page *page = rxb->page;
2794 
2795 	/* Remove the FCS from the packet length */
2796 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2797 		size -= ETH_FCS_LEN;
2798 
2799 	if (likely(first))
2800 		skb_put(skb, size);
2801 	else
2802 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2803 				rxb->page_offset + RXBUF_ALIGNMENT,
2804 				size, GFAR_RXB_TRUESIZE);
2805 
2806 	/* try reuse page */
2807 	if (unlikely(page_count(page) != 1))
2808 		return false;
2809 
2810 	/* change offset to the other half */
2811 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2812 
2813 	atomic_inc(&page->_count);
2814 
2815 	return true;
2816 }
2817 
2818 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2819 			       struct gfar_rx_buff *old_rxb)
2820 {
2821 	struct gfar_rx_buff *new_rxb;
2822 	u16 nta = rxq->next_to_alloc;
2823 
2824 	new_rxb = &rxq->rx_buff[nta];
2825 
2826 	/* find next buf that can reuse a page */
2827 	nta++;
2828 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2829 
2830 	/* copy page reference */
2831 	*new_rxb = *old_rxb;
2832 
2833 	/* sync for use by the device */
2834 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2835 					 old_rxb->page_offset,
2836 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2837 }
2838 
2839 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2840 					    u32 lstatus, struct sk_buff *skb)
2841 {
2842 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2843 	struct page *page = rxb->page;
2844 	bool first = false;
2845 
2846 	if (likely(!skb)) {
2847 		void *buff_addr = page_address(page) + rxb->page_offset;
2848 
2849 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2850 		if (unlikely(!skb)) {
2851 			gfar_rx_alloc_err(rx_queue);
2852 			return NULL;
2853 		}
2854 		skb_reserve(skb, RXBUF_ALIGNMENT);
2855 		first = true;
2856 	}
2857 
2858 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2859 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2860 
2861 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2862 		/* reuse the free half of the page */
2863 		gfar_reuse_rx_page(rx_queue, rxb);
2864 	} else {
2865 		/* page cannot be reused, unmap it */
2866 		dma_unmap_page(rx_queue->dev, rxb->dma,
2867 			       PAGE_SIZE, DMA_FROM_DEVICE);
2868 	}
2869 
2870 	/* clear rxb content */
2871 	rxb->page = NULL;
2872 
2873 	return skb;
2874 }
2875 
2876 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2877 {
2878 	/* If valid headers were found, and valid sums
2879 	 * were verified, then we tell the kernel that no
2880 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2881 	 */
2882 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2883 	    (RXFCB_CIP | RXFCB_CTU))
2884 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2885 	else
2886 		skb_checksum_none_assert(skb);
2887 }
2888 
2889 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2890 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2891 {
2892 	struct gfar_private *priv = netdev_priv(ndev);
2893 	struct rxfcb *fcb = NULL;
2894 
2895 	/* fcb is at the beginning if exists */
2896 	fcb = (struct rxfcb *)skb->data;
2897 
2898 	/* Remove the FCB from the skb
2899 	 * Remove the padded bytes, if there are any
2900 	 */
2901 	if (priv->uses_rxfcb)
2902 		skb_pull(skb, GMAC_FCB_LEN);
2903 
2904 	/* Get receive timestamp from the skb */
2905 	if (priv->hwts_rx_en) {
2906 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2907 		u64 *ns = (u64 *) skb->data;
2908 
2909 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2910 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2911 	}
2912 
2913 	if (priv->padding)
2914 		skb_pull(skb, priv->padding);
2915 
2916 	if (ndev->features & NETIF_F_RXCSUM)
2917 		gfar_rx_checksum(skb, fcb);
2918 
2919 	/* Tell the skb what kind of packet this is */
2920 	skb->protocol = eth_type_trans(skb, ndev);
2921 
2922 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2923 	 * Even if vlan rx accel is disabled, on some chips
2924 	 * RXFCB_VLN is pseudo randomly set.
