1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #ifdef CONFIG_PPC 92 #include <asm/reg.h> 93 #include <asm/mpc85xx.h> 94 #endif 95 #include <asm/irq.h> 96 #include <asm/uaccess.h> 97 #include <linux/module.h> 98 #include <linux/dma-mapping.h> 99 #include <linux/crc32.h> 100 #include <linux/mii.h> 101 #include <linux/phy.h> 102 #include <linux/phy_fixed.h> 103 #include <linux/of.h> 104 #include <linux/of_net.h> 105 #include <linux/of_address.h> 106 #include <linux/of_irq.h> 107 108 #include "gianfar.h" 109 110 #define TX_TIMEOUT (1*HZ) 111 112 const char gfar_driver_version[] = "1.3"; 113 114 static int gfar_enet_open(struct net_device *dev); 115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 116 static void gfar_reset_task(struct work_struct *work); 117 static void gfar_timeout(struct net_device *dev); 118 static int gfar_close(struct net_device *dev); 119 static struct sk_buff *gfar_new_skb(struct net_device *dev, 120 dma_addr_t *bufaddr); 121 static int gfar_set_mac_address(struct net_device *dev); 122 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 123 static irqreturn_t gfar_error(int irq, void *dev_id); 124 static irqreturn_t gfar_transmit(int irq, void *dev_id); 125 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 126 static void adjust_link(struct net_device *dev); 127 static noinline void gfar_update_link_state(struct gfar_private *priv); 128 static int init_phy(struct net_device *dev); 129 static int gfar_probe(struct platform_device *ofdev); 130 static int gfar_remove(struct platform_device *ofdev); 131 static void free_skb_resources(struct gfar_private *priv); 132 static void gfar_set_multi(struct net_device *dev); 133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 134 static void gfar_configure_serdes(struct net_device *dev); 135 static int gfar_poll_rx(struct napi_struct *napi, int budget); 136 static int gfar_poll_tx(struct napi_struct *napi, int budget); 137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 139 #ifdef CONFIG_NET_POLL_CONTROLLER 140 static void gfar_netpoll(struct net_device *dev); 141 #endif 142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 145 int amount_pull, struct napi_struct *napi); 146 static void gfar_halt_nodisable(struct gfar_private *priv); 147 static void gfar_clear_exact_match(struct net_device *dev); 148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 149 const u8 *addr); 150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 151 152 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 153 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 154 MODULE_LICENSE("GPL"); 155 156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 157 dma_addr_t buf) 158 { 159 u32 lstatus; 160 161 bdp->bufPtr = buf; 162 163 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 164 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 165 lstatus |= BD_LFLAG(RXBD_WRAP); 166 167 gfar_wmb(); 168 169 bdp->lstatus = lstatus; 170 } 171 172 static int gfar_init_bds(struct net_device *ndev) 173 { 174 struct gfar_private *priv = netdev_priv(ndev); 175 struct gfar __iomem *regs = priv->gfargrp[0].regs; 176 struct gfar_priv_tx_q *tx_queue = NULL; 177 struct gfar_priv_rx_q *rx_queue = NULL; 178 struct txbd8 *txbdp; 179 struct rxbd8 *rxbdp; 180 u32 __iomem *rfbptr; 181 int i, j; 182 dma_addr_t bufaddr; 183 184 for (i = 0; i < priv->num_tx_queues; i++) { 185 tx_queue = priv->tx_queue[i]; 186 /* Initialize some variables in our dev structure */ 187 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 188 tx_queue->dirty_tx = tx_queue->tx_bd_base; 189 tx_queue->cur_tx = tx_queue->tx_bd_base; 190 tx_queue->skb_curtx = 0; 191 tx_queue->skb_dirtytx = 0; 192 193 /* Initialize Transmit Descriptor Ring */ 194 txbdp = tx_queue->tx_bd_base; 195 for (j = 0; j < tx_queue->tx_ring_size; j++) { 196 txbdp->lstatus = 0; 197 txbdp->bufPtr = 0; 198 txbdp++; 199 } 200 201 /* Set the last descriptor in the ring to indicate wrap */ 202 txbdp--; 203 txbdp->status |= TXBD_WRAP; 204 } 205 206 rfbptr = ®s->rfbptr0; 207 for (i = 0; i < priv->num_rx_queues; i++) { 208 rx_queue = priv->rx_queue[i]; 209 rx_queue->cur_rx = rx_queue->rx_bd_base; 210 rx_queue->skb_currx = 0; 211 rxbdp = rx_queue->rx_bd_base; 212 213 for (j = 0; j < rx_queue->rx_ring_size; j++) { 214 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 215 216 if (skb) { 217 bufaddr = rxbdp->bufPtr; 218 } else { 219 skb = gfar_new_skb(ndev, &bufaddr); 220 if (!skb) { 221 netdev_err(ndev, "Can't allocate RX buffers\n"); 222 return -ENOMEM; 223 } 224 rx_queue->rx_skbuff[j] = skb; 225 } 226 227 gfar_init_rxbdp(rx_queue, rxbdp, bufaddr); 228 rxbdp++; 229 } 230 231 rx_queue->rfbptr = rfbptr; 232 rfbptr += 2; 233 } 234 235 return 0; 236 } 237 238 static int gfar_alloc_skb_resources(struct net_device *ndev) 239 { 240 void *vaddr; 241 dma_addr_t addr; 242 int i, j, k; 243 struct gfar_private *priv = netdev_priv(ndev); 244 struct device *dev = priv->dev; 245 struct gfar_priv_tx_q *tx_queue = NULL; 246 struct gfar_priv_rx_q *rx_queue = NULL; 247 248 priv->total_tx_ring_size = 0; 249 for (i = 0; i < priv->num_tx_queues; i++) 250 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 251 252 priv->total_rx_ring_size = 0; 253 for (i = 0; i < priv->num_rx_queues; i++) 254 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 255 256 /* Allocate memory for the buffer descriptors */ 257 vaddr = dma_alloc_coherent(dev, 258 (priv->total_tx_ring_size * 259 sizeof(struct txbd8)) + 260 (priv->total_rx_ring_size * 261 sizeof(struct rxbd8)), 262 &addr, GFP_KERNEL); 263 if (!vaddr) 264 return -ENOMEM; 265 266 for (i = 0; i < priv->num_tx_queues; i++) { 267 tx_queue = priv->tx_queue[i]; 268 tx_queue->tx_bd_base = vaddr; 269 tx_queue->tx_bd_dma_base = addr; 270 tx_queue->dev = ndev; 271 /* enet DMA only understands physical addresses */ 272 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 273 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 274 } 275 276 /* Start the rx descriptor ring where the tx ring leaves off */ 277 for (i = 0; i < priv->num_rx_queues; i++) { 278 rx_queue = priv->rx_queue[i]; 279 rx_queue->rx_bd_base = vaddr; 280 rx_queue->rx_bd_dma_base = addr; 281 rx_queue->dev = ndev; 282 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 283 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 284 } 285 286 /* Setup the skbuff rings */ 287 for (i = 0; i < priv->num_tx_queues; i++) { 288 tx_queue = priv->tx_queue[i]; 289 tx_queue->tx_skbuff = 290 kmalloc_array(tx_queue->tx_ring_size, 291 sizeof(*tx_queue->tx_skbuff), 292 GFP_KERNEL); 293 if (!tx_queue->tx_skbuff) 294 goto cleanup; 295 296 for (k = 0; k < tx_queue->tx_ring_size; k++) 297 tx_queue->tx_skbuff[k] = NULL; 298 } 299 300 for (i = 0; i < priv->num_rx_queues; i++) { 301 rx_queue = priv->rx_queue[i]; 302 rx_queue->rx_skbuff = 303 kmalloc_array(rx_queue->rx_ring_size, 304 sizeof(*rx_queue->rx_skbuff), 305 GFP_KERNEL); 306 if (!rx_queue->rx_skbuff) 307 goto cleanup; 308 309 for (j = 0; j < rx_queue->rx_ring_size; j++) 310 rx_queue->rx_skbuff[j] = NULL; 311 } 312 313 if (gfar_init_bds(ndev)) 314 goto cleanup; 315 316 return 0; 317 318 cleanup: 319 free_skb_resources(priv); 320 return -ENOMEM; 321 } 322 323 static void gfar_init_tx_rx_base(struct gfar_private *priv) 324 { 325 struct gfar __iomem *regs = priv->gfargrp[0].regs; 326 u32 __iomem *baddr; 327 int i; 328 329 baddr = ®s->tbase0; 330 for (i = 0; i < priv->num_tx_queues; i++) { 331 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 332 baddr += 2; 333 } 334 335 baddr = ®s->rbase0; 336 for (i = 0; i < priv->num_rx_queues; i++) { 337 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 338 baddr += 2; 339 } 340 } 341 342 static void gfar_init_rqprm(struct gfar_private *priv) 343 { 344 struct gfar __iomem *regs = priv->gfargrp[0].regs; 345 u32 __iomem *baddr; 346 int i; 347 348 baddr = ®s->rqprm0; 349 for (i = 0; i < priv->num_rx_queues; i++) { 350 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 351 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 352 baddr++; 353 } 354 } 355 356 static void gfar_rx_buff_size_config(struct gfar_private *priv) 357 { 358 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN; 359 360 /* set this when rx hw offload (TOE) functions are being used */ 361 priv->uses_rxfcb = 0; 362 363 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 364 priv->uses_rxfcb = 1; 365 366 if (priv->hwts_rx_en) 367 priv->uses_rxfcb = 1; 368 369 if (priv->uses_rxfcb) 370 frame_size += GMAC_FCB_LEN; 371 372 frame_size += priv->padding; 373 374 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 375 INCREMENTAL_BUFFER_SIZE; 376 377 priv->rx_buffer_size = frame_size; 378 } 379 380 static void gfar_mac_rx_config(struct gfar_private *priv) 381 { 382 struct gfar __iomem *regs = priv->gfargrp[0].regs; 383 u32 rctrl = 0; 384 385 if (priv->rx_filer_enable) { 386 rctrl |= RCTRL_FILREN; 387 /* Program the RIR0 reg with the required distribution */ 388 if (priv->poll_mode == GFAR_SQ_POLLING) 389 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 390 else /* GFAR_MQ_POLLING */ 391 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 392 } 393 394 /* Restore PROMISC mode */ 395 if (priv->ndev->flags & IFF_PROMISC) 396 rctrl |= RCTRL_PROM; 397 398 if (priv->ndev->features & NETIF_F_RXCSUM) 399 rctrl |= RCTRL_CHECKSUMMING; 400 401 if (priv->extended_hash) 402 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 403 404 if (priv->padding) { 405 rctrl &= ~RCTRL_PAL_MASK; 406 rctrl |= RCTRL_PADDING(priv->padding); 407 } 408 409 /* Enable HW time stamping if requested from user space */ 410 if (priv->hwts_rx_en) 411 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 412 413 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 414 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 415 416 /* Clear the LFC bit */ 417 gfar_write(®s->rctrl, rctrl); 418 /* Init flow control threshold values */ 419 gfar_init_rqprm(priv); 420 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 421 rctrl |= RCTRL_LFC; 422 423 /* Init rctrl based on our settings */ 424 gfar_write(®s->rctrl, rctrl); 425 } 426 427 static void gfar_mac_tx_config(struct gfar_private *priv) 428 { 429 struct gfar __iomem *regs = priv->gfargrp[0].regs; 430 u32 tctrl = 0; 431 432 if (priv->ndev->features & NETIF_F_IP_CSUM) 433 tctrl |= TCTRL_INIT_CSUM; 434 435 if (priv->prio_sched_en) 436 tctrl |= TCTRL_TXSCHED_PRIO; 437 else { 438 tctrl |= TCTRL_TXSCHED_WRRS; 439 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 440 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 441 } 442 443 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 444 tctrl |= TCTRL_VLINS; 445 446 gfar_write(®s->tctrl, tctrl); 447 } 448 449 static void gfar_configure_coalescing(struct gfar_private *priv, 450 unsigned long tx_mask, unsigned long rx_mask) 451 { 452 struct gfar __iomem *regs = priv->gfargrp[0].regs; 453 u32 __iomem *baddr; 454 455 if (priv->mode == MQ_MG_MODE) { 456 int i = 0; 457 458 baddr = ®s->txic0; 459 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 460 gfar_write(baddr + i, 0); 461 if (likely(priv->tx_queue[i]->txcoalescing)) 462 gfar_write(baddr + i, priv->tx_queue[i]->txic); 463 } 464 465 baddr = ®s->rxic0; 466 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 467 gfar_write(baddr + i, 0); 468 if (likely(priv->rx_queue[i]->rxcoalescing)) 469 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 470 } 471 } else { 472 /* Backward compatible case -- even if we enable 473 * multiple queues, there's only single reg to program 474 */ 475 gfar_write(®s->txic, 0); 476 if (likely(priv->tx_queue[0]->txcoalescing)) 477 gfar_write(®s->txic, priv->tx_queue[0]->txic); 478 479 gfar_write(®s->rxic, 0); 480 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 481 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 482 } 483 } 484 485 void gfar_configure_coalescing_all(struct gfar_private *priv) 486 { 487 gfar_configure_coalescing(priv, 0xFF, 0xFF); 488 } 489 490 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 491 { 492 struct gfar_private *priv = netdev_priv(dev); 493 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 494 unsigned long tx_packets = 0, tx_bytes = 0; 495 int i; 496 497 for (i = 0; i < priv->num_rx_queues; i++) { 498 rx_packets += priv->rx_queue[i]->stats.rx_packets; 499 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 500 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 501 } 502 503 dev->stats.rx_packets = rx_packets; 504 dev->stats.rx_bytes = rx_bytes; 505 dev->stats.rx_dropped = rx_dropped; 506 507 for (i = 0; i < priv->num_tx_queues; i++) { 508 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 509 tx_packets += priv->tx_queue[i]->stats.tx_packets; 510 } 511 512 dev->stats.tx_bytes = tx_bytes; 513 dev->stats.tx_packets = tx_packets; 514 515 return &dev->stats; 516 } 517 518 static const struct net_device_ops gfar_netdev_ops = { 519 .ndo_open = gfar_enet_open, 520 .ndo_start_xmit = gfar_start_xmit, 521 .ndo_stop = gfar_close, 522 .ndo_change_mtu = gfar_change_mtu, 523 .ndo_set_features = gfar_set_features, 524 .ndo_set_rx_mode = gfar_set_multi, 525 .ndo_tx_timeout = gfar_timeout, 526 .ndo_do_ioctl = gfar_ioctl, 527 .ndo_get_stats = gfar_get_stats, 528 .ndo_set_mac_address = eth_mac_addr, 529 .ndo_validate_addr = eth_validate_addr, 530 #ifdef CONFIG_NET_POLL_CONTROLLER 531 .ndo_poll_controller = gfar_netpoll, 532 #endif 533 }; 534 535 static void gfar_ints_disable(struct gfar_private *priv) 536 { 537 int i; 538 for (i = 0; i < priv->num_grps; i++) { 539 struct gfar __iomem *regs = priv->gfargrp[i].regs; 540 /* Clear IEVENT */ 541 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 542 543 /* Initialize IMASK */ 544 gfar_write(®s->imask, IMASK_INIT_CLEAR); 545 } 546 } 547 548 static void gfar_ints_enable(struct gfar_private *priv) 549 { 550 int i; 551 for (i = 0; i < priv->num_grps; i++) { 552 struct gfar __iomem *regs = priv->gfargrp[i].regs; 553 /* Unmask the interrupts we look for */ 554 gfar_write(®s->imask, IMASK_DEFAULT); 555 } 556 } 557 558 static void lock_tx_qs(struct gfar_private *priv) 559 { 560 int i; 561 562 for (i = 0; i < priv->num_tx_queues; i++) 563 spin_lock(&priv->tx_queue[i]->txlock); 564 } 565 566 static void unlock_tx_qs(struct gfar_private *priv) 567 { 568 int i; 569 570 for (i = 0; i < priv->num_tx_queues; i++) 571 spin_unlock(&priv->tx_queue[i]->txlock); 572 } 573 574 static int gfar_alloc_tx_queues(struct gfar_private *priv) 575 { 576 int i; 577 578 for (i = 0; i < priv->num_tx_queues; i++) { 579 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 580 GFP_KERNEL); 581 if (!priv->tx_queue[i]) 582 return -ENOMEM; 583 584 priv->tx_queue[i]->tx_skbuff = NULL; 585 priv->tx_queue[i]->qindex = i; 586 priv->tx_queue[i]->dev = priv->ndev; 587 spin_lock_init(&(priv->tx_queue[i]->txlock)); 588 } 589 return 0; 590 } 591 592 static int gfar_alloc_rx_queues(struct gfar_private *priv) 593 { 594 int i; 595 596 for (i = 0; i < priv->num_rx_queues; i++) { 597 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 598 GFP_KERNEL); 599 if (!priv->rx_queue[i]) 600 return -ENOMEM; 601 602 priv->rx_queue[i]->rx_skbuff = NULL; 603 priv->rx_queue[i]->qindex = i; 604 priv->rx_queue[i]->dev = priv->ndev; 605 } 606 return 0; 607 } 608 609 static void gfar_free_tx_queues(struct gfar_private *priv) 610 { 611 int i; 612 613 for (i = 0; i < priv->num_tx_queues; i++) 614 kfree(priv->tx_queue[i]); 615 } 616 617 static void gfar_free_rx_queues(struct gfar_private *priv) 618 { 619 int i; 620 621 for (i = 0; i < priv->num_rx_queues; i++) 622 kfree(priv->rx_queue[i]); 623 } 624 625 static void unmap_group_regs(struct gfar_private *priv) 626 { 627 int i; 628 629 for (i = 0; i < MAXGROUPS; i++) 630 if (priv->gfargrp[i].regs) 631 iounmap(priv->gfargrp[i].regs); 632 } 633 634 static void free_gfar_dev(struct gfar_private *priv) 635 { 636 int i, j; 637 638 for (i = 0; i < priv->num_grps; i++) 639 for (j = 0; j < GFAR_NUM_IRQS; j++) { 640 kfree(priv->gfargrp[i].irqinfo[j]); 641 priv->gfargrp[i].irqinfo[j] = NULL; 642 } 643 644 free_netdev(priv->ndev); 645 } 646 647 static void disable_napi(struct gfar_private *priv) 648 { 649 int i; 650 651 for (i = 0; i < priv->num_grps; i++) { 652 napi_disable(&priv->gfargrp[i].napi_rx); 653 napi_disable(&priv->gfargrp[i].napi_tx); 654 } 655 } 656 657 static void enable_napi(struct gfar_private *priv) 658 { 659 int i; 660 661 for (i = 0; i < priv->num_grps; i++) { 662 napi_enable(&priv->gfargrp[i].napi_rx); 663 napi_enable(&priv->gfargrp[i].napi_tx); 664 } 665 } 666 667 static int gfar_parse_group(struct device_node *np, 668 struct gfar_private *priv, const char *model) 669 { 670 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 671 int i; 672 673 for (i = 0; i < GFAR_NUM_IRQS; i++) { 674 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 675 GFP_KERNEL); 676 if (!grp->irqinfo[i]) 677 return -ENOMEM; 678 } 679 680 grp->regs = of_iomap(np, 0); 681 if (!grp->regs) 682 return -ENOMEM; 683 684 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 685 686 /* If we aren't the FEC we have multiple interrupts */ 687 if (model && strcasecmp(model, "FEC")) { 688 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 689 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 690 if (gfar_irq(grp, TX)->irq == NO_IRQ || 691 gfar_irq(grp, RX)->irq == NO_IRQ || 692 gfar_irq(grp, ER)->irq == NO_IRQ) 693 return -EINVAL; 694 } 695 696 grp->priv = priv; 697 spin_lock_init(&grp->grplock); 698 if (priv->mode == MQ_MG_MODE) { 699 u32 *rxq_mask, *txq_mask; 700 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL); 701 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL); 702 703 if (priv->poll_mode == GFAR_SQ_POLLING) { 704 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 705 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 706 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 707 } else { /* GFAR_MQ_POLLING */ 708 grp->rx_bit_map = rxq_mask ? 709 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 710 grp->tx_bit_map = txq_mask ? 711 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 712 } 713 } else { 714 grp->rx_bit_map = 0xFF; 715 grp->tx_bit_map = 0xFF; 716 } 717 718 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 719 * right to left, so we need to revert the 8 bits to get the q index 720 */ 721 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 722 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 723 724 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 725 * also assign queues to groups 726 */ 727 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 728 if (!grp->rx_queue) 729 grp->rx_queue = priv->rx_queue[i]; 730 grp->num_rx_queues++; 731 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 732 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 733 priv->rx_queue[i]->grp = grp; 734 } 735 736 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 737 if (!grp->tx_queue) 738 grp->tx_queue = priv->tx_queue[i]; 739 grp->num_tx_queues++; 740 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 741 priv->tqueue |= (TQUEUE_EN0 >> i); 742 priv->tx_queue[i]->grp = grp; 743 } 744 745 priv->num_grps++; 746 747 return 0; 748 } 749 750 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 751 { 752 const char *model; 753 const char *ctype; 754 const void *mac_addr; 755 int err = 0, i; 756 struct net_device *dev = NULL; 757 struct gfar_private *priv = NULL; 758 struct device_node *np = ofdev->dev.of_node; 759 struct device_node *child = NULL; 760 const u32 *stash; 761 const u32 *stash_len; 762 const u32 *stash_idx; 763 unsigned int num_tx_qs, num_rx_qs; 764 u32 *tx_queues, *rx_queues; 765 unsigned short mode, poll_mode; 766 767 if (!np) 768 return -ENODEV; 769 770 if (of_device_is_compatible(np, "fsl,etsec2")) { 771 mode = MQ_MG_MODE; 772 poll_mode = GFAR_SQ_POLLING; 773 } else { 774 mode = SQ_SG_MODE; 775 poll_mode = GFAR_SQ_POLLING; 776 } 777 778 /* parse the num of HW tx and rx queues */ 779 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 780 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 781 782 if (mode == SQ_SG_MODE) { 783 num_tx_qs = 1; 784 num_rx_qs = 1; 785 } else { /* MQ_MG_MODE */ 786 /* get the actual number of supported groups */ 787 unsigned int num_grps = of_get_available_child_count(np); 788 789 if (num_grps == 0 || num_grps > MAXGROUPS) { 790 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 791 num_grps); 792 pr_err("Cannot do alloc_etherdev, aborting\n"); 793 return -EINVAL; 794 } 795 796 if (poll_mode == GFAR_SQ_POLLING) { 797 num_tx_qs = num_grps; /* one txq per int group */ 798 num_rx_qs = num_grps; /* one rxq per int group */ 799 } else { /* GFAR_MQ_POLLING */ 800 num_tx_qs = tx_queues ? *tx_queues : 1; 801 num_rx_qs = rx_queues ? *rx_queues : 1; 802 } 803 } 804 805 if (num_tx_qs > MAX_TX_QS) { 806 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 807 num_tx_qs, MAX_TX_QS); 808 pr_err("Cannot do alloc_etherdev, aborting\n"); 809 return -EINVAL; 810 } 811 812 if (num_rx_qs > MAX_RX_QS) { 813 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 814 num_rx_qs, MAX_RX_QS); 815 pr_err("Cannot do alloc_etherdev, aborting\n"); 816 return -EINVAL; 817 } 818 819 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 820 dev = *pdev; 821 if (NULL == dev) 822 return -ENOMEM; 823 824 priv = netdev_priv(dev); 825 priv->ndev = dev; 826 827 priv->mode = mode; 828 priv->poll_mode = poll_mode; 829 830 priv->num_tx_queues = num_tx_qs; 831 netif_set_real_num_rx_queues(dev, num_rx_qs); 832 priv->num_rx_queues = num_rx_qs; 833 834 err = gfar_alloc_tx_queues(priv); 835 if (err) 836 goto tx_alloc_failed; 837 838 err = gfar_alloc_rx_queues(priv); 839 if (err) 840 goto rx_alloc_failed; 841 842 /* Init Rx queue filer rule set linked list */ 843 INIT_LIST_HEAD(&priv->rx_list.list); 844 priv->rx_list.count = 0; 845 mutex_init(&priv->rx_queue_access); 846 847 model = of_get_property(np, "model", NULL); 848 849 for (i = 0; i < MAXGROUPS; i++) 850 priv->gfargrp[i].regs = NULL; 851 852 /* Parse and initialize group specific information */ 853 if (priv->mode == MQ_MG_MODE) { 854 for_each_child_of_node(np, child) { 855 err = gfar_parse_group(child, priv, model); 856 if (err) 857 goto err_grp_init; 858 } 859 } else { /* SQ_SG_MODE */ 860 err = gfar_parse_group(np, priv, model); 861 if (err) 862 goto err_grp_init; 863 } 864 865 stash = of_get_property(np, "bd-stash", NULL); 866 867 if (stash) { 868 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 869 priv->bd_stash_en = 1; 870 } 871 872 stash_len = of_get_property(np, "rx-stash-len", NULL); 873 874 if (stash_len) 875 priv->rx_stash_size = *stash_len; 876 877 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 878 879 if (stash_idx) 880 priv->rx_stash_index = *stash_idx; 881 882 if (stash_len || stash_idx) 883 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 884 885 mac_addr = of_get_mac_address(np); 886 887 if (mac_addr) 888 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 889 890 if (model && !strcasecmp(model, "TSEC")) 891 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 892 FSL_GIANFAR_DEV_HAS_COALESCE | 893 FSL_GIANFAR_DEV_HAS_RMON | 894 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 895 896 if (model && !strcasecmp(model, "eTSEC")) 897 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 898 FSL_GIANFAR_DEV_HAS_COALESCE | 899 FSL_GIANFAR_DEV_HAS_RMON | 900 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 901 FSL_GIANFAR_DEV_HAS_CSUM | 902 FSL_GIANFAR_DEV_HAS_VLAN | 903 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 904 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 905 FSL_GIANFAR_DEV_HAS_TIMER; 906 907 ctype = of_get_property(np, "phy-connection-type", NULL); 908 909 /* We only care about rgmii-id. The rest are autodetected */ 910 if (ctype && !strcmp(ctype, "rgmii-id")) 911 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 912 else 913 priv->interface = PHY_INTERFACE_MODE_MII; 914 915 if (of_get_property(np, "fsl,magic-packet", NULL)) 916 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 917 918 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 919 920 /* In the case of a fixed PHY, the DT node associated 921 * to the PHY is the Ethernet MAC DT node. 922 */ 923 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 924 err = of_phy_register_fixed_link(np); 925 if (err) 926 goto err_grp_init; 927 928 priv->phy_node = of_node_get(np); 929 } 930 931 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 932 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 933 934 return 0; 935 936 err_grp_init: 937 unmap_group_regs(priv); 938 rx_alloc_failed: 939 gfar_free_rx_queues(priv); 940 tx_alloc_failed: 941 gfar_free_tx_queues(priv); 942 free_gfar_dev(priv); 943 return err; 944 } 945 946 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 947 { 948 struct hwtstamp_config config; 949 struct gfar_private *priv = netdev_priv(netdev); 950 951 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 952 return -EFAULT; 953 954 /* reserved for future extensions */ 955 if (config.flags) 956 return -EINVAL; 957 958 switch (config.tx_type) { 959 case HWTSTAMP_TX_OFF: 960 priv->hwts_tx_en = 0; 961 break; 962 case HWTSTAMP_TX_ON: 963 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 964 return -ERANGE; 965 priv->hwts_tx_en = 1; 966 break; 967 default: 968 return -ERANGE; 969 } 970 971 switch (config.rx_filter) { 972 case HWTSTAMP_FILTER_NONE: 973 if (priv->hwts_rx_en) { 974 priv->hwts_rx_en = 0; 975 reset_gfar(netdev); 976 } 977 break; 978 default: 979 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 980 return -ERANGE; 981 if (!priv->hwts_rx_en) { 982 priv->hwts_rx_en = 1; 983 reset_gfar(netdev); 984 } 985 config.rx_filter = HWTSTAMP_FILTER_ALL; 986 break; 987 } 988 989 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 990 -EFAULT : 0; 991 } 992 993 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 994 { 995 struct hwtstamp_config config; 996 struct gfar_private *priv = netdev_priv(netdev); 997 998 config.flags = 0; 999 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1000 config.rx_filter = (priv->hwts_rx_en ? 