1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #include <asm/reg.h> 92 #include <asm/mpc85xx.h> 93 #include <asm/irq.h> 94 #include <asm/uaccess.h> 95 #include <linux/module.h> 96 #include <linux/dma-mapping.h> 97 #include <linux/crc32.h> 98 #include <linux/mii.h> 99 #include <linux/phy.h> 100 #include <linux/phy_fixed.h> 101 #include <linux/of.h> 102 #include <linux/of_net.h> 103 104 #include "gianfar.h" 105 106 #define TX_TIMEOUT (1*HZ) 107 108 const char gfar_driver_version[] = "1.3"; 109 110 static int gfar_enet_open(struct net_device *dev); 111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 112 static void gfar_reset_task(struct work_struct *work); 113 static void gfar_timeout(struct net_device *dev); 114 static int gfar_close(struct net_device *dev); 115 struct sk_buff *gfar_new_skb(struct net_device *dev); 116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 117 struct sk_buff *skb); 118 static int gfar_set_mac_address(struct net_device *dev); 119 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 120 static irqreturn_t gfar_error(int irq, void *dev_id); 121 static irqreturn_t gfar_transmit(int irq, void *dev_id); 122 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 123 static void adjust_link(struct net_device *dev); 124 static int init_phy(struct net_device *dev); 125 static int gfar_probe(struct platform_device *ofdev); 126 static int gfar_remove(struct platform_device *ofdev); 127 static void free_skb_resources(struct gfar_private *priv); 128 static void gfar_set_multi(struct net_device *dev); 129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 130 static void gfar_configure_serdes(struct net_device *dev); 131 static int gfar_poll_rx(struct napi_struct *napi, int budget); 132 static int gfar_poll_tx(struct napi_struct *napi, int budget); 133 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 134 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 135 #ifdef CONFIG_NET_POLL_CONTROLLER 136 static void gfar_netpoll(struct net_device *dev); 137 #endif 138 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 139 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 140 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 141 int amount_pull, struct napi_struct *napi); 142 static void gfar_halt_nodisable(struct gfar_private *priv); 143 static void gfar_clear_exact_match(struct net_device *dev); 144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 145 const u8 *addr); 146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 147 148 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 149 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 150 MODULE_LICENSE("GPL"); 151 152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 153 dma_addr_t buf) 154 { 155 u32 lstatus; 156 157 bdp->bufPtr = buf; 158 159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 161 lstatus |= BD_LFLAG(RXBD_WRAP); 162 163 eieio(); 164 165 bdp->lstatus = lstatus; 166 } 167 168 static int gfar_init_bds(struct net_device *ndev) 169 { 170 struct gfar_private *priv = netdev_priv(ndev); 171 struct gfar_priv_tx_q *tx_queue = NULL; 172 struct gfar_priv_rx_q *rx_queue = NULL; 173 struct txbd8 *txbdp; 174 struct rxbd8 *rxbdp; 175 int i, j; 176 177 for (i = 0; i < priv->num_tx_queues; i++) { 178 tx_queue = priv->tx_queue[i]; 179 /* Initialize some variables in our dev structure */ 180 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 181 tx_queue->dirty_tx = tx_queue->tx_bd_base; 182 tx_queue->cur_tx = tx_queue->tx_bd_base; 183 tx_queue->skb_curtx = 0; 184 tx_queue->skb_dirtytx = 0; 185 186 /* Initialize Transmit Descriptor Ring */ 187 txbdp = tx_queue->tx_bd_base; 188 for (j = 0; j < tx_queue->tx_ring_size; j++) { 189 txbdp->lstatus = 0; 190 txbdp->bufPtr = 0; 191 txbdp++; 192 } 193 194 /* Set the last descriptor in the ring to indicate wrap */ 195 txbdp--; 196 txbdp->status |= TXBD_WRAP; 197 } 198 199 for (i = 0; i < priv->num_rx_queues; i++) { 200 rx_queue = priv->rx_queue[i]; 201 rx_queue->cur_rx = rx_queue->rx_bd_base; 202 rx_queue->skb_currx = 0; 203 rxbdp = rx_queue->rx_bd_base; 204 205 for (j = 0; j < rx_queue->rx_ring_size; j++) { 206 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 207 208 if (skb) { 209 gfar_init_rxbdp(rx_queue, rxbdp, 210 rxbdp->bufPtr); 211 } else { 212 skb = gfar_new_skb(ndev); 213 if (!skb) { 214 netdev_err(ndev, "Can't allocate RX buffers\n"); 215 return -ENOMEM; 216 } 217 rx_queue->rx_skbuff[j] = skb; 218 219 gfar_new_rxbdp(rx_queue, rxbdp, skb); 220 } 221 222 rxbdp++; 223 } 224 225 } 226 227 return 0; 228 } 229 230 static int gfar_alloc_skb_resources(struct net_device *ndev) 231 { 232 void *vaddr; 233 dma_addr_t addr; 234 int i, j, k; 235 struct gfar_private *priv = netdev_priv(ndev); 236 struct device *dev = priv->dev; 237 struct gfar_priv_tx_q *tx_queue = NULL; 238 struct gfar_priv_rx_q *rx_queue = NULL; 239 240 priv->total_tx_ring_size = 0; 241 for (i = 0; i < priv->num_tx_queues; i++) 242 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 243 244 priv->total_rx_ring_size = 0; 245 for (i = 0; i < priv->num_rx_queues; i++) 246 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 247 248 /* Allocate memory for the buffer descriptors */ 249 vaddr = dma_alloc_coherent(dev, 250 (priv->total_tx_ring_size * 251 sizeof(struct txbd8)) + 252 (priv->total_rx_ring_size * 253 sizeof(struct rxbd8)), 254 &addr, GFP_KERNEL); 255 if (!vaddr) 256 return -ENOMEM; 257 258 for (i = 0; i < priv->num_tx_queues; i++) { 259 tx_queue = priv->tx_queue[i]; 260 tx_queue->tx_bd_base = vaddr; 261 tx_queue->tx_bd_dma_base = addr; 262 tx_queue->dev = ndev; 263 /* enet DMA only understands physical addresses */ 264 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 265 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 266 } 267 268 /* Start the rx descriptor ring where the tx ring leaves off */ 269 for (i = 0; i < priv->num_rx_queues; i++) { 270 rx_queue = priv->rx_queue[i]; 271 rx_queue->rx_bd_base = vaddr; 272 rx_queue->rx_bd_dma_base = addr; 273 rx_queue->dev = ndev; 274 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 275 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 276 } 277 278 /* Setup the skbuff rings */ 279 for (i = 0; i < priv->num_tx_queues; i++) { 280 tx_queue = priv->tx_queue[i]; 281 tx_queue->tx_skbuff = 282 kmalloc_array(tx_queue->tx_ring_size, 283 sizeof(*tx_queue->tx_skbuff), 284 GFP_KERNEL); 285 if (!tx_queue->tx_skbuff) 286 goto cleanup; 287 288 for (k = 0; k < tx_queue->tx_ring_size; k++) 289 tx_queue->tx_skbuff[k] = NULL; 290 } 291 292 for (i = 0; i < priv->num_rx_queues; i++) { 293 rx_queue = priv->rx_queue[i]; 294 rx_queue->rx_skbuff = 295 kmalloc_array(rx_queue->rx_ring_size, 296 sizeof(*rx_queue->rx_skbuff), 297 GFP_KERNEL); 298 if (!rx_queue->rx_skbuff) 299 goto cleanup; 300 301 for (j = 0; j < rx_queue->rx_ring_size; j++) 302 rx_queue->rx_skbuff[j] = NULL; 303 } 304 305 if (gfar_init_bds(ndev)) 306 goto cleanup; 307 308 return 0; 309 310 cleanup: 311 free_skb_resources(priv); 312 return -ENOMEM; 313 } 314 315 static void gfar_init_tx_rx_base(struct gfar_private *priv) 316 { 317 struct gfar __iomem *regs = priv->gfargrp[0].regs; 318 u32 __iomem *baddr; 319 int i; 320 321 baddr = ®s->tbase0; 322 for (i = 0; i < priv->num_tx_queues; i++) { 323 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 324 baddr += 2; 325 } 326 327 baddr = ®s->rbase0; 328 for (i = 0; i < priv->num_rx_queues; i++) { 329 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 330 baddr += 2; 331 } 332 } 333 334 static void gfar_rx_buff_size_config(struct gfar_private *priv) 335 { 336 int frame_size = priv->ndev->mtu + ETH_HLEN; 337 338 /* set this when rx hw offload (TOE) functions are being used */ 339 priv->uses_rxfcb = 0; 340 341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 342 priv->uses_rxfcb = 1; 343 344 if (priv->hwts_rx_en) 345 priv->uses_rxfcb = 1; 346 347 if (priv->uses_rxfcb) 348 frame_size += GMAC_FCB_LEN; 349 350 frame_size += priv->padding; 351 352 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 353 INCREMENTAL_BUFFER_SIZE; 354 355 priv->rx_buffer_size = frame_size; 356 } 357 358 static void gfar_mac_rx_config(struct gfar_private *priv) 359 { 360 struct gfar __iomem *regs = priv->gfargrp[0].regs; 361 u32 rctrl = 0; 362 363 if (priv->rx_filer_enable) { 364 rctrl |= RCTRL_FILREN; 365 /* Program the RIR0 reg with the required distribution */ 366 if (priv->poll_mode == GFAR_SQ_POLLING) 367 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 368 else /* GFAR_MQ_POLLING */ 369 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 370 } 371 372 /* Restore PROMISC mode */ 373 if (priv->ndev->flags & IFF_PROMISC) 374 rctrl |= RCTRL_PROM; 375 376 if (priv->ndev->features & NETIF_F_RXCSUM) 377 rctrl |= RCTRL_CHECKSUMMING; 378 379 if (priv->extended_hash) 380 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 381 382 if (priv->padding) { 383 rctrl &= ~RCTRL_PAL_MASK; 384 rctrl |= RCTRL_PADDING(priv->padding); 385 } 386 387 /* Enable HW time stamping if requested from user space */ 388 if (priv->hwts_rx_en) 389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 390 391 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 393 394 /* Init rctrl based on our settings */ 395 gfar_write(®s->rctrl, rctrl); 396 } 397 398 static void gfar_mac_tx_config(struct gfar_private *priv) 399 { 400 struct gfar __iomem *regs = priv->gfargrp[0].regs; 401 u32 tctrl = 0; 402 403 if (priv->ndev->features & NETIF_F_IP_CSUM) 404 tctrl |= TCTRL_INIT_CSUM; 405 406 if (priv->prio_sched_en) 407 tctrl |= TCTRL_TXSCHED_PRIO; 408 else { 409 tctrl |= TCTRL_TXSCHED_WRRS; 410 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 411 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 412 } 413 414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 415 tctrl |= TCTRL_VLINS; 416 417 gfar_write(®s->tctrl, tctrl); 418 } 419 420 static void gfar_configure_coalescing(struct gfar_private *priv, 421 unsigned long tx_mask, unsigned long rx_mask) 422 { 423 struct gfar __iomem *regs = priv->gfargrp[0].regs; 424 u32 __iomem *baddr; 425 426 if (priv->mode == MQ_MG_MODE) { 427 int i = 0; 428 429 baddr = ®s->txic0; 430 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 431 gfar_write(baddr + i, 0); 432 if (likely(priv->tx_queue[i]->txcoalescing)) 433 gfar_write(baddr + i, priv->tx_queue[i]->txic); 434 } 435 436 baddr = ®s->rxic0; 437 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 438 gfar_write(baddr + i, 0); 439 if (likely(priv->rx_queue[i]->rxcoalescing)) 440 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 441 } 442 } else { 443 /* Backward compatible case -- even if we enable 444 * multiple queues, there's only single reg to program 445 */ 446 gfar_write(®s->txic, 0); 447 if (likely(priv->tx_queue[0]->txcoalescing)) 448 gfar_write(®s->txic, priv->tx_queue[0]->txic); 449 450 gfar_write(®s->rxic, 0); 451 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 452 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 453 } 454 } 455 456 void gfar_configure_coalescing_all(struct gfar_private *priv) 457 { 458 gfar_configure_coalescing(priv, 0xFF, 0xFF); 459 } 460 461 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 462 { 463 struct gfar_private *priv = netdev_priv(dev); 464 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 465 unsigned long tx_packets = 0, tx_bytes = 0; 466 int i; 467 468 for (i = 0; i < priv->num_rx_queues; i++) { 469 rx_packets += priv->rx_queue[i]->stats.rx_packets; 470 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 471 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 472 } 473 474 dev->stats.rx_packets = rx_packets; 475 dev->stats.rx_bytes = rx_bytes; 476 dev->stats.rx_dropped = rx_dropped; 477 478 for (i = 0; i < priv->num_tx_queues; i++) { 479 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 480 tx_packets += priv->tx_queue[i]->stats.tx_packets; 481 } 482 483 dev->stats.tx_bytes = tx_bytes; 484 dev->stats.tx_packets = tx_packets; 485 486 return &dev->stats; 487 } 488 489 static const struct net_device_ops gfar_netdev_ops = { 490 .ndo_open = gfar_enet_open, 491 .ndo_start_xmit = gfar_start_xmit, 492 .ndo_stop = gfar_close, 493 .ndo_change_mtu = gfar_change_mtu, 494 .ndo_set_features = gfar_set_features, 495 .ndo_set_rx_mode = gfar_set_multi, 496 .ndo_tx_timeout = gfar_timeout, 497 .ndo_do_ioctl = gfar_ioctl, 