1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
652 		    gfar_irq(grp, ER)->irq == NO_IRQ)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	struct property *stash;
742 	u32 stash_len = 0;
743 	u32 stash_idx = 0;
744 	unsigned int num_tx_qs, num_rx_qs;
745 	unsigned short mode, poll_mode;
746 
747 	if (!np)
748 		return -ENODEV;
749 
750 	if (of_device_is_compatible(np, "fsl,etsec2")) {
751 		mode = MQ_MG_MODE;
752 		poll_mode = GFAR_SQ_POLLING;
753 	} else {
754 		mode = SQ_SG_MODE;
755 		poll_mode = GFAR_SQ_POLLING;
756 	}
757 
758 	if (mode == SQ_SG_MODE) {
759 		num_tx_qs = 1;
760 		num_rx_qs = 1;
761 	} else { /* MQ_MG_MODE */
762 		/* get the actual number of supported groups */
763 		unsigned int num_grps = gfar_of_group_count(np);
764 
765 		if (num_grps == 0 || num_grps > MAXGROUPS) {
766 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 				num_grps);
768 			pr_err("Cannot do alloc_etherdev, aborting\n");
769 			return -EINVAL;
770 		}
771 
772 		if (poll_mode == GFAR_SQ_POLLING) {
773 			num_tx_qs = num_grps; /* one txq per int group */
774 			num_rx_qs = num_grps; /* one rxq per int group */
775 		} else { /* GFAR_MQ_POLLING */
776 			u32 tx_queues, rx_queues;
777 			int ret;
778 
779 			/* parse the num of HW tx and rx queues */
780 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 						   &tx_queues);
782 			num_tx_qs = ret ? 1 : tx_queues;
783 
784 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 						   &rx_queues);
786 			num_rx_qs = ret ? 1 : rx_queues;
787 		}
788 	}
789 
790 	if (num_tx_qs > MAX_TX_QS) {
791 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 		       num_tx_qs, MAX_TX_QS);
793 		pr_err("Cannot do alloc_etherdev, aborting\n");
794 		return -EINVAL;
795 	}
796 
797 	if (num_rx_qs > MAX_RX_QS) {
798 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 		       num_rx_qs, MAX_RX_QS);
800 		pr_err("Cannot do alloc_etherdev, aborting\n");
801 		return -EINVAL;
802 	}
803 
804 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 	dev = *pdev;
806 	if (NULL == dev)
807 		return -ENOMEM;
808 
809 	priv = netdev_priv(dev);
810 	priv->ndev = dev;
811 
812 	priv->mode = mode;
813 	priv->poll_mode = poll_mode;
814 
815 	priv->num_tx_queues = num_tx_qs;
816 	netif_set_real_num_rx_queues(dev, num_rx_qs);
817 	priv->num_rx_queues = num_rx_qs;
818 
819 	err = gfar_alloc_tx_queues(priv);
820 	if (err)
821 		goto tx_alloc_failed;
822 
823 	err = gfar_alloc_rx_queues(priv);
824 	if (err)
825 		goto rx_alloc_failed;
826 
827 	err = of_property_read_string(np, "model", &model);
828 	if (err) {
829 		pr_err("Device model property missing, aborting\n");
830 		goto rx_alloc_failed;
831 	}
832 
833 	/* Init Rx queue filer rule set linked list */
834 	INIT_LIST_HEAD(&priv->rx_list.list);
835 	priv->rx_list.count = 0;
836 	mutex_init(&priv->rx_queue_access);
837 
838 	for (i = 0; i < MAXGROUPS; i++)
839 		priv->gfargrp[i].regs = NULL;
840 
841 	/* Parse and initialize group specific information */
842 	if (priv->mode == MQ_MG_MODE) {
843 		for_each_available_child_of_node(np, child) {
844 			if (of_node_cmp(child->name, "queue-group"))
845 				continue;
846 
847 			err = gfar_parse_group(child, priv, model);
848 			if (err)
849 				goto err_grp_init;
850 		}
851 	} else { /* SQ_SG_MODE */
852 		err = gfar_parse_group(np, priv, model);
853 		if (err)
854 			goto err_grp_init;
855 	}
856 
857 	stash = of_find_property(np, "bd-stash", NULL);
858 
859 	if (stash) {
860 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 		priv->bd_stash_en = 1;
862 	}
863 
864 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865 
866 	if (err == 0)
867 		priv->rx_stash_size = stash_len;