1001 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 1002 1003 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1004 -EFAULT : 0; 1005 } 1006 1007 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1008 { 1009 struct gfar_private *priv = netdev_priv(dev); 1010 1011 if (!netif_running(dev)) 1012 return -EINVAL; 1013 1014 if (cmd == SIOCSHWTSTAMP) 1015 return gfar_hwtstamp_set(dev, rq); 1016 if (cmd == SIOCGHWTSTAMP) 1017 return gfar_hwtstamp_get(dev, rq); 1018 1019 if (!priv->phydev) 1020 return -ENODEV; 1021 1022 return phy_mii_ioctl(priv->phydev, rq, cmd); 1023 } 1024 1025 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 1026 u32 class) 1027 { 1028 u32 rqfpr = FPR_FILER_MASK; 1029 u32 rqfcr = 0x0; 1030 1031 rqfar--; 1032 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 1033 priv->ftp_rqfpr[rqfar] = rqfpr; 1034 priv->ftp_rqfcr[rqfar] = rqfcr; 1035 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1036 1037 rqfar--; 1038 rqfcr = RQFCR_CMP_NOMATCH; 1039 priv->ftp_rqfpr[rqfar] = rqfpr; 1040 priv->ftp_rqfcr[rqfar] = rqfcr; 1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1042 1043 rqfar--; 1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 1045 rqfpr = class; 1046 priv->ftp_rqfcr[rqfar] = rqfcr; 1047 priv->ftp_rqfpr[rqfar] = rqfpr; 1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1049 1050 rqfar--; 1051 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 1052 rqfpr = class; 1053 priv->ftp_rqfcr[rqfar] = rqfcr; 1054 priv->ftp_rqfpr[rqfar] = rqfpr; 1055 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1056 1057 return rqfar; 1058 } 1059 1060 static void gfar_init_filer_table(struct gfar_private *priv) 1061 { 1062 int i = 0x0; 1063 u32 rqfar = MAX_FILER_IDX; 1064 u32 rqfcr = 0x0; 1065 u32 rqfpr = FPR_FILER_MASK; 1066 1067 /* Default rule */ 1068 rqfcr = RQFCR_CMP_MATCH; 1069 priv->ftp_rqfcr[rqfar] = rqfcr; 1070 priv->ftp_rqfpr[rqfar] = rqfpr; 1071 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1072 1073 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1074 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1075 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1076 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1077 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1078 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1079 1080 /* cur_filer_idx indicated the first non-masked rule */ 1081 priv->cur_filer_idx = rqfar; 1082 1083 /* Rest are masked rules */ 1084 rqfcr = RQFCR_CMP_NOMATCH; 1085 for (i = 0; i < rqfar; i++) { 1086 priv->ftp_rqfcr[i] = rqfcr; 1087 priv->ftp_rqfpr[i] = rqfpr; 1088 gfar_write_filer(priv, i, rqfcr, rqfpr); 1089 } 1090 } 1091 1092 #ifdef CONFIG_PPC 1093 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1094 { 1095 unsigned int pvr = mfspr(SPRN_PVR); 1096 unsigned int svr = mfspr(SPRN_SVR); 1097 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1098 unsigned int rev = svr & 0xffff; 1099 1100 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1101 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1102 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1103 priv->errata |= GFAR_ERRATA_74; 1104 1105 /* MPC8313 and MPC837x all rev */ 1106 if ((pvr == 0x80850010 && mod == 0x80b0) || 1107 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1108 priv->errata |= GFAR_ERRATA_76; 1109 1110 /* MPC8313 Rev < 2.0 */ 1111 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1112 priv->errata |= GFAR_ERRATA_12; 1113 } 1114 1115 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1116 { 1117 unsigned int svr = mfspr(SPRN_SVR); 1118 1119 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1120 priv->errata |= GFAR_ERRATA_12; 1121 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1122 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1123 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1124 } 1125 #endif 1126 1127 static void gfar_detect_errata(struct gfar_private *priv) 1128 { 1129 struct device *dev = &priv->ofdev->dev; 1130 1131 /* no plans to fix */ 1132 priv->errata |= GFAR_ERRATA_A002; 1133 1134 #ifdef CONFIG_PPC 1135 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1136 __gfar_detect_errata_85xx(priv); 1137 else /* non-mpc85xx parts, i.e. e300 core based */ 1138 __gfar_detect_errata_83xx(priv); 1139 #endif 1140 1141 if (priv->errata) 1142 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1143 priv->errata); 1144 } 1145 1146 void gfar_mac_reset(struct gfar_private *priv) 1147 { 1148 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1149 u32 tempval; 1150 1151 /* Reset MAC layer */ 1152 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1153 1154 /* We need to delay at least 3 TX clocks */ 1155 udelay(3); 1156 1157 /* the soft reset bit is not self-resetting, so we need to 1158 * clear it before resuming normal operation 1159 */ 1160 gfar_write(®s->maccfg1, 0); 1161 1162 udelay(3); 1163 1164 /* Compute rx_buff_size based on config flags */ 1165 gfar_rx_buff_size_config(priv); 1166 1167 /* Initialize the max receive frame/buffer lengths */ 1168 gfar_write(®s->maxfrm, priv->rx_buffer_size); 1169 gfar_write(®s->mrblr, priv->rx_buffer_size); 1170 1171 /* Initialize the Minimum Frame Length Register */ 1172 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1173 1174 /* Initialize MACCFG2. */ 1175 tempval = MACCFG2_INIT_SETTINGS; 1176 1177 /* If the mtu is larger than the max size for standard 1178 * ethernet frames (ie, a jumbo frame), then set maccfg2 1179 * to allow huge frames, and to check the length 1180 */ 1181 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 1182 gfar_has_errata(priv, GFAR_ERRATA_74)) 1183 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1184 1185 gfar_write(®s->maccfg2, tempval); 1186 1187 /* Clear mac addr hash registers */ 1188 gfar_write(®s->igaddr0, 0); 1189 gfar_write(®s->igaddr1, 0); 1190 gfar_write(®s->igaddr2, 0); 1191 gfar_write(®s->igaddr3, 0); 1192 gfar_write(®s->igaddr4, 0); 1193 gfar_write(®s->igaddr5, 0); 1194 gfar_write(®s->igaddr6, 0); 1195 gfar_write(®s->igaddr7, 0); 1196 1197 gfar_write(®s->gaddr0, 0); 1198 gfar_write(®s->gaddr1, 0); 1199 gfar_write(®s->gaddr2, 0); 1200 gfar_write(®s->gaddr3, 0); 1201 gfar_write(®s->gaddr4, 0); 1202 gfar_write(®s->gaddr5, 0); 1203 gfar_write(®s->gaddr6, 0); 1204 gfar_write(®s->gaddr7, 0); 1205 1206 if (priv->extended_hash) 1207 gfar_clear_exact_match(priv->ndev); 1208 1209 gfar_mac_rx_config(priv); 1210 1211 gfar_mac_tx_config(priv); 1212 1213 gfar_set_mac_address(priv->ndev); 1214 1215 gfar_set_multi(priv->ndev); 1216 1217 /* clear ievent and imask before configuring coalescing */ 1218 gfar_ints_disable(priv); 1219 1220 /* Configure the coalescing support */ 1221 gfar_configure_coalescing_all(priv); 1222 } 1223 1224 static void gfar_hw_init(struct gfar_private *priv) 1225 { 1226 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1227 u32 attrs; 1228 1229 /* Stop the DMA engine now, in case it was running before 1230 * (The firmware could have used it, and left it running). 1231 */ 1232 gfar_halt(priv); 1233 1234 gfar_mac_reset(priv); 1235 1236 /* Zero out the rmon mib registers if it has them */ 1237 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1238 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1239 1240 /* Mask off the CAM interrupts */ 1241 gfar_write(®s->rmon.cam1, 0xffffffff); 1242 gfar_write(®s->rmon.cam2, 0xffffffff); 1243 } 1244 1245 /* Initialize ECNTRL */ 1246 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1247 1248 /* Set the extraction length and index */ 1249 attrs = ATTRELI_EL(priv->rx_stash_size) | 1250 ATTRELI_EI(priv->rx_stash_index); 1251 1252 gfar_write(®s->attreli, attrs); 1253 1254 /* Start with defaults, and add stashing 1255 * depending on driver parameters 1256 */ 1257 attrs = ATTR_INIT_SETTINGS; 1258 1259 if (priv->bd_stash_en) 1260 attrs |= ATTR_BDSTASH; 1261 1262 if (priv->rx_stash_size != 0) 1263 attrs |= ATTR_BUFSTASH; 1264 1265 gfar_write(®s->attr, attrs); 1266 1267 /* FIFO configs */ 1268 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1269 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1270 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1271 1272 /* Program the interrupt steering regs, only for MG devices */ 1273 if (priv->num_grps > 1) 1274 gfar_write_isrg(priv); 1275 } 1276 1277 static void gfar_init_addr_hash_table(struct gfar_private *priv) 1278 { 1279 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1280 1281 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1282 priv->extended_hash = 1; 1283 priv->hash_width = 9; 1284 1285 priv->hash_regs[0] = ®s->igaddr0; 1286 priv->hash_regs[1] = ®s->igaddr1; 1287 priv->hash_regs[2] = ®s->igaddr2; 1288 priv->hash_regs[3] = ®s->igaddr3; 1289 priv->hash_regs[4] = ®s->igaddr4; 1290 priv->hash_regs[5] = ®s->igaddr5; 1291 priv->hash_regs[6] = ®s->igaddr6; 1292 priv->hash_regs[7] = ®s->igaddr7; 1293 priv->hash_regs[8] = ®s->gaddr0; 1294 priv->hash_regs[9] = ®s->gaddr1; 1295 priv->hash_regs[10] = ®s->gaddr2; 1296 priv->hash_regs[11] = ®s->gaddr3; 1297 priv->hash_regs[12] = ®s->gaddr4; 1298 priv->hash_regs[13] = ®s->gaddr5; 1299 priv->hash_regs[14] = ®s->gaddr6; 1300 priv->hash_regs[15] = ®s->gaddr7; 1301 1302 } else { 1303 priv->extended_hash = 0; 1304 priv->hash_width = 8; 1305 1306 priv->hash_regs[0] = ®s->gaddr0; 1307 priv->hash_regs[1] = ®s->gaddr1; 1308 priv->hash_regs[2] = ®s->gaddr2; 1309 priv->hash_regs[3] = ®s->gaddr3; 1310 priv->hash_regs[4] = ®s->gaddr4; 1311 priv->hash_regs[5] = ®s->gaddr5; 1312 priv->hash_regs[6] = ®s->gaddr6; 1313 priv->hash_regs[7] = ®s->gaddr7; 1314 } 1315 } 1316 1317 /* Set up the ethernet device structure, private data, 1318 * and anything else we need before we start 1319 */ 1320 static int gfar_probe(struct platform_device *ofdev) 1321 { 1322 struct net_device *dev = NULL; 1323 struct gfar_private *priv = NULL; 1324 int err = 0, i; 1325 1326 err = gfar_of_init(ofdev, &dev); 1327 1328 if (err) 1329 return err; 1330 1331 priv = netdev_priv(dev); 1332 priv->ndev = dev; 1333 priv->ofdev = ofdev; 1334 priv->dev = &ofdev->dev; 1335 SET_NETDEV_DEV(dev, &ofdev->dev); 1336 1337 spin_lock_init(&priv->bflock); 1338 INIT_WORK(&priv->reset_task, gfar_reset_task); 1339 1340 platform_set_drvdata(ofdev, priv); 1341 1342 gfar_detect_errata(priv); 1343 1344 /* Set the dev->base_addr to the gfar reg region */ 1345 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1346 1347 /* Fill in the dev structure */ 1348 dev->watchdog_timeo = TX_TIMEOUT; 1349 dev->mtu = 1500; 1350 dev->netdev_ops = &gfar_netdev_ops; 1351 dev->ethtool_ops = &gfar_ethtool_ops; 1352 1353 /* Register for napi ...We are registering NAPI for each grp */ 1354 for (i = 0; i < priv->num_grps; i++) { 1355 if (priv->poll_mode == GFAR_SQ_POLLING) { 1356 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1357 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1358 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1359 gfar_poll_tx_sq, 2); 1360 } else { 1361 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1362 gfar_poll_rx, GFAR_DEV_WEIGHT); 1363 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1364 gfar_poll_tx, 2); 1365 } 1366 } 1367 1368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1369 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1370 NETIF_F_RXCSUM; 1371 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1372 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1373 } 1374 1375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1376 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1377 NETIF_F_HW_VLAN_CTAG_RX; 1378 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1379 } 1380 1381 gfar_init_addr_hash_table(priv); 1382 1383 /* Insert receive time stamps into padding alignment bytes */ 1384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1385 priv->padding = 8; 1386 1387 if (dev->features & NETIF_F_IP_CSUM || 1388 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1389 