2925 	 */
2926 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2927 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2928 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2929 				       be16_to_cpu(fcb->vlctl));
2930 }
2931 
2932 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2933  * until the budget/quota has been reached. Returns the number
2934  * of frames handled
2935  */
2936 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2937 {
2938 	struct net_device *ndev = rx_queue->ndev;
2939 	struct gfar_private *priv = netdev_priv(ndev);
2940 	struct rxbd8 *bdp;
2941 	int i, howmany = 0;
2942 	struct sk_buff *skb = rx_queue->skb;
2943 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2944 	unsigned int total_bytes = 0, total_pkts = 0;
2945 
2946 	/* Get the first full descriptor */
2947 	i = rx_queue->next_to_clean;
2948 
2949 	while (rx_work_limit--) {
2950 		u32 lstatus;
2951 
2952 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2953 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2954 			cleaned_cnt = 0;
2955 		}
2956 
2957 		bdp = &rx_queue->rx_bd_base[i];
2958 		lstatus = be32_to_cpu(bdp->lstatus);
2959 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2960 			break;
2961 
2962 		/* order rx buffer descriptor reads */
2963 		rmb();
2964 
2965 		/* fetch next to clean buffer from the ring */
2966 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2967 		if (unlikely(!skb))
2968 			break;
2969 
2970 		cleaned_cnt++;
2971 		howmany++;
2972 
2973 		if (unlikely(++i == rx_queue->rx_ring_size))
2974 			i = 0;
2975 
2976 		rx_queue->next_to_clean = i;
2977 
2978 		/* fetch next buffer if not the last in frame */
2979 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2980 			continue;
2981 
2982 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2983 			count_errors(lstatus, ndev);
2984 
2985 			/* discard faulty buffer */
2986 			dev_kfree_skb(skb);
2987 			skb = NULL;
2988 			rx_queue->stats.rx_dropped++;
2989 			continue;
2990 		}
2991 
2992 		/* Increment the number of packets */
2993 		total_pkts++;
2994 		total_bytes += skb->len;
2995 
2996 		skb_record_rx_queue(skb, rx_queue->qindex);
2997 
2998 		gfar_process_frame(ndev, skb);
2999 
3000 		/* Send the packet up the stack */
3001 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3002 
3003 		skb = NULL;
3004 	}
3005 
3006 	/* Store incomplete frames for completion */
3007 	rx_queue->skb = skb;
3008 
3009 	rx_queue->stats.rx_packets += total_pkts;
3010 	rx_queue->stats.rx_bytes += total_bytes;
3011 
3012 	if (cleaned_cnt)
3013 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3014 
3015 	/* Update Last Free RxBD pointer for LFC */
3016 	if (unlikely(priv->tx_actual_en)) {
3017 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3018 
3019 		gfar_write(rx_queue->rfbptr, bdp_dma);
3020 	}
3021 
3022 	return howmany;
3023 }
3024 
3025 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3026 {
3027 	struct gfar_priv_grp *gfargrp =
3028 		container_of(napi, struct gfar_priv_grp, napi_rx);
3029 	struct gfar __iomem *regs = gfargrp->regs;
3030 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3031 	int work_done = 0;
3032 
3033 	/* Clear IEVENT, so interrupts aren't called again
3034 	 * because of the packets that have already arrived
3035 	 */
3036 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3037 
3038 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3039 
3040 	if (work_done < budget) {
3041 		u32 imask;
3042 		napi_complete(napi);
3043 		/* Clear the halt bit in RSTAT */
3044 		gfar_write(&regs->rstat, gfargrp->rstat);
3045 
3046 		spin_lock_irq(&gfargrp->grplock);
3047 		imask = gfar_read(&regs->imask);
3048 		imask |= IMASK_RX_DEFAULT;
3049 		gfar_write(&regs->imask, imask);
3050 		spin_unlock_irq(&gfargrp->grplock);
3051 	}
3052 
3053 	return work_done;
3054 }
3055 
3056 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3057 {
3058 	struct gfar_priv_grp *gfargrp =
3059 		container_of(napi, struct gfar_priv_grp, napi_tx);
