xref: /openbmc/linux/drivers/net/ethernet/freescale/gianfar.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "1.3";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 				    dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 			       int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 				  const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155 
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 			    dma_addr_t buf)
158 {
159 	u32 lstatus;
160 
161 	bdp->bufPtr = buf;
162 
163 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 		lstatus |= BD_LFLAG(RXBD_WRAP);
166 
167 	gfar_wmb();
168 
169 	bdp->lstatus = lstatus;
170 }
171 
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 	struct gfar_private *priv = netdev_priv(ndev);
175 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 	struct gfar_priv_tx_q *tx_queue = NULL;
177 	struct gfar_priv_rx_q *rx_queue = NULL;
178 	struct txbd8 *txbdp;
179 	struct rxbd8 *rxbdp;
180 	u32 __iomem *rfbptr;
181 	int i, j;
182 	dma_addr_t bufaddr;
183 
184 	for (i = 0; i < priv->num_tx_queues; i++) {
185 		tx_queue = priv->tx_queue[i];
186 		/* Initialize some variables in our dev structure */
187 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 		tx_queue->cur_tx = tx_queue->tx_bd_base;
190 		tx_queue->skb_curtx = 0;
191 		tx_queue->skb_dirtytx = 0;
192 
193 		/* Initialize Transmit Descriptor Ring */
194 		txbdp = tx_queue->tx_bd_base;
195 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 			txbdp->lstatus = 0;
197 			txbdp->bufPtr = 0;
198 			txbdp++;
199 		}
200 
201 		/* Set the last descriptor in the ring to indicate wrap */
202 		txbdp--;
203 		txbdp->status |= TXBD_WRAP;
204 	}
205 
206 	rfbptr = &regs->rfbptr0;
207 	for (i = 0; i < priv->num_rx_queues; i++) {
208 		rx_queue = priv->rx_queue[i];
209 		rx_queue->cur_rx = rx_queue->rx_bd_base;
210 		rx_queue->skb_currx = 0;
211 		rxbdp = rx_queue->rx_bd_base;
212 
213 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
214 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
215 
216 			if (skb) {
217 				bufaddr = rxbdp->bufPtr;
218 			} else {
219 				skb = gfar_new_skb(ndev, &bufaddr);
220 				if (!skb) {
221 					netdev_err(ndev, "Can't allocate RX buffers\n");
222 					return -ENOMEM;
223 				}
224 				rx_queue->rx_skbuff[j] = skb;
225 			}
226 
227 			gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
228 			rxbdp++;
229 		}
230 
231 		rx_queue->rfbptr = rfbptr;
232 		rfbptr += 2;
233 	}
234 
235 	return 0;
236 }
237 
238 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 {
240 	void *vaddr;
241 	dma_addr_t addr;
242 	int i, j, k;
243 	struct gfar_private *priv = netdev_priv(ndev);
244 	struct device *dev = priv->dev;
245 	struct gfar_priv_tx_q *tx_queue = NULL;
246 	struct gfar_priv_rx_q *rx_queue = NULL;
247 
248 	priv->total_tx_ring_size = 0;
249 	for (i = 0; i < priv->num_tx_queues; i++)
250 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251 
252 	priv->total_rx_ring_size = 0;
253 	for (i = 0; i < priv->num_rx_queues; i++)
254 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255 
256 	/* Allocate memory for the buffer descriptors */
257 	vaddr = dma_alloc_coherent(dev,
258 				   (priv->total_tx_ring_size *
259 				    sizeof(struct txbd8)) +
260 				   (priv->total_rx_ring_size *
261 				    sizeof(struct rxbd8)),
262 				   &addr, GFP_KERNEL);
263 	if (!vaddr)
264 		return -ENOMEM;
265 
266 	for (i = 0; i < priv->num_tx_queues; i++) {
267 		tx_queue = priv->tx_queue[i];
268 		tx_queue->tx_bd_base = vaddr;
269 		tx_queue->tx_bd_dma_base = addr;
270 		tx_queue->dev = ndev;
271 		/* enet DMA only understands physical addresses */
272 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
273 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 	}
275 
276 	/* Start the rx descriptor ring where the tx ring leaves off */
277 	for (i = 0; i < priv->num_rx_queues; i++) {
278 		rx_queue = priv->rx_queue[i];
279 		rx_queue->rx_bd_base = vaddr;
280 		rx_queue->rx_bd_dma_base = addr;
281 		rx_queue->dev = ndev;
282 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
283 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 	}
285 
286 	/* Setup the skbuff rings */
287 	for (i = 0; i < priv->num_tx_queues; i++) {
288 		tx_queue = priv->tx_queue[i];
289 		tx_queue->tx_skbuff =
290 			kmalloc_array(tx_queue->tx_ring_size,
291 				      sizeof(*tx_queue->tx_skbuff),
292 				      GFP_KERNEL);
293 		if (!tx_queue->tx_skbuff)
294 			goto cleanup;
295 
296 		for (k = 0; k < tx_queue->tx_ring_size; k++)
297 			tx_queue->tx_skbuff[k] = NULL;
298 	}
299 
300 	for (i = 0; i < priv->num_rx_queues; i++) {
301 		rx_queue = priv->rx_queue[i];
302 		rx_queue->rx_skbuff =
303 			kmalloc_array(rx_queue->rx_ring_size,
304 				      sizeof(*rx_queue->rx_skbuff),
305 				      GFP_KERNEL);
306 		if (!rx_queue->rx_skbuff)
307 			goto cleanup;
308 
309 		for (j = 0; j < rx_queue->rx_ring_size; j++)
310 			rx_queue->rx_skbuff[j] = NULL;
311 	}
312 
313 	if (gfar_init_bds(ndev))
314 		goto cleanup;
315 
316 	return 0;
317 
318 cleanup:
319 	free_skb_resources(priv);
320 	return -ENOMEM;
321 }
322 
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 	u32 __iomem *baddr;
327 	int i;
328 
329 	baddr = &regs->tbase0;
330 	for (i = 0; i < priv->num_tx_queues; i++) {
331 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 		baddr += 2;
333 	}
334 
335 	baddr = &regs->rbase0;
336 	for (i = 0; i < priv->num_rx_queues; i++) {
337 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 		baddr += 2;
339 	}
340 }
341 
342 static void gfar_init_rqprm(struct gfar_private *priv)
343 {
344 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 	u32 __iomem *baddr;
346 	int i;
347 
348 	baddr = &regs->rqprm0;
349 	for (i = 0; i < priv->num_rx_queues; i++) {
350 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
351 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
352 		baddr++;
353 	}
354 }
355 
356 static void gfar_rx_buff_size_config(struct gfar_private *priv)
357 {
358 	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
359 
360 	/* set this when rx hw offload (TOE) functions are being used */
361 	priv->uses_rxfcb = 0;
362 
363 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
364 		priv->uses_rxfcb = 1;
365 
366 	if (priv->hwts_rx_en)
367 		priv->uses_rxfcb = 1;
368 
369 	if (priv->uses_rxfcb)
370 		frame_size += GMAC_FCB_LEN;
371 
372 	frame_size += priv->padding;
373 
374 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
375 		     INCREMENTAL_BUFFER_SIZE;
376 
377 	priv->rx_buffer_size = frame_size;
378 }
379 
380 static void gfar_mac_rx_config(struct gfar_private *priv)
381 {
382 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
383 	u32 rctrl = 0;
384 
385 	if (priv->rx_filer_enable) {
386 		rctrl |= RCTRL_FILREN;
387 		/* Program the RIR0 reg with the required distribution */
388 		if (priv->poll_mode == GFAR_SQ_POLLING)
389 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
390 		else /* GFAR_MQ_POLLING */
391 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
392 	}
393 
394 	/* Restore PROMISC mode */
395 	if (priv->ndev->flags & IFF_PROMISC)
396 		rctrl |= RCTRL_PROM;
397 
398 	if (priv->ndev->features & NETIF_F_RXCSUM)
399 		rctrl |= RCTRL_CHECKSUMMING;
400 
401 	if (priv->extended_hash)
402 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
403 
404 	if (priv->padding) {
405 		rctrl &= ~RCTRL_PAL_MASK;
406 		rctrl |= RCTRL_PADDING(priv->padding);
407 	}
408 
409 	/* Enable HW time stamping if requested from user space */
410 	if (priv->hwts_rx_en)
411 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
412 
413 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
415 
416 	/* Clear the LFC bit */
417 	gfar_write(&regs->rctrl, rctrl);
418 	/* Init flow control threshold values */
419 	gfar_init_rqprm(priv);
420 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
421 	rctrl |= RCTRL_LFC;
422 
423 	/* Init rctrl based on our settings */
424 	gfar_write(&regs->rctrl, rctrl);
425 }
426 
427 static void gfar_mac_tx_config(struct gfar_private *priv)
428 {
429 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
430 	u32 tctrl = 0;
431 
432 	if (priv->ndev->features & NETIF_F_IP_CSUM)
433 		tctrl |= TCTRL_INIT_CSUM;
434 
435 	if (priv->prio_sched_en)
436 		tctrl |= TCTRL_TXSCHED_PRIO;
437 	else {
438 		tctrl |= TCTRL_TXSCHED_WRRS;
439 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
440 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
441 	}
442 
443 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
444 		tctrl |= TCTRL_VLINS;
445 
446 	gfar_write(&regs->tctrl, tctrl);
447 }
448 
449 static void gfar_configure_coalescing(struct gfar_private *priv,
450 			       unsigned long tx_mask, unsigned long rx_mask)
451 {
452 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
453 	u32 __iomem *baddr;
454 
455 	if (priv->mode == MQ_MG_MODE) {
456 		int i = 0;
457 
458 		baddr = &regs->txic0;
459 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
460 			gfar_write(baddr + i, 0);
461 			if (likely(priv->tx_queue[i]->txcoalescing))
462 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
463 		}
464 
465 		baddr = &regs->rxic0;
466 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
467 			gfar_write(baddr + i, 0);
468 			if (likely(priv->rx_queue[i]->rxcoalescing))
469 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
470 		}
471 	} else {
472 		/* Backward compatible case -- even if we enable
473 		 * multiple queues, there's only single reg to program
474 		 */
475 		gfar_write(&regs->txic, 0);
476 		if (likely(priv->tx_queue[0]->txcoalescing))
477 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
478 
479 		gfar_write(&regs->rxic, 0);
480 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
481 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
482 	}
483 }
484 
485 void gfar_configure_coalescing_all(struct gfar_private *priv)
486 {
487 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
488 }
489 
490 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
491 {
492 	struct gfar_private *priv = netdev_priv(dev);
493 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
494 	unsigned long tx_packets = 0, tx_bytes = 0;
495 	int i;
496 
497 	for (i = 0; i < priv->num_rx_queues; i++) {
498 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
499 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
500 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
501 	}
502 
503 	dev->stats.rx_packets = rx_packets;
504 	dev->stats.rx_bytes   = rx_bytes;
505 	dev->stats.rx_dropped = rx_dropped;
506 
507 	for (i = 0; i < priv->num_tx_queues; i++) {
508 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
509 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
510 	}
511 
512 	dev->stats.tx_bytes   = tx_bytes;
513 	dev->stats.tx_packets = tx_packets;
514 
515 	return &dev->stats;
516 }
517 
518 static const struct net_device_ops gfar_netdev_ops = {
519 	.ndo_open = gfar_enet_open,
520 	.ndo_start_xmit = gfar_start_xmit,
521 	.ndo_stop = gfar_close,
522 	.ndo_change_mtu = gfar_change_mtu,
523 	.ndo_set_features = gfar_set_features,
524 	.ndo_set_rx_mode = gfar_set_multi,
525 	.ndo_tx_timeout = gfar_timeout,
526 	.ndo_do_ioctl = gfar_ioctl,
527 	.ndo_get_stats = gfar_get_stats,
528 	.ndo_set_mac_address = eth_mac_addr,
529 	.ndo_validate_addr = eth_validate_addr,
530 #ifdef CONFIG_NET_POLL_CONTROLLER
531 	.ndo_poll_controller = gfar_netpoll,
532 #endif
533 };
534 
535 static void gfar_ints_disable(struct gfar_private *priv)
536 {
537 	int i;
538 	for (i = 0; i < priv->num_grps; i++) {
539 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
540 		/* Clear IEVENT */
541 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
542 
543 		/* Initialize IMASK */
544 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
545 	}
546 }
547 
548 static void gfar_ints_enable(struct gfar_private *priv)
549 {
550 	int i;
551 	for (i = 0; i < priv->num_grps; i++) {
552 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
553 		/* Unmask the interrupts we look for */
554 		gfar_write(&regs->imask, IMASK_DEFAULT);
555 	}
556 }
557 
558 static void lock_tx_qs(struct gfar_private *priv)
559 {
560 	int i;
561 
562 	for (i = 0; i < priv->num_tx_queues; i++)
563 		spin_lock(&priv->tx_queue[i]->txlock);
564 }
565 
566 static void unlock_tx_qs(struct gfar_private *priv)
567 {
568 	int i;
569 
570 	for (i = 0; i < priv->num_tx_queues; i++)
571 		spin_unlock(&priv->tx_queue[i]->txlock);
572 }
573 
574 static int gfar_alloc_tx_queues(struct gfar_private *priv)
575 {
576 	int i;
577 
578 	for (i = 0; i < priv->num_tx_queues; i++) {
579 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
580 					    GFP_KERNEL);
581 		if (!priv->tx_queue[i])
582 			return -ENOMEM;
583 
584 		priv->tx_queue[i]->tx_skbuff = NULL;
585 		priv->tx_queue[i]->qindex = i;
586 		priv->tx_queue[i]->dev = priv->ndev;
587 		spin_lock_init(&(priv->tx_queue[i]->txlock));
588 	}
589 	return 0;
590 }
591 
592 static int gfar_alloc_rx_queues(struct gfar_private *priv)
593 {
594 	int i;
595 
596 	for (i = 0; i < priv->num_rx_queues; i++) {
597 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
598 					    GFP_KERNEL);
599 		if (!priv->rx_queue[i])
600 			return -ENOMEM;
601 
602 		priv->rx_queue[i]->rx_skbuff = NULL;
603 		priv->rx_queue[i]->qindex = i;
604 		priv->rx_queue[i]->dev = priv->ndev;
605 	}
606 	return 0;
607 }
608 
609 static void gfar_free_tx_queues(struct gfar_private *priv)
610 {
611 	int i;
612 
613 	for (i = 0; i < priv->num_tx_queues; i++)
614 		kfree(priv->tx_queue[i]);
615 }
616 
617 static void gfar_free_rx_queues(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_rx_queues; i++)
622 		kfree(priv->rx_queue[i]);
623 }
624 
625 static void unmap_group_regs(struct gfar_private *priv)
626 {
627 	int i;
628 
629 	for (i = 0; i < MAXGROUPS; i++)
630 		if (priv->gfargrp[i].regs)
631 			iounmap(priv->gfargrp[i].regs);
632 }
633 
634 static void free_gfar_dev(struct gfar_private *priv)
635 {
636 	int i, j;
637 
638 	for (i = 0; i < priv->num_grps; i++)
639 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
640 			kfree(priv->gfargrp[i].irqinfo[j]);
641 			priv->gfargrp[i].irqinfo[j] = NULL;
642 		}
643 
644 	free_netdev(priv->ndev);
645 }
646 
647 static void disable_napi(struct gfar_private *priv)
648 {
649 	int i;
650 
651 	for (i = 0; i < priv->num_grps; i++) {
652 		napi_disable(&priv->gfargrp[i].napi_rx);
653 		napi_disable(&priv->gfargrp[i].napi_tx);
654 	}
655 }
656 
657 static void enable_napi(struct gfar_private *priv)
658 {
659 	int i;
660 
661 	for (i = 0; i < priv->num_grps; i++) {
662 		napi_enable(&priv->gfargrp[i].napi_rx);
663 		napi_enable(&priv->gfargrp[i].napi_tx);
664 	}
665 }
666 
667 static int gfar_parse_group(struct device_node *np,
668 			    struct gfar_private *priv, const char *model)
669 {
670 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
671 	int i;
672 
673 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
674 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
675 					  GFP_KERNEL);
676 		if (!grp->irqinfo[i])
677 			return -ENOMEM;
678 	}
679 
680 	grp->regs = of_iomap(np, 0);
681 	if (!grp->regs)
682 		return -ENOMEM;
683 
684 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
685 
686 	/* If we aren't the FEC we have multiple interrupts */
687 	if (model && strcasecmp(model, "FEC")) {
688 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
689 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
690 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
691 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
692 		    gfar_irq(grp, ER)->irq == NO_IRQ)
693 			return -EINVAL;
694 	}
695 
696 	grp->priv = priv;
697 	spin_lock_init(&grp->grplock);
698 	if (priv->mode == MQ_MG_MODE) {
699 		u32 *rxq_mask, *txq_mask;
700 		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
701 		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
702 
703 		if (priv->poll_mode == GFAR_SQ_POLLING) {
704 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
705 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
706 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
707 		} else { /* GFAR_MQ_POLLING */
708 			grp->rx_bit_map = rxq_mask ?