868 
869 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870 
871 	if (err == 0)
872 		priv->rx_stash_index = stash_idx;
873 
874 	if (stash_len || stash_idx)
875 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876 
877 	mac_addr = of_get_mac_address(np);
878 
879 	if (mac_addr)
880 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881 
882 	if (model && !strcasecmp(model, "TSEC"))
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 				     FSL_GIANFAR_DEV_HAS_COALESCE |
885 				     FSL_GIANFAR_DEV_HAS_RMON |
886 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887 
888 	if (model && !strcasecmp(model, "eTSEC"))
889 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 				     FSL_GIANFAR_DEV_HAS_COALESCE |
891 				     FSL_GIANFAR_DEV_HAS_RMON |
892 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 				     FSL_GIANFAR_DEV_HAS_CSUM |
894 				     FSL_GIANFAR_DEV_HAS_VLAN |
895 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 				     FSL_GIANFAR_DEV_HAS_TIMER;
898 
899 	err = of_property_read_string(np, "phy-connection-type", &ctype);
900 
901 	/* We only care about rgmii-id.  The rest are autodetected */
902 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 	else
905 		priv->interface = PHY_INTERFACE_MODE_MII;
906 
907 	if (of_find_property(np, "fsl,magic-packet", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909 
910 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
911 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
912 
913 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
914 
915 	/* In the case of a fixed PHY, the DT node associated
916 	 * to the PHY is the Ethernet MAC DT node.
917 	 */
918 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
919 		err = of_phy_register_fixed_link(np);
920 		if (err)
921 			goto err_grp_init;
922 
923 		priv->phy_node = of_node_get(np);
924 	}
925 
926 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
927 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
928 
929 	return 0;
930 
931 err_grp_init:
932 	unmap_group_regs(priv);
933 rx_alloc_failed:
934 	gfar_free_rx_queues(priv);
935 tx_alloc_failed:
936 	gfar_free_tx_queues(priv);
937 	free_gfar_dev(priv);
938 	return err;
939 }
940 
941 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
942 {
943 	struct hwtstamp_config config;
944 	struct gfar_private *priv = netdev_priv(netdev);
945 
946 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
947 		return -EFAULT;
948 
949 	/* reserved for future extensions */
950 	if (config.flags)
951 		return -EINVAL;
952 
953 	switch (config.tx_type) {
954 	case HWTSTAMP_TX_OFF:
955 		priv->hwts_tx_en = 0;
956 		break;
957 	case HWTSTAMP_TX_ON:
958 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
959 			return -ERANGE;
960 		priv->hwts_tx_en = 1;
961 		break;
962 	default:
963 		return -ERANGE;
964 	}
965 
966 	switch (config.rx_filter) {
967 	case HWTSTAMP_FILTER_NONE:
968 		if (priv->hwts_rx_en) {
969 			priv->hwts_rx_en = 0;
970 			reset_gfar(netdev);
971 		}
972 		break;
973 	default:
974 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
975 			return -ERANGE;
976 		if (!priv->hwts_rx_en) {
977 			priv->hwts_rx_en = 1;
978 			reset_gfar(netdev);
979 		}
980 		config.rx_filter = HWTSTAMP_FILTER_ALL;
981 		break;
982 	}
983 
984 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
985 		-EFAULT : 0;
986 }
987 
988 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
989 {
990 	struct hwtstamp_config config;
991 	struct gfar_private *priv = netdev_priv(netdev);
992 
993 	config.flags = 0;
994 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
995 	config.rx_filter = (priv->hwts_rx_en ?