3060 	struct gfar __iomem *regs = gfargrp->regs;
3061 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3062 	u32 imask;
3063 
3064 	/* Clear IEVENT, so interrupts aren't called again
3065 	 * because of the packets that have already arrived
3066 	 */
3067 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3068 
3069 	/* run Tx cleanup to completion */
3070 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3071 		gfar_clean_tx_ring(tx_queue);
3072 
3073 	napi_complete(napi);
3074 
3075 	spin_lock_irq(&gfargrp->grplock);
3076 	imask = gfar_read(&regs->imask);
3077 	imask |= IMASK_TX_DEFAULT;
3078 	gfar_write(&regs->imask, imask);
3079 	spin_unlock_irq(&gfargrp->grplock);
3080 
3081 	return 0;
3082 }
3083 
3084 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3085 {
3086 	struct gfar_priv_grp *gfargrp =
3087 		container_of(napi, struct gfar_priv_grp, napi_rx);
3088 	struct gfar_private *priv = gfargrp->priv;
3089 	struct gfar __iomem *regs = gfargrp->regs;
3090 	struct gfar_priv_rx_q *rx_queue = NULL;
3091 	int work_done = 0, work_done_per_q = 0;
3092 	int i, budget_per_q = 0;
3093 	unsigned long rstat_rxf;
3094 	int num_act_queues;
3095 
3096 	/* Clear IEVENT, so interrupts aren't called again
3097 	 * because of the packets that have already arrived
3098 	 */
3099 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3100 
3101 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3102 
3103 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3104 	if (num_act_queues)
3105 		budget_per_q = budget/num_act_queues;
3106 
3107 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3108 		/* skip queue if not active */
3109 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3110 			continue;
3111 
3112 		rx_queue = priv->rx_queue[i];
3113 		work_done_per_q =
3114 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3115 		work_done += work_done_per_q;
3116 
3117 		/* finished processing this queue */
3118 		if (work_done_per_q < budget_per_q) {
3119 			/* clear active queue hw indication */
3120 			gfar_write(&regs->rstat,
3121 				   RSTAT_CLEAR_RXF0 >> i);
3122 			num_act_queues--;
3123 
3124 			if (!num_act_queues)
3125 				break;
3126 		}
3127 	}
3128 
3129 	if (!num_act_queues) {
3130 		u32 imask;
3131 		napi_complete(napi);
3132 
3133 		/* Clear the halt bit in RSTAT */
3134 		gfar_write(&regs->rstat, gfargrp->rstat);
3135 
3136 		spin_lock_irq(&gfargrp->grplock);
3137 		imask = gfar_read(&regs->imask);
3138 		imask |= IMASK_RX_DEFAULT;
3139 		gfar_write(&regs->imask, imask);
3140 		spin_unlock_irq(&gfargrp->grplock);
3141 	}
3142 
3143 	return work_done;
3144 }
3145 
3146 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3147 {
3148 	struct gfar_priv_grp *gfargrp =
3149 		container_of(napi, struct gfar_priv_grp, napi_tx);
3150 	struct gfar_private *priv = gfargrp->priv;
3151 	struct gfar __iomem *regs = gfargrp->regs;
3152 	struct gfar_priv_tx_q *tx_queue = NULL;
3153 	int has_tx_work = 0;
3154 	int i;
3155 
3156 	/* Clear IEVENT, so interrupts aren't called again
3157 	 * because of the packets that have already arrived
3158 	 */
3159 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3160 
3161 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3162 		tx_queue = priv->tx_queue[i];
3163 		/* run Tx cleanup to completion */
3164 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3165 			gfar_clean_tx_ring(tx_queue);
3166 			has_tx_work = 1;
3167 		}
3168 	}
3169 
3170 	if (!has_tx_work) {
3171 		u32 imask;
3172 		napi_complete(napi);
3173 
3174 		spin_lock_irq(&gfargrp->grplock);
3175 		imask = gfar_read(&regs->imask);
3176 		imask |= IMASK_TX_DEFAULT;
3177 		gfar_write(&regs->imask, imask);
3178 		spin_unlock_irq(&gfargrp->grplock);
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 
3185 #ifdef CONFIG_NET_POLL_CONTROLLER
3186 /* Polling 'interrupt' - used by things like netconsole to send skbs
3187  * without having to re-enable interrupts. It's not called while
3188  * the interrupt routine is executing.