709 			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710 			grp->tx_bit_map = txq_mask ?
711 			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
712 		}
713 	} else {
714 		grp->rx_bit_map = 0xFF;
715 		grp->tx_bit_map = 0xFF;
716 	}
717 
718 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
719 	 * right to left, so we need to revert the 8 bits to get the q index
720 	 */
721 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
722 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
723 
724 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
725 	 * also assign queues to groups
726 	 */
727 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
728 		if (!grp->rx_queue)
729 			grp->rx_queue = priv->rx_queue[i];
730 		grp->num_rx_queues++;
731 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
732 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
733 		priv->rx_queue[i]->grp = grp;
734 	}
735 
736 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
737 		if (!grp->tx_queue)
738 			grp->tx_queue = priv->tx_queue[i];
739 		grp->num_tx_queues++;
740 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
741 		priv->tqueue |= (TQUEUE_EN0 >> i);
742 		priv->tx_queue[i]->grp = grp;
743 	}
744 
745 	priv->num_grps++;
746 
747 	return 0;
748 }
749 
750 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
751 {
752 	const char *model;
753 	const char *ctype;
754 	const void *mac_addr;
755 	int err = 0, i;
756 	struct net_device *dev = NULL;
757 	struct gfar_private *priv = NULL;
758 	struct device_node *np = ofdev->dev.of_node;
759 	struct device_node *child = NULL;
760 	const u32 *stash;
761 	const u32 *stash_len;
762 	const u32 *stash_idx;
763 	unsigned int num_tx_qs, num_rx_qs;
764 	u32 *tx_queues, *rx_queues;
765 	unsigned short mode, poll_mode;
766 
767 	if (!np)
768 		return -ENODEV;
769 
770 	if (of_device_is_compatible(np, "fsl,etsec2")) {
771 		mode = MQ_MG_MODE;
772 		poll_mode = GFAR_SQ_POLLING;
773 	} else {
774 		mode = SQ_SG_MODE;
775 		poll_mode = GFAR_SQ_POLLING;
776 	}
777 
778 	/* parse the num of HW tx and rx queues */
779 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
780 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
781 
782 	if (mode == SQ_SG_MODE) {
783 		num_tx_qs = 1;
784 		num_rx_qs = 1;
785 	} else { /* MQ_MG_MODE */
786 		/* get the actual number of supported groups */
787 		unsigned int num_grps = of_get_available_child_count(np);
788 
789 		if (num_grps == 0 || num_grps > MAXGROUPS) {
790 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
791 				num_grps);
792 			pr_err("Cannot do alloc_etherdev, aborting\n");
793 			return -EINVAL;
794 		}
795 
796 		if (poll_mode == GFAR_SQ_POLLING) {
797 			num_tx_qs = num_grps; /* one txq per int group */
798 			num_rx_qs = num_grps; /* one rxq per int group */
799 		} else { /* GFAR_MQ_POLLING */
800 			num_tx_qs = tx_queues ? *tx_queues : 1;
801 			num_rx_qs = rx_queues ? *rx_queues : 1;
802 		}
803 	}
804 
805 	if (num_tx_qs > MAX_TX_QS) {
806 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
807 		       num_tx_qs, MAX_TX_QS);
808 		pr_err("Cannot do alloc_etherdev, aborting\n");
809 		return -EINVAL;
810 	}
811 
812 	if (num_rx_qs > MAX_RX_QS) {
813 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
814 		       num_rx_qs, MAX_RX_QS);
815 		pr_err("Cannot do alloc_etherdev, aborting\n");
816 		return -EINVAL;
817 	}
818 
819 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
820 	dev = *pdev;
821 	if (NULL == dev)
822 		return -ENOMEM;
823 
824 	priv = netdev_priv(dev);
825 	priv->ndev = dev;
826 
827 	priv->mode = mode;
828 	priv->poll_mode = poll_mode;
829 
830 	priv->num_tx_queues = num_tx_qs;
831 	netif_set_real_num_rx_queues(dev, num_rx_qs);
832 	priv->num_rx_queues = num_rx_qs;
833 
834 	err = gfar_alloc_tx_queues(priv);
835 	if (err)
836 		goto tx_alloc_failed;
837 
838 	err = gfar_alloc_rx_queues(priv);
839 	if (err)
840 		goto rx_alloc_failed;
841 
842 	/* Init Rx queue filer rule set linked list */
843 	INIT_LIST_HEAD(&priv->rx_list.list);
844 	priv->rx_list.count = 0;
845 	mutex_init(&priv->rx_queue_access);
846 
847 	model = of_get_property(np, "model", NULL);
848 
849 	for (i = 0; i < MAXGROUPS; i++)
850 		priv->gfargrp[i].regs = NULL;
851 
852 	/* Parse and initialize group specific information */
853 	if (priv->mode == MQ_MG_MODE) {
854 		for_each_child_of_node(np, child) {
855 			err = gfar_parse_group(child, priv, model);
856 			if (err)
857 				goto err_grp_init;
858 		}
859 	} else { /* SQ_SG_MODE */
860 		err = gfar_parse_group(np, priv, model);
861 		if (err)
862 			goto err_grp_init;
863 	}
864 
865 	stash = of_get_property(np, "bd-stash", NULL);
866 
867 	if (stash) {
868 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
869 		priv->bd_stash_en = 1;
870 	}
871 
872 	stash_len = of_get_property(np, "rx-stash-len", NULL);
873 
874 	if (stash_len)
875 		priv->rx_stash_size = *stash_len;
876 
877 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
878 
879 	if (stash_idx)
880 		priv->rx_stash_index = *stash_idx;
881 
882 	if (stash_len || stash_idx)
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
884 
885 	mac_addr = of_get_mac_address(np);
886 
887 	if (mac_addr)
888 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
889 
890 	if (model && !strcasecmp(model, "TSEC"))
891 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
892 				     FSL_GIANFAR_DEV_HAS_COALESCE |
893 				     FSL_GIANFAR_DEV_HAS_RMON |
894 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
895 
896 	if (model && !strcasecmp(model, "eTSEC"))
897 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
898 				     FSL_GIANFAR_DEV_HAS_COALESCE |
899 				     FSL_GIANFAR_DEV_HAS_RMON |
900 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
901 				     FSL_GIANFAR_DEV_HAS_CSUM |
902 				     FSL_GIANFAR_DEV_HAS_VLAN |
903 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
904 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
905 				     FSL_GIANFAR_DEV_HAS_TIMER;
906 
907 	ctype = of_get_property(np, "phy-connection-type", NULL);
908 
909 	/* We only care about rgmii-id.  The rest are autodetected */
910 	if (ctype && !strcmp(ctype, "rgmii-id"))
911 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
912 	else
913 		priv->interface = PHY_INTERFACE_MODE_MII;
914 
915 	if (of_get_property(np, "fsl,magic-packet", NULL))
916 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
917 
918 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
919 
920 	/* In the case of a fixed PHY, the DT node associated
921 	 * to the PHY is the Ethernet MAC DT node.
922 	 */
923 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
924 		err = of_phy_register_fixed_link(np);
925 		if (err)
926 			goto err_grp_init;
927 
928 		priv->phy_node = of_node_get(np);
929 	}
930 
931 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
932 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
933 
934 	return 0;
935 
936 err_grp_init:
937 	unmap_group_regs(priv);
938 rx_alloc_failed:
939 	gfar_free_rx_queues(priv);
940 tx_alloc_failed:
941 	gfar_free_tx_queues(priv);
942 	free_gfar_dev(priv);
943 	return err;
944 }
945 
946 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
947 {
948 	struct hwtstamp_config config;
949 	struct gfar_private *priv = netdev_priv(netdev);
950 
951 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
952 		return -EFAULT;
953 
954 	/* reserved for future extensions */
955 	if (config.flags)
956 		return -EINVAL;
957 
958 	switch (config.tx_type) {
959 	case HWTSTAMP_TX_OFF:
960 		priv->hwts_tx_en = 0;
961 		break;
962 	case HWTSTAMP_TX_ON:
963 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
964 			return -ERANGE;
965 		priv->hwts_tx_en = 1;
966 		break;
967 	default:
968 		return -ERANGE;
969 	}
970 
971 	switch (config.rx_filter) {
972 	case HWTSTAMP_FILTER_NONE:
973 		if (priv->hwts_rx_en) {
974 			priv->hwts_rx_en = 0;
975 			reset_gfar(netdev);
976 		}
977 		break;
978 	default:
979 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
980 			return -ERANGE;
981 		if (!priv->hwts_rx_en) {
982 			priv->hwts_rx_en = 1;
983 			reset_gfar(netdev);
984 		}
985 		config.rx_filter = HWTSTAMP_FILTER_ALL;
986 		break;
987 	}
988 
989 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
990 		-EFAULT : 0;
991 }
992 
993 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
994 {
995 	struct hwtstamp_config config;
996 	struct gfar_private *priv = netdev_priv(netdev);
997 
998 	config.flags = 0;
999 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1000 	config.rx_filter = (priv->hwts_rx_en ?