498 .ndo_get_stats = gfar_get_stats, 499 .ndo_set_mac_address = eth_mac_addr, 500 .ndo_validate_addr = eth_validate_addr, 501 #ifdef CONFIG_NET_POLL_CONTROLLER 502 .ndo_poll_controller = gfar_netpoll, 503 #endif 504 }; 505 506 static void gfar_ints_disable(struct gfar_private *priv) 507 { 508 int i; 509 for (i = 0; i < priv->num_grps; i++) { 510 struct gfar __iomem *regs = priv->gfargrp[i].regs; 511 /* Clear IEVENT */ 512 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 513 514 /* Initialize IMASK */ 515 gfar_write(®s->imask, IMASK_INIT_CLEAR); 516 } 517 } 518 519 static void gfar_ints_enable(struct gfar_private *priv) 520 { 521 int i; 522 for (i = 0; i < priv->num_grps; i++) { 523 struct gfar __iomem *regs = priv->gfargrp[i].regs; 524 /* Unmask the interrupts we look for */ 525 gfar_write(®s->imask, IMASK_DEFAULT); 526 } 527 } 528 529 void lock_tx_qs(struct gfar_private *priv) 530 { 531 int i; 532 533 for (i = 0; i < priv->num_tx_queues; i++) 534 spin_lock(&priv->tx_queue[i]->txlock); 535 } 536 537 void unlock_tx_qs(struct gfar_private *priv) 538 { 539 int i; 540 541 for (i = 0; i < priv->num_tx_queues; i++) 542 spin_unlock(&priv->tx_queue[i]->txlock); 543 } 544 545 static int gfar_alloc_tx_queues(struct gfar_private *priv) 546 { 547 int i; 548 549 for (i = 0; i < priv->num_tx_queues; i++) { 550 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 551 GFP_KERNEL); 552 if (!priv->tx_queue[i]) 553 return -ENOMEM; 554 555 priv->tx_queue[i]->tx_skbuff = NULL; 556 priv->tx_queue[i]->qindex = i; 557 priv->tx_queue[i]->dev = priv->ndev; 558 spin_lock_init(&(priv->tx_queue[i]->txlock)); 559 } 560 return 0; 561 } 562 563 static int gfar_alloc_rx_queues(struct gfar_private *priv) 564 { 565 int i; 566 567 for (i = 0; i < priv->num_rx_queues; i++) { 568 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 569 GFP_KERNEL); 570 if (!priv->rx_queue[i]) 571 return -ENOMEM; 572 573 priv->rx_queue[i]->rx_skbuff = NULL; 574 priv->rx_queue[i]->qindex = i; 575 priv->rx_queue[i]->dev = priv->ndev; 576 } 577 return 0; 578 } 579 580 static void gfar_free_tx_queues(struct gfar_private *priv) 581 { 582 int i; 583 584 for (i = 0; i < priv->num_tx_queues; i++) 585 kfree(priv->tx_queue[i]); 586 } 587 588 static void gfar_free_rx_queues(struct gfar_private *priv) 589 { 590 int i; 591 592 for (i = 0; i < priv->num_rx_queues; i++) 593 kfree(priv->rx_queue[i]); 594 } 595 596 static void unmap_group_regs(struct gfar_private *priv) 597 { 598 int i; 599 600 for (i = 0; i < MAXGROUPS; i++) 601 if (priv->gfargrp[i].regs) 602 iounmap(priv->gfargrp[i].regs); 603 } 604 605 static void free_gfar_dev(struct gfar_private *priv) 606 { 607 int i, j; 608 609 for (i = 0; i < priv->num_grps; i++) 610 for (j = 0; j < GFAR_NUM_IRQS; j++) { 611 kfree(priv->gfargrp[i].irqinfo[j]); 612 priv->gfargrp[i].irqinfo[j] = NULL; 613 } 614 615 free_netdev(priv->ndev); 616 } 617 618 static void disable_napi(struct gfar_private *priv) 619 { 620 int i; 621 622 for (i = 0; i < priv->num_grps; i++) { 623 napi_disable(&priv->gfargrp[i].napi_rx); 624 napi_disable(&priv->gfargrp[i].napi_tx); 625 } 626 } 627 628 static void enable_napi(struct gfar_private *priv) 629 { 630 int i; 631 632 for (i = 0; i < priv->num_grps; i++) { 633 napi_enable(&priv->gfargrp[i].napi_rx); 634 napi_enable(&priv->gfargrp[i].napi_tx); 635 } 636 } 637 638 static int gfar_parse_group(struct device_node *np, 639 struct gfar_private *priv, const char *model) 640 { 641 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 642 int i; 643 644 for (i = 0; i < GFAR_NUM_IRQS; i++) { 645 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 646 GFP_KERNEL); 647 if (!grp->irqinfo[i]) 648 return -ENOMEM; 649 } 650 651 grp->regs = of_iomap(np, 0); 652 if (!grp->regs) 653 return -ENOMEM; 654 655 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 656 657 /* If we aren't the FEC we have multiple interrupts */ 658 if (model && strcasecmp(model, "FEC")) { 659 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 660 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 661 if (gfar_irq(grp, TX)->irq == NO_IRQ || 662 gfar_irq(grp, RX)->irq == NO_IRQ || 663 gfar_irq(grp, ER)->irq == NO_IRQ) 664 return -EINVAL; 665 } 666 667 grp->priv = priv; 668 spin_lock_init(&grp->grplock); 669 if (priv->mode == MQ_MG_MODE) { 670 u32 *rxq_mask, *txq_mask; 671 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL); 672 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL); 673 674 if (priv->poll_mode == GFAR_SQ_POLLING) { 675 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 676 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 677 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 678 } else { /* GFAR_MQ_POLLING */ 679 grp->rx_bit_map = rxq_mask ? 680 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 681 grp->tx_bit_map = txq_mask ? 682 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 683 } 684 } else { 685 grp->rx_bit_map = 0xFF; 686 grp->tx_bit_map = 0xFF; 687 } 688 689 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 690 * right to left, so we need to revert the 8 bits to get the q index 691 */ 692 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 693 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 694 695 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 696 * also assign queues to groups 697 */ 698 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 699 if (!grp->rx_queue) 700 grp->rx_queue = priv->rx_queue[i]; 701 grp->num_rx_queues++; 702 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 703 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 704 priv->rx_queue[i]->grp = grp; 705 } 706 707 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 708 if (!grp->tx_queue) 709 grp->tx_queue = priv->tx_queue[i]; 710 grp->num_tx_queues++; 711 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 712 priv->tqueue |= (TQUEUE_EN0 >> i); 713 priv->tx_queue[i]->grp = grp; 714 } 715 716 priv->num_grps++; 717 718 return 0; 719 } 720 721 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 722 { 723 const char *model; 724 const char *ctype; 725 const void *mac_addr; 726 int err = 0, i; 727 struct net_device *dev = NULL; 728 struct gfar_private *priv = NULL; 729 struct device_node *np = ofdev->dev.of_node; 730 struct device_node *child = NULL; 731 const u32 *stash; 732 const u32 *stash_len; 733 const u32 *stash_idx; 734 unsigned int num_tx_qs, num_rx_qs; 735 u32 *tx_queues, *rx_queues; 736 unsigned short mode, poll_mode; 737 738 if (!np || !of_device_is_available(np)) 739 return -ENODEV; 740 741 if (of_device_is_compatible(np, "fsl,etsec2")) { 742 mode = MQ_MG_MODE; 743 poll_mode = GFAR_SQ_POLLING; 744 } else { 745 mode = SQ_SG_MODE; 746 poll_mode = GFAR_SQ_POLLING; 747 } 748 749 /* parse the num of HW tx and rx queues */ 750 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 751 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 752 753 if (mode == SQ_SG_MODE) { 754 num_tx_qs = 1; 755 num_rx_qs = 1; 756 } else { /* MQ_MG_MODE */ 757 /* get the actual number of supported groups */ 758 unsigned int num_grps = of_get_available_child_count(np); 759 760 if (num_grps == 0 || num_grps > MAXGROUPS) { 761 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 762 num_grps); 763 pr_err("Cannot do alloc_etherdev, aborting\n"); 764 return -EINVAL; 765 } 766 767 if (poll_mode == GFAR_SQ_POLLING) { 768 num_tx_qs = num_grps; /* one txq per int group */ 769 num_rx_qs = num_grps; /* one rxq per int group */ 770 } else { /* GFAR_MQ_POLLING */ 771 num_tx_qs = tx_queues ? *tx_queues : 1; 772 num_rx_qs = rx_queues ? *rx_queues : 1; 773 } 774 } 775 776 if (num_tx_qs > MAX_TX_QS) { 777 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 778 num_tx_qs, MAX_TX_QS); 779 pr_err("Cannot do alloc_etherdev, aborting\n"); 780 return -EINVAL; 781 } 782 783 if (num_rx_qs > MAX_RX_QS) { 784 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 785 num_rx_qs, MAX_RX_QS); 786 pr_err("Cannot do alloc_etherdev, aborting\n"); 787 return -EINVAL; 788 } 789 790 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 791 dev = *pdev; 792 if (NULL == dev) 793 return -ENOMEM; 794 795 priv = netdev_priv(dev); 796 priv->ndev = dev; 797 798 priv->mode = mode; 799 priv->poll_mode = poll_mode; 800 801 priv->num_tx_queues = num_tx_qs; 802 netif_set_real_num_rx_queues(dev, num_rx_qs); 803 priv->num_rx_queues = num_rx_qs; 804 805 err = gfar_alloc_tx_queues(priv); 806 if (err) 807 goto tx_alloc_failed; 808 809 err = gfar_alloc_rx_queues(priv); 810 if (err) 811 goto rx_alloc_failed; 812 813 /* Init Rx queue filer rule set linked list */ 814 INIT_LIST_HEAD(&priv->rx_list.list); 815 priv->rx_list.count = 0; 816 mutex_init(&priv->rx_queue_access); 817 818 model = of_get_property(np, "model", NULL); 819 820 for (i = 0; i < MAXGROUPS; i++) 821 priv->gfargrp[i].regs = NULL; 822 823 /* Parse and initialize group specific information */ 824 if (priv->mode == MQ_MG_MODE) { 825 for_each_child_of_node(np, child) { 826 err = gfar_parse_group(child, priv, model); 827 if (err) 828 goto err_grp_init; 829 } 830 } else { /* SQ_SG_MODE */ 831 err = gfar_parse_group(np, priv, model); 832 if (err) 833 goto err_grp_init; 834 } 835 836 stash = of_get_property(np, "bd-stash", NULL); 837 838 if (stash) { 839 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 840 priv->bd_stash_en = 1; 841 } 842 843 stash_len = of_get_property(np, "rx-stash-len", NULL); 844 845 if (stash_len) 846 priv->rx_stash_size = *stash_len; 847 848 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 849 850 if (stash_idx) 851 priv->rx_stash_index = *stash_idx; 852 853 if (stash_len || stash_idx) 854 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 855 856 mac_addr = of_get_mac_address(np); 857 858 if (mac_addr) 859 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 860 861 if (model && !strcasecmp(model, "TSEC")) 862 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 863 FSL_GIANFAR_DEV_HAS_COALESCE | 864 FSL_GIANFAR_DEV_HAS_RMON | 865 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 866 867 if (model && !strcasecmp(model, "eTSEC")) 868 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 869 FSL_GIANFAR_DEV_HAS_COALESCE | 870 FSL_GIANFAR_DEV_HAS_RMON | 871 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 872 FSL_GIANFAR_DEV_HAS_CSUM | 873 FSL_GIANFAR_DEV_HAS_VLAN | 874 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 875 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 876 FSL_GIANFAR_DEV_HAS_TIMER; 877 878 ctype = of_get_property(np, "phy-connection-type", NULL); 879 880 /* We only care about rgmii-id. The rest are autodetected */ 881 if (ctype && !strcmp(ctype, "rgmii-id")) 882 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 883 else 884 priv->interface = PHY_INTERFACE_MODE_MII; 885 886 if (of_get_property(np, "fsl,magic-packet", NULL)) 887 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 888 889 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 890 891 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 892 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 893 894 return 0; 895 896 err_grp_init: 897 unmap_group_regs(priv); 898 rx_alloc_failed: 899 gfar_free_rx_queues(priv); 900 tx_alloc_failed: 901 gfar_free_tx_queues(priv); 902 free_gfar_dev(priv); 903 return err; 904 } 905 906 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 907 { 908 struct hwtstamp_config config; 909 struct gfar_private *priv = netdev_priv(netdev); 910 911 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 912 return -EFAULT; 913 914 /* reserved for future extensions */ 915 if (config.flags) 916 return -EINVAL; 917 918 switch (config.tx_type) { 919 case HWTSTAMP_TX_OFF: 920 priv->hwts_tx_en = 0; 921 break; 922 case HWTSTAMP_TX_ON: 923 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 924 return -ERANGE; 925 priv->hwts_tx_en = 1; 926 break; 927 default: 928 return -ERANGE; 929 } 930 931 switch (config.rx_filter) { 932 case HWTSTAMP_FILTER_NONE: 933 if (priv->hwts_rx_en) { 934 priv->hwts_rx_en = 0; 935 reset_gfar(netdev); 936 } 937 break; 938 default: 939 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 940 return -ERANGE; 941 if (!priv->hwts_rx_en) { 942 priv->hwts_rx_en = 1; 943 reset_gfar(netdev); 944 } 945 config.rx_filter = HWTSTAMP_FILTER_ALL; 946 break; 947 } 948 949 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 950 -EFAULT : 0; 951 } 952 953 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 954 { 955 struct hwtstamp_config config; 956 struct gfar_private *priv = netdev_priv(netdev); 957 958 config.flags = 0; 959 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 960 config.rx_filter = (priv->hwts_rx_en ? 