3189  */
3190 static void gfar_netpoll(struct net_device *dev)
3191 {
3192 	struct gfar_private *priv = netdev_priv(dev);
3193 	int i;
3194 
3195 	/* If the device has multiple interrupts, run tx/rx */
3196 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3197 		for (i = 0; i < priv->num_grps; i++) {
3198 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3199 
3200 			disable_irq(gfar_irq(grp, TX)->irq);
3201 			disable_irq(gfar_irq(grp, RX)->irq);
3202 			disable_irq(gfar_irq(grp, ER)->irq);
3203 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3204 			enable_irq(gfar_irq(grp, ER)->irq);
3205 			enable_irq(gfar_irq(grp, RX)->irq);
3206 			enable_irq(gfar_irq(grp, TX)->irq);
3207 		}
3208 	} else {
3209 		for (i = 0; i < priv->num_grps; i++) {
3210 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3211 
3212 			disable_irq(gfar_irq(grp, TX)->irq);
3213 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3214 			enable_irq(gfar_irq(grp, TX)->irq);
3215 		}
3216 	}
3217 }
3218 #endif
3219 
3220 /* The interrupt handler for devices with one interrupt */
3221 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3222 {
3223 	struct gfar_priv_grp *gfargrp = grp_id;
3224 
3225 	/* Save ievent for future reference */
3226 	u32 events = gfar_read(&gfargrp->regs->ievent);
3227 
3228 	/* Check for reception */
3229 	if (events & IEVENT_RX_MASK)
3230 		gfar_receive(irq, grp_id);
3231 
3232 	/* Check for transmit completion */
3233 	if (events & IEVENT_TX_MASK)
3234 		gfar_transmit(irq, grp_id);
3235 
3236 	/* Check for errors */
3237 	if (events & IEVENT_ERR_MASK)
3238 		gfar_error(irq, grp_id);
3239 
3240 	return IRQ_HANDLED;
3241 }
3242 
3243 /* Called every time the controller might need to be made
3244  * aware of new link state.  The PHY code conveys this
3245  * information through variables in the phydev structure, and this
3246  * function converts those variables into the appropriate
3247  * register values, and can bring down the device if needed.
3248  */
3249 static void adjust_link(struct net_device *dev)
3250 {
3251 	struct gfar_private *priv = netdev_priv(dev);
3252 	struct phy_device *phydev = priv->phydev;
3253 
3254 	if (unlikely(phydev->link != priv->oldlink ||
3255 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3256 				       phydev->speed != priv->oldspeed))))
3257 		gfar_update_link_state(priv);
3258 }
3259 
3260 /* Update the hash table based on the current list of multicast
3261  * addresses we subscribe to.  Also, change the promiscuity of
3262  * the device based on the flags (this function is called
3263  * whenever dev->flags is changed
3264  */
3265 static void gfar_set_multi(struct net_device *dev)
3266 {
3267 	struct netdev_hw_addr *ha;
3268 	struct gfar_private *priv = netdev_priv(dev);
3269 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3270 	u32 tempval;
3271 
3272 	if (dev->flags & IFF_PROMISC) {
3273 		/* Set RCTRL to PROM */
3274 		tempval = gfar_read(&regs->rctrl);
3275 		tempval |= RCTRL_PROM;
3276 		gfar_write(&regs->rctrl, tempval);
3277 	} else {
3278 		/* Set RCTRL to not PROM */
3279 		tempval = gfar_read(&regs->rctrl);
3280 		tempval &= ~(RCTRL_PROM);
3281 		gfar_write(&regs->rctrl, tempval);
3282 	}
3283 
3284 	if (dev->flags & IFF_ALLMULTI) {
3285 		/* Set the hash to rx all multicast frames */
3286 		gfar_write(&regs->igaddr0, 0xffffffff);
3287 		gfar_write(&regs->igaddr1, 0xffffffff);
3288 		gfar_write(&regs->igaddr2, 0xffffffff);
3289 		gfar_write(&regs->igaddr3, 0xffffffff);
3290 		gfar_write(&regs->igaddr4, 0xffffffff);
3291 		gfar_write(&regs->igaddr5, 0xffffffff);
3292 		gfar_write(&regs->igaddr6, 0xffffffff);
3293 		gfar_write(&regs->igaddr7, 0xffffffff);
3294 		gfar_write(&regs->gaddr0, 0xffffffff);
3295 		gfar_write(&regs->gaddr1, 0xffffffff);
3296 		gfar_write(&regs->gaddr2, 0xffffffff);
3297 		gfar_write(&regs->gaddr3, 0xffffffff);