1001 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1002 
1003 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1004 		-EFAULT : 0;
1005 }
1006 
1007 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1008 {
1009 	struct gfar_private *priv = netdev_priv(dev);
1010 
1011 	if (!netif_running(dev))
1012 		return -EINVAL;
1013 
1014 	if (cmd == SIOCSHWTSTAMP)
1015 		return gfar_hwtstamp_set(dev, rq);
1016 	if (cmd == SIOCGHWTSTAMP)
1017 		return gfar_hwtstamp_get(dev, rq);
1018 
1019 	if (!priv->phydev)
1020 		return -ENODEV;
1021 
1022 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1023 }
1024 
1025 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1026 				   u32 class)
1027 {
1028 	u32 rqfpr = FPR_FILER_MASK;
1029 	u32 rqfcr = 0x0;
1030 
1031 	rqfar--;
1032 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1033 	priv->ftp_rqfpr[rqfar] = rqfpr;
1034 	priv->ftp_rqfcr[rqfar] = rqfcr;
1035 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1036 
1037 	rqfar--;
1038 	rqfcr = RQFCR_CMP_NOMATCH;
1039 	priv->ftp_rqfpr[rqfar] = rqfpr;
1040 	priv->ftp_rqfcr[rqfar] = rqfcr;
1041 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042 
1043 	rqfar--;
1044 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1045 	rqfpr = class;
1046 	priv->ftp_rqfcr[rqfar] = rqfcr;
1047 	priv->ftp_rqfpr[rqfar] = rqfpr;
1048 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049 
1050 	rqfar--;
1051 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1052 	rqfpr = class;
1053 	priv->ftp_rqfcr[rqfar] = rqfcr;
1054 	priv->ftp_rqfpr[rqfar] = rqfpr;
1055 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1056 
1057 	return rqfar;
1058 }
1059 
1060 static void gfar_init_filer_table(struct gfar_private *priv)
1061 {
1062 	int i = 0x0;
1063 	u32 rqfar = MAX_FILER_IDX;
1064 	u32 rqfcr = 0x0;
1065 	u32 rqfpr = FPR_FILER_MASK;
1066 
1067 	/* Default rule */
1068 	rqfcr = RQFCR_CMP_MATCH;
1069 	priv->ftp_rqfcr[rqfar] = rqfcr;
1070 	priv->ftp_rqfpr[rqfar] = rqfpr;
1071 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1072 
1073 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1074 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1075 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1076 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1077 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1078 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1079 
1080 	/* cur_filer_idx indicated the first non-masked rule */
1081 	priv->cur_filer_idx = rqfar;
1082 
1083 	/* Rest are masked rules */
1084 	rqfcr = RQFCR_CMP_NOMATCH;
1085 	for (i = 0; i < rqfar; i++) {
1086 		priv->ftp_rqfcr[i] = rqfcr;
1087 		priv->ftp_rqfpr[i] = rqfpr;
1088 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1089 	}
1090 }
1091 
1092 #ifdef CONFIG_PPC
1093 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1094 {
1095 	unsigned int pvr = mfspr(SPRN_PVR);
1096 	unsigned int svr = mfspr(SPRN_SVR);
1097 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1098 	unsigned int rev = svr & 0xffff;
1099 
1100 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1101 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1102 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 		priv->errata |= GFAR_ERRATA_74;
1104 
1105 	/* MPC8313 and MPC837x all rev */
1106 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1107 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1108 		priv->errata |= GFAR_ERRATA_76;
1109 
1110 	/* MPC8313 Rev < 2.0 */
1111 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1112 		priv->errata |= GFAR_ERRATA_12;
1113 }
1114 
1115 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1116 {
1117 	unsigned int svr = mfspr(SPRN_SVR);
1118 
1119 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1120 		priv->errata |= GFAR_ERRATA_12;
1121 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1122 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1123 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1124 }
1125 #endif
1126 
1127 static void gfar_detect_errata(struct gfar_private *priv)
1128 {
1129 	struct device *dev = &priv->ofdev->dev;
1130 
1131 	/* no plans to fix */
1132 	priv->errata |= GFAR_ERRATA_A002;
1133 
1134 #ifdef CONFIG_PPC
1135 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1136 		__gfar_detect_errata_85xx(priv);
1137 	else /* non-mpc85xx parts, i.e. e300 core based */
1138 		__gfar_detect_errata_83xx(priv);
1139 #endif
1140 
1141 	if (priv->errata)
1142 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1143 			 priv->errata);
1144 }
1145 
1146 void gfar_mac_reset(struct gfar_private *priv)
1147 {
1148 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1149 	u32 tempval;
1150 
1151 	/* Reset MAC layer */
1152 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1153 
1154 	/* We need to delay at least 3 TX clocks */
1155 	udelay(3);
1156 
1157 	/* the soft reset bit is not self-resetting, so we need to
1158 	 * clear it before resuming normal operation
1159 	 */
1160 	gfar_write(&regs->maccfg1, 0);
1161 
1162 	udelay(3);
1163 
1164 	/* Compute rx_buff_size based on config flags */
1165 	gfar_rx_buff_size_config(priv);
1166 
1167 	/* Initialize the max receive frame/buffer lengths */
1168 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1169 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1170 
1171 	/* Initialize the Minimum Frame Length Register */
1172 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1173 
1174 	/* Initialize MACCFG2. */
1175 	tempval = MACCFG2_INIT_SETTINGS;
1176 
1177 	/* If the mtu is larger than the max size for standard
1178 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1179 	 * to allow huge frames, and to check the length
1180 	 */
1181 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1182 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1183 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1184 
1185 	gfar_write(&regs->maccfg2, tempval);
1186 
1187 	/* Clear mac addr hash registers */
1188 	gfar_write(&regs->igaddr0, 0);
1189 	gfar_write(&regs->igaddr1, 0);
1190 	gfar_write(&regs->igaddr2, 0);
1191 	gfar_write(&regs->igaddr3, 0);
1192 	gfar_write(&regs->igaddr4, 0);
1193 	gfar_write(&regs->igaddr5, 0);
1194 	gfar_write(&regs->igaddr6, 0);
1195 	gfar_write(&regs->igaddr7, 0);
1196 
1197 	gfar_write(&regs->gaddr0, 0);
1198 	gfar_write(&regs->gaddr1, 0);
1199 	gfar_write(&regs->gaddr2, 0);
1200 	gfar_write(&regs->gaddr3, 0);
1201 	gfar_write(&regs->gaddr4, 0);
1202 	gfar_write(&regs->gaddr5, 0);
1203 	gfar_write(&regs->gaddr6, 0);
1204 	gfar_write(&regs->gaddr7, 0);
1205 
1206 	if (priv->extended_hash)
1207 		gfar_clear_exact_match(priv->ndev);
1208 
1209 	gfar_mac_rx_config(priv);
1210 
1211 	gfar_mac_tx_config(priv);
1212 
1213 	gfar_set_mac_address(priv->ndev);
1214 
1215 	gfar_set_multi(priv->ndev);
1216 
1217 	/* clear ievent and imask before configuring coalescing */
1218 	gfar_ints_disable(priv);
1219 
1220 	/* Configure the coalescing support */
1221 	gfar_configure_coalescing_all(priv);
1222 }
1223 
1224 static void gfar_hw_init(struct gfar_private *priv)
1225 {
1226 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1227 	u32 attrs;
1228 
1229 	/* Stop the DMA engine now, in case it was running before
1230 	 * (The firmware could have used it, and left it running).
1231 	 */
1232 	gfar_halt(priv);
1233 
1234 	gfar_mac_reset(priv);
1235 
1236 	/* Zero out the rmon mib registers if it has them */
1237 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1238 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1239 
1240 		/* Mask off the CAM interrupts */
1241 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1242 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1243 	}
1244 
1245 	/* Initialize ECNTRL */
1246 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1247 
1248 	/* Set the extraction length and index */
1249 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1250 		ATTRELI_EI(priv->rx_stash_index);
1251 
1252 	gfar_write(&regs->attreli, attrs);
1253 
1254 	/* Start with defaults, and add stashing
1255 	 * depending on driver parameters
1256 	 */
1257 	attrs = ATTR_INIT_SETTINGS;
1258 
1259 	if (priv->bd_stash_en)
1260 		attrs |= ATTR_BDSTASH;
1261 
1262 	if (priv->rx_stash_size != 0)
1263 		attrs |= ATTR_BUFSTASH;
1264 
1265 	gfar_write(&regs->attr, attrs);
1266 
1267 	/* FIFO configs */
1268 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1269 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1270 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1271 
1272 	/* Program the interrupt steering regs, only for MG devices */
1273 	if (priv->num_grps > 1)
1274 		gfar_write_isrg(priv);
1275 }
1276 
1277 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1278 {
1279 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1280 
1281 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1282 		priv->extended_hash = 1;
1283 		priv->hash_width = 9;
1284 
1285 		priv->hash_regs[0] = &regs->igaddr0;
1286 		priv->hash_regs[1] = &regs->igaddr1;
1287 		priv->hash_regs[2] = &regs->igaddr2;
1288 		priv->hash_regs[3] = &regs->igaddr3;
1289 		priv->hash_regs[4] = &regs->igaddr4;
1290 		priv->hash_regs[5] = &regs->igaddr5;
1291 		priv->hash_regs[6] = &regs->igaddr6;
1292 		priv->hash_regs[7] = &regs->igaddr7;
1293 		priv->hash_regs[8] = &regs->gaddr0;
1294 		priv->hash_regs[9] = &regs->gaddr1;
1295 		priv->hash_regs[10] = &regs->gaddr2;
1296 		priv->hash_regs[11] = &regs->gaddr3;
1297 		priv->hash_regs[12] = &regs->gaddr4;
1298 		priv->hash_regs[13] = &regs->gaddr5;
1299 		priv->hash_regs[14] = &regs->gaddr6;
1300 		priv->hash_regs[15] = &regs->gaddr7;
1301 
1302 	} else {
1303 		priv->extended_hash = 0;
1304 		priv->hash_width = 8;
1305 
1306 		priv->hash_regs[0] = &regs->gaddr0;
1307 		priv->hash_regs[1] = &regs->gaddr1;
1308 		priv->hash_regs[2] = &regs->gaddr2;
1309 		priv->hash_regs[3] = &regs->gaddr3;
1310 		priv->hash_regs[4] = &regs->gaddr4;
1311 		priv->hash_regs[5] = &regs->gaddr5;
1312 		priv->hash_regs[6] = &regs->gaddr6;
1313 		priv->hash_regs[7] = &regs->gaddr7;
1314 	}
1315 }
1316 
1317 /* Set up the ethernet device structure, private data,
1318  * and anything else we need before we start
1319  */
1320 static int gfar_probe(struct platform_device *ofdev)
1321 {
1322 	struct net_device *dev = NULL;
1323 	struct gfar_private *priv = NULL;
1324 	int err = 0, i;
1325 
1326 	err = gfar_of_init(ofdev, &dev);
1327 
1328 	if (err)
1329 		return err;
1330 
1331 	priv = netdev_priv(dev);
1332 	priv->ndev = dev;
1333 	priv->ofdev = ofdev;
1334 	priv->dev = &ofdev->dev;
1335 	SET_NETDEV_DEV(dev, &ofdev->dev);
1336 
1337 	spin_lock_init(&priv->bflock);
1338 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1339 
1340 	platform_set_drvdata(ofdev, priv);
1341 
1342 	gfar_detect_errata(priv);
1343 
1344 	/* Set the dev->base_addr to the gfar reg region */
1345 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1346 
1347 	/* Fill in the dev structure */
1348 	dev->watchdog_timeo = TX_TIMEOUT;
1349 	dev->mtu = 1500;
1350 	dev->netdev_ops = &gfar_netdev_ops;
1351 	dev->ethtool_ops = &gfar_ethtool_ops;
1352 
1353 	/* Register for napi ...We are registering NAPI for each grp */
1354 	for (i = 0; i < priv->num_grps; i++) {
1355 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1356 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1357 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1358 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1359 				       gfar_poll_tx_sq, 2);
1360 		} else {
1361 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1362 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1363 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1364 				       gfar_poll_tx, 2);
1365 		}
1366 	}
1367 
1368 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1369 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1370 				   NETIF_F_RXCSUM;
1371 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1372 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1373 	}
1374 
1375 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1376 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1377 				    NETIF_F_HW_VLAN_CTAG_RX;
1378 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1379 	}
1380 
1381 	gfar_init_addr_hash_table(priv);
1382 
1383 	/* Insert receive time stamps into padding alignment bytes */
1384 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385 		priv->padding = 8;
1386 
1387 	if (dev->features & NETIF_F_IP_CSUM ||
1388 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389 		dev->needed_headroom = GMAC_FCB_LEN;
1390 
1391 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1392 
1393 	/* Initializing some of the rx/tx queue level parameters */
1394 	for (i = 0; i < priv->num_tx_queues; i++) {
1395 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1396 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1397 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1398 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1399 	}
1400 
1401 	for (i = 0; i < priv->num_rx_queues; i++) {
1402 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1403 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1404 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1405 	}
1406 
1407 	/* always enable rx filer */
1408 	priv->rx_filer_enable = 1;
1409 	/* Enable most messages by default */
1410 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1411 	/* use pritority h/w tx queue scheduling for single queue devices */
1412 	if (priv->num_tx_queues == 1)
1413 		priv->prio_sched_en = 1;
1414 
1415 	set_bit(GFAR_DOWN, &priv->state);
1416 
1417 	gfar_hw_init(priv);
1418 
1419 	/* Carrier starts down, phylib will bring it up */
1420 	netif_carrier_off(dev);
1421 
1422 	err = register_netdev(dev);
1423 
1424 	if (err) {
1425 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1426 		goto register_fail;
1427 	}
1428 
1429 	device_init_wakeup(&dev->dev,
1430 			   priv->device_flags &
1431 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1432 
1433 	/* fill out IRQ number and name fields */
1434 	for (i = 0; i < priv->num_grps; i++) {
1435 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1436 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1437 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1438 				dev->name, "_g", '0' + i, "_tx");
1439 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1440 				dev->name, "_g", '0' + i, "_rx");
1441 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1442 				dev->name, "_g", '0' + i, "_er");
1443 		} else
1444 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1445 	}
1446 
1447 	/* Initialize the filer table */
1448 	gfar_init_filer_table(priv);
1449 
1450 	/* Print out the device info */
1451 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1452 
1453 	/* Even more device info helps when determining which kernel
1454 	 * provided which set of benchmarks.