961 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 962 963 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 964 -EFAULT : 0; 965 } 966 967 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 968 { 969 struct gfar_private *priv = netdev_priv(dev); 970 971 if (!netif_running(dev)) 972 return -EINVAL; 973 974 if (cmd == SIOCSHWTSTAMP) 975 return gfar_hwtstamp_set(dev, rq); 976 if (cmd == SIOCGHWTSTAMP) 977 return gfar_hwtstamp_get(dev, rq); 978 979 if (!priv->phydev) 980 return -ENODEV; 981 982 return phy_mii_ioctl(priv->phydev, rq, cmd); 983 } 984 985 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 986 u32 class) 987 { 988 u32 rqfpr = FPR_FILER_MASK; 989 u32 rqfcr = 0x0; 990 991 rqfar--; 992 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 993 priv->ftp_rqfpr[rqfar] = rqfpr; 994 priv->ftp_rqfcr[rqfar] = rqfcr; 995 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 996 997 rqfar--; 998 rqfcr = RQFCR_CMP_NOMATCH; 999 priv->ftp_rqfpr[rqfar] = rqfpr; 1000 priv->ftp_rqfcr[rqfar] = rqfcr; 1001 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1002 1003 rqfar--; 1004 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 1005 rqfpr = class; 1006 priv->ftp_rqfcr[rqfar] = rqfcr; 1007 priv->ftp_rqfpr[rqfar] = rqfpr; 1008 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1009 1010 rqfar--; 1011 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 1012 rqfpr = class; 1013 priv->ftp_rqfcr[rqfar] = rqfcr; 1014 priv->ftp_rqfpr[rqfar] = rqfpr; 1015 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1016 1017 return rqfar; 1018 } 1019 1020 static void gfar_init_filer_table(struct gfar_private *priv) 1021 { 1022 int i = 0x0; 1023 u32 rqfar = MAX_FILER_IDX; 1024 u32 rqfcr = 0x0; 1025 u32 rqfpr = FPR_FILER_MASK; 1026 1027 /* Default rule */ 1028 rqfcr = RQFCR_CMP_MATCH; 1029 priv->ftp_rqfcr[rqfar] = rqfcr; 1030 priv->ftp_rqfpr[rqfar] = rqfpr; 1031 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1032 1033 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1034 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1035 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1036 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1037 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1038 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1039 1040 /* cur_filer_idx indicated the first non-masked rule */ 1041 priv->cur_filer_idx = rqfar; 1042 1043 /* Rest are masked rules */ 1044 rqfcr = RQFCR_CMP_NOMATCH; 1045 for (i = 0; i < rqfar; i++) { 1046 priv->ftp_rqfcr[i] = rqfcr; 1047 priv->ftp_rqfpr[i] = rqfpr; 1048 gfar_write_filer(priv, i, rqfcr, rqfpr); 1049 } 1050 } 1051 1052 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1053 { 1054 unsigned int pvr = mfspr(SPRN_PVR); 1055 unsigned int svr = mfspr(SPRN_SVR); 1056 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1057 unsigned int rev = svr & 0xffff; 1058 1059 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1060 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1061 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1062 priv->errata |= GFAR_ERRATA_74; 1063 1064 /* MPC8313 and MPC837x all rev */ 1065 if ((pvr == 0x80850010 && mod == 0x80b0) || 1066 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1067 priv->errata |= GFAR_ERRATA_76; 1068 1069 /* MPC8313 Rev < 2.0 */ 1070 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1071 priv->errata |= GFAR_ERRATA_12; 1072 } 1073 1074 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1075 { 1076 unsigned int svr = mfspr(SPRN_SVR); 1077 1078 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1079 priv->errata |= GFAR_ERRATA_12; 1080 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1081 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1082 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1083 } 1084 1085 static void gfar_detect_errata(struct gfar_private *priv) 1086 { 1087 struct device *dev = &priv->ofdev->dev; 1088 1089 /* no plans to fix */ 1090 priv->errata |= GFAR_ERRATA_A002; 1091 1092 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1093 __gfar_detect_errata_85xx(priv); 1094 else /* non-mpc85xx parts, i.e. e300 core based */ 1095 __gfar_detect_errata_83xx(priv); 1096 1097 if (priv->errata) 1098 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1099 priv->errata); 1100 } 1101 1102 void gfar_mac_reset(struct gfar_private *priv) 1103 { 1104 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1105 u32 tempval; 1106 1107 /* Reset MAC layer */ 1108 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1109 1110 /* We need to delay at least 3 TX clocks */ 1111 udelay(3); 1112 1113 /* the soft reset bit is not self-resetting, so we need to 1114 * clear it before resuming normal operation 1115 */ 1116 gfar_write(®s->maccfg1, 0); 1117 1118 udelay(3); 1119 1120 /* Compute rx_buff_size based on config flags */ 1121 gfar_rx_buff_size_config(priv); 1122 1123 /* Initialize the max receive frame/buffer lengths */ 1124 gfar_write(®s->maxfrm, priv->rx_buffer_size); 1125 gfar_write(®s->mrblr, priv->rx_buffer_size); 1126 1127 /* Initialize the Minimum Frame Length Register */ 1128 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1129 1130 /* Initialize MACCFG2. */ 1131 tempval = MACCFG2_INIT_SETTINGS; 1132 1133 /* If the mtu is larger than the max size for standard 1134 * ethernet frames (ie, a jumbo frame), then set maccfg2 1135 * to allow huge frames, and to check the length 1136 */ 1137 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 1138 gfar_has_errata(priv, GFAR_ERRATA_74)) 1139 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1140 1141 gfar_write(®s->maccfg2, tempval); 1142 1143 /* Clear mac addr hash registers */ 1144 gfar_write(®s->igaddr0, 0); 1145 gfar_write(®s->igaddr1, 0); 1146 gfar_write(®s->igaddr2, 0); 1147 gfar_write(®s->igaddr3, 0); 1148 gfar_write(®s->igaddr4, 0); 1149 gfar_write(®s->igaddr5, 0); 1150 gfar_write(®s->igaddr6, 0); 1151 gfar_write(®s->igaddr7, 0); 1152 1153 gfar_write(®s->gaddr0, 0); 1154 gfar_write(®s->gaddr1, 0); 1155 gfar_write(®s->gaddr2, 0); 1156 gfar_write(®s->gaddr3, 0); 1157 gfar_write(®s->gaddr4, 0); 1158 gfar_write(®s->gaddr5, 0); 1159 gfar_write(®s->gaddr6, 0); 1160 gfar_write(®s->gaddr7, 0); 1161 1162 if (priv->extended_hash) 1163 gfar_clear_exact_match(priv->ndev); 1164 1165 gfar_mac_rx_config(priv); 1166 1167 gfar_mac_tx_config(priv); 1168 1169 gfar_set_mac_address(priv->ndev); 1170 1171 gfar_set_multi(priv->ndev); 1172 1173 /* clear ievent and imask before configuring coalescing */ 1174 gfar_ints_disable(priv); 1175 1176 /* Configure the coalescing support */ 1177 gfar_configure_coalescing_all(priv); 1178 } 1179 1180 static void gfar_hw_init(struct gfar_private *priv) 1181 { 1182 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1183 u32 attrs; 1184 1185 /* Stop the DMA engine now, in case it was running before 1186 * (The firmware could have used it, and left it running). 1187 */ 1188 gfar_halt(priv); 1189 1190 gfar_mac_reset(priv); 1191 1192 /* Zero out the rmon mib registers if it has them */ 1193 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1194 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1195 1196 /* Mask off the CAM interrupts */ 1197 gfar_write(®s->rmon.cam1, 0xffffffff); 1198 gfar_write(®s->rmon.cam2, 0xffffffff); 1199 } 1200 1201 /* Initialize ECNTRL */ 1202 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1203 1204 /* Set the extraction length and index */ 1205 attrs = ATTRELI_EL(priv->rx_stash_size) | 1206 ATTRELI_EI(priv->rx_stash_index); 1207 1208 gfar_write(®s->attreli, attrs); 1209 1210 /* Start with defaults, and add stashing 1211 * depending on driver parameters 1212 */ 1213 attrs = ATTR_INIT_SETTINGS; 1214 1215 if (priv->bd_stash_en) 1216 attrs |= ATTR_BDSTASH; 1217 1218 if (priv->rx_stash_size != 0) 1219 attrs |= ATTR_BUFSTASH; 1220 1221 gfar_write(®s->attr, attrs); 1222 1223 /* FIFO configs */ 1224 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1225 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1226 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1227 1228 /* Program the interrupt steering regs, only for MG devices */ 1229 if (priv->num_grps > 1) 1230 gfar_write_isrg(priv); 1231 } 1232 1233 static void __init gfar_init_addr_hash_table(struct gfar_private *priv) 1234 { 1235 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1236 1237 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1238 priv->extended_hash = 1; 1239 priv->hash_width = 9; 1240 1241 priv->hash_regs[0] = ®s->igaddr0; 1242 priv->hash_regs[1] = ®s->igaddr1; 1243 priv->hash_regs[2] = ®s->igaddr2; 1244 priv->hash_regs[3] = ®s->igaddr3; 1245 priv->hash_regs[4] = ®s->igaddr4; 1246 priv->hash_regs[5] = ®s->igaddr5; 1247 priv->hash_regs[6] = ®s->igaddr6; 1248 priv->hash_regs[7] = ®s->igaddr7; 1249 priv->hash_regs[8] = ®s->gaddr0; 1250 priv->hash_regs[9] = ®s->gaddr1; 1251 priv->hash_regs[10] = ®s->gaddr2; 1252 priv->hash_regs[11] = ®s->gaddr3; 1253 priv->hash_regs[12] = ®s->gaddr4; 1254 priv->hash_regs[13] = ®s->gaddr5; 1255 priv->hash_regs[14] = ®s->gaddr6; 1256 priv->hash_regs[15] = ®s->gaddr7; 1257 1258 } else { 1259 priv->extended_hash = 0; 1260 priv->hash_width = 8; 1261 1262 priv->hash_regs[0] = ®s->gaddr0; 1263 priv->hash_regs[1] = ®s->gaddr1; 1264 priv->hash_regs[2] = ®s->gaddr2; 1265 priv->hash_regs[3] = ®s->gaddr3; 1266 priv->hash_regs[4] = ®s->gaddr4; 1267 priv->hash_regs[5] = ®s->gaddr5; 1268 priv->hash_regs[6] = ®s->gaddr6; 1269 priv->hash_regs[7] = ®s->gaddr7; 1270 } 1271 } 1272 1273 /* Set up the ethernet device structure, private data, 1274 * and anything else we need before we start 1275 */ 1276 static int gfar_probe(struct platform_device *ofdev) 1277 { 1278 struct net_device *dev = NULL; 1279 struct gfar_private *priv = NULL; 1280 int err = 0, i; 1281 1282 err = gfar_of_init(ofdev, &dev); 1283 1284 if (err) 1285 return err; 1286 1287 priv = netdev_priv(dev); 1288 priv->ndev = dev; 1289 priv->ofdev = ofdev; 1290 priv->dev = &ofdev->dev; 1291 SET_NETDEV_DEV(dev, &ofdev->dev); 1292 1293 spin_lock_init(&priv->bflock); 1294 INIT_WORK(&priv->reset_task, gfar_reset_task); 1295 1296 platform_set_drvdata(ofdev, priv); 1297 1298 gfar_detect_errata(priv); 1299 1300 /* Set the dev->base_addr to the gfar reg region */ 1301 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1302 1303 /* Fill in the dev structure */ 1304 dev->watchdog_timeo = TX_TIMEOUT; 1305 dev->mtu = 1500; 1306 dev->netdev_ops = &gfar_netdev_ops; 1307 dev->ethtool_ops = &gfar_ethtool_ops; 1308 1309 /* Register for napi ...We are registering NAPI for each grp */ 1310 for (i = 0; i < priv->num_grps; i++) { 1311 if (priv->poll_mode == GFAR_SQ_POLLING) { 1312 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1313 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1314 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1315 gfar_poll_tx_sq, 2); 1316 } else { 1317 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1318 gfar_poll_rx, GFAR_DEV_WEIGHT); 1319 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1320 gfar_poll_tx, 2); 1321 } 1322 } 1323 1324 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1325 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1326 NETIF_F_RXCSUM; 1327 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1328 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1329 } 1330 1331 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1332 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1333 NETIF_F_HW_VLAN_CTAG_RX; 1334 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1335 } 1336 1337 gfar_init_addr_hash_table(priv); 1338 1339 /* Insert receive time stamps into padding alignment bytes */ 1340 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1341 priv->padding = 8; 1342 1343 if (dev->features & NETIF_F_IP_CSUM || 1344 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1345 dev->needed_headroom = GMAC_FCB_LEN; 1346 1347 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1348 1349 /* Initializing some of the rx/tx queue level parameters */ 1350 for (i = 0; i < priv->num_tx_queues; i++) { 1351 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1352 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1353 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1354 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1355 } 1356 1357 for (i = 0; i < priv->num_rx_queues; i++) { 1358 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1359 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1360 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1361 } 1362 1363 /* always enable rx filer */ 1364 priv->rx_filer_enable = 1; 1365 /* Enable most messages by default */ 1366 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1367 /* use pritority h/w tx queue scheduling for single queue devices */ 1368 if (priv->num_tx_queues == 1) 1369 priv->prio_sched_en = 1; 1370 1371 set_bit(GFAR_DOWN, &priv->state); 1372 1373 gfar_hw_init(priv); 1374 1375 err = register_netdev(dev); 1376 1377 if (err) { 1378 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1379 goto register_fail; 1380 } 1381 1382 /* Carrier starts down, phylib will bring it up */ 1383 netif_carrier_off(dev); 1384 1385 device_init_wakeup(&dev->dev, 1386 priv->device_flags & 1387 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1388 1389 /* fill out IRQ number and name fields */ 1390 for (i = 0; i < priv->num_grps; i++) { 1391 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1392 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1393 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1394 dev->name, "_g", '0' + i, "_tx"); 1395 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1396 dev->name, "_g", '0' + i, "_rx"); 1397 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1398 dev->name, "_g", '0' + i, "_er"); 1399 } else 1400 strcpy(gfar_irq(grp, TX)->name, dev->name); 1401 } 1402 1403 /* Initialize the filer table */ 1404 gfar_init_filer_table(priv); 1405 1406 /* Print out the device info */ 1407 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1408 1409 /* Even more device info helps when determining which kernel 1410 * provided which set of benchmarks. 1411 */ 1412 netdev_info(dev, "Running with NAPI enabled\n"); 1413 for (i = 0; i < priv->num_rx_queues; i++) 1414 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1415 i, priv->rx_queue[i]->rx_ring_size); 1416 for (i = 0; i < priv->num_tx_queues; i++) 1417 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1418 i, priv->tx_queue[i]->tx_ring_size); 1419 1420 return 0; 1421 1422 register_fail: 1423 unmap_group_regs(priv); 1424 gfar_free_rx_queues(priv); 1425 gfar_free_tx_queues(priv); 1426 if (priv->phy_node) 1427 of_node_put(priv->phy_node); 1428 if (priv->tbi_node) 1429 of_node_put(priv->tbi_node); 1430 free_gfar_dev(priv); 1431 return err; 1432 } 1433 1434 static int gfar_remove(struct platform_device *ofdev) 1435 { 1436 struct gfar_private *priv = platform_get_drvdata(ofdev); 1437 1438 if (priv->phy_node) 1439 of_node_put(priv->phy_node); 1440 if (priv->tbi_node) 1441 of_node_put(priv->tbi_node); 1442 1443 unregister_netdev(priv->ndev); 1444 unmap_group_regs(priv); 1445 gfar_free_rx_queues(priv); 1446 gfar_free_tx_queues(priv); 1447 free_gfar_dev(priv); 1448 1449 return 0; 1450 } 1451 1452 #ifdef CONFIG_PM 1453 1454 static int gfar_suspend(struct device *dev) 1455 { 1456 struct gfar_private *priv = dev_get_drvdata(dev); 1457 struct net_device *ndev = priv->ndev; 1458 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1459 unsigned long flags; 1460 u32 tempval; 1461 1462 int magic_packet = priv->wol_en && 1463 (priv->device_flags & 1464 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1465 1466 netif_device_detach(ndev); 1467 1468 if (netif_running(ndev)) { 1469 1470 local_irq_save(flags); 1471 lock_tx_qs(priv); 1472 1473 gfar_halt_nodisable(priv); 1474 1475 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1476 tempval = gfar_read(®s->maccfg1); 1477 1478 tempval &= ~MACCFG1_TX_EN; 1479 1480 if (!magic_packet) 1481 tempval &= ~MACCFG1_RX_EN; 1482 1483 gfar_write(®s->maccfg1, tempval); 1484 1485 unlock_tx_qs(priv); 1486 local_irq_restore(flags); 1487 1488 disable_napi(priv); 1489 1490 if (magic_packet) { 1491 /* Enable interrupt on Magic Packet */ 1492 gfar_write(®s->imask, IMASK_MAG); 1493 1494 /* Enable Magic Packet mode */ 1495 tempval = gfar_read(®s->maccfg2); 1496 tempval |= MACCFG2_MPEN; 1497 gfar_write(®s->maccfg2, tempval); 1498 } else { 1499 phy_stop(priv->phydev); 1500 } 1501 } 1502 1503 return 0; 1504 } 1505 1506 static int gfar_resume(struct device *dev) 1507 { 1508 struct gfar_private *priv = dev_get_drvdata(dev); 1509 struct net_device *ndev = priv->ndev; 1510 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1511 unsigned long flags; 1512 u32 tempval; 1513 int magic_packet = priv->wol_en && 1514 (priv->device_flags & 1515 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1516 1517 if (!netif_running(ndev)) { 1518 netif_device_attach(ndev); 1519 return 0; 1520 } 1521 1522 if (!magic_packet && priv->phydev) 1523 phy_start(priv->phydev); 1524 1525 /* Disable Magic Packet mode, in case something 1526 * else woke us up. 1527 */ 1528 local_irq_save(flags); 1529 lock_tx_qs(priv); 1530 1531 tempval = gfar_read(®s->maccfg2); 1532 tempval &= ~MACCFG2_MPEN; 1533 gfar_write(®s->maccfg2, tempval); 1534 1535 gfar_start(priv); 1536 1537 unlock_tx_qs(priv); 1538 local_irq_restore(flags); 1539 1540 netif_device_attach(ndev); 1541 1542 enable_napi(priv); 1543 1544 return 0; 1545 } 1546 1547 static int gfar_restore(struct device *dev) 1548 { 1549 struct gfar_private *priv = dev_get_drvdata(dev); 1550 struct net_device *ndev = priv->ndev; 1551 1552 if (!netif_running(ndev)) { 1553 netif_device_attach(ndev); 1554 1555 return 0; 1556 } 1557 1558 if (gfar_init_bds(ndev)) { 1559 free_skb_resources(priv); 1560 return -ENOMEM; 1561 } 1562 1563 gfar_mac_reset(priv); 1564 1565 gfar_init_tx_rx_base(priv); 1566 1567 gfar_start(priv); 1568 1569 priv->oldlink = 0; 1570 priv->oldspeed = 0; 1571 priv->oldduplex = -1; 1572 1573 if (priv->phydev) 1574 phy_start(priv->phydev); 1575 1576 netif_device_attach(ndev); 1577 enable_napi(priv); 1578 1579 return 0; 1580 } 1581 1582 static struct dev_pm_ops gfar_pm_ops = { 1583 .suspend = gfar_suspend, 1584 .resume = gfar_resume, 1585 .freeze = gfar_suspend, 1586 .thaw = gfar_resume, 1587 .restore = gfar_restore, 1588 }; 1589 1590 #define GFAR_PM_OPS (&gfar_pm_ops) 1591 1592 #else 1593 1594 #define GFAR_PM_OPS NULL 1595 1596 #endif 1597 1598 /* Reads the controller's registers to determine what interface 1599 * connects it to the PHY. 1600 */ 1601 static phy_interface_t gfar_get_interface(struct net_device *dev) 1602 { 1603 struct gfar_private *priv = netdev_priv(dev); 1604 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1605 u32 ecntrl; 1606 1607 ecntrl = gfar_read(®s->ecntrl); 1608 1609 if (ecntrl & ECNTRL_SGMII_MODE) 1610 return PHY_INTERFACE_MODE_SGMII; 1611 1612 if (ecntrl & ECNTRL_TBI_MODE) { 1613 if (ecntrl & ECNTRL_REDUCED_MODE) 1614 return PHY_INTERFACE_MODE_RTBI; 1615 else 1616 return PHY_INTERFACE_MODE_TBI; 1617 } 1618 1619 if (ecntrl & ECNTRL_REDUCED_MODE) { 1620 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1621 return PHY_INTERFACE_MODE_RMII; 1622 } 1623 else { 1624 phy_interface_t interface = priv->interface; 1625 1626 /* This isn't autodetected right now, so it must 1627 * be set by the device tree or platform code. 1628 */ 1629 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1630 return PHY_INTERFACE_MODE_RGMII_ID; 1631 1632 return PHY_INTERFACE_MODE_RGMII; 1633 } 1634 } 1635 1636 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1637 return PHY_INTERFACE_MODE_GMII; 1638 1639 return PHY_INTERFACE_MODE_MII; 1640 } 1641 1642 1643 /* Initializes driver's PHY state, and attaches to the PHY. 1644 * Returns 0 on success. 1645 */ 1646 static int init_phy(struct net_device *dev) 1647 { 1648 struct gfar_private *priv = netdev_priv(dev); 1649 uint gigabit_support = 1650 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1651 GFAR_SUPPORTED_GBIT : 0; 1652 phy_interface_t interface; 1653 1654 priv->oldlink = 0; 1655 priv->oldspeed = 0; 1656 priv->oldduplex = -1; 1657 1658 interface = gfar_get_interface(dev); 1659 1660 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1661 interface); 1662 if (!priv->phydev) 1663 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, 1664 interface); 1665 if (!priv->phydev) { 1666 dev_err(&dev->dev, "could not attach to PHY\n"); 1667 return -ENODEV; 1668 } 1669 1670 if (interface == PHY_INTERFACE_MODE_SGMII) 1671 gfar_configure_serdes(dev); 1672 1673 /* Remove any features not supported by the controller */ 1674 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1675 priv->phydev->advertising = priv->phydev->supported; 1676 1677 return 0; 1678 } 1679 1680 /* Initialize TBI PHY interface for communicating with the 1681 * SERDES lynx PHY on the chip. We communicate with this PHY 1682 * through the MDIO bus on each controller, treating it as a 1683 * "normal" PHY at the address found in the TBIPA register. We assume 1684 * that the TBIPA register is valid. Either the MDIO bus code will set 1685 * it to a value that doesn't conflict with other PHYs on the bus, or the 1686 * value doesn't matter, as there are no other PHYs on the bus. 1687 */ 1688 static void gfar_configure_serdes(struct net_device *dev) 1689 { 1690 struct gfar_private *priv = netdev_priv(dev); 1691 struct phy_device *tbiphy; 1692 1693 if (!priv->tbi_node) { 1694 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1695 "device tree specify a tbi-handle\n"); 1696 return; 1697 } 1698 1699 tbiphy = of_phy_find_device(priv->tbi_node); 1700 if (!tbiphy) { 1701 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1702 return; 1703 } 1704 1705 /* If the link is already up, we must already be ok, and don't need to 1706 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1707 * everything for us? Resetting it takes the link down and requires 1708 * several seconds for it to come back. 1709 */ 1710 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1711 return; 1712 1713 /* Single clk mode, mii mode off(for serdes communication) */ 1714 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1715 1716 phy_write(tbiphy, MII_ADVERTISE, 1717 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1718 ADVERTISE_1000XPSE_ASYM); 1719 1720 phy_write(tbiphy, MII_BMCR, 1721 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1722 BMCR_SPEED1000); 1723 } 1724 1725 static int __gfar_is_rx_idle(struct gfar_private *priv) 1726 { 1727 u32 res; 1728 1729 /* Normaly TSEC should not hang on GRS commands, so we should 1730 * actually wait for IEVENT_GRSC flag. 1731 */ 1732 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1733 return 0; 1734 1735 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1736 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1737 * and the Rx can be safely reset. 1738 */ 1739 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1740 res &= 0x7f807f80; 1741 if ((res & 0xffff) == (res >> 16)) 1742 return 1; 1743 1744 return 0; 1745 } 1746 1747 /* Halt the receive and transmit queues */ 1748 static void gfar_halt_nodisable(struct gfar_private *priv) 1749 { 1750 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1751 u32 tempval; 1752 1753 gfar_ints_disable(priv); 1754 1755 /* Stop the DMA, and wait for it to stop */ 1756 tempval = gfar_read(®s->dmactrl); 1757 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) != 1758 (DMACTRL_GRS | DMACTRL_GTS)) { 1759 int ret; 1760 1761 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1762 gfar_write(®s->dmactrl, tempval); 1763 1764 do { 1765 ret = spin_event_timeout(((gfar_read(®s->ievent) & 1766 (IEVENT_GRSC | IEVENT_GTSC)) == 1767 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0); 1768 if (!ret && !