dev->needed_headroom = GMAC_FCB_LEN; 1390 1391 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1392 1393 /* Initializing some of the rx/tx queue level parameters */ 1394 for (i = 0; i < priv->num_tx_queues; i++) { 1395 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1396 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1397 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1398 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1399 } 1400 1401 for (i = 0; i < priv->num_rx_queues; i++) { 1402 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1403 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1404 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1405 } 1406 1407 /* always enable rx filer */ 1408 priv->rx_filer_enable = 1; 1409 /* Enable most messages by default */ 1410 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1411 /* use pritority h/w tx queue scheduling for single queue devices */ 1412 if (priv->num_tx_queues == 1) 1413 priv->prio_sched_en = 1; 1414 1415 set_bit(GFAR_DOWN, &priv->state); 1416 1417 gfar_hw_init(priv); 1418 1419 /* Carrier starts down, phylib will bring it up */ 1420 netif_carrier_off(dev); 1421 1422 err = register_netdev(dev); 1423 1424 if (err) { 1425 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1426 goto register_fail; 1427 } 1428 1429 device_init_wakeup(&dev->dev, 1430 priv->device_flags & 1431 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1432 1433 /* fill out IRQ number and name fields */ 1434 for (i = 0; i < priv->num_grps; i++) { 1435 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1436 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1437 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1438 dev->name, "_g", '0' + i, "_tx"); 1439 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1440 dev->name, "_g", '0' + i, "_rx"); 1441 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1442 dev->name, "_g", '0' + i, "_er"); 1443 } else 1444 strcpy(gfar_irq(grp, TX)->name, dev->name); 1445 } 1446 1447 /* Initialize the filer table */ 1448 gfar_init_filer_table(priv); 1449 1450 /* Print out the device info */ 1451 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1452 1453 /* Even more device info helps when determining which kernel 1454 * provided which set of benchmarks. 1455 */ 1456 netdev_info(dev, "Running with NAPI enabled\n"); 1457 for (i = 0; i < priv->num_rx_queues; i++) 1458 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1459 i, priv->rx_queue[i]->rx_ring_size); 1460 for (i = 0; i < priv->num_tx_queues; i++) 1461 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1462 i, priv->tx_queue[i]->tx_ring_size); 1463 1464 return 0; 1465 1466 register_fail: 1467 unmap_group_regs(priv); 1468 gfar_free_rx_queues(priv); 1469 gfar_free_tx_queues(priv); 1470 of_node_put(priv->phy_node); 1471 of_node_put(priv->tbi_node); 1472 free_gfar_dev(priv); 1473 return err; 1474 } 1475 1476 static int gfar_remove(struct platform_device *ofdev) 1477 { 1478 struct gfar_private *priv = platform_get_drvdata(ofdev); 1479 1480 of_node_put(priv->phy_node); 1481 of_node_put(priv->tbi_node); 1482 1483 unregister_netdev(priv->ndev); 1484 unmap_group_regs(priv); 1485 gfar_free_rx_queues(priv); 1486 gfar_free_tx_queues(priv); 1487 free_gfar_dev(priv); 1488 1489 return 0; 1490 } 1491 1492 #ifdef CONFIG_PM 1493 1494 static int gfar_suspend(struct device *dev) 1495 { 1496 struct gfar_private *priv = dev_get_drvdata(dev); 1497 struct net_device *ndev = priv->ndev; 1498 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1499 unsigned long flags; 1500 u32 tempval; 1501 1502 int magic_packet = priv->wol_en && 1503 (priv->device_flags & 1504 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1505 1506 netif_device_detach(ndev); 1507 1508 if (netif_running(ndev)) { 1509 1510 local_irq_save(flags); 1511 lock_tx_qs(priv); 1512 1513 gfar_halt_nodisable(priv); 1514 1515 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1516 tempval = gfar_read(®s->maccfg1); 1517 1518 tempval &= ~MACCFG1_TX_EN; 1519 1520 if (!magic_packet) 1521 tempval &= ~MACCFG1_RX_EN; 1522 1523 gfar_write(®s->maccfg1, tempval); 1524 1525 unlock_tx_qs(priv); 1526 local_irq_restore(flags); 1527 1528 disable_napi(priv); 1529 1530 if (magic_packet) { 1531 /* Enable interrupt on Magic Packet */ 1532 gfar_write(®s->imask, IMASK_MAG); 1533 1534 /* Enable Magic Packet mode */ 1535 tempval = gfar_read(®s->maccfg2); 1536 tempval |= MACCFG2_MPEN; 1537 gfar_write(®s->maccfg2, tempval); 1538 } else { 1539 phy_stop(priv->phydev); 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int gfar_resume(struct device *dev) 1547 { 1548 struct gfar_private *priv = dev_get_drvdata(dev); 1549 struct net_device *ndev = priv->ndev; 1550 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1551 unsigned long flags; 1552 u32 tempval; 1553 int magic_packet = priv->wol_en && 1554 (priv->device_flags & 1555 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1556 1557 if (!netif_running(ndev)) { 1558 netif_device_attach(ndev); 1559 return 0; 1560 } 1561 1562 if (!magic_packet && priv->phydev) 1563 phy_start(priv->phydev); 1564 1565 /* Disable Magic Packet mode, in case something 1566 * else woke us up. 1567 */ 1568 local_irq_save(flags); 1569 lock_tx_qs(priv); 1570 1571 tempval = gfar_read(®s->maccfg2); 1572 tempval &= ~MACCFG2_MPEN; 1573 gfar_write(®s->maccfg2, tempval); 1574 1575 gfar_start(priv); 1576 1577 unlock_tx_qs(priv); 1578 local_irq_restore(flags); 1579 1580 netif_device_attach(ndev); 1581 1582 enable_napi(priv); 1583 1584 return 0; 1585 } 1586 1587 static int gfar_restore(struct device *dev) 1588 { 1589 struct gfar_private *priv = dev_get_drvdata(dev); 1590 struct net_device *ndev = priv->ndev; 1591 1592 if (!netif_running(ndev)) { 1593 netif_device_attach(ndev); 1594 1595 return 0; 1596 } 1597 1598 if (gfar_init_bds(ndev)) { 1599 free_skb_resources(priv); 1600 return -ENOMEM; 1601 } 1602 1603 gfar_mac_reset(priv); 1604 1605 gfar_init_tx_rx_base(priv); 1606 1607 gfar_start(priv); 1608 1609 priv->oldlink = 0; 1610 priv->oldspeed = 0; 1611 priv->oldduplex = -1; 1612 1613 if (priv->phydev) 1614 phy_start(priv->phydev); 1615 1616 netif_device_attach(ndev); 1617 enable_napi(priv); 1618 1619 return 0; 1620 } 1621 1622 static struct dev_pm_ops gfar_pm_ops = { 1623 .suspend = gfar_suspend, 1624 .resume = gfar_resume, 1625 .freeze = gfar_suspend, 1626 .thaw = gfar_resume, 1627 .restore = gfar_restore, 1628 }; 1629 1630 #define GFAR_PM_OPS (&gfar_pm_ops) 1631 1632 #else 1633 1634 #define GFAR_PM_OPS NULL 1635 1636 #endif 1637 1638 /* Reads the controller's registers to determine what interface 1639 * connects it to the PHY. 1640 */ 1641 static phy_interface_t gfar_get_interface(struct net_device *dev) 1642 { 1643 struct gfar_private *priv = netdev_priv(dev); 1644 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1645 u32 ecntrl; 1646 1647 ecntrl = gfar_read(®s->ecntrl); 1648 1649 if (ecntrl & ECNTRL_SGMII_MODE) 1650 return PHY_INTERFACE_MODE_SGMII; 1651 1652 if (ecntrl & ECNTRL_TBI_MODE) { 1653 if (ecntrl & ECNTRL_REDUCED_MODE) 1654 return PHY_INTERFACE_MODE_RTBI; 1655 else 1656 return PHY_INTERFACE_MODE_TBI; 1657 } 1658 1659 if (ecntrl & ECNTRL_REDUCED_MODE) { 1660 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1661 return PHY_INTERFACE_MODE_RMII; 1662 } 1663 else { 1664 phy_interface_t interface = priv->interface; 1665 1666 /* This isn't autodetected right now, so it must 1667 * be set by the device tree or platform code. 1668 */ 1669 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1670 return PHY_INTERFACE_MODE_RGMII_ID; 1671 1672 return PHY_INTERFACE_MODE_RGMII; 1673 } 1674 } 1675 1676 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1677 return PHY_INTERFACE_MODE_GMII; 1678 1679 return PHY_INTERFACE_MODE_MII; 1680 } 1681 1682 1683 /* Initializes driver's PHY state, and attaches to the PHY. 1684 * Returns 0 on success. 1685 */ 1686 static int init_phy(struct net_device *dev) 1687 { 1688 struct gfar_private *priv = netdev_priv(dev); 1689 uint gigabit_support = 1690 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1691 GFAR_SUPPORTED_GBIT : 0; 1692 phy_interface_t interface; 1693 1694 priv->oldlink = 0; 1695 priv->oldspeed = 0; 1696 priv->oldduplex = -1; 1697 1698 interface = gfar_get_interface(dev); 1699 1700 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1701 interface); 1702 if (!priv->phydev) { 1703 dev_err(&dev->dev, "could not attach to PHY\n"); 1704 return -ENODEV; 1705 } 1706 1707 if (interface == PHY_INTERFACE_MODE_SGMII) 1708 gfar_configure_serdes(dev); 1709 1710 /* Remove any features not supported by the controller */ 1711 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1712 priv->phydev->advertising = priv->phydev->supported; 1713 1714 /* Add support for flow control, but don't advertise it by default */ 1715 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); 1716 1717 return 0; 1718 } 1719 1720 /* Initialize TBI PHY interface for communicating with the 1721 * SERDES lynx PHY on the chip. We communicate with this PHY 1722 * through the MDIO bus on each controller, treating it as a 1723 * "normal" PHY at the address found in the TBIPA register. We assume 1724 * that the TBIPA register is valid. Either the MDIO bus code will set 1725 * it to a value that doesn't conflict with other PHYs on the bus, or the 1726 * value doesn't matter, as there are no other PHYs on the bus. 1727 */ 1728 static void gfar_configure_serdes(struct net_device *dev) 1729 { 1730 struct gfar_private *priv = netdev_priv(dev); 1731 struct phy_device *tbiphy; 1732 1733 if (!priv->tbi_node) { 1734 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1735 "device tree specify a tbi-handle\n"); 1736 return; 1737 } 1738 1739 tbiphy = of_phy_find_device(priv->tbi_node); 1740 if (!tbiphy) { 1741 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1742 return; 1743 } 1744 1745 /* If the link is already up, we must already be ok, and don't need to 1746 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1747 * everything for us? Resetting it takes the link down and requires 1748 * several seconds for it to come back. 1749 */ 1750 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1751 return; 1752 1753 /* Single clk mode, mii mode off(for serdes communication) */ 1754 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1755 1756 phy_write(tbiphy, MII_ADVERTISE, 1757 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1758 ADVERTISE_1000XPSE_ASYM); 1759 1760 phy_write(tbiphy, MII_BMCR, 1761 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1762 BMCR_SPEED1000); 1763 } 1764 1765 static int __gfar_is_rx_idle(struct gfar_private *priv) 1766 { 1767 u32 res; 1768 1769 /* Normaly TSEC should not hang on GRS commands, so we should 1770 * actually wait for IEVENT_GRSC flag. 1771 */ 1772 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1773 return 0; 1774 1775 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1776 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1777 * and the Rx can be safely reset. 1778 */ 1779 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1780 res &= 0x7f807f80; 1781 if ((res & 0xffff) == (res >> 16)) 1782 return 1; 1783 1784 return 0; 1785 } 1786 1787 /* Halt the receive and transmit queues */ 1788 static void gfar_halt_nodisable(struct gfar_private *priv) 1789 { 1790 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1791 u32 tempval; 1792 unsigned int timeout; 1793 int stopped; 1794 1795 gfar_ints_disable(priv); 1796 1797 if (gfar_is_dma_stopped(priv)) 1798 return; 1799 1800 /* Stop the DMA, and wait for it to stop */ 1801 tempval = gfar_read(®s->dmactrl); 1802 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1803 gfar_write(®s->dmactrl, tempval); 1804 1805 retry: 1806 timeout = 1000; 1807 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1808 cpu_relax(); 1809 timeout--; 1810 } 1811 1812 if (!timeout) 1813 stopped = gfar_is_dma_stopped(priv); 1814 1815 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1816 !