1455 	 */
1456 	netdev_info(dev, "Running with NAPI enabled\n");
1457 	for (i = 0; i < priv->num_rx_queues; i++)
1458 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1459 			    i, priv->rx_queue[i]->rx_ring_size);
1460 	for (i = 0; i < priv->num_tx_queues; i++)
1461 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1462 			    i, priv->tx_queue[i]->tx_ring_size);
1463 
1464 	return 0;
1465 
1466 register_fail:
1467 	unmap_group_regs(priv);
1468 	gfar_free_rx_queues(priv);
1469 	gfar_free_tx_queues(priv);
1470 	of_node_put(priv->phy_node);
1471 	of_node_put(priv->tbi_node);
1472 	free_gfar_dev(priv);
1473 	return err;
1474 }
1475 
1476 static int gfar_remove(struct platform_device *ofdev)
1477 {
1478 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1479 
1480 	of_node_put(priv->phy_node);
1481 	of_node_put(priv->tbi_node);
1482 
1483 	unregister_netdev(priv->ndev);
1484 	unmap_group_regs(priv);
1485 	gfar_free_rx_queues(priv);
1486 	gfar_free_tx_queues(priv);
1487 	free_gfar_dev(priv);
1488 
1489 	return 0;
1490 }
1491 
1492 #ifdef CONFIG_PM
1493 
1494 static int gfar_suspend(struct device *dev)
1495 {
1496 	struct gfar_private *priv = dev_get_drvdata(dev);
1497 	struct net_device *ndev = priv->ndev;
1498 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1499 	unsigned long flags;
1500 	u32 tempval;
1501 
1502 	int magic_packet = priv->wol_en &&
1503 			   (priv->device_flags &
1504 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1505 
1506 	netif_device_detach(ndev);
1507 
1508 	if (netif_running(ndev)) {
1509 
1510 		local_irq_save(flags);
1511 		lock_tx_qs(priv);
1512 
1513 		gfar_halt_nodisable(priv);
1514 
1515 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1516 		tempval = gfar_read(&regs->maccfg1);
1517 
1518 		tempval &= ~MACCFG1_TX_EN;
1519 
1520 		if (!magic_packet)
1521 			tempval &= ~MACCFG1_RX_EN;
1522 
1523 		gfar_write(&regs->maccfg1, tempval);
1524 
1525 		unlock_tx_qs(priv);
1526 		local_irq_restore(flags);
1527 
1528 		disable_napi(priv);
1529 
1530 		if (magic_packet) {
1531 			/* Enable interrupt on Magic Packet */
1532 			gfar_write(&regs->imask, IMASK_MAG);
1533 
1534 			/* Enable Magic Packet mode */
1535 			tempval = gfar_read(&regs->maccfg2);
1536 			tempval |= MACCFG2_MPEN;
1537 			gfar_write(&regs->maccfg2, tempval);
1538 		} else {
1539 			phy_stop(priv->phydev);
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int gfar_resume(struct device *dev)
1547 {
1548 	struct gfar_private *priv = dev_get_drvdata(dev);
1549 	struct net_device *ndev = priv->ndev;
1550 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1551 	unsigned long flags;
1552 	u32 tempval;
1553 	int magic_packet = priv->wol_en &&
1554 			   (priv->device_flags &
1555 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1556 
1557 	if (!netif_running(ndev)) {
1558 		netif_device_attach(ndev);
1559 		return 0;
1560 	}
1561 
1562 	if (!magic_packet && priv->phydev)
1563 		phy_start(priv->phydev);
1564 
1565 	/* Disable Magic Packet mode, in case something
1566 	 * else woke us up.
1567 	 */
1568 	local_irq_save(flags);
1569 	lock_tx_qs(priv);
1570 
1571 	tempval = gfar_read(&regs->maccfg2);
1572 	tempval &= ~MACCFG2_MPEN;
1573 	gfar_write(&regs->maccfg2, tempval);
1574 
1575 	gfar_start(priv);
1576 
1577 	unlock_tx_qs(priv);
1578 	local_irq_restore(flags);
1579 
1580 	netif_device_attach(ndev);
1581 
1582 	enable_napi(priv);
1583 
1584 	return 0;
1585 }
1586 
1587 static int gfar_restore(struct device *dev)
1588 {
1589 	struct gfar_private *priv = dev_get_drvdata(dev);
1590 	struct net_device *ndev = priv->ndev;
1591 
1592 	if (!netif_running(ndev)) {
1593 		netif_device_attach(ndev);
1594 
1595 		return 0;
1596 	}
1597 
1598 	if (gfar_init_bds(ndev)) {
1599 		free_skb_resources(priv);
1600 		return -ENOMEM;
1601 	}
1602 
1603 	gfar_mac_reset(priv);
1604 
1605 	gfar_init_tx_rx_base(priv);
1606 
1607 	gfar_start(priv);
1608 
1609 	priv->oldlink = 0;
1610 	priv->oldspeed = 0;
1611 	priv->oldduplex = -1;
1612 
1613 	if (priv->phydev)
1614 		phy_start(priv->phydev);
1615 
1616 	netif_device_attach(ndev);
1617 	enable_napi(priv);
1618 
1619 	return 0;
1620 }
1621 
1622 static struct dev_pm_ops gfar_pm_ops = {
1623 	.suspend = gfar_suspend,
1624 	.resume = gfar_resume,
1625 	.freeze = gfar_suspend,
1626 	.thaw = gfar_resume,
1627 	.restore = gfar_restore,
1628 };
1629 
1630 #define GFAR_PM_OPS (&gfar_pm_ops)
1631 
1632 #else
1633 
1634 #define GFAR_PM_OPS NULL
1635 
1636 #endif
1637 
1638 /* Reads the controller's registers to determine what interface
1639  * connects it to the PHY.
1640  */
1641 static phy_interface_t gfar_get_interface(struct net_device *dev)
1642 {
1643 	struct gfar_private *priv = netdev_priv(dev);
1644 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1645 	u32 ecntrl;
1646 
1647 	ecntrl = gfar_read(&regs->ecntrl);
1648 
1649 	if (ecntrl & ECNTRL_SGMII_MODE)
1650 		return PHY_INTERFACE_MODE_SGMII;
1651 
1652 	if (ecntrl & ECNTRL_TBI_MODE) {
1653 		if (ecntrl & ECNTRL_REDUCED_MODE)
1654 			return PHY_INTERFACE_MODE_RTBI;
1655 		else
1656 			return PHY_INTERFACE_MODE_TBI;
1657 	}
1658 
1659 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1660 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1661 			return PHY_INTERFACE_MODE_RMII;
1662 		}
1663 		else {
1664 			phy_interface_t interface = priv->interface;
1665 
1666 			/* This isn't autodetected right now, so it must
1667 			 * be set by the device tree or platform code.
1668 			 */
1669 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1670 				return PHY_INTERFACE_MODE_RGMII_ID;
1671 
1672 			return PHY_INTERFACE_MODE_RGMII;
1673 		}
1674 	}
1675 
1676 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1677 		return PHY_INTERFACE_MODE_GMII;
1678 
1679 	return PHY_INTERFACE_MODE_MII;
1680 }
1681 
1682 
1683 /* Initializes driver's PHY state, and attaches to the PHY.
1684  * Returns 0 on success.
1685  */
1686 static int init_phy(struct net_device *dev)
1687 {
1688 	struct gfar_private *priv = netdev_priv(dev);
1689 	uint gigabit_support =
1690 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1691 		GFAR_SUPPORTED_GBIT : 0;
1692 	phy_interface_t interface;
1693 
1694 	priv->oldlink = 0;
1695 	priv->oldspeed = 0;
1696 	priv->oldduplex = -1;
1697 
1698 	interface = gfar_get_interface(dev);
1699 
1700 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1701 				      interface);
1702 	if (!priv->phydev) {
1703 		dev_err(&dev->dev, "could not attach to PHY\n");
1704 		return -ENODEV;
1705 	}
1706 
1707 	if (interface == PHY_INTERFACE_MODE_SGMII)
1708 		gfar_configure_serdes(dev);
1709 
1710 	/* Remove any features not supported by the controller */
1711 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1712 	priv->phydev->advertising = priv->phydev->supported;
1713 
1714 	/* Add support for flow control, but don't advertise it by default */
1715 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1716 
1717 	return 0;
1718 }
1719 
1720 /* Initialize TBI PHY interface for communicating with the
1721  * SERDES lynx PHY on the chip.  We communicate with this PHY
1722  * through the MDIO bus on each controller, treating it as a
1723  * "normal" PHY at the address found in the TBIPA register.  We assume
1724  * that the TBIPA register is valid.  Either the MDIO bus code will set
1725  * it to a value that doesn't conflict with other PHYs on the bus, or the
1726  * value doesn't matter, as there are no other PHYs on the bus.
1727  */
1728 static void gfar_configure_serdes(struct net_device *dev)
1729 {
1730 	struct gfar_private *priv = netdev_priv(dev);
1731 	struct phy_device *tbiphy;
1732 
1733 	if (!priv->tbi_node) {
1734 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1735 				    "device tree specify a tbi-handle\n");
1736 		return;
1737 	}
1738 
1739 	tbiphy = of_phy_find_device(priv->tbi_node);
1740 	if (!tbiphy) {
1741 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1742 		return;
1743 	}
1744 
1745 	/* If the link is already up, we must already be ok, and don't need to
1746 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1747 	 * everything for us?  Resetting it takes the link down and requires
1748 	 * several seconds for it to come back.
1749 	 */
1750 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1751 		return;
1752 
1753 	/* Single clk mode, mii mode off(for serdes communication) */
1754 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1755 
1756 	phy_write(tbiphy, MII_ADVERTISE,
1757 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1758 		  ADVERTISE_1000XPSE_ASYM);
1759 
1760 	phy_write(tbiphy, MII_BMCR,
1761 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1762 		  BMCR_SPEED1000);
1763 }
1764 
1765 static int __gfar_is_rx_idle(struct gfar_private *priv)
1766 {
1767 	u32 res;
1768 
1769 	/* Normaly TSEC should not hang on GRS commands, so we should
1770 	 * actually wait for IEVENT_GRSC flag.
1771 	 */
1772 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1773 		return 0;
1774 
1775 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1776 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1777 	 * and the Rx can be safely reset.
1778 	 */
1779 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1780 	res &= 0x7f807f80;
1781 	if ((res & 0xffff) == (res >> 16))
1782 		return 1;
1783 
1784 	return 0;
1785 }
1786 
1787 /* Halt the receive and transmit queues */
1788 static void gfar_halt_nodisable(struct gfar_private *priv)
1789 {
1790 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1791 	u32 tempval;
1792 	unsigned int timeout;
1793 	int stopped;
1794 
1795 	gfar_ints_disable(priv);
1796 
1797 	if (gfar_is_dma_stopped(priv))
1798 		return;
1799 
1800 	/* Stop the DMA, and wait for it to stop */
1801 	tempval = gfar_read(&regs->dmactrl);
1802 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1803 	gfar_write(&regs->dmactrl, tempval);
1804 
1805 retry:
1806 	timeout = 1000;
1807 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1808 		cpu_relax();
1809 		timeout--;
1810 	}
1811 
1812 	if (!timeout)
1813 		stopped = gfar_is_dma_stopped(priv);
1814 
1815 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1816 	    !__gfar_is_rx_idle(priv))
1817 		goto retry;
1818 }
1819 
1820 /* Halt the receive and transmit queues */
1821 void gfar_halt(struct gfar_private *priv)
1822 {
1823 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 	u32 tempval;
1825 
1826 	/* Dissable the Rx/Tx hw queues */
1827 	gfar_write(&regs->rqueue, 0);
1828 	gfar_write(&regs->tqueue, 0);
1829 
1830 	mdelay(10);
1831 
1832 	gfar_halt_nodisable(priv);
1833 
1834 	/* Disable Rx/Tx DMA */
1835 	tempval = gfar_read(&regs->maccfg1);
1836 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1837 	gfar_write(&regs->maccfg1, tempval);
1838 }
1839 
1840 void stop_gfar(struct net_device *dev)
1841 {
1842 	struct gfar_private *priv = netdev_priv(dev);
1843 
1844 	netif_tx_stop_all_queues(dev);
1845 
1846 	smp_mb__before_atomic();
1847 	set_bit(GFAR_DOWN, &priv->state);
1848 	smp_mb__after_atomic();
1849 
1850 	disable_napi(priv);
1851 
1852 	/* disable ints and gracefully shut down Rx/Tx DMA */
1853 	gfar_halt(priv);
1854 
1855 	phy_stop(priv->phydev);
1856 
1857 	free_skb_resources(priv);
1858 }
1859 
1860 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1861 {
1862 	struct txbd8 *txbdp;
1863 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1864 	int i, j;
1865 
1866 	txbdp = tx_queue->tx_bd_base;
1867 
1868 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1869 		if (!tx_queue->tx_skbuff[i])
1870 			continue;
1871 
1872 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1873 				 txbdp->length, DMA_TO_DEVICE);
1874 		txbdp->lstatus = 0;
1875 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1876 		     j++) {
1877 			txbdp++;
1878 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1879 				       txbdp->length, DMA_TO_DEVICE);
1880 		}
1881 		txbdp++;
1882 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1883 		tx_queue->tx_skbuff[i] = NULL;
1884 	}
1885 	kfree(tx_queue->tx_skbuff);
1886 	tx_queue->tx_skbuff = NULL;
1887 }
1888 
1889 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1890 {
1891 	struct rxbd8 *rxbdp;
1892 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1893 	int i;
1894 
1895 	rxbdp = rx_queue->rx_bd_base;
1896 
1897 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1898 		if (rx_queue->rx_skbuff[i]) {
1899 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1900 					 priv->rx_buffer_size,
1901 					 DMA_FROM_DEVICE);
1902 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1903 			rx_queue->rx_skbuff[i] = NULL;
1904 		}
1905 		rxbdp->lstatus = 0;
1906 		rxbdp->bufPtr = 0;
1907 		rxbdp++;
1908 	}
1909 	kfree(rx_queue->rx_skbuff);
1910 	rx_queue->rx_skbuff = NULL;
1911 }
1912 
1913 /* If there are any tx skbs or rx skbs still around, free them.