(gfar_read(®s->ievent) & IEVENT_GRSC)) 1769 ret = __gfar_is_rx_idle(priv); 1770 } while (!ret); 1771 } 1772 } 1773 1774 /* Halt the receive and transmit queues */ 1775 void gfar_halt(struct gfar_private *priv) 1776 { 1777 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1778 u32 tempval; 1779 1780 /* Dissable the Rx/Tx hw queues */ 1781 gfar_write(®s->rqueue, 0); 1782 gfar_write(®s->tqueue, 0); 1783 1784 mdelay(10); 1785 1786 gfar_halt_nodisable(priv); 1787 1788 /* Disable Rx/Tx DMA */ 1789 tempval = gfar_read(®s->maccfg1); 1790 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1791 gfar_write(®s->maccfg1, tempval); 1792 } 1793 1794 void stop_gfar(struct net_device *dev) 1795 { 1796 struct gfar_private *priv = netdev_priv(dev); 1797 1798 netif_tx_stop_all_queues(dev); 1799 1800 smp_mb__before_clear_bit(); 1801 set_bit(GFAR_DOWN, &priv->state); 1802 smp_mb__after_clear_bit(); 1803 1804 disable_napi(priv); 1805 1806 /* disable ints and gracefully shut down Rx/Tx DMA */ 1807 gfar_halt(priv); 1808 1809 phy_stop(priv->phydev); 1810 1811 free_skb_resources(priv); 1812 } 1813 1814 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1815 { 1816 struct txbd8 *txbdp; 1817 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1818 int i, j; 1819 1820 txbdp = tx_queue->tx_bd_base; 1821 1822 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1823 if (!tx_queue->tx_skbuff[i]) 1824 continue; 1825 1826 dma_unmap_single(priv->dev, txbdp->bufPtr, 1827 txbdp->length, DMA_TO_DEVICE); 1828 txbdp->lstatus = 0; 1829 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1830 j++) { 1831 txbdp++; 1832 dma_unmap_page(priv->dev, txbdp->bufPtr, 1833 txbdp->length, DMA_TO_DEVICE); 1834 } 1835 txbdp++; 1836 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1837 tx_queue->tx_skbuff[i] = NULL; 1838 } 1839 kfree(tx_queue->tx_skbuff); 1840 tx_queue->tx_skbuff = NULL; 1841 } 1842 1843 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1844 { 1845 struct rxbd8 *rxbdp; 1846 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1847 int i; 1848 1849 rxbdp = rx_queue->rx_bd_base; 1850 1851 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1852 if (rx_queue->rx_skbuff[i]) { 1853 dma_unmap_single(priv->dev, rxbdp->bufPtr, 1854 priv->rx_buffer_size, 1855 DMA_FROM_DEVICE); 1856 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1857 rx_queue->rx_skbuff[i] = NULL; 1858 } 1859 rxbdp->lstatus = 0; 1860 rxbdp->bufPtr = 0; 1861 rxbdp++; 1862 } 1863 kfree(rx_queue->rx_skbuff); 1864 rx_queue->rx_skbuff = NULL; 1865 } 1866 1867 /* If there are any tx skbs or rx skbs still around, free them. 1868 * Then free tx_skbuff and rx_skbuff 1869 */ 1870 static void free_skb_resources(struct gfar_private *priv) 1871 { 1872 struct gfar_priv_tx_q *tx_queue = NULL; 1873 struct gfar_priv_rx_q *rx_queue = NULL; 1874 int i; 1875 1876 /* Go through all the buffer descriptors and free their data buffers */ 1877 for (i = 0; i < priv->num_tx_queues; i++) { 1878 struct netdev_queue *txq; 1879 1880 tx_queue = priv->tx_queue[i]; 1881 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1882 if (tx_queue->tx_skbuff) 1883 free_skb_tx_queue(tx_queue); 1884 netdev_tx_reset_queue(txq); 1885 } 1886 1887 for (i = 0; i < priv->num_rx_queues; i++) { 1888 rx_queue = priv->rx_queue[i]; 1889 if (rx_queue->rx_skbuff) 1890 free_skb_rx_queue(rx_queue); 1891 } 1892 1893 dma_free_coherent(priv->dev, 1894 sizeof(struct txbd8) * priv->total_tx_ring_size + 1895 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1896 priv->tx_queue[0]->tx_bd_base, 1897 priv->tx_queue[0]->tx_bd_dma_base); 1898 } 1899 1900 void gfar_start(struct gfar_private *priv) 1901 { 1902 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1903 u32 tempval; 1904 int i = 0; 1905 1906 /* Enable Rx/Tx hw queues */ 1907 gfar_write(®s->rqueue, priv->rqueue); 1908 gfar_write(®s->tqueue, priv->tqueue); 1909 1910 /* Initialize DMACTRL to have WWR and WOP */ 1911 tempval = gfar_read(®s->dmactrl); 1912 tempval |= DMACTRL_INIT_SETTINGS; 1913 gfar_write(®s->dmactrl, tempval); 1914 1915 /* Make sure we aren't stopped */ 1916 tempval = gfar_read(®s->dmactrl); 1917 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1918 gfar_write(®s->dmactrl, tempval); 1919 1920 for (i = 0; i < priv->num_grps; i++) { 1921 regs = priv->gfargrp[i].regs; 1922 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1923 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1924 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1925 } 1926 1927 /* Enable Rx/Tx DMA */ 1928 tempval = gfar_read(®s->maccfg1); 1929 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1930 gfar_write(®s->maccfg1, tempval); 1931 1932 gfar_ints_enable(priv); 1933 1934 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 1935 } 1936 1937 static void free_grp_irqs(struct gfar_priv_grp *grp) 1938 { 1939 free_irq(gfar_irq(grp, TX)->irq, grp); 1940 free_irq(gfar_irq(grp, RX)->irq, grp); 1941 free_irq(gfar_irq(grp, ER)->irq, grp); 1942 } 1943 1944 static int register_grp_irqs(struct gfar_priv_grp *grp) 1945 { 1946 struct gfar_private *priv = grp->priv; 1947 struct net_device *dev = priv->ndev; 1948 int err; 1949 1950 /* If the device has multiple interrupts, register for 1951 * them. Otherwise, only register for the one 1952 */ 1953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1954 /* Install our interrupt handlers for Error, 1955 * Transmit, and Receive 1956 */ 1957 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 1958 gfar_irq(grp, ER)->name, grp); 1959 if (err < 0) { 1960 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1961 gfar_irq(grp, ER)->irq); 1962 1963 goto err_irq_fail; 1964 } 1965 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 1966 gfar_irq(grp, TX)->name, grp); 1967 if (err < 0) { 1968 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1969 gfar_irq(grp, TX)->irq); 1970 goto tx_irq_fail; 1971 } 1972 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 1973 gfar_irq(grp, RX)->name, grp); 1974 if (err < 0) { 1975 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1976 gfar_irq(grp, RX)->irq); 1977 goto rx_irq_fail; 1978 } 1979 } else { 1980 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 1981 gfar_irq(grp, TX)->name, grp); 1982 if (err < 0) { 1983 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1984 gfar_irq(grp, TX)->irq); 1985 goto err_irq_fail; 1986 } 1987 } 1988 1989 return 0; 1990 1991 rx_irq_fail: 1992 free_irq(gfar_irq(grp, TX)->irq, grp); 1993 tx_irq_fail: 1994 free_irq(gfar_irq(grp, ER)->irq, grp); 1995 err_irq_fail: 1996 return err; 1997 1998 } 1999 2000 static void gfar_free_irq(struct gfar_private *priv) 2001 { 2002 int i; 2003 2004 /* Free the IRQs */ 2005 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2006 for (i = 0; i < priv->num_grps; i++) 2007 free_grp_irqs(&priv->gfargrp[i]); 2008 } else { 2009 for (i = 0; i < priv->num_grps; i++) 2010 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2011 &priv->gfargrp[i]); 2012 } 2013 } 2014 2015 static int gfar_request_irq(struct gfar_private *priv) 2016 { 2017 int err, i, j; 2018 2019 for (i = 0; i < priv->num_grps; i++) { 2020 err = register_grp_irqs(&priv->gfargrp[i]); 2021 if (err) { 2022 for (j = 0; j < i; j++) 2023 free_grp_irqs(&priv->gfargrp[j]); 2024 return err; 2025 } 2026 } 2027 2028 return 0; 2029 } 2030 2031 /* Bring the controller up and running */ 2032 int startup_gfar(struct net_device *ndev) 2033 { 2034 struct gfar_private *priv = netdev_priv(ndev); 2035 int err; 2036 2037 gfar_mac_reset(priv); 2038 2039 err = gfar_alloc_skb_resources(ndev); 2040 if (err) 2041 return err; 2042 2043 gfar_init_tx_rx_base(priv); 2044 2045 smp_mb__before_clear_bit(); 2046 clear_bit(GFAR_DOWN, &priv->state); 2047 smp_mb__after_clear_bit(); 2048 2049 /* Start Rx/Tx DMA and enable the interrupts */ 2050 gfar_start(priv); 2051 2052 phy_start(priv->phydev); 2053 2054 enable_napi(priv); 2055 2056 netif_tx_wake_all_queues(ndev); 2057 2058 return 0; 2059 } 2060 2061 /* Called when something needs to use the ethernet device 2062 * Returns 0 for success. 2063 */ 2064 static int gfar_enet_open(struct net_device *dev) 2065 { 2066 struct gfar_private *priv = netdev_priv(dev); 2067 int err; 2068 2069 err = init_phy(dev); 2070 if (err) 2071 return err; 2072 2073 err = gfar_request_irq(priv); 2074 if (err) 2075 return err; 2076 2077 err = startup_gfar(dev); 2078 if (err) 2079 return err; 2080 2081 device_set_wakeup_enable(&dev->dev, priv->wol_en); 2082 2083 return err; 2084 } 2085 2086 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2087 { 2088 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2089 2090 memset(fcb, 0, GMAC_FCB_LEN); 2091 2092 return fcb; 2093 } 2094 2095 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2096 int fcb_length) 2097 { 2098 /* If we're here, it's a IP packet with a TCP or UDP 2099 * payload. We set it to checksum, using a pseudo-header 2100 * we provide 2101 */ 2102 u8 flags = TXFCB_DEFAULT; 2103 2104 /* Tell the controller what the protocol is 2105 * And provide the already calculated phcs 2106 */ 2107 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2108 flags |= TXFCB_UDP; 2109 fcb->phcs = udp_hdr(skb)->check; 2110 } else 2111 fcb->phcs = tcp_hdr(skb)->check; 2112 2113 /* l3os is the distance between the start of the 2114 * frame (skb->data) and the start of the IP hdr. 2115 * l4os is the distance between the start of the 2116 * l3 hdr and the l4 hdr 2117 */ 2118 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); 2119 fcb->l4os = skb_network_header_len(skb); 2120 2121 fcb->flags = flags; 2122 } 2123 2124 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2125 { 2126 fcb->flags |= TXFCB_VLN; 2127 fcb->vlctl = vlan_tx_tag_get(skb); 2128 } 2129 2130 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2131 struct txbd8 *base, int ring_size) 2132 { 2133 struct txbd8 *new_bd = bdp + stride; 2134 2135 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2136 } 2137 2138 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2139 int ring_size) 2140 { 2141 return skip_txbd(bdp, 1, base, ring_size); 2142 } 2143 2144 /* eTSEC12: csum generation not supported for some fcb offsets */ 2145 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2146 unsigned long fcb_addr) 2147 { 2148 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2149 (fcb_addr % 0x20) > 0x18); 2150 } 2151 2152 /* eTSEC76: csum generation for frames larger than 2500 may 2153 * cause excess delays before start of transmission 2154 */ 2155 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2156 unsigned int len) 2157 { 2158 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2159 (len > 2500)); 2160 } 2161 2162 /* This is called by the kernel when a frame is ready for transmission. 2163 * It is pointed to by the dev->hard_start_xmit function pointer 2164 */ 2165 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2166 { 2167 struct gfar_private *priv = netdev_priv(dev); 2168 struct gfar_priv_tx_q *tx_queue = NULL; 2169 struct netdev_queue *txq; 2170 struct gfar __iomem *regs = NULL; 2171 struct txfcb *fcb = NULL; 2172 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2173 u32 lstatus; 2174 int i, rq = 0; 2175 int do_tstamp, do_csum, do_vlan; 2176 u32 bufaddr; 2177 unsigned long flags; 2178 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2179 2180 rq = skb->queue_mapping; 2181 tx_queue = priv->tx_queue[rq]; 2182 txq = netdev_get_tx_queue(dev, rq); 2183 base = tx_queue->tx_bd_base; 2184 regs = tx_queue->grp->regs; 2185 2186 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2187 do_vlan = vlan_tx_tag_present(skb); 2188 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2189 priv->hwts_tx_en; 2190 2191 if (do_csum || do_vlan) 2192 fcb_len = GMAC_FCB_LEN; 2193 2194 /* check if time stamp should be generated */ 2195 if (unlikely(do_tstamp)) 2196 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2197 2198 /* make space for additional header when fcb is needed */ 2199 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2200 struct sk_buff *skb_new; 2201 2202 skb_new = skb_realloc_headroom(skb, fcb_len); 2203 if (!skb_new) { 2204 dev->stats.tx_errors++; 2205 dev_kfree_skb_any(skb); 2206 return NETDEV_TX_OK; 2207 } 2208 2209 if (skb->sk) 2210 skb_set_owner_w(skb_new, skb->sk); 2211 dev_consume_skb_any(skb); 2212 skb = skb_new; 2213 } 2214 2215 /* total number of fragments in the SKB */ 2216 nr_frags = skb_shinfo(skb)->nr_frags; 2217 2218 /* calculate the required number of TxBDs for this skb */ 2219 if (unlikely(do_tstamp)) 2220 nr_txbds = nr_frags + 2; 2221 else 2222 nr_txbds = nr_frags + 1; 2223 2224 /* check if there is space to queue this packet */ 2225 if (nr_txbds > tx_queue->num_txbdfree) { 2226 /* no space, stop the queue */ 2227 netif_tx_stop_queue(txq); 2228 dev->stats.tx_fifo_errors++; 2229 return NETDEV_TX_BUSY; 