__gfar_is_rx_idle(priv)) 1817 goto retry; 1818 } 1819 1820 /* Halt the receive and transmit queues */ 1821 void gfar_halt(struct gfar_private *priv) 1822 { 1823 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1824 u32 tempval; 1825 1826 /* Dissable the Rx/Tx hw queues */ 1827 gfar_write(®s->rqueue, 0); 1828 gfar_write(®s->tqueue, 0); 1829 1830 mdelay(10); 1831 1832 gfar_halt_nodisable(priv); 1833 1834 /* Disable Rx/Tx DMA */ 1835 tempval = gfar_read(®s->maccfg1); 1836 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1837 gfar_write(®s->maccfg1, tempval); 1838 } 1839 1840 void stop_gfar(struct net_device *dev) 1841 { 1842 struct gfar_private *priv = netdev_priv(dev); 1843 1844 netif_tx_stop_all_queues(dev); 1845 1846 smp_mb__before_atomic(); 1847 set_bit(GFAR_DOWN, &priv->state); 1848 smp_mb__after_atomic(); 1849 1850 disable_napi(priv); 1851 1852 /* disable ints and gracefully shut down Rx/Tx DMA */ 1853 gfar_halt(priv); 1854 1855 phy_stop(priv->phydev); 1856 1857 free_skb_resources(priv); 1858 } 1859 1860 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1861 { 1862 struct txbd8 *txbdp; 1863 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1864 int i, j; 1865 1866 txbdp = tx_queue->tx_bd_base; 1867 1868 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1869 if (!tx_queue->tx_skbuff[i]) 1870 continue; 1871 1872 dma_unmap_single(priv->dev, txbdp->bufPtr, 1873 txbdp->length, DMA_TO_DEVICE); 1874 txbdp->lstatus = 0; 1875 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1876 j++) { 1877 txbdp++; 1878 dma_unmap_page(priv->dev, txbdp->bufPtr, 1879 txbdp->length, DMA_TO_DEVICE); 1880 } 1881 txbdp++; 1882 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1883 tx_queue->tx_skbuff[i] = NULL; 1884 } 1885 kfree(tx_queue->tx_skbuff); 1886 tx_queue->tx_skbuff = NULL; 1887 } 1888 1889 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1890 { 1891 struct rxbd8 *rxbdp; 1892 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1893 int i; 1894 1895 rxbdp = rx_queue->rx_bd_base; 1896 1897 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1898 if (rx_queue->rx_skbuff[i]) { 1899 dma_unmap_single(priv->dev, rxbdp->bufPtr, 1900 priv->rx_buffer_size, 1901 DMA_FROM_DEVICE); 1902 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1903 rx_queue->rx_skbuff[i] = NULL; 1904 } 1905 rxbdp->lstatus = 0; 1906 rxbdp->bufPtr = 0; 1907 rxbdp++; 1908 } 1909 kfree(rx_queue->rx_skbuff); 1910 rx_queue->rx_skbuff = NULL; 1911 } 1912 1913 /* If there are any tx skbs or rx skbs still around, free them. 1914 * Then free tx_skbuff and rx_skbuff 1915 */ 1916 static void free_skb_resources(struct gfar_private *priv) 1917 { 1918 struct gfar_priv_tx_q *tx_queue = NULL; 1919 struct gfar_priv_rx_q *rx_queue = NULL; 1920 int i; 1921 1922 /* Go through all the buffer descriptors and free their data buffers */ 1923 for (i = 0; i < priv->num_tx_queues; i++) { 1924 struct netdev_queue *txq; 1925 1926 tx_queue = priv->tx_queue[i]; 1927 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1928 if (tx_queue->tx_skbuff) 1929 free_skb_tx_queue(tx_queue); 1930 netdev_tx_reset_queue(txq); 1931 } 1932 1933 for (i = 0; i < priv->num_rx_queues; i++) { 1934 rx_queue = priv->rx_queue[i]; 1935 if (rx_queue->rx_skbuff) 1936 free_skb_rx_queue(rx_queue); 1937 } 1938 1939 dma_free_coherent(priv->dev, 1940 sizeof(struct txbd8) * priv->total_tx_ring_size + 1941 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1942 priv->tx_queue[0]->tx_bd_base, 1943 priv->tx_queue[0]->tx_bd_dma_base); 1944 } 1945 1946 void gfar_start(struct gfar_private *priv) 1947 { 1948 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1949 u32 tempval; 1950 int i = 0; 1951 1952 /* Enable Rx/Tx hw queues */ 1953 gfar_write(®s->rqueue, priv->rqueue); 1954 gfar_write(®s->tqueue, priv->tqueue); 1955 1956 /* Initialize DMACTRL to have WWR and WOP */ 1957 tempval = gfar_read(®s->dmactrl); 1958 tempval |= DMACTRL_INIT_SETTINGS; 1959 gfar_write(®s->dmactrl, tempval); 1960 1961 /* Make sure we aren't stopped */ 1962 tempval = gfar_read(®s->dmactrl); 1963 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1964 gfar_write(®s->dmactrl, tempval); 1965 1966 for (i = 0; i < priv->num_grps; i++) { 1967 regs = priv->gfargrp[i].regs; 1968 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1969 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1970 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1971 } 1972 1973 /* Enable Rx/Tx DMA */ 1974 tempval = gfar_read(®s->maccfg1); 1975 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1976 gfar_write(®s->maccfg1, tempval); 1977 1978 gfar_ints_enable(priv); 1979 1980 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 1981 } 1982 1983 static void free_grp_irqs(struct gfar_priv_grp *grp) 1984 { 1985 free_irq(gfar_irq(grp, TX)->irq, grp); 1986 free_irq(gfar_irq(grp, RX)->irq, grp); 1987 free_irq(gfar_irq(grp, ER)->irq, grp); 1988 } 1989 1990 static int register_grp_irqs(struct gfar_priv_grp *grp) 1991 { 1992 struct gfar_private *priv = grp->priv; 1993 struct net_device *dev = priv->ndev; 1994 int err; 1995 1996 /* If the device has multiple interrupts, register for 1997 * them. Otherwise, only register for the one 1998 */ 1999 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2000 /* Install our interrupt handlers for Error, 2001 * Transmit, and Receive 2002 */ 2003 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2004 gfar_irq(grp, ER)->name, grp); 2005 if (err < 0) { 2006 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2007 gfar_irq(grp, ER)->irq); 2008 2009 goto err_irq_fail; 2010 } 2011 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2012 gfar_irq(grp, TX)->name, grp); 2013 if (err < 0) { 2014 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2015 gfar_irq(grp, TX)->irq); 2016 goto tx_irq_fail; 2017 } 2018 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2019 gfar_irq(grp, RX)->name, grp); 2020 if (err < 0) { 2021 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2022 gfar_irq(grp, RX)->irq); 2023 goto rx_irq_fail; 2024 } 2025 } else { 2026 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2027 gfar_irq(grp, TX)->name, grp); 2028 if (err < 0) { 2029 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2030 gfar_irq(grp, TX)->irq); 2031 goto err_irq_fail; 2032 } 2033 } 2034 2035 return 0; 2036 2037 rx_irq_fail: 2038 free_irq(gfar_irq(grp, TX)->irq, grp); 2039 tx_irq_fail: 2040 free_irq(gfar_irq(grp, ER)->irq, grp); 2041 err_irq_fail: 2042 return err; 2043 2044 } 2045 2046 static void gfar_free_irq(struct gfar_private *priv) 2047 { 2048 int i; 2049 2050 /* Free the IRQs */ 2051 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2052 for (i = 0; i < priv->num_grps; i++) 2053 free_grp_irqs(&priv->gfargrp[i]); 2054 } else { 2055 for (i = 0; i < priv->num_grps; i++) 2056 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2057 &priv->gfargrp[i]); 2058 } 2059 } 2060 2061 static int gfar_request_irq(struct gfar_private *priv) 2062 { 2063 int err, i, j; 2064 2065 for (i = 0; i < priv->num_grps; i++) { 2066 err = register_grp_irqs(&priv->gfargrp[i]); 2067 if (err) { 2068 for (j = 0; j < i; j++) 2069 free_grp_irqs(&priv->gfargrp[j]); 2070 return err; 2071 } 2072 } 2073 2074 return 0; 2075 } 2076 2077 /* Bring the controller up and running */ 2078 int startup_gfar(struct net_device *ndev) 2079 { 2080 struct gfar_private *priv = netdev_priv(ndev); 2081 int err; 2082 2083 gfar_mac_reset(priv); 2084 2085 err = gfar_alloc_skb_resources(ndev); 2086 if (err) 2087 return err; 2088 2089 gfar_init_tx_rx_base(priv); 2090 2091 smp_mb__before_atomic(); 2092 clear_bit(GFAR_DOWN, &priv->state); 2093 smp_mb__after_atomic(); 2094 2095 /* Start Rx/Tx DMA and enable the interrupts */ 2096 gfar_start(priv); 2097 2098 phy_start(priv->phydev); 2099 2100 enable_napi(priv); 2101 2102 netif_tx_wake_all_queues(ndev); 2103 2104 return 0; 2105 } 2106 2107 /* Called when something needs to use the ethernet device 2108 * Returns 0 for success. 2109 */ 2110 static int gfar_enet_open(struct net_device *dev) 2111 { 2112 struct gfar_private *priv = netdev_priv(dev); 2113 int err; 2114 2115 err = init_phy(dev); 2116 if (err) 2117 return err; 2118 2119 err = gfar_request_irq(priv); 2120 if (err) 2121 return err; 2122 2123 err = startup_gfar(dev); 2124 if (err) 2125 return err; 2126 2127 device_set_wakeup_enable(&dev->dev, priv->wol_en); 2128 2129 return err; 2130 } 2131 2132 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2133 { 2134 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2135 2136 memset(fcb, 0, GMAC_FCB_LEN); 2137 2138 return fcb; 2139 } 2140 2141 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2142 int fcb_length) 2143 { 2144 /* If we're here, it's a IP packet with a TCP or UDP 2145 * payload. We set it to checksum, using a pseudo-header 2146 * we provide 2147 */ 2148 u8 flags = TXFCB_DEFAULT; 2149 2150 /* Tell the controller what the protocol is 2151 * And provide the already calculated phcs 2152 */ 2153 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2154 flags |= TXFCB_UDP; 2155 fcb->phcs = udp_hdr(skb)->check; 2156 } else 2157 fcb->phcs = tcp_hdr(skb)->check; 2158 2159 /* l3os is the distance between the start of the 2160 * frame (skb->data) and the start of the IP hdr. 2161 * l4os is the distance between the start of the 2162 * l3 hdr and the l4 hdr 2163 */ 2164 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); 2165 fcb->l4os = skb_network_header_len(skb); 2166 2167 fcb->flags = flags; 2168 } 2169 2170 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2171 { 2172 fcb->flags |= TXFCB_VLN; 2173 fcb->vlctl = skb_vlan_tag_get(skb); 2174 } 2175 2176 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2177 struct txbd8 *base, int ring_size) 2178 { 2179 struct txbd8 *new_bd = bdp + stride; 2180 2181 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2182 } 2183 2184 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2185 int ring_size) 2186 { 2187 return skip_txbd(bdp, 1, base, ring_size); 2188 } 2189 2190 /* eTSEC12: csum generation not supported for some fcb offsets */ 2191 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2192 unsigned long fcb_addr) 2193 { 2194 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2195 (fcb_addr % 0x20) > 0x18); 2196 } 2197 2198 /* eTSEC76: csum generation for frames larger than 2500 may 2199 * cause excess delays before start of transmission 2200 */ 2201 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2202 unsigned int len) 2203 { 2204 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2205 (len > 2500)); 2206 } 2207 2208 /* This is called by the kernel when a frame is ready for transmission. 2209 * It is pointed to by the dev->hard_start_xmit function pointer 2210 */ 2211 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2212 { 2213 struct gfar_private *priv = netdev_priv(dev); 2214 struct gfar_priv_tx_q *tx_queue = NULL; 2215 struct netdev_queue *txq; 2216 struct gfar __iomem *regs = NULL; 2217 struct txfcb *fcb = NULL; 2218 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2219 u32 lstatus; 2220 int i, rq = 0; 2221 int do_tstamp, do_csum, do_vlan; 2222 u32 bufaddr; 2223 unsigned long flags; 2224 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2225 2226 rq = skb->queue_mapping; 2227 tx_queue = priv->tx_queue[rq]; 2228 txq = netdev_get_tx_queue(dev, rq); 2229 base = tx_queue->tx_bd_base; 2230 regs = tx_queue->grp->regs; 2231 2232 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2233 do_vlan = skb_vlan_tag_present(skb); 2234 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2235 priv->hwts_tx_en; 2236 2237 if (do_csum || do_vlan) 2238 fcb_len = GMAC_FCB_LEN; 2239 2240 /* check if time stamp should be generated */ 2241 if (unlikely(do_tstamp)) 2242 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2243 2244 /* make space for additional header when fcb is needed */ 2245 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2246 struct sk_buff *skb_new; 2247 2248 skb_new = skb_realloc_headroom(skb, fcb_len); 2249 if (!skb_new) { 2250 dev->stats.tx_errors++; 2251 dev_kfree_skb_any(skb); 2252 return NETDEV_TX_OK; 2253 } 2254 2255 if (skb->sk) 2256 skb_set_owner_w(skb_new, skb->sk); 2257 dev_consume_skb_any(skb); 2258 skb = skb_new; 2259 } 2260 2261 /* total number of fragments in the SKB */ 2262 nr_frags = skb_shinfo(skb)->nr_frags; 2263 2264 /* calculate the required number of TxBDs for this skb */ 2265 if (unlikely(do_tstamp)) 2266 nr_txbds = nr_frags + 2; 2267 else 2268 nr_txbds = nr_frags + 1; 2269 2270 /* check if there is space to queue this packet */ 2271 if (nr_txbds > tx_queue->num_txbdfree) { 2272 /* no space, stop the queue */ 2273 netif_tx_stop_queue(txq); 2274 dev->stats.tx_fifo_errors++; 2275 return NETDEV_TX_BUSY; 2276 } 2277 2278 /* Update transmit stats */ 2279 bytes_sent = skb->len; 2280 tx_queue->stats.tx_bytes += bytes_sent; 2281 /* keep Tx bytes on wire for BQL accounting */ 2282 GFAR_CB(skb)->bytes_sent = bytes_sent; 2283 tx_queue->stats.tx_packets++; 2284 2285 txbdp = txbdp_start = tx_queue->cur_tx; 2286 lstatus = txbdp->lstatus; 2287 2288 /* Time stamp insertion requires one additional TxBD */ 2289 if (unlikely(do_tstamp)) 2290 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2291 tx_queue->tx_ring_size); 2292 2293 if (nr_frags == 0) { 2294 if (unlikely(do_tstamp)) 2295 