1914  * Then free tx_skbuff and rx_skbuff
1915  */
1916 static void free_skb_resources(struct gfar_private *priv)
1917 {
1918 	struct gfar_priv_tx_q *tx_queue = NULL;
1919 	struct gfar_priv_rx_q *rx_queue = NULL;
1920 	int i;
1921 
1922 	/* Go through all the buffer descriptors and free their data buffers */
1923 	for (i = 0; i < priv->num_tx_queues; i++) {
1924 		struct netdev_queue *txq;
1925 
1926 		tx_queue = priv->tx_queue[i];
1927 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1928 		if (tx_queue->tx_skbuff)
1929 			free_skb_tx_queue(tx_queue);
1930 		netdev_tx_reset_queue(txq);
1931 	}
1932 
1933 	for (i = 0; i < priv->num_rx_queues; i++) {
1934 		rx_queue = priv->rx_queue[i];
1935 		if (rx_queue->rx_skbuff)
1936 			free_skb_rx_queue(rx_queue);
1937 	}
1938 
1939 	dma_free_coherent(priv->dev,
1940 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1941 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1942 			  priv->tx_queue[0]->tx_bd_base,
1943 			  priv->tx_queue[0]->tx_bd_dma_base);
1944 }
1945 
1946 void gfar_start(struct gfar_private *priv)
1947 {
1948 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1949 	u32 tempval;
1950 	int i = 0;
1951 
1952 	/* Enable Rx/Tx hw queues */
1953 	gfar_write(&regs->rqueue, priv->rqueue);
1954 	gfar_write(&regs->tqueue, priv->tqueue);
1955 
1956 	/* Initialize DMACTRL to have WWR and WOP */
1957 	tempval = gfar_read(&regs->dmactrl);
1958 	tempval |= DMACTRL_INIT_SETTINGS;
1959 	gfar_write(&regs->dmactrl, tempval);
1960 
1961 	/* Make sure we aren't stopped */
1962 	tempval = gfar_read(&regs->dmactrl);
1963 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1964 	gfar_write(&regs->dmactrl, tempval);
1965 
1966 	for (i = 0; i < priv->num_grps; i++) {
1967 		regs = priv->gfargrp[i].regs;
1968 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1969 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1970 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1971 	}
1972 
1973 	/* Enable Rx/Tx DMA */
1974 	tempval = gfar_read(&regs->maccfg1);
1975 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1976 	gfar_write(&regs->maccfg1, tempval);
1977 
1978 	gfar_ints_enable(priv);
1979 
1980 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1981 }
1982 
1983 static void free_grp_irqs(struct gfar_priv_grp *grp)
1984 {
1985 	free_irq(gfar_irq(grp, TX)->irq, grp);
1986 	free_irq(gfar_irq(grp, RX)->irq, grp);
1987 	free_irq(gfar_irq(grp, ER)->irq, grp);
1988 }
1989 
1990 static int register_grp_irqs(struct gfar_priv_grp *grp)
1991 {
1992 	struct gfar_private *priv = grp->priv;
1993 	struct net_device *dev = priv->ndev;
1994 	int err;
1995 
1996 	/* If the device has multiple interrupts, register for
1997 	 * them.  Otherwise, only register for the one
1998 	 */
1999 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2000 		/* Install our interrupt handlers for Error,
2001 		 * Transmit, and Receive
2002 		 */
2003 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2004 				  gfar_irq(grp, ER)->name, grp);
2005 		if (err < 0) {
2006 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2007 				  gfar_irq(grp, ER)->irq);
2008 
2009 			goto err_irq_fail;
2010 		}
2011 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2012 				  gfar_irq(grp, TX)->name, grp);
2013 		if (err < 0) {
2014 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2015 				  gfar_irq(grp, TX)->irq);
2016 			goto tx_irq_fail;
2017 		}
2018 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2019 				  gfar_irq(grp, RX)->name, grp);
2020 		if (err < 0) {
2021 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2022 				  gfar_irq(grp, RX)->irq);
2023 			goto rx_irq_fail;
2024 		}
2025 	} else {
2026 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2027 				  gfar_irq(grp, TX)->name, grp);
2028 		if (err < 0) {
2029 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2030 				  gfar_irq(grp, TX)->irq);
2031 			goto err_irq_fail;
2032 		}
2033 	}
2034 
2035 	return 0;
2036 
2037 rx_irq_fail:
2038 	free_irq(gfar_irq(grp, TX)->irq, grp);
2039 tx_irq_fail:
2040 	free_irq(gfar_irq(grp, ER)->irq, grp);
2041 err_irq_fail:
2042 	return err;
2043 
2044 }
2045 
2046 static void gfar_free_irq(struct gfar_private *priv)
2047 {
2048 	int i;
2049 
2050 	/* Free the IRQs */
2051 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2052 		for (i = 0; i < priv->num_grps; i++)
2053 			free_grp_irqs(&priv->gfargrp[i]);
2054 	} else {
2055 		for (i = 0; i < priv->num_grps; i++)
2056 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2057 				 &priv->gfargrp[i]);
2058 	}
2059 }
2060 
2061 static int gfar_request_irq(struct gfar_private *priv)
2062 {
2063 	int err, i, j;
2064 
2065 	for (i = 0; i < priv->num_grps; i++) {
2066 		err = register_grp_irqs(&priv->gfargrp[i]);
2067 		if (err) {
2068 			for (j = 0; j < i; j++)
2069 				free_grp_irqs(&priv->gfargrp[j]);
2070 			return err;
2071 		}
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 /* Bring the controller up and running */
2078 int startup_gfar(struct net_device *ndev)
2079 {
2080 	struct gfar_private *priv = netdev_priv(ndev);
2081 	int err;
2082 
2083 	gfar_mac_reset(priv);
2084 
2085 	err = gfar_alloc_skb_resources(ndev);
2086 	if (err)
2087 		return err;
2088 
2089 	gfar_init_tx_rx_base(priv);
2090 
2091 	smp_mb__before_atomic();
2092 	clear_bit(GFAR_DOWN, &priv->state);
2093 	smp_mb__after_atomic();
2094 
2095 	/* Start Rx/Tx DMA and enable the interrupts */
2096 	gfar_start(priv);
2097 
2098 	phy_start(priv->phydev);
2099 
2100 	enable_napi(priv);
2101 
2102 	netif_tx_wake_all_queues(ndev);
2103 
2104 	return 0;
2105 }
2106 
2107 /* Called when something needs to use the ethernet device
2108  * Returns 0 for success.
2109  */
2110 static int gfar_enet_open(struct net_device *dev)
2111 {
2112 	struct gfar_private *priv = netdev_priv(dev);
2113 	int err;
2114 
2115 	err = init_phy(dev);
2116 	if (err)
2117 		return err;
2118 
2119 	err = gfar_request_irq(priv);
2120 	if (err)
2121 		return err;
2122 
2123 	err = startup_gfar(dev);
2124 	if (err)
2125 		return err;
2126 
2127 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2128 
2129 	return err;
2130 }
2131 
2132 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2133 {
2134 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2135 
2136 	memset(fcb, 0, GMAC_FCB_LEN);
2137 
2138 	return fcb;
2139 }
2140 
2141 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2142 				    int fcb_length)
2143 {
2144 	/* If we're here, it's a IP packet with a TCP or UDP
2145 	 * payload.  We set it to checksum, using a pseudo-header
2146 	 * we provide
2147 	 */
2148 	u8 flags = TXFCB_DEFAULT;
2149 
2150 	/* Tell the controller what the protocol is
2151 	 * And provide the already calculated phcs
2152 	 */
2153 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2154 		flags |= TXFCB_UDP;
2155 		fcb->phcs = udp_hdr(skb)->check;
2156 	} else
2157 		fcb->phcs = tcp_hdr(skb)->check;
2158 
2159 	/* l3os is the distance between the start of the
2160 	 * frame (skb->data) and the start of the IP hdr.
2161 	 * l4os is the distance between the start of the
2162 	 * l3 hdr and the l4 hdr
2163 	 */
2164 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2165 	fcb->l4os = skb_network_header_len(skb);
2166 
2167 	fcb->flags = flags;
2168 }
2169 
2170 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2171 {
2172 	fcb->flags |= TXFCB_VLN;
2173 	fcb->vlctl = skb_vlan_tag_get(skb);
2174 }
2175 
2176 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2177 				      struct txbd8 *base, int ring_size)
2178 {
2179 	struct txbd8 *new_bd = bdp + stride;
2180 
2181 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2182 }
2183 
2184 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2185 				      int ring_size)
2186 {
2187 	return skip_txbd(bdp, 1, base, ring_size);
2188 }
2189 
2190 /* eTSEC12: csum generation not supported for some fcb offsets */
2191 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2192 				       unsigned long fcb_addr)
2193 {
2194 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2195 	       (fcb_addr % 0x20) > 0x18);
2196 }
2197 
2198 /* eTSEC76: csum generation for frames larger than 2500 may
2199  * cause excess delays before start of transmission
2200  */
2201 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2202 				       unsigned int len)
2203 {
2204 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2205 	       (len > 2500));
2206 }
2207 
2208 /* This is called by the kernel when a frame is ready for transmission.
2209  * It is pointed to by the dev->hard_start_xmit function pointer
2210  */
2211 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2212 {
2213 	struct gfar_private *priv = netdev_priv(dev);
2214 	struct gfar_priv_tx_q *tx_queue = NULL;
2215 	struct netdev_queue *txq;
2216 	struct gfar __iomem *regs = NULL;
2217 	struct txfcb *fcb = NULL;
2218 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2219 	u32 lstatus;
2220 	int i, rq = 0;
2221 	int do_tstamp, do_csum, do_vlan;
2222 	u32 bufaddr;
2223 	unsigned long flags;
2224 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2225 
2226 	rq = skb->queue_mapping;
2227 	tx_queue = priv->tx_queue[rq];
2228 	txq = netdev_get_tx_queue(dev, rq);
2229 	base = tx_queue->tx_bd_base;
2230 	regs = tx_queue->grp->regs;
2231 
2232 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2233 	do_vlan = skb_vlan_tag_present(skb);
2234 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2235 		    priv->hwts_tx_en;
2236 
2237 	if (do_csum || do_vlan)
2238 		fcb_len = GMAC_FCB_LEN;
2239 
2240 	/* check if time stamp should be generated */
2241 	if (unlikely(do_tstamp))
2242 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2243 
2244 	/* make space for additional header when fcb is needed */
2245 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2246 		struct sk_buff *skb_new;
2247 
2248 		skb_new = skb_realloc_headroom(skb, fcb_len);
2249 		if (!skb_new) {
2250 			dev->stats.tx_errors++;
2251 			dev_kfree_skb_any(skb);
2252 			return NETDEV_TX_OK;
2253 		}
2254 
2255 		if (skb->sk)
2256 			skb_set_owner_w(skb_new, skb->sk);
2257 		dev_consume_skb_any(skb);
2258 		skb = skb_new;
2259 	}
2260 
2261 	/* total number of fragments in the SKB */
2262 	nr_frags = skb_shinfo(skb)->nr_frags;
2263 
2264 	/* calculate the required number of TxBDs for this skb */
2265 	if (unlikely(do_tstamp))
2266 		nr_txbds = nr_frags + 2;
2267 	else
2268 		nr_txbds = nr_frags + 1;
2269 
2270 	/* check if there is space to queue this packet */
2271 	if (nr_txbds > tx_queue->num_txbdfree) {
2272 		/* no space, stop the queue */
2273 		netif_tx_stop_queue(txq);
2274 		dev->stats.tx_fifo_errors++;
2275 		return NETDEV_TX_BUSY;
2276 	}
2277 
2278 	/* Update transmit stats */
2279 	bytes_sent = skb->len;
2280 	tx_queue->stats.tx_bytes += bytes_sent;
2281 	/* keep Tx bytes on wire for BQL accounting */
2282 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2283 	tx_queue->stats.tx_packets++;
2284 
2285 	txbdp = txbdp_start = tx_queue->cur_tx;
2286 	lstatus = txbdp->lstatus;
2287 
2288 	/* Time stamp insertion requires one additional TxBD */
2289 	if (unlikely(do_tstamp))
2290 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2291 						 tx_queue->tx_ring_size);
2292 
2293 	if (nr_frags == 0) {
2294 		if (unlikely(do_tstamp))
2295 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2296 							  TXBD_INTERRUPT);
2297 		else
2298 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2299 	} else {
2300 		/* Place the fragment addresses and lengths into the TxBDs */
2301 		for (i = 0; i < nr_frags; i++) {
2302 			unsigned int frag_len;
2303 			/* Point at the next BD, wrapping as needed */
2304 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2305 
2306 			frag_len = skb_shinfo(skb)->frags[i].size;
2307 
2308 			lstatus = txbdp->lstatus | frag_len |
2309 				  BD_LFLAG(TXBD_READY);
2310 
2311 			/* Handle the last BD specially */
2312 			if (i == nr_frags - 1)
2313 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2314 
2315 			bufaddr = skb_frag_dma_map(priv->dev,
2316 						   &skb_shinfo(skb)->frags[i],
2317 						   0,
2318 						   frag_len,
2319 						   DMA_TO_DEVICE);
2320 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2321 				goto dma_map_err;
2322 
2323 			/* set the TxBD length and buffer pointer */
2324 			txbdp->bufPtr = bufaddr;
2325 			txbdp->lstatus = lstatus;
2326 		}
2327 
2328 		lstatus = txbdp_start->lstatus;
2329 	}
2330 
2331 	/* Add TxPAL between FCB and frame if required */
2332 	if (unlikely(do_tstamp)) {
2333 		skb_push(skb, GMAC_TXPAL_LEN);
2334 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2335 	}
2336 
2337 	/* Add TxFCB if required */
2338 	if (fcb_len) {
2339 		fcb = gfar_add_fcb(skb);
2340 		lstatus |= BD_LFLAG(TXBD_TOE);
2341 	}
2342 
2343 	/* Set up checksumming */
2344 	if (do_csum) {
2345 		gfar_tx_checksum(skb, fcb, fcb_len);
2346 
2347 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2348 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2349 			__skb_pull(skb, GMAC_FCB_LEN);
2350 			skb_checksum_help(skb);
2351 			if (do_vlan || do_tstamp) {
2352 				/* put back a new fcb for vlan/tstamp TOE */
2353 				fcb = gfar_add_fcb(skb);
2354 			} else {
2355 				/* Tx TOE not used */
2356 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2357 				fcb = NULL;
2358 			}
2359 		}
2360 	}
2361 
2362 	if (do_vlan)
2363 		gfar_tx_vlan(skb, fcb);
2364 
2365 	/* Setup tx hardware time stamping if requested */
2366 	if (unlikely(do_tstamp)) {
2367 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2368 		fcb->ptp = 1;
2369 	}
2370 
2371 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2372 				 DMA_TO_DEVICE);
2373 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2374 		goto dma_map_err;
2375 
2376 	txbdp_start->bufPtr = bufaddr;
2377 
2378 	/* If time stamping is requested one additional TxBD must be set up. The
2379 	 * first TxBD points to the FCB and must have a data length of
2380 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2381 	 * the full frame length.