2230 } 2231 2232 /* Update transmit stats */ 2233 bytes_sent = skb->len; 2234 tx_queue->stats.tx_bytes += bytes_sent; 2235 /* keep Tx bytes on wire for BQL accounting */ 2236 GFAR_CB(skb)->bytes_sent = bytes_sent; 2237 tx_queue->stats.tx_packets++; 2238 2239 txbdp = txbdp_start = tx_queue->cur_tx; 2240 lstatus = txbdp->lstatus; 2241 2242 /* Time stamp insertion requires one additional TxBD */ 2243 if (unlikely(do_tstamp)) 2244 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2245 tx_queue->tx_ring_size); 2246 2247 if (nr_frags == 0) { 2248 if (unlikely(do_tstamp)) 2249 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | 2250 TXBD_INTERRUPT); 2251 else 2252 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2253 } else { 2254 /* Place the fragment addresses and lengths into the TxBDs */ 2255 for (i = 0; i < nr_frags; i++) { 2256 unsigned int frag_len; 2257 /* Point at the next BD, wrapping as needed */ 2258 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2259 2260 frag_len = skb_shinfo(skb)->frags[i].size; 2261 2262 lstatus = txbdp->lstatus | frag_len | 2263 BD_LFLAG(TXBD_READY); 2264 2265 /* Handle the last BD specially */ 2266 if (i == nr_frags - 1) 2267 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2268 2269 bufaddr = skb_frag_dma_map(priv->dev, 2270 &skb_shinfo(skb)->frags[i], 2271 0, 2272 frag_len, 2273 DMA_TO_DEVICE); 2274 2275 /* set the TxBD length and buffer pointer */ 2276 txbdp->bufPtr = bufaddr; 2277 txbdp->lstatus = lstatus; 2278 } 2279 2280 lstatus = txbdp_start->lstatus; 2281 } 2282 2283 /* Add TxPAL between FCB and frame if required */ 2284 if (unlikely(do_tstamp)) { 2285 skb_push(skb, GMAC_TXPAL_LEN); 2286 memset(skb->data, 0, GMAC_TXPAL_LEN); 2287 } 2288 2289 /* Add TxFCB if required */ 2290 if (fcb_len) { 2291 fcb = gfar_add_fcb(skb); 2292 lstatus |= BD_LFLAG(TXBD_TOE); 2293 } 2294 2295 /* Set up checksumming */ 2296 if (do_csum) { 2297 gfar_tx_checksum(skb, fcb, fcb_len); 2298 2299 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2300 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2301 __skb_pull(skb, GMAC_FCB_LEN); 2302 skb_checksum_help(skb); 2303 if (do_vlan || do_tstamp) { 2304 /* put back a new fcb for vlan/tstamp TOE */ 2305 fcb = gfar_add_fcb(skb); 2306 } else { 2307 /* Tx TOE not used */ 2308 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2309 fcb = NULL; 2310 } 2311 } 2312 } 2313 2314 if (do_vlan) 2315 gfar_tx_vlan(skb, fcb); 2316 2317 /* Setup tx hardware time stamping if requested */ 2318 if (unlikely(do_tstamp)) { 2319 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2320 fcb->ptp = 1; 2321 } 2322 2323 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data, 2324 skb_headlen(skb), DMA_TO_DEVICE); 2325 2326 /* If time stamping is requested one additional TxBD must be set up. The 2327 * first TxBD points to the FCB and must have a data length of 2328 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2329 * the full frame length. 2330 */ 2331 if (unlikely(do_tstamp)) { 2332 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len; 2333 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | 2334 (skb_headlen(skb) - fcb_len); 2335 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2336 } else { 2337 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2338 } 2339 2340 netdev_tx_sent_queue(txq, bytes_sent); 2341 2342 /* We can work in parallel with gfar_clean_tx_ring(), except 2343 * when modifying num_txbdfree. Note that we didn't grab the lock 2344 * when we were reading the num_txbdfree and checking for available 2345 * space, that's because outside of this function it can only grow, 2346 * and once we've got needed space, it cannot suddenly disappear. 2347 * 2348 * The lock also protects us from gfar_error(), which can modify 2349 * regs->tstat and thus retrigger the transfers, which is why we 2350 * also must grab the lock before setting ready bit for the first 2351 * to be transmitted BD. 2352 */ 2353 spin_lock_irqsave(&tx_queue->txlock, flags); 2354 2355 /* The powerpc-specific eieio() is used, as wmb() has too strong 2356 * semantics (it requires synchronization between cacheable and 2357 * uncacheable mappings, which eieio doesn't provide and which we 2358 * don't need), thus requiring a more expensive sync instruction. At 2359 * some point, the set of architecture-independent barrier functions 2360 * should be expanded to include weaker barriers. 2361 */ 2362 eieio(); 2363 2364 txbdp_start->lstatus = lstatus; 2365 2366 eieio(); /* force lstatus write before tx_skbuff */ 2367 2368 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2369 2370 /* Update the current skb pointer to the next entry we will use 2371 * (wrapping if necessary) 2372 */ 2373 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2374 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2375 2376 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2377 2378 /* reduce TxBD free count */ 2379 tx_queue->num_txbdfree -= (nr_txbds); 2380 2381 /* If the next BD still needs to be cleaned up, then the bds 2382 * are full. We need to tell the kernel to stop sending us stuff. 2383 */ 2384 if (!tx_queue->num_txbdfree) { 2385 netif_tx_stop_queue(txq); 2386 2387 dev->stats.tx_fifo_errors++; 2388 } 2389 2390 /* Tell the DMA to go go go */ 2391 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2392 2393 /* Unlock priv */ 2394 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2395 2396 return NETDEV_TX_OK; 2397 } 2398 2399 /* Stops the kernel queue, and halts the controller */ 2400 static int gfar_close(struct net_device *dev) 2401 { 2402 struct gfar_private *priv = netdev_priv(dev); 2403 2404 cancel_work_sync(&priv->reset_task); 2405 stop_gfar(dev); 2406 2407 /* Disconnect from the PHY */ 2408 phy_disconnect(priv->phydev); 2409 priv->phydev = NULL; 2410 2411 gfar_free_irq(priv); 2412 2413 return 0; 2414 } 2415 2416 /* Changes the mac address if the controller is not running. */ 2417 static int gfar_set_mac_address(struct net_device *dev) 2418 { 2419 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2420 2421 return 0; 2422 } 2423 2424 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2425 { 2426 struct gfar_private *priv = netdev_priv(dev); 2427 int frame_size = new_mtu + ETH_HLEN; 2428 2429 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2430 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2431 return -EINVAL; 2432 } 2433 2434 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2435 cpu_relax(); 2436 2437 if (dev->flags & IFF_UP) 2438 stop_gfar(dev); 2439 2440 dev->mtu = new_mtu; 2441 2442 if (dev->flags & IFF_UP) 2443 startup_gfar(dev); 2444 2445 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2446 2447 return 0; 2448 } 2449 2450 void reset_gfar(struct net_device *ndev) 2451 { 2452 struct gfar_private *priv = netdev_priv(ndev); 2453 2454 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2455 cpu_relax(); 2456 2457 stop_gfar(ndev); 2458 startup_gfar(ndev); 2459 2460 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2461 } 2462 2463 /* gfar_reset_task gets scheduled when a packet has not been 2464 * transmitted after a set amount of time. 2465 * For now, assume that clearing out all the structures, and 2466 * starting over will fix the problem. 2467 */ 2468 static void gfar_reset_task(struct work_struct *work) 2469 { 2470 struct gfar_private *priv = container_of(work, struct gfar_private, 2471 reset_task); 2472 reset_gfar(priv->ndev); 2473 } 2474 2475 static void gfar_timeout(struct net_device *dev) 2476 { 2477 struct gfar_private *priv = netdev_priv(dev); 2478 2479 dev->stats.tx_errors++; 2480 schedule_work(&priv->reset_task); 2481 } 2482 2483 static void gfar_align_skb(struct sk_buff *skb) 2484 { 2485 /* We need the data buffer to be aligned properly. We will reserve 2486 * as many bytes as needed to align the data properly 2487 */ 2488 skb_reserve(skb, RXBUF_ALIGNMENT - 2489 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2490 } 2491 2492 /* Interrupt Handler for Transmit complete */ 2493 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2494 { 2495 struct net_device *dev = tx_queue->dev; 2496 struct netdev_queue *txq; 2497 struct gfar_private *priv = netdev_priv(dev); 2498 struct txbd8 *bdp, *next = NULL; 2499 struct txbd8 *lbdp = NULL; 2500 struct txbd8 *base = tx_queue->tx_bd_base; 2501 struct sk_buff *skb; 2502 int skb_dirtytx; 2503 int tx_ring_size = tx_queue->tx_ring_size; 2504 int frags = 0, nr_txbds = 0; 2505 int i; 2506 int howmany = 0; 2507 int tqi = tx_queue->qindex; 2508 unsigned int bytes_sent = 0; 2509 u32 lstatus; 2510 size_t buflen; 2511 2512 txq = netdev_get_tx_queue(dev, tqi); 2513 bdp = tx_queue->dirty_tx; 2514 skb_dirtytx = tx_queue->skb_dirtytx; 2515 2516 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2517 unsigned long flags; 2518 2519 frags = skb_shinfo(skb)->nr_frags; 2520 2521 /* When time stamping, one additional TxBD must be freed. 2522 * Also, we need to dma_unmap_single() the TxPAL. 2523 */ 2524 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2525 nr_txbds = frags + 2; 2526 else 2527 nr_txbds = frags + 1; 2528 2529 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2530 2531 lstatus = lbdp->lstatus; 2532 2533 /* Only clean completed frames */ 2534 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2535 (lstatus & BD_LENGTH_MASK)) 2536 break; 2537 2538 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2539 next = next_txbd(bdp, base, tx_ring_size); 2540 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2541 } else 2542 buflen = bdp->length; 2543 2544 dma_unmap_single(priv->dev, bdp->bufPtr, 2545 buflen, DMA_TO_DEVICE); 2546 2547 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2548 struct skb_shared_hwtstamps shhwtstamps; 2549 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2550 2551 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2552 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2553 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2554 skb_tstamp_tx(skb, &shhwtstamps); 2555 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2556 bdp = next; 2557 } 2558 2559 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2560 bdp = next_txbd(bdp, base, tx_ring_size); 2561 2562 for (i = 0; i < frags; i++) { 2563 dma_unmap_page(priv->dev, bdp->bufPtr, 2564 bdp->length, DMA_TO_DEVICE); 2565 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2566 bdp = next_txbd(bdp, base, tx_ring_size); 2567 } 2568 2569 bytes_sent += GFAR_CB(skb)->bytes_sent; 2570 2571 dev_kfree_skb_any(skb); 2572 2573 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2574 2575 skb_dirtytx = (skb_dirtytx + 1) & 2576 TX_RING_MOD_MASK(tx_ring_size); 2577 2578 howmany++; 2579 spin_lock_irqsave(&tx_queue->txlock, flags); 2580 tx_queue->num_txbdfree += nr_txbds; 2581 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2582 } 2583 2584 /* If we freed a buffer, we can restart transmission, if necessary */ 2585 if (tx_queue->num_txbdfree && 2586 netif_tx_queue_stopped(txq) && 2587 !