3298 		gfar_write(&regs->gaddr4, 0xffffffff);
3299 		gfar_write(&regs->gaddr5, 0xffffffff);
3300 		gfar_write(&regs->gaddr6, 0xffffffff);
3301 		gfar_write(&regs->gaddr7, 0xffffffff);
3302 	} else {
3303 		int em_num;
3304 		int idx;
3305 
3306 		/* zero out the hash */
3307 		gfar_write(&regs->igaddr0, 0x0);
3308 		gfar_write(&regs->igaddr1, 0x0);
3309 		gfar_write(&regs->igaddr2, 0x0);
3310 		gfar_write(&regs->igaddr3, 0x0);
3311 		gfar_write(&regs->igaddr4, 0x0);
3312 		gfar_write(&regs->igaddr5, 0x0);
3313 		gfar_write(&regs->igaddr6, 0x0);
3314 		gfar_write(&regs->igaddr7, 0x0);
3315 		gfar_write(&regs->gaddr0, 0x0);
3316 		gfar_write(&regs->gaddr1, 0x0);
3317 		gfar_write(&regs->gaddr2, 0x0);
3318 		gfar_write(&regs->gaddr3, 0x0);
3319 		gfar_write(&regs->gaddr4, 0x0);
3320 		gfar_write(&regs->gaddr5, 0x0);
3321 		gfar_write(&regs->gaddr6, 0x0);
3322 		gfar_write(&regs->gaddr7, 0x0);
3323 
3324 		/* If we have extended hash tables, we need to
3325 		 * clear the exact match registers to prepare for
3326 		 * setting them
3327 		 */
3328 		if (priv->extended_hash) {
3329 			em_num = GFAR_EM_NUM + 1;
3330 			gfar_clear_exact_match(dev);
3331 			idx = 1;
3332 		} else {
3333 			idx = 0;
3334 			em_num = 0;
3335 		}
3336 
3337 		if (netdev_mc_empty(dev))
3338 			return;
3339 
3340 		/* Parse the list, and set the appropriate bits */
3341 		netdev_for_each_mc_addr(ha, dev) {
3342 			if (idx < em_num) {
3343 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3344 				idx++;
3345 			} else
3346 				gfar_set_hash_for_addr(dev, ha->addr);
3347 		}
3348 	}
3349 }
3350 
3351 
3352 /* Clears each of the exact match registers to zero, so they
3353  * don't interfere with normal reception
3354  */
3355 static void gfar_clear_exact_match(struct net_device *dev)
3356 {
3357 	int idx;
3358 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3359 
3360 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3361 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3362 }
3363 
3364 /* Set the appropriate hash bit for the given addr */
3365 /* The algorithm works like so:
3366  * 1) Take the Destination Address (ie the multicast address), and
3367  * do a CRC on it (little endian), and reverse the bits of the
3368  * result.
3369  * 2) Use the 8 most significant bits as a hash into a 256-entry
3370  * table.  The table is controlled through 8 32-bit registers:
3371  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3372  * gaddr7.  This means that the 3 most significant bits in the
3373  * hash index which gaddr register to use, and the 5 other bits
3374  * indicate which bit (assuming an IBM numbering scheme, which
3375  * for PowerPC (tm) is usually the case) in the register holds
3376  * the entry.
3377  */
3378 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3379 {
3380 	u32 tempval;
3381 	struct gfar_private *priv = netdev_priv(dev);
3382 	u32 result = ether_crc(ETH_ALEN, addr);
3383 	int width = priv->hash_width;
3384 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3385 	u8 whichreg = result >> (32 - width + 5);
3386 	u32 value = (1 << (31-whichbit));
3387 
3388 	tempval = gfar_read(priv->hash_regs[whichreg]);
3389 	tempval |= value;
3390 	gfar_write(priv->hash_regs[whichreg], tempval);
3391 }
3392 
3393 
3394 /* There are multiple MAC Address register pairs on some controllers
3395  * This function sets the numth pair to a given address
3396  */
3397 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3398 				  const u8 *addr)
3399 {
3400 	struct gfar_private *priv = netdev_priv(dev);
3401 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3402 	u32 tempval;
3403 	u32 __iomem *macptr = &regs->macstnaddr1;
3404 
3405 	macptr += num*2;
3406 
3407 	/* For a station address of 0x12345678ABCD in transmission
3408 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3409 	 * MACnADDR2 is set to 0x34120000.