2382 	 */
2383 	if (unlikely(do_tstamp)) {
2384 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2385 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2386 					 (skb_headlen(skb) - fcb_len);
2387 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2388 	} else {
2389 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2390 	}
2391 
2392 	netdev_tx_sent_queue(txq, bytes_sent);
2393 
2394 	/* We can work in parallel with gfar_clean_tx_ring(), except
2395 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2396 	 * when we were reading the num_txbdfree and checking for available
2397 	 * space, that's because outside of this function it can only grow,
2398 	 * and once we've got needed space, it cannot suddenly disappear.
2399 	 *
2400 	 * The lock also protects us from gfar_error(), which can modify
2401 	 * regs->tstat and thus retrigger the transfers, which is why we
2402 	 * also must grab the lock before setting ready bit for the first
2403 	 * to be transmitted BD.
2404 	 */
2405 	spin_lock_irqsave(&tx_queue->txlock, flags);
2406 
2407 	gfar_wmb();
2408 
2409 	txbdp_start->lstatus = lstatus;
2410 
2411 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2412 
2413 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2414 
2415 	/* Update the current skb pointer to the next entry we will use
2416 	 * (wrapping if necessary)
2417 	 */
2418 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2419 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2420 
2421 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2422 
2423 	/* reduce TxBD free count */
2424 	tx_queue->num_txbdfree -= (nr_txbds);
2425 
2426 	/* If the next BD still needs to be cleaned up, then the bds
2427 	 * are full.  We need to tell the kernel to stop sending us stuff.
2428 	 */
2429 	if (!tx_queue->num_txbdfree) {
2430 		netif_tx_stop_queue(txq);
2431 
2432 		dev->stats.tx_fifo_errors++;
2433 	}
2434 
2435 	/* Tell the DMA to go go go */
2436 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2437 
2438 	/* Unlock priv */
2439 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2440 
2441 	return NETDEV_TX_OK;
2442 
2443 dma_map_err:
2444 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2445 	if (do_tstamp)
2446 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2447 	for (i = 0; i < nr_frags; i++) {
2448 		lstatus = txbdp->lstatus;
2449 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2450 			break;
2451 
2452 		txbdp->lstatus = lstatus & ~BD_LFLAG(TXBD_READY);
2453 		bufaddr = txbdp->bufPtr;
2454 		dma_unmap_page(priv->dev, bufaddr, txbdp->length,
2455 			       DMA_TO_DEVICE);
2456 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2457 	}
2458 	gfar_wmb();
2459 	dev_kfree_skb_any(skb);
2460 	return NETDEV_TX_OK;
2461 }
2462 
2463 /* Stops the kernel queue, and halts the controller */
2464 static int gfar_close(struct net_device *dev)
2465 {
2466 	struct gfar_private *priv = netdev_priv(dev);
2467 
2468 	cancel_work_sync(&priv->reset_task);
2469 	stop_gfar(dev);
2470 
2471 	/* Disconnect from the PHY */
2472 	phy_disconnect(priv->phydev);
2473 	priv->phydev = NULL;
2474 
2475 	gfar_free_irq(priv);
2476 
2477 	return 0;
2478 }
2479 
2480 /* Changes the mac address if the controller is not running. */
2481 static int gfar_set_mac_address(struct net_device *dev)
2482 {
2483 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2484 
2485 	return 0;
2486 }
2487 
2488 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2489 {
2490 	struct gfar_private *priv = netdev_priv(dev);
2491 	int frame_size = new_mtu + ETH_HLEN;
2492 
2493 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2494 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2495 		return -EINVAL;
2496 	}
2497 
2498 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2499 		cpu_relax();
2500 
2501 	if (dev->flags & IFF_UP)
2502 		stop_gfar(dev);
2503 
2504 	dev->mtu = new_mtu;
2505 
2506 	if (dev->flags & IFF_UP)
2507 		startup_gfar(dev);
2508 
2509 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2510 
2511 	return 0;
2512 }
2513 
2514 void reset_gfar(struct net_device *ndev)
2515 {
2516 	struct gfar_private *priv = netdev_priv(ndev);
2517 
2518 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2519 		cpu_relax();
2520 
2521 	stop_gfar(ndev);
2522 	startup_gfar(ndev);
2523 
2524 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2525 }
2526 
2527 /* gfar_reset_task gets scheduled when a packet has not been
2528  * transmitted after a set amount of time.
2529  * For now, assume that clearing out all the structures, and
2530  * starting over will fix the problem.
2531  */
2532 static void gfar_reset_task(struct work_struct *work)
2533 {
2534 	struct gfar_private *priv = container_of(work, struct gfar_private,
2535 						 reset_task);
2536 	reset_gfar(priv->ndev);
2537 }
2538 
2539 static void gfar_timeout(struct net_device *dev)
2540 {
2541 	struct gfar_private *priv = netdev_priv(dev);
2542 
2543 	dev->stats.tx_errors++;
2544 	schedule_work(&priv->reset_task);
2545 }
2546 
2547 static void gfar_align_skb(struct sk_buff *skb)
2548 {
2549 	/* We need the data buffer to be aligned properly.  We will reserve
2550 	 * as many bytes as needed to align the data properly
2551 	 */
2552 	skb_reserve(skb, RXBUF_ALIGNMENT -
2553 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2554 }
2555 
2556 /* Interrupt Handler for Transmit complete */
2557 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2558 {
2559 	struct net_device *dev = tx_queue->dev;
2560 	struct netdev_queue *txq;
2561 	struct gfar_private *priv = netdev_priv(dev);
2562 	struct txbd8 *bdp, *next = NULL;
2563 	struct txbd8 *lbdp = NULL;
2564 	struct txbd8 *base = tx_queue->tx_bd_base;
2565 	struct sk_buff *skb;
2566 	int skb_dirtytx;
2567 	int tx_ring_size = tx_queue->tx_ring_size;
2568 	int frags = 0, nr_txbds = 0;
2569 	int i;
2570 	int howmany = 0;
2571 	int tqi = tx_queue->qindex;
2572 	unsigned int bytes_sent = 0;
2573 	u32 lstatus;
2574 	size_t buflen;
2575 
2576 	txq = netdev_get_tx_queue(dev, tqi);
2577 	bdp = tx_queue->dirty_tx;
2578 	skb_dirtytx = tx_queue->skb_dirtytx;
2579 
2580 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2581 		unsigned long flags;
2582 
2583 		frags = skb_shinfo(skb)->nr_frags;
2584 
2585 		/* When time stamping, one additional TxBD must be freed.
2586 		 * Also, we need to dma_unmap_single() the TxPAL.
2587 		 */
2588 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2589 			nr_txbds = frags + 2;
2590 		else
2591 			nr_txbds = frags + 1;
2592 
2593 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2594 
2595 		lstatus = lbdp->lstatus;
2596 
2597 		/* Only clean completed frames */
2598 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2599 		    (lstatus & BD_LENGTH_MASK))
2600 			break;
2601 
2602 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2603 			next = next_txbd(bdp, base, tx_ring_size);
2604 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2605 		} else
2606 			buflen = bdp->length;
2607 
2608 		dma_unmap_single(priv->dev, bdp->bufPtr,
2609 				 buflen, DMA_TO_DEVICE);
2610 
2611 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2612 			struct skb_shared_hwtstamps shhwtstamps;
2613 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2614 
2615 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2616 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2617 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2618 			skb_tstamp_tx(skb, &shhwtstamps);
2619 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2620 			bdp = next;
2621 		}
2622 
2623 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2624 		bdp = next_txbd(bdp, base, tx_ring_size);
2625 
2626 		for (i = 0; i < frags; i++) {
2627 			dma_unmap_page(priv->dev, bdp->bufPtr,
2628 				       bdp->length, DMA_TO_DEVICE);
2629 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2630 			bdp = next_txbd(bdp, base, tx_ring_size);
2631 		}
2632 
2633 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2634 
2635 		dev_kfree_skb_any(skb);
2636 
2637 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2638 
2639 		skb_dirtytx = (skb_dirtytx + 1) &
2640 			      TX_RING_MOD_MASK(tx_ring_size);
2641 
2642 		howmany++;
2643 		spin_lock_irqsave(&tx_queue->txlock, flags);
2644 		tx_queue->num_txbdfree += nr_txbds;
2645 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2646 	}
2647 
2648 	/* If we freed a buffer, we can restart transmission, if necessary */
2649 	if (tx_queue->num_txbdfree &&
2650 	    netif_tx_queue_stopped(txq) &&
2651 	    !(test_bit(GFAR_DOWN, &priv->state)))
2652 		netif_wake_subqueue(priv->ndev, tqi);
2653 
2654 	/* Update dirty indicators */
2655 	tx_queue->skb_dirtytx = skb_dirtytx;
2656 	tx_queue->dirty_tx = bdp;
2657 
2658 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2659 }
2660 
2661 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2662 {
2663 	struct gfar_private *priv = netdev_priv(dev);
2664 	struct sk_buff *skb;
2665 
2666 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2667 	if (!skb)
2668 		return NULL;
2669 
2670 	gfar_align_skb(skb);
2671 
2672 	return skb;
2673 }
2674 
2675 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2676 {
2677 	struct gfar_private *priv = netdev_priv(dev);
2678 	struct sk_buff *skb;
2679 	dma_addr_t addr;
2680 
2681 	skb = gfar_alloc_skb(dev);
2682 	if (!skb)
2683 		return NULL;
2684 
2685 	addr = dma_map_single(priv->dev, skb->data,
2686 			      priv->rx_buffer_size, DMA_FROM_DEVICE);
2687 	if (unlikely(dma_mapping_error(priv->dev, addr))) {
2688 		dev_kfree_skb_any(skb);
2689 		return NULL;
2690 	}
2691 
2692 	*bufaddr = addr;
2693 	return skb;
2694 }
2695 
2696 static inline void count_errors(unsigned short status, struct net_device *dev)
2697 {
2698 	struct gfar_private *priv = netdev_priv(dev);
2699 	struct net_device_stats *stats = &dev->stats;
2700 	struct gfar_extra_stats *estats = &priv->extra_stats;
2701 
2702 	/* If the packet was truncated, none of the other errors matter */
2703 	if (status & RXBD_TRUNCATED) {
2704 		stats->rx_length_errors++;
2705 
2706 		atomic64_inc(&estats->rx_trunc);
2707 
2708 		return;
2709 	}
2710 	/* Count the errors, if there were any */
2711 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2712 		stats->rx_length_errors++;
2713 
2714 		if (status & RXBD_LARGE)
2715 			atomic64_inc(&estats->rx_large);
2716 		else
2717 			atomic64_inc(&estats->rx_short);
2718 	}
2719 	if (status & RXBD_NONOCTET) {
2720 		stats->rx_frame_errors++;
2721 		atomic64_inc(&estats->rx_nonoctet);
2722 	}
2723 	if (status & RXBD_CRCERR) {
2724 		atomic64_inc(&estats->rx_crcerr);
2725 		stats->rx_crc_errors++;
2726 	}
2727 	if (status & RXBD_OVERRUN) {
2728 		atomic64_inc(&estats->rx_overrun);
2729 		stats->rx_crc_errors++;
2730 	}
2731 }
2732 
2733 irqreturn_t gfar_receive(int irq, void *grp_id)
2734 {
2735 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2736 	unsigned long flags;
2737 	u32 imask;
2738 
2739 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2740 		spin_lock_irqsave(&grp->grplock, flags);
2741 		imask = gfar_read(&grp->regs->imask);
2742 		imask &= IMASK_RX_DISABLED;
2743 		gfar_write(&grp->regs->imask, imask);
2744 		spin_unlock_irqrestore(&grp->grplock, flags);
2745 		__napi_schedule(&grp->napi_rx);
2746 	} else {
2747 		/* Clear IEVENT, so interrupts aren't called again
2748 		 * because of the packets that have already arrived.
2749 		 */
2750 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2751 	}
2752 
2753 	return IRQ_HANDLED;
2754 }
2755 
2756 /* Interrupt Handler for Transmit complete */
2757 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2758 {
2759 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2760 	unsigned long flags;
2761 	u32 imask;
2762 
2763 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2764 		spin_lock_irqsave(&grp->grplock, flags);
2765 		imask = gfar_read(&grp->regs->imask);
2766 		imask &= IMASK_TX_DISABLED;
2767 		gfar_write(&grp->regs->imask, imask);
2768 		spin_unlock_irqrestore(&grp->grplock, flags);
2769 		__napi_schedule(&grp->napi_tx);
2770 	} else {
2771 		/* Clear IEVENT, so interrupts aren't called again
2772 		 * because of the packets that have already arrived.