(test_bit(GFAR_DOWN, &priv->state))) 2588 netif_wake_subqueue(priv->ndev, tqi); 2589 2590 /* Update dirty indicators */ 2591 tx_queue->skb_dirtytx = skb_dirtytx; 2592 tx_queue->dirty_tx = bdp; 2593 2594 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2595 } 2596 2597 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 2598 struct sk_buff *skb) 2599 { 2600 struct net_device *dev = rx_queue->dev; 2601 struct gfar_private *priv = netdev_priv(dev); 2602 dma_addr_t buf; 2603 2604 buf = dma_map_single(priv->dev, skb->data, 2605 priv->rx_buffer_size, DMA_FROM_DEVICE); 2606 gfar_init_rxbdp(rx_queue, bdp, buf); 2607 } 2608 2609 static struct sk_buff *gfar_alloc_skb(struct net_device *dev) 2610 { 2611 struct gfar_private *priv = netdev_priv(dev); 2612 struct sk_buff *skb; 2613 2614 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2615 if (!skb) 2616 return NULL; 2617 2618 gfar_align_skb(skb); 2619 2620 return skb; 2621 } 2622 2623 struct sk_buff *gfar_new_skb(struct net_device *dev) 2624 { 2625 return gfar_alloc_skb(dev); 2626 } 2627 2628 static inline void count_errors(unsigned short status, struct net_device *dev) 2629 { 2630 struct gfar_private *priv = netdev_priv(dev); 2631 struct net_device_stats *stats = &dev->stats; 2632 struct gfar_extra_stats *estats = &priv->extra_stats; 2633 2634 /* If the packet was truncated, none of the other errors matter */ 2635 if (status & RXBD_TRUNCATED) { 2636 stats->rx_length_errors++; 2637 2638 atomic64_inc(&estats->rx_trunc); 2639 2640 return; 2641 } 2642 /* Count the errors, if there were any */ 2643 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2644 stats->rx_length_errors++; 2645 2646 if (status & RXBD_LARGE) 2647 atomic64_inc(&estats->rx_large); 2648 else 2649 atomic64_inc(&estats->rx_short); 2650 } 2651 if (status & RXBD_NONOCTET) { 2652 stats->rx_frame_errors++; 2653 atomic64_inc(&estats->rx_nonoctet); 2654 } 2655 if (status & RXBD_CRCERR) { 2656 atomic64_inc(&estats->rx_crcerr); 2657 stats->rx_crc_errors++; 2658 } 2659 if (status & RXBD_OVERRUN) { 2660 atomic64_inc(&estats->rx_overrun); 2661 stats->rx_crc_errors++; 2662 } 2663 } 2664 2665 irqreturn_t gfar_receive(int irq, void *grp_id) 2666 { 2667 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2668 unsigned long flags; 2669 u32 imask; 2670 2671 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2672 spin_lock_irqsave(&grp->grplock, flags); 2673 imask = gfar_read(&grp->regs->imask); 2674 imask &= IMASK_RX_DISABLED; 2675 gfar_write(&grp->regs->imask, imask); 2676 spin_unlock_irqrestore(&grp->grplock, flags); 2677 __napi_schedule(&grp->napi_rx); 2678 } else { 2679 /* Clear IEVENT, so interrupts aren't called again 2680 * because of the packets that have already arrived. 2681 */ 2682 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2683 } 2684 2685 return IRQ_HANDLED; 2686 } 2687 2688 /* Interrupt Handler for Transmit complete */ 2689 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2690 { 2691 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2692 unsigned long flags; 2693 u32 imask; 2694 2695 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2696 spin_lock_irqsave(&grp->grplock, flags); 2697 imask = gfar_read(&grp->regs->imask); 2698 imask &= IMASK_TX_DISABLED; 2699 gfar_write(&grp->regs->imask, imask); 2700 spin_unlock_irqrestore(&grp->grplock, flags); 2701 __napi_schedule(&grp->napi_tx); 2702 } else { 2703 /* Clear IEVENT, so interrupts aren't called again 2704 * because of the packets that have already arrived. 2705 */ 2706 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2707 } 2708 2709 return IRQ_HANDLED; 2710 } 2711 2712 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2713 { 2714 /* If valid headers were found, and valid sums 2715 * were verified, then we tell the kernel that no 2716 * checksumming is necessary. Otherwise, it is [FIXME] 2717 */ 2718 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2719 skb->ip_summed = CHECKSUM_UNNECESSARY; 2720 else 2721 skb_checksum_none_assert(skb); 2722 } 2723 2724 2725 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2726 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2727 int amount_pull, struct napi_struct *napi) 2728 { 2729 struct gfar_private *priv = netdev_priv(dev); 2730 struct rxfcb *fcb = NULL; 2731 2732 /* fcb is at the beginning if exists */ 2733 fcb = (struct rxfcb *)skb->data; 2734 2735 /* Remove the FCB from the skb 2736 * Remove the padded bytes, if there are any 2737 */ 2738 if (amount_pull) { 2739 skb_record_rx_queue(skb, fcb->rq); 2740 skb_pull(skb, amount_pull); 2741 } 2742 2743 /* Get receive timestamp from the skb */ 2744 if (priv->hwts_rx_en) { 2745 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2746 u64 *ns = (u64 *) skb->data; 2747 2748 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2749 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2750 } 2751 2752 if (priv->padding) 2753 skb_pull(skb, priv->padding); 2754 2755 if (dev->features & NETIF_F_RXCSUM) 2756 gfar_rx_checksum(skb, fcb); 2757 2758 /* Tell the skb what kind of packet this is */ 2759 skb->protocol = eth_type_trans(skb, dev); 2760 2761 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2762 * Even if vlan rx accel is disabled, on some chips 2763 * RXFCB_VLN is pseudo randomly set. 2764 */ 2765 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2766 fcb->flags & RXFCB_VLN) 2767 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl); 2768 2769 /* Send the packet up the stack */ 2770 napi_gro_receive(napi, skb); 2771 2772 } 2773 2774 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2775 * until the budget/quota has been reached. Returns the number 2776 * of frames handled 2777 */ 2778 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2779 { 2780 struct net_device *dev = rx_queue->dev; 2781 struct rxbd8 *bdp, *base; 2782 struct sk_buff *skb; 2783 int pkt_len; 2784 int amount_pull; 2785 int howmany = 0; 2786 struct gfar_private *priv = netdev_priv(dev); 2787 2788 /* Get the first full descriptor */ 2789 bdp = rx_queue->cur_rx; 2790 base = rx_queue->rx_bd_base; 2791 2792 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0; 2793 2794 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2795 struct sk_buff *newskb; 2796 2797 rmb(); 2798 2799 /* Add another skb for the future */ 2800 newskb = gfar_new_skb(dev); 2801 2802 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2803 2804 dma_unmap_single(priv->dev, bdp->bufPtr, 2805 priv->rx_buffer_size, DMA_FROM_DEVICE); 2806 2807 if (unlikely(!(bdp->status & RXBD_ERR) && 2808 bdp->length > priv->rx_buffer_size)) 2809 bdp->status = RXBD_LARGE; 2810 2811 /* We drop the frame if we failed to allocate a new buffer */ 2812 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2813 bdp->status & RXBD_ERR)) { 2814 count_errors(bdp->status, dev); 2815 2816 if (unlikely(!newskb)) 2817 newskb = skb; 2818 else if (skb) 2819 dev_kfree_skb(skb); 2820 } else { 2821 /* Increment the number of packets */ 2822 rx_queue->stats.rx_packets++; 2823 howmany++; 2824 2825 if (likely(skb)) { 2826 pkt_len = bdp->length - ETH_FCS_LEN; 2827 /* Remove the FCS from the packet length */ 2828 skb_put(skb, pkt_len); 2829 rx_queue->stats.rx_bytes += pkt_len; 2830 skb_record_rx_queue(skb, rx_queue->qindex); 2831 gfar_process_frame(dev, skb, amount_pull, 2832 &rx_queue->grp->napi_rx); 2833 2834 } else { 2835 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2836 rx_queue->stats.rx_dropped++; 2837 atomic64_inc(&priv->extra_stats.rx_skbmissing); 2838 } 2839 2840 } 2841 2842 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2843 2844 /* Setup the new bdp */ 2845 gfar_new_rxbdp(rx_queue, bdp, newskb); 2846 2847 /* Update to the next pointer */ 2848 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2849 2850 /* update to point at the next skb */ 2851 rx_queue->skb_currx = (rx_queue->skb_currx + 1) & 2852 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2853 } 2854 2855 /* Update the current rxbd pointer to be the next one */ 2856 rx_queue->cur_rx = bdp; 2857 2858 return howmany; 2859 } 2860 2861 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2862 { 2863 struct gfar_priv_grp *gfargrp = 2864 container_of(napi, struct gfar_priv_grp, napi_rx); 2865 struct gfar __iomem *regs = gfargrp->regs; 2866 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2867 int work_done = 0; 2868 2869 /* Clear IEVENT, so interrupts aren't called again 2870 * because of the packets that have already arrived 2871 */ 2872 gfar_write(®s->ievent, IEVENT_RX_MASK); 2873 2874 work_done = gfar_clean_rx_ring(rx_queue, budget); 2875 2876 if (work_done < budget) { 2877 u32 imask; 2878 napi_complete(napi); 2879 /* Clear the halt bit in RSTAT */ 2880 gfar_write(®s->rstat, gfargrp->rstat); 2881 2882 spin_lock_irq(&gfargrp->grplock); 2883 imask = gfar_read(®s->imask); 2884 imask |= IMASK_RX_DEFAULT; 2885 gfar_write(®s->imask, imask); 2886 spin_unlock_irq(&gfargrp->grplock); 2887 } 2888 2889 return work_done; 2890 } 2891 2892 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2893 { 2894 struct gfar_priv_grp *gfargrp = 2895 container_of(napi, struct gfar_priv_grp, napi_tx); 2896 struct gfar __iomem *regs = gfargrp->regs; 2897 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2898 u32 imask; 2899 2900 /* Clear IEVENT, so interrupts aren't called again 2901 * because of the packets that have already arrived 2902 */ 2903 gfar_write(®s->ievent, IEVENT_TX_MASK); 2904 2905 /* run Tx cleanup to completion */ 2906 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2907 gfar_clean_tx_ring(tx_queue); 2908 2909 napi_complete(napi); 2910 2911 spin_lock_irq(&gfargrp->grplock); 2912 imask = gfar_read(®s->imask); 2913 imask |= IMASK_TX_DEFAULT; 2914 gfar_write(®s->imask, imask); 2915 spin_unlock_irq(&gfargrp->grplock); 2916 2917 return 0; 2918 } 2919 2920 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2921 { 2922 struct gfar_priv_grp *gfargrp = 2923 container_of(napi, struct gfar_priv_grp, napi_rx); 2924 struct gfar_private *priv = gfargrp->priv; 2925 struct gfar __iomem *regs = gfargrp->regs; 2926 struct gfar_priv_rx_q *rx_queue = NULL; 2927 int work_done = 0, work_done_per_q = 0; 2928 int i, budget_per_q = 0; 2929 unsigned long rstat_rxf; 2930 int num_act_queues; 2931 2932 /* Clear IEVENT, so interrupts aren't called again 2933 * because of the packets that have already arrived 2934 */ 2935 gfar_write(®s->ievent, IEVENT_RX_MASK); 2936 2937 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2938 2939 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2940 if (num_act_queues) 2941 budget_per_q = budget/num_act_queues; 2942 2943 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2944 /* skip queue if not active */ 2945 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2946 continue; 2947 2948 rx_queue = priv->rx_queue[i]; 2949 work_done_per_q = 2950 gfar_clean_rx_ring(rx_queue, budget_per_q); 2951 work_done += work_done_per_q; 2952 2953 /* finished processing this queue */ 2954 if (work_done_per_q < budget_per_q) { 2955 /* clear active queue hw indication */ 2956 gfar_write(®s->rstat, 2957 RSTAT_CLEAR_RXF0 >> i); 2958 num_act_queues--; 2959 2960 if (!num_act_queues) 2961 break; 2962 } 2963 } 2964 2965 if (!num_act_queues) { 2966 u32 imask; 2967 napi_complete(napi); 2968 2969 /* Clear the halt bit in RSTAT */ 2970 gfar_write(®s->rstat, gfargrp->rstat); 2971 2972 spin_lock_irq(&gfargrp->grplock); 2973 imask = gfar_read(®s->imask); 2974 imask |= IMASK_RX_DEFAULT; 2975 gfar_write(®s->imask, imask); 2976 spin_unlock_irq(&gfargrp->grplock); 2977 } 2978 2979 return work_done; 2980 } 2981 2982 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2983 { 2984 struct gfar_priv_grp *gfargrp = 2985 container_of(napi, struct gfar_priv_grp, napi_tx); 2986 struct gfar_private *priv = gfargrp->priv; 2987 struct gfar __iomem *regs = gfargrp->regs; 2988 struct gfar_priv_tx_q *tx_queue = NULL; 2989 int has_tx_work = 0; 2990 int i; 2991 2992 /* Clear IEVENT, so interrupts aren't called again 2993 * because of the packets that have already arrived 2994 */ 2995 gfar_write(®s->ievent, IEVENT_TX_MASK); 2996 2997 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2998 tx_queue = priv->tx_queue[i]; 2999 /* run Tx cleanup to completion */ 3000 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 3001 gfar_clean_tx_ring(tx_queue); 3002 has_tx_work = 1; 3003 } 3004 } 3005 3006 if (!has_tx_work) { 3007 u32 imask; 3008 napi_complete(napi); 3009 3010 spin_lock_irq(&gfargrp->grplock); 3011 imask = gfar_read(®s->imask); 3012 imask |= IMASK_TX_DEFAULT; 3013 gfar_write(®s->imask, imask); 3014 spin_unlock_irq(&gfargrp->grplock); 3015 } 3016 3017 return 0; 3018 } 3019 3020 3021 #ifdef CONFIG_NET_POLL_CONTROLLER 3022 /* Polling 'interrupt' - used by things like netconsole to send skbs 3023 * without having to re-enable interrupts. It's not called while 3024 * the interrupt routine is executing. 