3410 	 */
3411 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3412 		  (addr[3] << 8)  |  addr[2];
3413 
3414 	gfar_write(macptr, tempval);
3415 
3416 	tempval = (addr[1] << 24) | (addr[0] << 16);
3417 
3418 	gfar_write(macptr+1, tempval);
3419 }
3420 
3421 /* GFAR error interrupt handler */
3422 static irqreturn_t gfar_error(int irq, void *grp_id)
3423 {
3424 	struct gfar_priv_grp *gfargrp = grp_id;
3425 	struct gfar __iomem *regs = gfargrp->regs;
3426 	struct gfar_private *priv= gfargrp->priv;
3427 	struct net_device *dev = priv->ndev;
3428 
3429 	/* Save ievent for future reference */
3430 	u32 events = gfar_read(&regs->ievent);
3431 
3432 	/* Clear IEVENT */
3433 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3434 
3435 	/* Magic Packet is not an error. */
3436 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3437 	    (events & IEVENT_MAG))
3438 		events &= ~IEVENT_MAG;
3439 
3440 	/* Hmm... */
3441 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3442 		netdev_dbg(dev,
3443 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3444 			   events, gfar_read(&regs->imask));
3445 
3446 	/* Update the error counters */
3447 	if (events & IEVENT_TXE) {
3448 		dev->stats.tx_errors++;
3449 
3450 		if (events & IEVENT_LC)
3451 			dev->stats.tx_window_errors++;
3452 		if (events & IEVENT_CRL)
3453 			dev->stats.tx_aborted_errors++;
3454 		if (events & IEVENT_XFUN) {
3455 			netif_dbg(priv, tx_err, dev,
3456 				  "TX FIFO underrun, packet dropped\n");
3457 			dev->stats.tx_dropped++;
3458 			atomic64_inc(&priv->extra_stats.tx_underrun);
3459 
3460 			schedule_work(&priv->reset_task);
3461 		}
3462 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3463 	}
3464 	if (events & IEVENT_BSY) {
3465 		dev->stats.rx_over_errors++;
3466 		atomic64_inc(&priv->extra_stats.rx_bsy);
3467 
3468 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3469 			  gfar_read(&regs->rstat));
3470 	}
3471 	if (events & IEVENT_BABR) {
3472 		dev->stats.rx_errors++;
3473 		atomic64_inc(&priv->extra_stats.rx_babr);
3474 
3475 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3476 	}
3477 	if (events & IEVENT_EBERR) {
3478 		atomic64_inc(&priv->extra_stats.eberr);
3479 		netif_dbg(priv, rx_err, dev, "bus error\n");
3480 	}
3481 	if (events & IEVENT_RXC)
3482 		netif_dbg(priv, rx_status, dev, "control frame\n");
3483 
3484 	if (events & IEVENT_BABT) {
3485 		atomic64_inc(&priv->extra_stats.tx_babt);
3486 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3487 	}
3488 	return IRQ_HANDLED;
3489 }
3490 
3491 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3492 {
3493 	struct phy_device *phydev = priv->phydev;
3494 	u32 val = 0;
3495 
3496 	if (!phydev->duplex)
3497 		return val;
3498 
3499 	if (!priv->pause_aneg_en) {
3500 		if (priv->tx_pause_en)
3501 			val |= MACCFG1_TX_FLOW;
3502 		if (priv->rx_pause_en)
3503 			val |= MACCFG1_RX_FLOW;
3504 	} else {
3505 		u16 lcl_adv, rmt_adv;
3506 		u8 flowctrl;
3507 		/* get link partner capabilities */
3508 		rmt_adv = 0;
3509 		if (phydev->pause)
3510 			rmt_adv = LPA_PAUSE_CAP;
3511 		if (phydev->asym_pause)
3512 			rmt_adv |= LPA_PAUSE_ASYM;
3513 
3514 		lcl_adv = 0;
3515 		if (phydev->advertising & ADVERTISED_Pause)
3516 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3517 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3518 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3519 