2773 		 */
2774 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2775 	}
2776 
2777 	return IRQ_HANDLED;
2778 }
2779 
2780 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2781 {
2782 	/* If valid headers were found, and valid sums
2783 	 * were verified, then we tell the kernel that no
2784 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2785 	 */
2786 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2787 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 	else
2789 		skb_checksum_none_assert(skb);
2790 }
2791 
2792 
2793 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2794 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2795 			       int amount_pull, struct napi_struct *napi)
2796 {
2797 	struct gfar_private *priv = netdev_priv(dev);
2798 	struct rxfcb *fcb = NULL;
2799 
2800 	/* fcb is at the beginning if exists */
2801 	fcb = (struct rxfcb *)skb->data;
2802 
2803 	/* Remove the FCB from the skb
2804 	 * Remove the padded bytes, if there are any
2805 	 */
2806 	if (amount_pull) {
2807 		skb_record_rx_queue(skb, fcb->rq);
2808 		skb_pull(skb, amount_pull);
2809 	}
2810 
2811 	/* Get receive timestamp from the skb */
2812 	if (priv->hwts_rx_en) {
2813 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2814 		u64 *ns = (u64 *) skb->data;
2815 
2816 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2817 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2818 	}
2819 
2820 	if (priv->padding)
2821 		skb_pull(skb, priv->padding);
2822 
2823 	if (dev->features & NETIF_F_RXCSUM)
2824 		gfar_rx_checksum(skb, fcb);
2825 
2826 	/* Tell the skb what kind of packet this is */
2827 	skb->protocol = eth_type_trans(skb, dev);
2828 
2829 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2830 	 * Even if vlan rx accel is disabled, on some chips
2831 	 * RXFCB_VLN is pseudo randomly set.
2832 	 */
2833 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2834 	    fcb->flags & RXFCB_VLN)
2835 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2836 
2837 	/* Send the packet up the stack */
2838 	napi_gro_receive(napi, skb);
2839 
2840 }
2841 
2842 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2843  * until the budget/quota has been reached. Returns the number
2844  * of frames handled
2845  */
2846 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2847 {
2848 	struct net_device *dev = rx_queue->dev;
2849 	struct rxbd8 *bdp, *base;
2850 	struct sk_buff *skb;
2851 	int pkt_len;
2852 	int amount_pull;
2853 	int howmany = 0;
2854 	struct gfar_private *priv = netdev_priv(dev);
2855 
2856 	/* Get the first full descriptor */
2857 	bdp = rx_queue->cur_rx;
2858 	base = rx_queue->rx_bd_base;
2859 
2860 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2861 
2862 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2863 		struct sk_buff *newskb;
2864 		dma_addr_t bufaddr;
2865 
2866 		rmb();
2867 
2868 		/* Add another skb for the future */
2869 		newskb = gfar_new_skb(dev, &bufaddr);
2870 
2871 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2872 
2873 		dma_unmap_single(priv->dev, bdp->bufPtr,
2874 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2875 
2876 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2877 			     bdp->length > priv->rx_buffer_size))
2878 			bdp->status = RXBD_LARGE;
2879 
2880 		/* We drop the frame if we failed to allocate a new buffer */
2881 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2882 			     bdp->status & RXBD_ERR)) {
2883 			count_errors(bdp->status, dev);
2884 
2885 			if (unlikely(!newskb)) {
2886 				newskb = skb;
2887 				bufaddr = bdp->bufPtr;
2888 			} else if (skb)
2889 				dev_kfree_skb(skb);
2890 		} else {
2891 			/* Increment the number of packets */
2892 			rx_queue->stats.rx_packets++;
2893 			howmany++;
2894 
2895 			if (likely(skb)) {
2896 				pkt_len = bdp->length - ETH_FCS_LEN;
2897 				/* Remove the FCS from the packet length */
2898 				skb_put(skb, pkt_len);
2899 				rx_queue->stats.rx_bytes += pkt_len;
2900 				skb_record_rx_queue(skb, rx_queue->qindex);
2901 				gfar_process_frame(dev, skb, amount_pull,
2902 						   &rx_queue->grp->napi_rx);
2903 
2904 			} else {
2905 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2906 				rx_queue->stats.rx_dropped++;
2907 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2908 			}
2909 
2910 		}
2911 
2912 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2913 
2914 		/* Setup the new bdp */
2915 		gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2916 
2917 		/* Update Last Free RxBD pointer for LFC */
2918 		if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2919 			gfar_write(rx_queue->rfbptr, (u32)bdp);
2920 
2921 		/* Update to the next pointer */
2922 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2923 
2924 		/* update to point at the next skb */
2925 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2926 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2927 	}
2928 
2929 	/* Update the current rxbd pointer to be the next one */
2930 	rx_queue->cur_rx = bdp;
2931 
2932 	return howmany;
2933 }
2934 
2935 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2936 {
2937 	struct gfar_priv_grp *gfargrp =
2938 		container_of(napi, struct gfar_priv_grp, napi_rx);
2939 	struct gfar __iomem *regs = gfargrp->regs;
2940 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2941 	int work_done = 0;
2942 
2943 	/* Clear IEVENT, so interrupts aren't called again
2944 	 * because of the packets that have already arrived
2945 	 */
2946 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2947 
2948 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2949 
2950 	if (work_done < budget) {
2951 		u32 imask;
2952 		napi_complete(napi);
2953 		/* Clear the halt bit in RSTAT */
2954 		gfar_write(&regs->rstat, gfargrp->rstat);
2955 
2956 		spin_lock_irq(&gfargrp->grplock);
2957 		imask = gfar_read(&regs->imask);
2958 		imask |= IMASK_RX_DEFAULT;
2959 		gfar_write(&regs->imask, imask);
2960 		spin_unlock_irq(&gfargrp->grplock);
2961 	}
2962 
2963 	return work_done;
2964 }
2965 
2966 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2967 {
2968 	struct gfar_priv_grp *gfargrp =
2969 		container_of(napi, struct gfar_priv_grp, napi_tx);
2970 	struct gfar __iomem *regs = gfargrp->regs;
2971 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2972 	u32 imask;
2973 
2974 	/* Clear IEVENT, so interrupts aren't called again
2975 	 * because of the packets that have already arrived
2976 	 */
2977 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2978 
2979 	/* run Tx cleanup to completion */
2980 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2981 		gfar_clean_tx_ring(tx_queue);
2982 
2983 	napi_complete(napi);
2984 
2985 	spin_lock_irq(&gfargrp->grplock);
2986 	imask = gfar_read(&regs->imask);
2987 	imask |= IMASK_TX_DEFAULT;
2988 	gfar_write(&regs->imask, imask);
2989 	spin_unlock_irq(&gfargrp->grplock);
2990 
2991 	return 0;
2992 }
2993 
2994 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2995 {
2996 	struct gfar_priv_grp *gfargrp =
2997 		container_of(napi, struct gfar_priv_grp, napi_rx);
2998 	struct gfar_private *priv = gfargrp->priv;
2999 	struct gfar __iomem *regs = gfargrp->regs;
3000 	struct gfar_priv_rx_q *rx_queue = NULL;
3001 	int work_done = 0, work_done_per_q = 0;
3002 	int i, budget_per_q = 0;
3003 	unsigned long rstat_rxf;
3004 	int num_act_queues;
3005 
3006 	/* Clear IEVENT, so interrupts aren't called again
3007 	 * because of the packets that have already arrived
3008 	 */
3009 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3010 
3011 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3012 
3013 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3014 	if (num_act_queues)
3015 		budget_per_q = budget/num_act_queues;
3016 
3017 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3018 		/* skip queue if not active */
3019 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3020 			continue;
3021 
3022 		rx_queue = priv->rx_queue[i];
3023 		work_done_per_q =
3024 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3025 		work_done += work_done_per_q;
3026 
3027 		/* finished processing this queue */
3028 		if (work_done_per_q < budget_per_q) {
3029 			/* clear active queue hw indication */
3030 			gfar_write(&regs->rstat,
3031 				   RSTAT_CLEAR_RXF0 >> i);
3032 			num_act_queues--;
3033 
3034 			if (!num_act_queues)
3035 				break;
3036 		}
3037 	}
3038 
3039 	if (!num_act_queues) {
3040 		u32 imask;
3041 		napi_complete(napi);
3042 
3043 		/* Clear the halt bit in RSTAT */
3044 		gfar_write(&regs->rstat, gfargrp->rstat);
3045 
3046 		spin_lock_irq(&gfargrp->grplock);
3047 		imask = gfar_read(&regs->imask);
3048 		imask |= IMASK_RX_DEFAULT;
3049 		gfar_write(&regs->imask, imask);
3050 		spin_unlock_irq(&gfargrp->grplock);
3051 	}
3052 
3053 	return work_done;
3054 }
3055 
3056 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3057 {
3058 	struct gfar_priv_grp *gfargrp =
3059 		container_of(napi, struct gfar_priv_grp, napi_tx);
3060 	struct gfar_private *priv = gfargrp->priv;
3061 	struct gfar __iomem *regs = gfargrp->regs;
3062 	struct gfar_priv_tx_q *tx_queue = NULL;
3063 	int has_tx_work = 0;
3064 	int i;
3065 
3066 	/* Clear IEVENT, so interrupts aren't called again
3067 	 * because of the packets that have already arrived
3068 	 */
3069 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3070 
3071 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3072 		tx_queue = priv->tx_queue[i];
3073 		/* run Tx cleanup to completion */
3074 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3075 			gfar_clean_tx_ring(tx_queue);
3076 			has_tx_work = 1;
3077 		}
3078 	}
3079 
3080 	if (!has_tx_work) {
3081 		u32 imask;
3082 		napi_complete(napi);
3083 
3084 		spin_lock_irq(&gfargrp->grplock);
3085 		imask = gfar_read(&regs->imask);
3086 		imask |= IMASK_TX_DEFAULT;
3087 		gfar_write(&regs->imask, imask);
3088 		spin_unlock_irq(&gfargrp->grplock);
3089 	}
3090 
3091 	return 0;
3092 }
3093 
3094 
3095 #ifdef CONFIG_NET_POLL_CONTROLLER
3096 /* Polling 'interrupt' - used by things like netconsole to send skbs
3097  * without having to re-enable interrupts. It's not called while
3098  * the interrupt routine is executing.
3099  */
3100 static void gfar_netpoll(struct net_device *dev)
3101 {
3102 	struct gfar_private *priv = netdev_priv(dev);
3103 	int i;
3104 
3105 	/* If the device has multiple interrupts, run tx/rx */
3106 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3107 		for (i = 0; i < priv->num_grps; i++) {
3108 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3109 
3110 			disable_irq(gfar_irq(grp, TX)->irq);
3111 			disable_irq(gfar_irq(grp, RX)->irq);
3112 			disable_irq(gfar_irq(grp, ER)->irq);
3113 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3114 			enable_irq(gfar_irq(grp, ER)->irq);
3115 			enable_irq(gfar_irq(grp, RX)->irq);
3116 			enable_irq(gfar_irq(grp, TX)->irq);
3117 		}
3118 	} else {
3119 		for (i = 0; i < priv->num_grps; i++) {
3120 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3121 
3122 			disable_irq(gfar_irq(grp, TX)->irq);
3123 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3124 			enable_irq(gfar_irq(grp, TX)->irq);
3125 		}
3126 	}
3127 }
3128 #endif
3129 
3130 /* The interrupt handler for devices with one interrupt */
3131 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3132 {
3133 	struct gfar_priv_grp *gfargrp = grp_id;
3134 
3135 	/* Save ievent for future reference */
3136 	u32 events = gfar_read(&gfargrp->regs->ievent);
3137 
3138 	/* Check for reception */
3139 	if (events & IEVENT_RX_MASK)
3140 		gfar_receive(irq, grp_id);
3141 
3142 	/* Check for transmit completion */
3143 	if (events & IEVENT_TX_MASK)
3144 		gfar_transmit(irq, grp_id);
3145 
3146 	/* Check for errors */
3147 	if (events & IEVENT_ERR_MASK)
3148 		gfar_error(irq, grp_id);
3149 
3150 	return IRQ_HANDLED;
3151 }
3152 
3153 /* Called every time the controller might need to be made
3154  * aware of new link state.  The PHY code conveys this
3155  * information through variables in the phydev structure, and this
3156  * function converts those variables into the appropriate
3157  * register values, and can bring down the device if needed.