3025 */ 3026 static void gfar_netpoll(struct net_device *dev) 3027 { 3028 struct gfar_private *priv = netdev_priv(dev); 3029 int i; 3030 3031 /* If the device has multiple interrupts, run tx/rx */ 3032 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3033 for (i = 0; i < priv->num_grps; i++) { 3034 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3035 3036 disable_irq(gfar_irq(grp, TX)->irq); 3037 disable_irq(gfar_irq(grp, RX)->irq); 3038 disable_irq(gfar_irq(grp, ER)->irq); 3039 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3040 enable_irq(gfar_irq(grp, ER)->irq); 3041 enable_irq(gfar_irq(grp, RX)->irq); 3042 enable_irq(gfar_irq(grp, TX)->irq); 3043 } 3044 } else { 3045 for (i = 0; i < priv->num_grps; i++) { 3046 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3047 3048 disable_irq(gfar_irq(grp, TX)->irq); 3049 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3050 enable_irq(gfar_irq(grp, TX)->irq); 3051 } 3052 } 3053 } 3054 #endif 3055 3056 /* The interrupt handler for devices with one interrupt */ 3057 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3058 { 3059 struct gfar_priv_grp *gfargrp = grp_id; 3060 3061 /* Save ievent for future reference */ 3062 u32 events = gfar_read(&gfargrp->regs->ievent); 3063 3064 /* Check for reception */ 3065 if (events & IEVENT_RX_MASK) 3066 gfar_receive(irq, grp_id); 3067 3068 /* Check for transmit completion */ 3069 if (events & IEVENT_TX_MASK) 3070 gfar_transmit(irq, grp_id); 3071 3072 /* Check for errors */ 3073 if (events & IEVENT_ERR_MASK) 3074 gfar_error(irq, grp_id); 3075 3076 return IRQ_HANDLED; 3077 } 3078 3079 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3080 { 3081 struct phy_device *phydev = priv->phydev; 3082 u32 val = 0; 3083 3084 if (!phydev->duplex) 3085 return val; 3086 3087 if (!priv->pause_aneg_en) { 3088 if (priv->tx_pause_en) 3089 val |= MACCFG1_TX_FLOW; 3090 if (priv->rx_pause_en) 3091 val |= MACCFG1_RX_FLOW; 3092 } else { 3093 u16 lcl_adv, rmt_adv; 3094 u8 flowctrl; 3095 /* get link partner capabilities */ 3096 rmt_adv = 0; 3097 if (phydev->pause) 3098 rmt_adv = LPA_PAUSE_CAP; 3099 if (phydev->asym_pause) 3100 rmt_adv |= LPA_PAUSE_ASYM; 3101 3102 lcl_adv = mii_advertise_flowctrl(phydev->advertising); 3103 3104 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3105 if (flowctrl & FLOW_CTRL_TX) 3106 val |= MACCFG1_TX_FLOW; 3107 if (flowctrl & FLOW_CTRL_RX) 3108 val |= MACCFG1_RX_FLOW; 3109 } 3110 3111 return val; 3112 } 3113 3114 /* Called every time the controller might need to be made 3115 * aware of new link state. The PHY code conveys this 3116 * information through variables in the phydev structure, and this 3117 * function converts those variables into the appropriate 3118 * register values, and can bring down the device if needed. 3119 */ 3120 static void adjust_link(struct net_device *dev) 3121 { 3122 struct gfar_private *priv = netdev_priv(dev); 3123 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3124 struct phy_device *phydev = priv->phydev; 3125 int new_state = 0; 3126 3127 if (test_bit(GFAR_RESETTING, &priv->state)) 3128 return; 3129 3130 if (phydev->link) { 3131 u32 tempval1 = gfar_read(®s->maccfg1); 3132 u32 tempval = gfar_read(®s->maccfg2); 3133 u32 ecntrl = gfar_read(®s->ecntrl); 3134 3135 /* Now we make sure that we can be in full duplex mode. 3136 * If not, we operate in half-duplex mode. 3137 */ 3138 if (phydev->duplex != priv->oldduplex) { 3139 new_state = 1; 3140 if (!(phydev->duplex)) 3141 tempval &= ~(MACCFG2_FULL_DUPLEX); 3142 else 3143 tempval |= MACCFG2_FULL_DUPLEX; 3144 3145 priv->oldduplex = phydev->duplex; 3146 } 3147 3148 if (phydev->speed != priv->oldspeed) { 3149 new_state = 1; 3150 switch (phydev->speed) { 3151 case 1000: 3152 tempval = 3153 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3154 3155 ecntrl &= ~(ECNTRL_R100); 3156 break; 3157 case 100: 3158 case 10: 3159 tempval = 3160 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3161 3162 /* Reduced mode distinguishes 3163 * between 10 and 100 3164 */ 3165 if (phydev->speed == SPEED_100) 3166 ecntrl |= ECNTRL_R100; 3167 else 3168 ecntrl &= ~(ECNTRL_R100); 3169 break; 3170 default: 3171 netif_warn(priv, link, dev, 3172 "Ack! Speed (%d) is not 10/100/1000!\n", 3173 phydev->speed); 3174 break; 3175 } 3176 3177 priv->oldspeed = phydev->speed; 3178 } 3179 3180 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3181 tempval1 |= gfar_get_flowctrl_cfg(priv); 3182 3183 gfar_write(®s->maccfg1, tempval1); 3184 gfar_write(®s->maccfg2, tempval); 3185 gfar_write(®s->ecntrl, ecntrl); 3186 3187 if (!priv->oldlink) { 3188 new_state = 1; 3189 priv->oldlink = 1; 3190 } 3191 } else if (priv->oldlink) { 3192 new_state = 1; 3193 priv->oldlink = 0; 3194 priv->oldspeed = 0; 3195 priv->oldduplex = -1; 3196 } 3197 3198 if (new_state && netif_msg_link(priv)) 3199 phy_print_status(phydev); 3200 } 3201 3202 /* Update the hash table based on the current list of multicast 3203 * addresses we subscribe to. Also, change the promiscuity of 3204 * the device based on the flags (this function is called 3205 * whenever dev->flags is changed 3206 */ 3207 static void gfar_set_multi(struct net_device *dev) 3208 { 3209 struct netdev_hw_addr *ha; 3210 struct gfar_private *priv = netdev_priv(dev); 3211 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3212 u32 tempval; 3213 3214 if (dev->flags & IFF_PROMISC) { 3215 /* Set RCTRL to PROM */ 3216 tempval = gfar_read(®s->rctrl); 3217 tempval |= RCTRL_PROM; 3218 gfar_write(®s->rctrl, tempval); 3219 } else { 3220 /* Set RCTRL to not PROM */ 3221 tempval = gfar_read(®s->rctrl); 3222 tempval &= ~(RCTRL_PROM); 3223 gfar_write(®s->rctrl, tempval); 3224 } 3225 3226 if (dev->flags & IFF_ALLMULTI) { 3227 /* Set the hash to rx all multicast frames */ 3228 gfar_write(®s->igaddr0, 0xffffffff); 3229 gfar_write(®s->igaddr1, 0xffffffff); 3230 gfar_write(®s->igaddr2, 0xffffffff); 3231 gfar_write(®s->igaddr3, 0xffffffff); 3232 gfar_write(®s->igaddr4, 0xffffffff); 3233 gfar_write(®s->igaddr5, 0xffffffff); 3234 gfar_write(®s->igaddr6, 0xffffffff); 3235 gfar_write(®s->igaddr7, 0xffffffff); 3236 gfar_write(®s->gaddr0, 0xffffffff); 3237 gfar_write(®s->gaddr1, 0xffffffff); 3238 gfar_write(®s->gaddr2, 0xffffffff); 3239 gfar_write(®s->gaddr3, 0xffffffff); 3240 gfar_write(®s->gaddr4, 0xffffffff); 3241 gfar_write(®s->gaddr5, 0xffffffff); 3242 gfar_write(®s->gaddr6, 0xffffffff); 3243 gfar_write(®s->gaddr7, 0xffffffff); 3244 } else { 3245 int em_num; 3246 int idx; 3247 3248 /* zero out the hash */ 3249 gfar_write(®s->igaddr0, 0x0); 3250 gfar_write(®s->igaddr1, 0x0); 3251 gfar_write(®s->igaddr2, 0x0); 3252 gfar_write(®s->igaddr3, 0x0); 3253 gfar_write(®s->igaddr4, 0x0); 3254 gfar_write(®s->igaddr5, 0x0); 3255 gfar_write(®s->igaddr6, 0x0); 3256 gfar_write(®s->igaddr7, 0x0); 3257 gfar_write(®s->gaddr0, 0x0); 3258 gfar_write(®s->gaddr1, 0x0); 3259 gfar_write(®s->gaddr2, 0x0); 3260 gfar_write(®s->gaddr3, 0x0); 3261 gfar_write(®s->gaddr4, 0x0); 3262 gfar_write(®s->gaddr5, 0x0); 3263 gfar_write(®s->gaddr6, 0x0); 3264 gfar_write(®s->gaddr7, 0x0); 3265 3266 /* If we have extended hash tables, we need to 3267 * clear the exact match registers to prepare for 3268 * setting them 3269 */ 3270 if (priv->extended_hash) { 3271 em_num = GFAR_EM_NUM + 1; 3272 gfar_clear_exact_match(dev); 3273 idx = 1; 3274 } else { 3275 idx = 0; 3276 em_num = 0; 3277 } 3278 3279 if (netdev_mc_empty(dev)) 3280 return; 3281 3282 /* Parse the list, and set the appropriate bits */ 3283 netdev_for_each_mc_addr(ha, dev) { 3284 if (idx < em_num) { 3285 gfar_set_mac_for_addr(dev, idx, ha->addr); 3286 idx++; 3287 } else 3288 gfar_set_hash_for_addr(dev, ha->addr); 3289 } 3290 } 3291 } 3292 3293 3294 /* Clears each of the exact match registers to zero, so they 3295 * don't interfere with normal reception 3296 */ 3297 static void gfar_clear_exact_match(struct net_device *dev) 3298 { 3299 int idx; 3300 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3301 3302 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3303 gfar_set_mac_for_addr(dev, idx, zero_arr); 3304 } 3305 3306 /* Set the appropriate hash bit for the given addr */ 3307 /* The algorithm works like so: 3308 * 1) Take the Destination Address (ie the multicast address), and 3309 * do a CRC on it (little endian), and reverse the bits of the 3310 * result. 3311 * 2) Use the 8 most significant bits as a hash into a 256-entry 3312 * table. The table is controlled through 8 32-bit registers: 3313 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3314 * gaddr7. This means that the 3 most significant bits in the 3315 * hash index which gaddr register to use, and the 5 other bits 3316 * indicate which bit (assuming an IBM numbering scheme, which 3317 * for PowerPC (tm) is usually the case) in the register holds 3318 * the entry. 3319 */ 3320 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3321 { 3322 u32 tempval; 3323 struct gfar_private *priv = netdev_priv(dev); 3324 u32 result = ether_crc(ETH_ALEN, addr); 3325 int width = priv->hash_width; 3326 u8 whichbit = (result >> (32 - width)) & 0x1f; 3327 u8 whichreg = result >> (32 - width + 5); 3328 u32 value = (1 << (31-whichbit)); 3329 3330 tempval = gfar_read(priv->hash_regs[whichreg]); 3331 tempval |= value; 3332 gfar_write(priv->hash_regs[whichreg], tempval); 3333 } 3334 3335 3336 /* There are multiple MAC Address register pairs on some controllers 3337 * This function sets the numth pair to a given address 3338 */ 3339 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3340 const u8 *addr) 3341 { 3342 struct gfar_private *priv = netdev_priv(dev); 3343 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3344 int idx; 3345 char tmpbuf[ETH_ALEN]; 3346 u32 tempval; 3347 u32 __iomem *macptr = ®s->macstnaddr1; 3348 3349 macptr += num*2; 3350 3351 /* Now copy it into the mac registers backwards, cuz 3352 * little endian is silly 3353 */ 3354 for (idx = 0; idx < ETH_ALEN; idx++) 3355 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx]; 3356 3357 gfar_write(macptr, *((u32 *) (tmpbuf))); 3358 3359 tempval = *((u32 *) (tmpbuf + 4)); 3360 3361 gfar_write(macptr+1, tempval); 3362 } 3363 3364 /* GFAR error interrupt handler */ 3365 static irqreturn_t gfar_error(int irq, void *grp_id) 3366 { 3367 struct gfar_priv_grp *gfargrp = grp_id; 3368 struct gfar __iomem *regs = gfargrp->regs; 3369 struct gfar_private *priv= gfargrp->priv; 3370 struct net_device *dev = priv->ndev; 3371 3372 /* Save ievent for future reference */ 3373 u32 events = gfar_read(®s->ievent); 3374 3375 /* Clear IEVENT */ 3376 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3377 3378 /* Magic Packet is not an error. */ 3379 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3380 (events & IEVENT_MAG)) 3381 events &= ~IEVENT_MAG; 3382 3383 /* Hmm... */ 3384 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3385 netdev_dbg(dev, 3386 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3387 events, gfar_read(®s->imask)); 3388 3389 /* Update the error counters */ 3390 if (events & IEVENT_TXE) { 3391 dev->stats.tx_errors++; 3392 3393 if (events & IEVENT_LC) 3394 dev->stats.tx_window_errors++; 3395 if (events & IEVENT_CRL) 3396 dev->stats.tx_aborted_errors++; 3397 if (events & IEVENT_XFUN) { 3398 unsigned long flags; 3399 3400 netif_dbg(priv, tx_err, dev, 3401 "TX FIFO underrun, packet dropped\n"); 3402 dev->stats.tx_dropped++; 3403 atomic64_inc(&priv->extra_stats.tx_underrun); 3404 3405 local_irq_save(flags); 3406 lock_tx_qs(priv); 3407 3408 /* Reactivate the Tx Queues */ 3409 gfar_write(®s->tstat, gfargrp->tstat); 3410 3411 unlock_tx_qs(priv); 3412 local_irq_restore(flags); 3413 } 3414 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3415 } 3416 if (events & IEVENT_BSY) { 3417 dev->stats.rx_errors++; 3418 atomic64_inc(&priv->extra_stats.rx_bsy); 3419 3420 gfar_receive(irq, grp_id); 3421 3422 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3423 gfar_read(®s->rstat)); 3424 } 3425 if (events & IEVENT_BABR) { 3426 dev->stats.rx_errors++; 3427 atomic64_inc(&priv->extra_stats.rx_babr); 3428 3429 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3430 } 3431 if (events & IEVENT_EBERR) { 3432 atomic64_inc(&priv->extra_stats.eberr); 3433 netif_dbg(priv, rx_err, dev, "bus error\n"); 3434 } 3435 if (events & IEVENT_RXC) 3436 netif_dbg(priv, rx_status, dev, "control frame\n"); 3437 3438 if (events & IEVENT_BABT) { 3439 atomic64_inc(&priv->extra_stats.tx_babt); 3440 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3441 } 3442 return IRQ_HANDLED; 3443 } 3444 3445 static struct of_device_id gfar_match[] = 3446 { 3447 { 3448 .type = "network", 3449 .compatible = "gianfar", 3450 }, 3451 { 3452 .compatible = "fsl,etsec2", 3453 }, 3454 {}, 3455 }; 3456 MODULE_DEVICE_TABLE(of, gfar_match); 3457 3458 /* Structure for a device driver */ 3459 static struct platform_driver gfar_driver = { 3460 .driver = { 3461 .name = "fsl-gianfar", 3462 .owner = THIS_MODULE, 3463 .pm = GFAR_PM_OPS, 3464 .of_match_table = gfar_match, 3465 }, 3466 .probe = gfar_probe, 3467 .remove = gfar_remove, 3468 }; 3469 3470 module_platform_driver(gfar_driver); 3471