3520 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3521 		if (flowctrl & FLOW_CTRL_TX)
3522 			val |= MACCFG1_TX_FLOW;
3523 		if (flowctrl & FLOW_CTRL_RX)
3524 			val |= MACCFG1_RX_FLOW;
3525 	}
3526 
3527 	return val;
3528 }
3529 
3530 static noinline void gfar_update_link_state(struct gfar_private *priv)
3531 {
3532 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3533 	struct phy_device *phydev = priv->phydev;
3534 	struct gfar_priv_rx_q *rx_queue = NULL;
3535 	int i;
3536 
3537 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3538 		return;
3539 
3540 	if (phydev->link) {
3541 		u32 tempval1 = gfar_read(&regs->maccfg1);
3542 		u32 tempval = gfar_read(&regs->maccfg2);
3543 		u32 ecntrl = gfar_read(&regs->ecntrl);
3544 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3545 
3546 		if (phydev->duplex != priv->oldduplex) {
3547 			if (!(phydev->duplex))
3548 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3549 			else
3550 				tempval |= MACCFG2_FULL_DUPLEX;
3551 
3552 			priv->oldduplex = phydev->duplex;
3553 		}
3554 
3555 		if (phydev->speed != priv->oldspeed) {
3556 			switch (phydev->speed) {
3557 			case 1000:
3558 				tempval =
3559 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3560 
3561 				ecntrl &= ~(ECNTRL_R100);
3562 				break;
3563 			case 100:
3564 			case 10:
3565 				tempval =
3566 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3567 
3568 				/* Reduced mode distinguishes
3569 				 * between 10 and 100
3570 				 */
3571 				if (phydev->speed == SPEED_100)
3572 					ecntrl |= ECNTRL_R100;
3573 				else
3574 					ecntrl &= ~(ECNTRL_R100);
3575 				break;
3576 			default:
3577 				netif_warn(priv, link, priv->ndev,
3578 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3579 					   phydev->speed);
3580 				break;
3581 			}
3582 
3583 			priv->oldspeed = phydev->speed;
3584 		}
3585 
3586 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3587 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3588 
3589 		/* Turn last free buffer recording on */
3590 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3591 			for (i = 0; i < priv->num_rx_queues; i++) {
3592 				u32 bdp_dma;
3593 
3594 				rx_queue = priv->rx_queue[i];
3595 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3596 				gfar_write(rx_queue->rfbptr, bdp_dma);
3597 			}
3598 
3599 			priv->tx_actual_en = 1;
3600 		}
3601 
3602 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3603 			priv->tx_actual_en = 0;
3604 
3605 		gfar_write(&regs->maccfg1, tempval1);
3606 		gfar_write(&regs->maccfg2, tempval);
3607 		gfar_write(&regs->ecntrl, ecntrl);
3608 
3609 		if (!priv->oldlink)
3610 			priv->oldlink = 1;
3611 
3612 	} else if (priv->oldlink) {
3613 		priv->oldlink = 0;
3614 		priv->oldspeed = 0;
3615 		priv->oldduplex = -1;
3616 	}
3617 
3618 	if (netif_msg_link(priv))
3619 		phy_print_status(phydev);
3620 }
3621 
3622 static const struct of_device_id gfar_match[] =
3623 {
3624 	{
3625 		.type = "network",
3626 		.compatible = "gianfar",
3627 	},
3628 	{
3629 		.compatible = "fsl,etsec2",
3630 	},
3631 	{},
3632 };
3633 MODULE_DEVICE_TABLE(of, gfar_match);
3634 
3635 /* Structure for a device driver */
3636 static struct platform_driver gfar_driver = {
3637 	.driver = {
3638 		.name = "fsl-gianfar",
3639 		.pm = GFAR_PM_OPS,
3640 		.of_match_table = gfar_match,
3641 	},
3642 	.probe = gfar_probe,
3643 	.remove = gfar_remove,
3644 };
3645 
3646 module_platform_driver(gfar_driver);
3647