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | 2296 TXBD_INTERRUPT); 2297 else 2298 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2299 } else { 2300 /* Place the fragment addresses and lengths into the TxBDs */ 2301 for (i = 0; i < nr_frags; i++) { 2302 unsigned int frag_len; 2303 /* Point at the next BD, wrapping as needed */ 2304 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2305 2306 frag_len = skb_shinfo(skb)->frags[i].size; 2307 2308 lstatus = txbdp->lstatus | frag_len | 2309 BD_LFLAG(TXBD_READY); 2310 2311 /* Handle the last BD specially */ 2312 if (i == nr_frags - 1) 2313 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2314 2315 bufaddr = skb_frag_dma_map(priv->dev, 2316 &skb_shinfo(skb)->frags[i], 2317 0, 2318 frag_len, 2319 DMA_TO_DEVICE); 2320 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2321 goto dma_map_err; 2322 2323 /* set the TxBD length and buffer pointer */ 2324 txbdp->bufPtr = bufaddr; 2325 txbdp->lstatus = lstatus; 2326 } 2327 2328 lstatus = txbdp_start->lstatus; 2329 } 2330 2331 /* Add TxPAL between FCB and frame if required */ 2332 if (unlikely(do_tstamp)) { 2333 skb_push(skb, GMAC_TXPAL_LEN); 2334 memset(skb->data, 0, GMAC_TXPAL_LEN); 2335 } 2336 2337 /* Add TxFCB if required */ 2338 if (fcb_len) { 2339 fcb = gfar_add_fcb(skb); 2340 lstatus |= BD_LFLAG(TXBD_TOE); 2341 } 2342 2343 /* Set up checksumming */ 2344 if (do_csum) { 2345 gfar_tx_checksum(skb, fcb, fcb_len); 2346 2347 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2348 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2349 __skb_pull(skb, GMAC_FCB_LEN); 2350 skb_checksum_help(skb); 2351 if (do_vlan || do_tstamp) { 2352 /* put back a new fcb for vlan/tstamp TOE */ 2353 fcb = gfar_add_fcb(skb); 2354 } else { 2355 /* Tx TOE not used */ 2356 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2357 fcb = NULL; 2358 } 2359 } 2360 } 2361 2362 if (do_vlan) 2363 gfar_tx_vlan(skb, fcb); 2364 2365 /* Setup tx hardware time stamping if requested */ 2366 if (unlikely(do_tstamp)) { 2367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2368 fcb->ptp = 1; 2369 } 2370 2371 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 2372 DMA_TO_DEVICE); 2373 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2374 goto dma_map_err; 2375 2376 txbdp_start->bufPtr = bufaddr; 2377 2378 /* If time stamping is requested one additional TxBD must be set up. The 2379 * first TxBD points to the FCB and must have a data length of 2380 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2381 * the full frame length. 2382 */ 2383 if (unlikely(do_tstamp)) { 2384 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len; 2385 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | 2386 (skb_headlen(skb) - fcb_len); 2387 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2388 } else { 2389 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2390 } 2391 2392 netdev_tx_sent_queue(txq, bytes_sent); 2393 2394 /* We can work in parallel with gfar_clean_tx_ring(), except 2395 * when modifying num_txbdfree. Note that we didn't grab the lock 2396 * when we were reading the num_txbdfree and checking for available 2397 * space, that's because outside of this function it can only grow, 2398 * and once we've got needed space, it cannot suddenly disappear. 2399 * 2400 * The lock also protects us from gfar_error(), which can modify 2401 * regs->tstat and thus retrigger the transfers, which is why we 2402 * also must grab the lock before setting ready bit for the first 2403 * to be transmitted BD. 2404 */ 2405 spin_lock_irqsave(&tx_queue->txlock, flags); 2406 2407 gfar_wmb(); 2408 2409 txbdp_start->lstatus = lstatus; 2410 2411 gfar_wmb(); /* force lstatus write before tx_skbuff */ 2412 2413 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2414 2415 /* Update the current skb pointer to the next entry we will use 2416 * (wrapping if necessary) 2417 */ 2418 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2419 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2420 2421 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2422 2423 /* reduce TxBD free count */ 2424 tx_queue->num_txbdfree -= (nr_txbds); 2425 2426 /* If the next BD still needs to be cleaned up, then the bds 2427 * are full. We need to tell the kernel to stop sending us stuff. 2428 */ 2429 if (!tx_queue->num_txbdfree) { 2430 netif_tx_stop_queue(txq); 2431 2432 dev->stats.tx_fifo_errors++; 2433 } 2434 2435 /* Tell the DMA to go go go */ 2436 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2437 2438 /* Unlock priv */ 2439 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2440 2441 return NETDEV_TX_OK; 2442 2443 dma_map_err: 2444 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2445 if (do_tstamp) 2446 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2447 for (i = 0; i < nr_frags; i++) { 2448 lstatus = txbdp->lstatus; 2449 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2450 break; 2451 2452 txbdp->lstatus = lstatus & ~BD_LFLAG(TXBD_READY); 2453 bufaddr = txbdp->bufPtr; 2454 dma_unmap_page(priv->dev, bufaddr, txbdp->length, 2455 DMA_TO_DEVICE); 2456 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2457 } 2458 gfar_wmb(); 2459 dev_kfree_skb_any(skb); 2460 return NETDEV_TX_OK; 2461 } 2462 2463 /* Stops the kernel queue, and halts the controller */ 2464 static int gfar_close(struct net_device *dev) 2465 { 2466 struct gfar_private *priv = netdev_priv(dev); 2467 2468 cancel_work_sync(&priv->reset_task); 2469 stop_gfar(dev); 2470 2471 /* Disconnect from the PHY */ 2472 phy_disconnect(priv->phydev); 2473 priv->phydev = NULL; 2474 2475 gfar_free_irq(priv); 2476 2477 return 0; 2478 } 2479 2480 /* Changes the mac address if the controller is not running. */ 2481 static int gfar_set_mac_address(struct net_device *dev) 2482 { 2483 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2484 2485 return 0; 2486 } 2487 2488 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2489 { 2490 struct gfar_private *priv = netdev_priv(dev); 2491 int frame_size = new_mtu + ETH_HLEN; 2492 2493 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2494 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2495 return -EINVAL; 2496 } 2497 2498 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2499 cpu_relax(); 2500 2501 if (dev->flags & IFF_UP) 2502 stop_gfar(dev); 2503 2504 dev->mtu = new_mtu; 2505 2506 if (dev->flags & IFF_UP) 2507 startup_gfar(dev); 2508 2509 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2510 2511 return 0; 2512 } 2513 2514 void reset_gfar(struct net_device *ndev) 2515 { 2516 struct gfar_private *priv = netdev_priv(ndev); 2517 2518 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2519 cpu_relax(); 2520 2521 stop_gfar(ndev); 2522 startup_gfar(ndev); 2523 2524 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2525 } 2526 2527 /* gfar_reset_task gets scheduled when a packet has not been 2528 * transmitted after a set amount of time. 2529 * For now, assume that clearing out all the structures, and 2530 * starting over will fix the problem. 2531 */ 2532 static void gfar_reset_task(struct work_struct *work) 2533 { 2534 struct gfar_private *priv = container_of(work, struct gfar_private, 2535 reset_task); 2536 reset_gfar(priv->ndev); 2537 } 2538 2539 static void gfar_timeout(struct net_device *dev) 2540 { 2541 struct gfar_private *priv = netdev_priv(dev); 2542 2543 dev->stats.tx_errors++; 2544 schedule_work(&priv->reset_task); 2545 } 2546 2547 static void gfar_align_skb(struct sk_buff *skb) 2548 { 2549 /* We need the data buffer to be aligned properly. We will reserve 2550 * as many bytes as needed to align the data properly 2551 */ 2552 skb_reserve(skb, RXBUF_ALIGNMENT - 2553 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2554 } 2555 2556 /* Interrupt Handler for Transmit complete */ 2557 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2558 { 2559 struct net_device *dev = tx_queue->dev; 2560 struct netdev_queue *txq; 2561 struct gfar_private *priv = netdev_priv(dev); 2562 struct txbd8 *bdp, *next = NULL; 2563 struct txbd8 *lbdp = NULL; 2564 struct txbd8 *base = tx_queue->tx_bd_base; 2565 struct sk_buff *skb; 2566 int skb_dirtytx; 2567 int tx_ring_size = tx_queue->tx_ring_size; 2568 int frags = 0, nr_txbds = 0; 2569 int i; 2570 int howmany = 0; 2571 int tqi = tx_queue->qindex; 2572 unsigned int bytes_sent = 0; 2573 u32 lstatus; 2574 size_t buflen; 2575 2576 txq = netdev_get_tx_queue(dev, tqi); 2577 bdp = tx_queue->dirty_tx; 2578 skb_dirtytx = tx_queue->skb_dirtytx; 2579 2580 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2581 unsigned long flags; 2582 2583 frags = skb_shinfo(skb)->nr_frags; 2584 2585 /* When time stamping, one additional TxBD must be freed. 2586 * Also, we need to dma_unmap_single() the TxPAL. 2587 */ 2588 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2589 nr_txbds = frags + 2; 2590 else 2591 nr_txbds = frags + 1; 2592 2593 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2594 2595 lstatus = lbdp->lstatus; 2596 2597 /* Only clean completed frames */ 2598 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2599 (lstatus & BD_LENGTH_MASK)) 2600 break; 2601 2602 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2603 next = next_txbd(bdp, base, tx_ring_size); 2604 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2605 } else 2606 buflen = bdp->length; 2607 2608 dma_unmap_single(priv->dev, bdp->bufPtr, 2609 buflen, DMA_TO_DEVICE); 2610 2611 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2612 struct skb_shared_hwtstamps shhwtstamps; 2613 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2614 2615 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2616 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2617 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2618 skb_tstamp_tx(skb, &shhwtstamps); 2619 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2620 bdp = next; 2621 } 2622 2623 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2624 bdp = next_txbd(bdp, base, tx_ring_size); 2625 2626 for (i = 0; i < frags; i++) { 2627 dma_unmap_page(priv->dev, bdp->bufPtr, 2628 bdp->length, DMA_TO_DEVICE); 2629 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2630 bdp = next_txbd(bdp, base, tx_ring_size); 2631 } 2632 2633 bytes_sent += GFAR_CB(skb)->bytes_sent; 2634 2635 dev_kfree_skb_any(skb); 2636 2637 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2638 2639 skb_dirtytx = (skb_dirtytx + 1) & 2640 TX_RING_MOD_MASK(tx_ring_size); 2641 2642 howmany++; 2643 spin_lock_irqsave(&tx_queue->txlock, flags); 2644 tx_queue->num_txbdfree += nr_txbds; 2645 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2646 } 2647 2648 /* If we freed a buffer, we can restart transmission, if necessary */ 2649 if (tx_queue->num_txbdfree && 2650 netif_tx_queue_stopped(txq) && 2651 !(test_bit(GFAR_DOWN, &priv->state))) 2652 netif_wake_subqueue(priv->ndev, tqi); 2653 2654 /* Update dirty indicators */ 2655 tx_queue->skb_dirtytx = skb_dirtytx; 2656 tx_queue->dirty_tx = bdp; 2657 2658 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2659 } 2660 2661 static struct sk_buff *gfar_alloc_skb(struct net_device *dev) 2662 { 2663 struct gfar_private *priv = netdev_priv(dev); 2664 struct sk_buff *skb; 2665 2666 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2667 if (!skb) 2668 return NULL; 2669 2670 gfar_align_skb(skb); 2671 2672 return skb; 2673 } 2674 2675 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr) 2676 { 2677 struct gfar_private *priv = netdev_priv(dev); 2678 struct sk_buff *skb; 2679 dma_addr_t addr; 2680 2681 skb = gfar_alloc_skb(dev); 2682 if (!skb) 2683 return NULL; 2684 2685 addr = dma_map_single(priv->dev, skb->data, 2686 priv->rx_buffer_size, DMA_FROM_DEVICE); 2687 if (unlikely(dma_mapping_error(priv->dev, addr))) { 2688 dev_kfree_skb_any(skb); 2689 return NULL; 2690 } 2691 2692 *bufaddr = addr; 2693 return skb; 2694 } 2695 2696 static inline void count_errors(unsigned short status, struct net_device *dev) 2697 { 2698 struct gfar_private *priv = netdev_priv(dev); 2699 struct net_device_stats *stats = &dev->stats; 2700 struct gfar_extra_stats *estats = &priv->extra_stats; 2701 2702 /* If the packet was truncated, none of the other errors matter */ 2703 if (status & RXBD_TRUNCATED) { 2704 stats->rx_length_errors++; 2705 2706 atomic64_inc(&estats->rx_trunc); 2707 2708 return; 2709 } 2710 /* Count the errors, if there were any */ 2711 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2712 stats->rx_length_errors++; 2713 2714 if (status & RXBD_LARGE) 2715 atomic64_inc(&estats->rx_large); 2716 else 2717 atomic64_inc(&estats->rx_short); 2718 } 2719 if (status & RXBD_NONOCTET) { 2720 stats->rx_frame_errors++; 2721 atomic64_inc(&estats->rx_nonoctet); 2722 } 2723 if (status & RXBD_CRCERR) { 2724 atomic64_inc(&estats->rx_crcerr); 2725 stats->rx_crc_errors++; 2726 } 2727 if (status & RXBD_OVERRUN) { 2728 atomic64_inc(&estats->rx_overrun); 2729 stats->rx_crc_errors++; 2730 } 2731 } 2732 2733 irqreturn_t gfar_receive(int irq, void *grp_id) 2734 { 2735 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2736 unsigned long flags; 2737 u32 imask; 2738 2739 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2740 spin_lock_irqsave(&grp->grplock, flags); 2741 imask = gfar_read(&grp->regs->imask); 2742 imask &= IMASK_RX_DISABLED; 2743 gfar_write(&grp->regs->imask, imask); 2744 spin_unlock_irqrestore(&grp->grplock, flags); 2745 __napi_schedule(&grp->napi_rx); 2746 } else { 2747 /* Clear IEVENT, so interrupts aren't called again 2748 * because of the packets that have already arrived. 