3158  */
3159 static void adjust_link(struct net_device *dev)
3160 {
3161 	struct gfar_private *priv = netdev_priv(dev);
3162 	struct phy_device *phydev = priv->phydev;
3163 
3164 	if (unlikely(phydev->link != priv->oldlink ||
3165 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3166 				       phydev->speed != priv->oldspeed))))
3167 		gfar_update_link_state(priv);
3168 }
3169 
3170 /* Update the hash table based on the current list of multicast
3171  * addresses we subscribe to.  Also, change the promiscuity of
3172  * the device based on the flags (this function is called
3173  * whenever dev->flags is changed
3174  */
3175 static void gfar_set_multi(struct net_device *dev)
3176 {
3177 	struct netdev_hw_addr *ha;
3178 	struct gfar_private *priv = netdev_priv(dev);
3179 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3180 	u32 tempval;
3181 
3182 	if (dev->flags & IFF_PROMISC) {
3183 		/* Set RCTRL to PROM */
3184 		tempval = gfar_read(&regs->rctrl);
3185 		tempval |= RCTRL_PROM;
3186 		gfar_write(&regs->rctrl, tempval);
3187 	} else {
3188 		/* Set RCTRL to not PROM */
3189 		tempval = gfar_read(&regs->rctrl);
3190 		tempval &= ~(RCTRL_PROM);
3191 		gfar_write(&regs->rctrl, tempval);
3192 	}
3193 
3194 	if (dev->flags & IFF_ALLMULTI) {
3195 		/* Set the hash to rx all multicast frames */
3196 		gfar_write(&regs->igaddr0, 0xffffffff);
3197 		gfar_write(&regs->igaddr1, 0xffffffff);
3198 		gfar_write(&regs->igaddr2, 0xffffffff);
3199 		gfar_write(&regs->igaddr3, 0xffffffff);
3200 		gfar_write(&regs->igaddr4, 0xffffffff);
3201 		gfar_write(&regs->igaddr5, 0xffffffff);
3202 		gfar_write(&regs->igaddr6, 0xffffffff);
3203 		gfar_write(&regs->igaddr7, 0xffffffff);
3204 		gfar_write(&regs->gaddr0, 0xffffffff);
3205 		gfar_write(&regs->gaddr1, 0xffffffff);
3206 		gfar_write(&regs->gaddr2, 0xffffffff);
3207 		gfar_write(&regs->gaddr3, 0xffffffff);
3208 		gfar_write(&regs->gaddr4, 0xffffffff);
3209 		gfar_write(&regs->gaddr5, 0xffffffff);
3210 		gfar_write(&regs->gaddr6, 0xffffffff);
3211 		gfar_write(&regs->gaddr7, 0xffffffff);
3212 	} else {
3213 		int em_num;
3214 		int idx;
3215 
3216 		/* zero out the hash */
3217 		gfar_write(&regs->igaddr0, 0x0);
3218 		gfar_write(&regs->igaddr1, 0x0);
3219 		gfar_write(&regs->igaddr2, 0x0);
3220 		gfar_write(&regs->igaddr3, 0x0);
3221 		gfar_write(&regs->igaddr4, 0x0);
3222 		gfar_write(&regs->igaddr5, 0x0);
3223 		gfar_write(&regs->igaddr6, 0x0);
3224 		gfar_write(&regs->igaddr7, 0x0);
3225 		gfar_write(&regs->gaddr0, 0x0);
3226 		gfar_write(&regs->gaddr1, 0x0);
3227 		gfar_write(&regs->gaddr2, 0x0);
3228 		gfar_write(&regs->gaddr3, 0x0);
3229 		gfar_write(&regs->gaddr4, 0x0);
3230 		gfar_write(&regs->gaddr5, 0x0);
3231 		gfar_write(&regs->gaddr6, 0x0);
3232 		gfar_write(&regs->gaddr7, 0x0);
3233 
3234 		/* If we have extended hash tables, we need to
3235 		 * clear the exact match registers to prepare for
3236 		 * setting them
3237 		 */
3238 		if (priv->extended_hash) {
3239 			em_num = GFAR_EM_NUM + 1;
3240 			gfar_clear_exact_match(dev);
3241 			idx = 1;
3242 		} else {
3243 			idx = 0;
3244 			em_num = 0;
3245 		}
3246 
3247 		if (netdev_mc_empty(dev))
3248 			return;
3249 
3250 		/* Parse the list, and set the appropriate bits */
3251 		netdev_for_each_mc_addr(ha, dev) {
3252 			if (idx < em_num) {
3253 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3254 				idx++;
3255 			} else
3256 				gfar_set_hash_for_addr(dev, ha->addr);
3257 		}
3258 	}
3259 }
3260 
3261 
3262 /* Clears each of the exact match registers to zero, so they
3263  * don't interfere with normal reception
3264  */
3265 static void gfar_clear_exact_match(struct net_device *dev)
3266 {
3267 	int idx;
3268 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3269 
3270 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3271 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3272 }
3273 
3274 /* Set the appropriate hash bit for the given addr */
3275 /* The algorithm works like so:
3276  * 1) Take the Destination Address (ie the multicast address), and
3277  * do a CRC on it (little endian), and reverse the bits of the
3278  * result.
3279  * 2) Use the 8 most significant bits as a hash into a 256-entry
3280  * table.  The table is controlled through 8 32-bit registers:
3281  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3282  * gaddr7.  This means that the 3 most significant bits in the
3283  * hash index which gaddr register to use, and the 5 other bits
3284  * indicate which bit (assuming an IBM numbering scheme, which
3285  * for PowerPC (tm) is usually the case) in the register holds
3286  * the entry.
3287  */
3288 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3289 {
3290 	u32 tempval;
3291 	struct gfar_private *priv = netdev_priv(dev);
3292 	u32 result = ether_crc(ETH_ALEN, addr);
3293 	int width = priv->hash_width;
3294 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3295 	u8 whichreg = result >> (32 - width + 5);
3296 	u32 value = (1 << (31-whichbit));
3297 
3298 	tempval = gfar_read(priv->hash_regs[whichreg]);
3299 	tempval |= value;
3300 	gfar_write(priv->hash_regs[whichreg], tempval);
3301 }
3302 
3303 
3304 /* There are multiple MAC Address register pairs on some controllers
3305  * This function sets the numth pair to a given address
3306  */
3307 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3308 				  const u8 *addr)
3309 {
3310 	struct gfar_private *priv = netdev_priv(dev);
3311 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3312 	u32 tempval;
3313 	u32 __iomem *macptr = &regs->macstnaddr1;
3314 
3315 	macptr += num*2;
3316 
3317 	/* For a station address of 0x12345678ABCD in transmission
3318 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3319 	 * MACnADDR2 is set to 0x34120000.
3320 	 */
3321 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3322 		  (addr[3] << 8)  |  addr[2];
3323 
3324 	gfar_write(macptr, tempval);
3325 
3326 	tempval = (addr[1] << 24) | (addr[0] << 16);
3327 
3328 	gfar_write(macptr+1, tempval);
3329 }
3330 
3331 /* GFAR error interrupt handler */
3332 static irqreturn_t gfar_error(int irq, void *grp_id)
3333 {
3334 	struct gfar_priv_grp *gfargrp = grp_id;
3335 	struct gfar __iomem *regs = gfargrp->regs;
3336 	struct gfar_private *priv= gfargrp->priv;
3337 	struct net_device *dev = priv->ndev;
3338 
3339 	/* Save ievent for future reference */
3340 	u32 events = gfar_read(&regs->ievent);
3341 
3342 	/* Clear IEVENT */
3343 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3344 
3345 	/* Magic Packet is not an error. */
3346 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3347 	    (events & IEVENT_MAG))
3348 		events &= ~IEVENT_MAG;
3349 
3350 	/* Hmm... */
3351 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3352 		netdev_dbg(dev,
3353 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3354 			   events, gfar_read(&regs->imask));
3355 
3356 	/* Update the error counters */
3357 	if (events & IEVENT_TXE) {
3358 		dev->stats.tx_errors++;
3359 
3360 		if (events & IEVENT_LC)
3361 			dev->stats.tx_window_errors++;
3362 		if (events & IEVENT_CRL)
3363 			dev->stats.tx_aborted_errors++;
3364 		if (events & IEVENT_XFUN) {
3365 			unsigned long flags;
3366 
3367 			netif_dbg(priv, tx_err, dev,
3368 				  "TX FIFO underrun, packet dropped\n");
3369 			dev->stats.tx_dropped++;
3370 			atomic64_inc(&priv->extra_stats.tx_underrun);
3371 
3372 			local_irq_save(flags);
3373 			lock_tx_qs(priv);
3374 
3375 			/* Reactivate the Tx Queues */
3376 			gfar_write(&regs->tstat, gfargrp->tstat);
3377 
3378 			unlock_tx_qs(priv);
3379 			local_irq_restore(flags);
3380 		}
3381 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3382 	}
3383 	if (events & IEVENT_BSY) {
3384 		dev->stats.rx_errors++;
3385 		atomic64_inc(&priv->extra_stats.rx_bsy);
3386 
3387 		gfar_receive(irq, grp_id);
3388 
3389 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3390 			  gfar_read(&regs->rstat));
3391 	}
3392 	if (events & IEVENT_BABR) {
3393 		dev->stats.rx_errors++;
3394 		atomic64_inc(&priv->extra_stats.rx_babr);
3395 
3396 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3397 	}
3398 	if (events & IEVENT_EBERR) {
3399 		atomic64_inc(&priv->extra_stats.eberr);
3400 		netif_dbg(priv, rx_err, dev, "bus error\n");
3401 	}
3402 	if (events & IEVENT_RXC)
3403 		netif_dbg(priv, rx_status, dev, "control frame\n");
3404 
3405 	if (events & IEVENT_BABT) {
3406 		atomic64_inc(&priv->extra_stats.tx_babt);
3407 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3408 	}
3409 	return IRQ_HANDLED;
3410 }
3411 
3412 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3413 {
3414 	struct phy_device *phydev = priv->phydev;
3415 	u32 val = 0;
3416 
3417 	if (!phydev->duplex)
3418 		return val;
3419 
3420 	if (!priv->pause_aneg_en) {
3421 		if (priv->tx_pause_en)
3422 			val |= MACCFG1_TX_FLOW;
3423 		if (priv->rx_pause_en)
3424 			val |= MACCFG1_RX_FLOW;
3425 	} else {
3426 		u16 lcl_adv, rmt_adv;
3427 		u8 flowctrl;
3428 		/* get link partner capabilities */
3429 		rmt_adv = 0;
3430 		if (phydev->pause)
3431 			rmt_adv = LPA_PAUSE_CAP;
3432 		if (phydev->asym_pause)
3433 			rmt_adv |= LPA_PAUSE_ASYM;
3434 
3435 		lcl_adv = 0;
3436 		if (phydev->advertising & ADVERTISED_Pause)
3437 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3438 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3439 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3440 
3441 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3442 		if (flowctrl & FLOW_CTRL_TX)
3443 			val |= MACCFG1_TX_FLOW;
3444 		if (flowctrl & FLOW_CTRL_RX)
3445 			val |= MACCFG1_RX_FLOW;
3446 	}
3447 
3448 	return val;
3449 }
3450 
3451 static noinline void gfar_update_link_state(struct gfar_private *priv)
3452 {
3453 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3454 	struct phy_device *phydev = priv->phydev;
3455 	struct gfar_priv_rx_q *rx_queue = NULL;
3456 	int i;
3457 	struct rxbd8 *bdp;
3458 
3459 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3460 		return;
3461 
3462 	if (phydev->link) {
3463 		u32 tempval1 = gfar_read(&regs->maccfg1);
3464 		u32 tempval = gfar_read(&regs->maccfg2);
3465 		u32 ecntrl = gfar_read(&regs->ecntrl);
3466 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3467 
3468 		if (phydev->duplex != priv->oldduplex) {
3469 			if (!(phydev->duplex))
3470 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3471 			else
3472 				tempval |= MACCFG2_FULL_DUPLEX;
3473 
3474 			priv->oldduplex = phydev->duplex;
3475 		}
3476 
3477 		if (phydev->speed != priv->oldspeed) {
3478 			switch (phydev->speed) {
3479 			case 1000:
3480 				tempval =
3481 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3482 
3483 				ecntrl &= ~(ECNTRL_R100);
3484 				break;
3485 			case 100:
3486 			case 10:
3487 				tempval =
3488 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3489 
3490 				/* Reduced mode distinguishes
3491 				 * between 10 and 100
3492 				 */
3493 				if (phydev->speed == SPEED_100)
3494 					ecntrl |= ECNTRL_R100;
3495 				else
3496 					ecntrl &= ~(ECNTRL_R100);
3497 				break;
3498 			default:
3499 				netif_warn(priv, link, priv->ndev,
3500 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3501 					   phydev->speed);
3502 				break;
3503 			}
3504 
3505 			priv->oldspeed = phydev->speed;
3506 		}
3507 
3508 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3509 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3510 
3511 		/* Turn last free buffer recording on */
3512 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3513 			for (i = 0; i < priv->num_rx_queues; i++) {
3514 				rx_queue = priv->rx_queue[i];
3515 				bdp = rx_queue->cur_rx;
3516 				/* skip to previous bd */
3517 				bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3518 					      rx_queue->rx_bd_base,
3519 					      rx_queue->rx_ring_size);
3520 
3521 				if (rx_queue->rfbptr)
3522 					gfar_write(rx_queue->rfbptr, (u32)bdp);
3523 			}
3524 
3525 			priv->tx_actual_en = 1;
3526 		}
3527 
3528 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3529 			priv->tx_actual_en = 0;
3530 
3531 		gfar_write(&regs->maccfg1, tempval1);
3532 		gfar_write(&regs->maccfg2, tempval);
3533 		gfar_write(&regs->ecntrl, ecntrl);
3534 
3535 		if (!priv->oldlink)
3536 			priv->oldlink = 1;
3537 
3538 	} else if (priv->oldlink) {
3539 		priv->oldlink = 0;
3540 		priv->oldspeed = 0;
3541 		priv->oldduplex = -1;
3542 	}
3543 
3544 	if (netif_msg_link(priv))
3545 		phy_print_status(phydev);
3546 }
3547 
3548 static struct of_device_id gfar_match[] =
3549 {
3550 	{
3551 		.type = "network",
3552 		.compatible = "gianfar",
3553 	},
3554 	{
3555 		.compatible = "fsl,etsec2",
3556 	},
3557 	{},
3558 };
3559 MODULE_DEVICE_TABLE(of, gfar_match);
3560 
3561 /* Structure for a device driver */
3562 static struct platform_driver gfar_driver = {
3563 	.driver = {
3564 		.name = "fsl-gianfar",
3565 		.pm = GFAR_PM_OPS,
3566 		.of_match_table = gfar_match,
3567 	},
3568 	.probe = gfar_probe,
3569 	.remove = gfar_remove,
3570 };
3571 
3572 module_platform_driver(gfar_driver);
3573