2749 */ 2750 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2751 } 2752 2753 return IRQ_HANDLED; 2754 } 2755 2756 /* Interrupt Handler for Transmit complete */ 2757 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2758 { 2759 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2760 unsigned long flags; 2761 u32 imask; 2762 2763 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2764 spin_lock_irqsave(&grp->grplock, flags); 2765 imask = gfar_read(&grp->regs->imask); 2766 imask &= IMASK_TX_DISABLED; 2767 gfar_write(&grp->regs->imask, imask); 2768 spin_unlock_irqrestore(&grp->grplock, flags); 2769 __napi_schedule(&grp->napi_tx); 2770 } else { 2771 /* Clear IEVENT, so interrupts aren't called again 2772 * because of the packets that have already arrived. 2773 */ 2774 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2775 } 2776 2777 return IRQ_HANDLED; 2778 } 2779 2780 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2781 { 2782 /* If valid headers were found, and valid sums 2783 * were verified, then we tell the kernel that no 2784 * checksumming is necessary. Otherwise, it is [FIXME] 2785 */ 2786 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2787 skb->ip_summed = CHECKSUM_UNNECESSARY; 2788 else 2789 skb_checksum_none_assert(skb); 2790 } 2791 2792 2793 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2794 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2795 int amount_pull, struct napi_struct *napi) 2796 { 2797 struct gfar_private *priv = netdev_priv(dev); 2798 struct rxfcb *fcb = NULL; 2799 2800 /* fcb is at the beginning if exists */ 2801 fcb = (struct rxfcb *)skb->data; 2802 2803 /* Remove the FCB from the skb 2804 * Remove the padded bytes, if there are any 2805 */ 2806 if (amount_pull) { 2807 skb_record_rx_queue(skb, fcb->rq); 2808 skb_pull(skb, amount_pull); 2809 } 2810 2811 /* Get receive timestamp from the skb */ 2812 if (priv->hwts_rx_en) { 2813 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2814 u64 *ns = (u64 *) skb->data; 2815 2816 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2817 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2818 } 2819 2820 if (priv->padding) 2821 skb_pull(skb, priv->padding); 2822 2823 if (dev->features & NETIF_F_RXCSUM) 2824 gfar_rx_checksum(skb, fcb); 2825 2826 /* Tell the skb what kind of packet this is */ 2827 skb->protocol = eth_type_trans(skb, dev); 2828 2829 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2830 * Even if vlan rx accel is disabled, on some chips 2831 * RXFCB_VLN is pseudo randomly set. 2832 */ 2833 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2834 fcb->flags & RXFCB_VLN) 2835 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl); 2836 2837 /* Send the packet up the stack */ 2838 napi_gro_receive(napi, skb); 2839 2840 } 2841 2842 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2843 * until the budget/quota has been reached. Returns the number 2844 * of frames handled 2845 */ 2846 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2847 { 2848 struct net_device *dev = rx_queue->dev; 2849 struct rxbd8 *bdp, *base; 2850 struct sk_buff *skb; 2851 int pkt_len; 2852 int amount_pull; 2853 int howmany = 0; 2854 struct gfar_private *priv = netdev_priv(dev); 2855 2856 /* Get the first full descriptor */ 2857 bdp = rx_queue->cur_rx; 2858 base = rx_queue->rx_bd_base; 2859 2860 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0; 2861 2862 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2863 struct sk_buff *newskb; 2864 dma_addr_t bufaddr; 2865 2866 rmb(); 2867 2868 /* Add another skb for the future */ 2869 newskb = gfar_new_skb(dev, &bufaddr); 2870 2871 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2872 2873 dma_unmap_single(priv->dev, bdp->bufPtr, 2874 priv->rx_buffer_size, DMA_FROM_DEVICE); 2875 2876 if (unlikely(!(bdp->status & RXBD_ERR) && 2877 bdp->length > priv->rx_buffer_size)) 2878 bdp->status = RXBD_LARGE; 2879 2880 /* We drop the frame if we failed to allocate a new buffer */ 2881 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2882 bdp->status & RXBD_ERR)) { 2883 count_errors(bdp->status, dev); 2884 2885 if (unlikely(!newskb)) { 2886 newskb = skb; 2887 bufaddr = bdp->bufPtr; 2888 } else if (skb) 2889 dev_kfree_skb(skb); 2890 } else { 2891 /* Increment the number of packets */ 2892 rx_queue->stats.rx_packets++; 2893 howmany++; 2894 2895 if (likely(skb)) { 2896 pkt_len = bdp->length - ETH_FCS_LEN; 2897 /* Remove the FCS from the packet length */ 2898 skb_put(skb, pkt_len); 2899 rx_queue->stats.rx_bytes += pkt_len; 2900 skb_record_rx_queue(skb, rx_queue->qindex); 2901 gfar_process_frame(dev, skb, amount_pull, 2902 &rx_queue->grp->napi_rx); 2903 2904 } else { 2905 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2906 rx_queue->stats.rx_dropped++; 2907 atomic64_inc(&priv->extra_stats.rx_skbmissing); 2908 } 2909 2910 } 2911 2912 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2913 2914 /* Setup the new bdp */ 2915 gfar_init_rxbdp(rx_queue, bdp, bufaddr); 2916 2917 /* Update Last Free RxBD pointer for LFC */ 2918 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en)) 2919 gfar_write(rx_queue->rfbptr, (u32)bdp); 2920 2921 /* Update to the next pointer */ 2922 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2923 2924 /* update to point at the next skb */ 2925 rx_queue->skb_currx = (rx_queue->skb_currx + 1) & 2926 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2927 } 2928 2929 /* Update the current rxbd pointer to be the next one */ 2930 rx_queue->cur_rx = bdp; 2931 2932 return howmany; 2933 } 2934 2935 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2936 { 2937 struct gfar_priv_grp *gfargrp = 2938 container_of(napi, struct gfar_priv_grp, napi_rx); 2939 struct gfar __iomem *regs = gfargrp->regs; 2940 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2941 int work_done = 0; 2942 2943 /* Clear IEVENT, so interrupts aren't called again 2944 * because of the packets that have already arrived 2945 */ 2946 gfar_write(®s->ievent, IEVENT_RX_MASK); 2947 2948 work_done = gfar_clean_rx_ring(rx_queue, budget); 2949 2950 if (work_done < budget) { 2951 u32 imask; 2952 napi_complete(napi); 2953 /* Clear the halt bit in RSTAT */ 2954 gfar_write(®s->rstat, gfargrp->rstat); 2955 2956 spin_lock_irq(&gfargrp->grplock); 2957 imask = gfar_read(®s->imask); 2958 imask |= IMASK_RX_DEFAULT; 2959 gfar_write(®s->imask, imask); 2960 spin_unlock_irq(&gfargrp->grplock); 2961 } 2962 2963 return work_done; 2964 } 2965 2966 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2967 { 2968 struct gfar_priv_grp *gfargrp = 2969 container_of(napi, struct gfar_priv_grp, napi_tx); 2970 struct gfar __iomem *regs = gfargrp->regs; 2971 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2972 u32 imask; 2973 2974 /* Clear IEVENT, so interrupts aren't called again 2975 * because of the packets that have already arrived 2976 */ 2977 gfar_write(®s->ievent, IEVENT_TX_MASK); 2978 2979 /* run Tx cleanup to completion */ 2980 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2981 gfar_clean_tx_ring(tx_queue); 2982 2983 napi_complete(napi); 2984 2985 spin_lock_irq(&gfargrp->grplock); 2986 imask = gfar_read(®s->imask); 2987 imask |= IMASK_TX_DEFAULT; 2988 gfar_write(®s->imask, imask); 2989 spin_unlock_irq(&gfargrp->grplock); 2990 2991 return 0; 2992 } 2993 2994 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2995 { 2996 struct gfar_priv_grp *gfargrp = 2997 container_of(napi, struct gfar_priv_grp, napi_rx); 2998 struct gfar_private *priv = gfargrp->priv; 2999 struct gfar __iomem *regs = gfargrp->regs; 3000 struct gfar_priv_rx_q *rx_queue = NULL; 3001 int work_done = 0, work_done_per_q = 0; 3002 int i, budget_per_q = 0; 3003 unsigned long rstat_rxf; 3004 int num_act_queues; 3005 3006 /* Clear IEVENT, so interrupts aren't called again 3007 * because of the packets that have already arrived 3008 */ 3009 gfar_write(®s->ievent, IEVENT_RX_MASK); 3010 3011 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 3012 3013 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 3014 if (num_act_queues) 3015 budget_per_q = budget/num_act_queues; 3016 3017 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 3018 /* skip queue if not active */ 3019 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 3020 continue; 3021 3022 rx_queue = priv->rx_queue[i]; 3023 work_done_per_q = 3024 gfar_clean_rx_ring(rx_queue, budget_per_q); 3025 work_done += work_done_per_q; 3026 3027 /* finished processing this queue */ 3028 if (work_done_per_q < budget_per_q) { 3029 /* clear active queue hw indication */ 3030 gfar_write(®s->rstat, 3031 RSTAT_CLEAR_RXF0 >> i); 3032 num_act_queues--; 3033 3034 if (!num_act_queues) 3035 break; 3036 } 3037 } 3038 3039 if (!num_act_queues) { 3040 u32 imask; 3041 napi_complete(napi); 3042 3043 /* Clear the halt bit in RSTAT */ 3044 gfar_write(®s->rstat, gfargrp->rstat); 3045 3046 spin_lock_irq(&gfargrp->grplock); 3047 imask = gfar_read(®s->imask); 3048 imask |= IMASK_RX_DEFAULT; 3049 gfar_write(®s->imask, imask); 3050 spin_unlock_irq(&gfargrp->grplock); 3051 } 3052 3053 return work_done; 3054 } 3055 3056 static int gfar_poll_tx(struct napi_struct *napi, int budget) 3057 { 3058 struct gfar_priv_grp *gfargrp = 3059 container_of(napi, struct gfar_priv_grp, napi_tx); 3060 struct gfar_private *priv = gfargrp->priv; 3061 struct gfar __iomem *regs = gfargrp->regs; 3062 struct gfar_priv_tx_q *tx_queue = NULL; 3063 int has_tx_work = 0; 3064 int i; 3065 3066 /* Clear IEVENT, so interrupts aren't called again 3067 * because of the packets that have already arrived 3068 */ 3069 gfar_write(®s->ievent, IEVENT_TX_MASK); 3070 3071 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 3072 tx_queue = priv->tx_queue[i]; 3073 /* run Tx cleanup to completion */ 3074 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 3075 gfar_clean_tx_ring(tx_queue); 3076 has_tx_work = 1; 3077 } 3078 } 3079 3080 if (!has_tx_work) { 3081 u32 imask; 3082 napi_complete(napi); 3083 3084 spin_lock_irq(&gfargrp->grplock); 3085 imask = gfar_read(®s->imask); 3086 imask |= IMASK_TX_DEFAULT; 3087 gfar_write(®s->imask, imask); 3088 spin_unlock_irq(&gfargrp->grplock); 3089 } 3090 3091 return 0; 3092 } 3093 3094 3095 #ifdef CONFIG_NET_POLL_CONTROLLER 3096 /* Polling 'interrupt' - used by things like netconsole to send skbs 3097 * without having to re-enable interrupts. It's not called while 3098 * the interrupt routine is executing. 3099 */ 3100 static void gfar_netpoll(struct net_device *dev) 3101 { 3102 struct gfar_private *priv = netdev_priv(dev); 3103 int i; 3104 3105 /* If the device has multiple interrupts, run tx/rx */ 3106 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3107 for (i = 0; i < priv->num_grps; i++) { 3108 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3109 3110 disable_irq(gfar_irq(grp, TX)->irq); 3111 disable_irq(gfar_irq(grp, RX)->irq); 3112 disable_irq(gfar_irq(grp, ER)->irq); 3113 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3114 enable_irq(gfar_irq(grp, ER)->irq); 3115 enable_irq(gfar_irq(grp, RX)->irq); 3116 enable_irq(gfar_irq(grp, TX)->irq); 3117 } 3118 } else { 3119 for (i = 0; i < priv->num_grps; i++) { 3120 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3121 3122 disable_irq(gfar_irq(grp, TX)->irq); 3123 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3124 enable_irq(gfar_irq(grp, TX)->irq); 3125 } 3126 } 3127 } 3128 #endif 3129 3130 /* The interrupt handler for devices with one interrupt */ 3131 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3132 { 3133 struct gfar_priv_grp *gfargrp = grp_id; 3134 3135 /* Save ievent for future reference */ 3136 u32 events = gfar_read(&gfargrp->regs->ievent); 3137 3138 /* Check for reception */ 3139 if (events & IEVENT_RX_MASK) 3140 gfar_receive(irq, grp_id); 3141 3142 /* Check for transmit completion */ 3143 if (events & IEVENT_TX_MASK) 3144 gfar_transmit(irq, grp_id); 3145 3146 /* Check for errors */ 3147 if (events & IEVENT_ERR_MASK) 3148 gfar_error(irq, grp_id); 3149 3150 return IRQ_HANDLED; 3151 } 3152 3153 /* Called every time the controller might need to be made 3154 * aware of new link state. The PHY code conveys this 3155 * information through variables in the phydev structure, and this 3156 * function converts those variables into the appropriate 3157 * register values, and can bring down the device if needed. 3158 */ 3159 static void adjust_link(struct net_device *dev) 3160 { 3161 struct gfar_private *priv = netdev_priv(dev); 3162 struct phy_device *phydev = priv->phydev; 3163 3164 if (unlikely(phydev->link != priv->oldlink || 3165 (phydev->link && (phydev->duplex != priv->oldduplex || 3166 phydev->speed != priv->oldspeed)))) 3167 gfar_update_link_state(priv); 3168 } 3169 3170 /* Update the hash table based on the current list of multicast 3171 * addresses we subscribe to. Also, change the promiscuity of 3172 * the device based on the flags (this function is called 3173 * whenever dev->flags is changed 3174 */ 3175 static void gfar_set_multi(struct net_device *dev) 3176 { 3177 struct netdev_hw_addr *ha; 3178 struct gfar_private *priv = netdev_priv(dev); 3179 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3180 u32 tempval; 3181 3182 if (dev->flags & IFF_PROMISC) { 3183 /* Set RCTRL to PROM */ 3184 tempval = gfar_read(®s->rctrl); 3185 tempval |= RCTRL_PROM; 3186 gfar_write(®s->rctrl, tempval); 3187 } else { 3188 /* Set RCTRL to not PROM */ 3189 tempval = gfar_read(®s->rctrl); 3190 tempval &= ~(RCTRL_PROM); 3191 gfar_write(®s->rctrl, tempval); 3192 } 3193 3194 if (dev->flags & IFF_ALLMULTI) { 3195 /* Set the hash to rx all multicast frames */ 3196 gfar_write(®s->igaddr0, 0xffffffff); 3197 gfar_write(®s->igaddr1, 0xffffffff); 3198 gfar_write(®s->igaddr2, 0xffffffff); 3199 gfar_write(®s->igaddr3, 0xffffffff); 3200 gfar_write(®s->igaddr4, 0xffffffff); 3201 gfar_write(®s->igaddr5, 0xffffffff); 3202 gfar_write(®s->igaddr6, 0xffffffff); 3203 gfar_write(®s->igaddr7, 0xffffffff); 3204 gfar_write(®s->gaddr0, 0xffffffff); 3205 gfar_write(®s->gaddr1, 0xffffffff); 3206 gfar_write(®s->gaddr2, 0xffffffff); 3207 gfar_write(®s->gaddr3, 0xffffffff); 3208 gfar_write(®s->gaddr4, 0xffffffff); 3209 gfar_write(®s->gaddr5, 0xffffffff); 3210 gfar_write(®s->gaddr6, 0xffffffff); 3211 gfar_write(®s->gaddr7, 0xffffffff); 3212 } else { 3213 int em_num; 3214 int idx; 3215 3216 /* zero out the hash */ 3217 gfar_write(®s->igaddr0, 0x0); 3218 gfar_write(®s->igaddr1, 0x0); 3219 gfar_write(®s->igaddr2, 0x0); 3220 gfar_write(®s->igaddr3, 0x0); 3221 gfar_write(®s->igaddr4, 0x0); 3222 gfar_write(®s->igaddr5, 0x0); 3223 gfar_write(®s->igaddr6, 0x0); 3224 gfar_write(®s->igaddr7, 0x0); 3225 gfar_write(®s->gaddr0, 0x0); 3226 gfar_write(®s->gaddr1, 0x0); 3227 gfar_write(®s->gaddr2, 0x0); 3228 gfar_write(®s->gaddr3, 0x0); 3229 gfar_write(®s->gaddr4, 0x0); 3230 gfar_write(®s->gaddr5, 0x0); 3231 gfar_write(®s->gaddr6, 0x0); 3232 gfar_write(®s->gaddr7, 0x0); 3233 3234 /* If we have extended hash tables, we need to 3235 * clear the exact match registers to prepare for 3236 * setting them 3237 */ 3238 if (priv->extended_hash) { 3239 em_num = GFAR_EM_NUM + 1; 3240 gfar_clear_exact_match(dev); 3241 idx = 1; 3242 } else { 3243 idx = 0; 3244 em_num = 0; 3245 } 3246 3247 if (netdev_mc_empty(dev)) 3248 return; 3249 3250 /* Parse the list, and set the appropriate bits */ 3251 netdev_for_each_mc_addr(ha, dev) { 3252 if (idx < em_num) { 3253 gfar_set_mac_for_addr(dev, idx, ha->addr); 3254 idx++; 3255 } else 3256 gfar_set_hash_for_addr(dev, ha->addr); 3257 } 3258 } 3259 } 3260 3261 3262 /* Clears each of the exact match registers to zero, so they 3263 * don't interfere with normal reception 3264 */ 3265 static void gfar_clear_exact_match(struct net_device *dev) 3266 { 3267 int idx; 3268 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3269 3270 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3271 gfar_set_mac_for_addr(dev, idx, zero_arr); 3272 } 3273 3274 /* Set the appropriate hash bit for the given addr */ 3275 /* The algorithm works like so: 3276 * 1) Take the Destination Address (ie the multicast address), and 3277 * do a CRC on it (little endian), and reverse the bits of the 3278 * result. 3279 * 2) Use the 8 most significant bits as a hash into a 256-entry 3280 * table. The table is controlled through 8 32-bit registers: 3281 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3282 * gaddr7. This means that the 3 most significant bits in the 3283 * hash index which gaddr register to use, and the 5 other bits 3284 * indicate which bit (assuming an IBM numbering scheme, which 3285 * for PowerPC (tm) is usually the case) in the register holds 3286 * the entry. 3287 */ 3288 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3289 { 3290 u32 tempval; 3291 struct gfar_private *priv = netdev_priv(dev); 3292 u32 result = ether_crc(ETH_ALEN, addr); 3293 int width = priv->hash_width; 3294 u8 whichbit = (result >> (32 - width)) & 0x1f; 3295 u8 whichreg = result >> (32 - width + 5); 3296 u32 value = (1 << (31-whichbit)); 3297 3298 tempval = gfar_read(priv->hash_regs[whichreg]); 3299 tempval |= value; 3300 gfar_write(priv->hash_regs[whichreg], tempval); 3301 } 3302 3303 3304 /* There are multiple MAC Address register pairs on some controllers 3305 * This function sets the numth pair to a given address 3306 */ 3307 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3308 const u8 *addr) 3309 { 3310 struct gfar_private *priv = netdev_priv(dev); 3311 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3312 u32 tempval; 3313 u32 __iomem *macptr = ®s->macstnaddr1; 3314 3315 macptr += num*2; 3316 3317 /* For a station address of 0x12345678ABCD in transmission 3318 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 3319 * MACnADDR2 is set to 0x34120000. 3320 */ 3321 tempval = (addr[5] << 24) | (addr[4] << 16) | 3322 (addr[3] << 8) | addr[2]; 3323 3324 gfar_write(macptr, tempval); 3325 3326 tempval = (addr[1] << 24) | (addr[0] << 16); 3327 3328 gfar_write(macptr+1, tempval); 3329 } 3330 3331 /* GFAR error interrupt handler */ 3332 static irqreturn_t gfar_error(int irq, void *grp_id) 3333 { 3334 struct gfar_priv_grp *gfargrp = grp_id; 3335 struct gfar __iomem *regs = gfargrp->regs; 3336 struct gfar_private *priv= gfargrp->priv; 3337 struct net_device *dev = priv->ndev; 3338 3339 /* Save ievent for future reference */ 3340 u32 events = gfar_read(®s->ievent); 3341 3342 /* Clear IEVENT */ 3343 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3344 3345 /* Magic Packet is not an error. */ 3346 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3347 (events & IEVENT_MAG)) 3348 events &= ~IEVENT_MAG; 3349 3350 /* Hmm... */ 3351 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3352 netdev_dbg(dev, 3353 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3354 events, gfar_read(®s->imask)); 3355 3356 /* Update the error counters */ 3357 if (events & IEVENT_TXE) { 3358 dev->stats.tx_errors++; 3359 3360 if (events & IEVENT_LC) 3361 dev->stats.tx_window_errors++; 3362 if (events & IEVENT_CRL) 3363 dev->stats.tx_aborted_errors++; 3364 if (events & IEVENT_XFUN) { 3365 unsigned long flags; 3366 3367 netif_dbg(priv, tx_err, dev, 3368 "TX FIFO underrun, packet dropped\n"); 3369 dev->stats.tx_dropped++; 3370 atomic64_inc(&priv->extra_stats.tx_underrun); 3371 3372 local_irq_save(flags); 3373 lock_tx_qs(priv); 3374 3375 /* Reactivate the Tx Queues */ 3376 gfar_write(®s->tstat, gfargrp->tstat); 3377 3378 unlock_tx_qs(priv); 3379 local_irq_restore(flags); 3380 } 3381 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3382 } 3383 if (events & IEVENT_BSY) { 3384 dev->stats.rx_errors++; 3385 atomic64_inc(&priv->extra_stats.rx_bsy); 3386 3387 gfar_receive(irq, grp_id); 3388 3389 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3390 gfar_read(®s->rstat)); 3391 } 3392 if (events & IEVENT_BABR) { 3393 dev->stats.rx_errors++; 3394 atomic64_inc(&priv->extra_stats.rx_babr); 3395 3396 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3397 } 3398 if (events & IEVENT_EBERR) { 3399 atomic64_inc(&priv->extra_stats.eberr); 3400 netif_dbg(priv, rx_err, dev, "bus error\n"); 3401 } 3402 if (events & IEVENT_RXC) 3403 netif_dbg(priv, rx_status, dev, "control frame\n"); 3404 3405 if (events & IEVENT_BABT) { 3406 atomic64_inc(&priv->extra_stats.tx_babt); 3407 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3408 } 3409 return IRQ_HANDLED; 3410 } 3411 3412 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3413 { 3414 struct phy_device *phydev = priv->phydev; 3415 u32 val = 0; 3416 3417 if (!phydev->duplex) 3418 return val; 3419 3420 if (!priv->pause_aneg_en) { 3421 if (priv->tx_pause_en) 3422 val |= MACCFG1_TX_FLOW; 3423 if (priv->rx_pause_en) 3424 val |= MACCFG1_RX_FLOW; 3425 } else { 3426 u16 lcl_adv, rmt_adv; 3427 u8 flowctrl; 3428 /* get link partner capabilities */ 3429 rmt_adv = 0; 3430 if (phydev->pause) 3431 rmt_adv = LPA_PAUSE_CAP; 3432 if (phydev->asym_pause) 3433 rmt_adv |= LPA_PAUSE_ASYM; 3434 3435 lcl_adv = 0; 3436 if (phydev->advertising & ADVERTISED_Pause) 3437 lcl_adv |= ADVERTISE_PAUSE_CAP; 3438 if (phydev->advertising & ADVERTISED_Asym_Pause) 3439 lcl_adv |= ADVERTISE_PAUSE_ASYM; 3440 3441 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3442 if (flowctrl & FLOW_CTRL_TX) 3443 val |= MACCFG1_TX_FLOW; 3444 if (flowctrl & FLOW_CTRL_RX) 3445 val |= MACCFG1_RX_FLOW; 3446 } 3447 3448 return val; 3449 } 3450 3451 static noinline void gfar_update_link_state(struct gfar_private *priv) 3452 { 3453 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3454 struct phy_device *phydev = priv->phydev; 3455 struct gfar_priv_rx_q *rx_queue = NULL; 3456 int i; 3457 struct rxbd8 *bdp; 3458 3459 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 3460 return; 3461 3462 if (phydev->link) { 3463 u32 tempval1 = gfar_read(®s->maccfg1); 3464 u32 tempval = gfar_read(®s->maccfg2); 3465 u32 ecntrl = gfar_read(®s->ecntrl); 3466 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW); 3467 3468 if (phydev->duplex != priv->oldduplex) { 3469 if (!(phydev->duplex)) 3470 tempval &= ~(MACCFG2_FULL_DUPLEX); 3471 else 3472 tempval |= MACCFG2_FULL_DUPLEX; 3473 3474 priv->oldduplex = phydev->duplex; 3475 } 3476 3477 if (phydev->speed != priv->oldspeed) { 3478 switch (phydev->speed) { 3479 case 1000: 3480 tempval = 3481 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3482 3483 ecntrl &= ~(ECNTRL_R100); 3484 break; 3485 case 100: 3486 case 10: 3487 tempval = 3488 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3489 3490 /* Reduced mode distinguishes 3491 * between 10 and 100 3492 */ 3493 if (phydev->speed == SPEED_100) 3494 ecntrl |= ECNTRL_R100; 3495 else 3496 ecntrl &= ~(ECNTRL_R100); 3497 break; 3498 default: 3499 netif_warn(priv, link, priv->ndev, 3500 "Ack! Speed (%d) is not 10/100/1000!\n", 3501 phydev->speed); 3502 break; 3503 } 3504 3505 priv->oldspeed = phydev->speed; 3506 } 3507 3508 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3509 tempval1 |= gfar_get_flowctrl_cfg(priv); 3510 3511 /* Turn last free buffer recording on */ 3512 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 3513 for (i = 0; i < priv->num_rx_queues; i++) { 3514 rx_queue = priv->rx_queue[i]; 3515 bdp = rx_queue->cur_rx; 3516 /* skip to previous bd */ 3517 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1, 3518 rx_queue->rx_bd_base, 3519 rx_queue->rx_ring_size); 3520 3521 if (rx_queue->rfbptr) 3522 gfar_write(rx_queue->rfbptr, (u32)bdp); 3523 } 3524 3525 priv->tx_actual_en = 1; 3526 } 3527 3528 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 3529 priv->tx_actual_en = 0; 3530 3531 gfar_write(®s->maccfg1, tempval1); 3532 gfar_write(®s->maccfg2, tempval); 3533 gfar_write(®s->ecntrl, ecntrl); 3534 3535 if (!priv->oldlink) 3536 priv->oldlink = 1; 3537 3538 } else if (priv->oldlink) { 3539 priv->oldlink = 0; 3540 priv->oldspeed = 0; 3541 priv->oldduplex = -1; 3542 } 3543 3544 if (netif_msg_link(priv)) 3545 phy_print_status(phydev); 3546 } 3547 3548 static struct of_device_id gfar_match[] = 3549 { 3550 { 3551 .type = "network", 3552 .compatible = "gianfar", 3553 }, 3554 { 3555 .compatible = "fsl,etsec2", 3556 }, 3557 {}, 3558 }; 3559 MODULE_DEVICE_TABLE(of, gfar_match); 3560 3561 /* Structure for a device driver */ 3562 static struct platform_driver gfar_driver = { 3563 .driver = { 3564 .name = "fsl-gianfar", 3565 .pm = GFAR_PM_OPS, 3566 .of_match_table = gfar_match, 3567 }, 3568 .probe = gfar_probe, 3569 .remove = gfar_remove, 3570 }; 3571 3572 module_platform_driver(gfar_driver); 3573