996 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
997 
998 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
999 		-EFAULT : 0;
1000 }
1001 
1002 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1003 {
1004 	struct gfar_private *priv = netdev_priv(dev);
1005 
1006 	if (!netif_running(dev))
1007 		return -EINVAL;
1008 
1009 	if (cmd == SIOCSHWTSTAMP)
1010 		return gfar_hwtstamp_set(dev, rq);
1011 	if (cmd == SIOCGHWTSTAMP)
1012 		return gfar_hwtstamp_get(dev, rq);
1013 
1014 	if (!priv->phydev)
1015 		return -ENODEV;
1016 
1017 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1018 }
1019 
1020 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1021 				   u32 class)
1022 {
1023 	u32 rqfpr = FPR_FILER_MASK;
1024 	u32 rqfcr = 0x0;
1025 
1026 	rqfar--;
1027 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1028 	priv->ftp_rqfpr[rqfar] = rqfpr;
1029 	priv->ftp_rqfcr[rqfar] = rqfcr;
1030 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1031 
1032 	rqfar--;
1033 	rqfcr = RQFCR_CMP_NOMATCH;
1034 	priv->ftp_rqfpr[rqfar] = rqfpr;
1035 	priv->ftp_rqfcr[rqfar] = rqfcr;
1036 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037 
1038 	rqfar--;
1039 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1040 	rqfpr = class;
1041 	priv->ftp_rqfcr[rqfar] = rqfcr;
1042 	priv->ftp_rqfpr[rqfar] = rqfpr;
1043 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044 
1045 	rqfar--;
1046 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1047 	rqfpr = class;
1048 	priv->ftp_rqfcr[rqfar] = rqfcr;
1049 	priv->ftp_rqfpr[rqfar] = rqfpr;
1050 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051 
1052 	return rqfar;
1053 }
1054 
1055 static void gfar_init_filer_table(struct gfar_private *priv)
1056 {
1057 	int i = 0x0;
1058 	u32 rqfar = MAX_FILER_IDX;
1059 	u32 rqfcr = 0x0;
1060 	u32 rqfpr = FPR_FILER_MASK;
1061 
1062 	/* Default rule */
1063 	rqfcr = RQFCR_CMP_MATCH;
1064 	priv->ftp_rqfcr[rqfar] = rqfcr;
1065 	priv->ftp_rqfpr[rqfar] = rqfpr;
1066 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1067 
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1071 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1072 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1073 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1074 
1075 	/* cur_filer_idx indicated the first non-masked rule */
1076 	priv->cur_filer_idx = rqfar;
1077 
1078 	/* Rest are masked rules */
1079 	rqfcr = RQFCR_CMP_NOMATCH;
1080 	for (i = 0; i < rqfar; i++) {
1081 		priv->ftp_rqfcr[i] = rqfcr;
1082 		priv->ftp_rqfpr[i] = rqfpr;
1083 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1084 	}
1085 }
1086 
1087 #ifdef CONFIG_PPC
1088 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1089 {
1090 	unsigned int pvr = mfspr(SPRN_PVR);
1091 	unsigned int svr = mfspr(SPRN_SVR);
1092 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1093 	unsigned int rev = svr & 0xffff;
1094 
1095 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1096 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1097 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1098 		priv->errata |= GFAR_ERRATA_74;
1099 
1100 	/* MPC8313 and MPC837x all rev */
1101 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1102 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 		priv->errata |= GFAR_ERRATA_76;
1104 
1105 	/* MPC8313 Rev < 2.0 */
1106 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1107 		priv->errata |= GFAR_ERRATA_12;
1108 }
1109 
1110 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1111 {
1112 	unsigned int svr = mfspr(SPRN_SVR);
1113 
1114 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1115 		priv->errata |= GFAR_ERRATA_12;
1116 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1117 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1118 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121 
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 	struct device *dev = &priv->ofdev->dev;
1125 
1126 	/* no plans to fix */
1127 	priv->errata |= GFAR_ERRATA_A002;
1128 
1129 #ifdef CONFIG_PPC
1130 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 		__gfar_detect_errata_85xx(priv);
1132 	else /* non-mpc85xx parts, i.e. e300 core based */
1133 		__gfar_detect_errata_83xx(priv);
1134 #endif
1135 
1136 	if (priv->errata)
1137 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 			 priv->errata);
1139 }
1140 
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 	u32 tempval;
1145 
1146 	/* Reset MAC layer */
1147 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148 
1149 	/* We need to delay at least 3 TX clocks */
1150 	udelay(3);
1151 
1152 	/* the soft reset bit is not self-resetting, so we need to
1153 	 * clear it before resuming normal operation
1154 	 */
1155 	gfar_write(&regs->maccfg1, 0);
1156 
1157 	udelay(3);
1158 
1159 	gfar_rx_offload_en(priv);
1160 
1161 	/* Initialize the max receive frame/buffer lengths */
1162 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164 
1165 	/* Initialize the Minimum Frame Length Register */
1166 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167 
1168 	/* Initialize MACCFG2. */
1169 	tempval = MACCFG2_INIT_SETTINGS;
1170 
1171 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 	 */
1175 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177 
1178 	gfar_write(&regs->maccfg2, tempval);
1179 
1180 	/* Clear mac addr hash registers */
1181 	gfar_write(&regs->igaddr0, 0);
1182 	gfar_write(&regs->igaddr1, 0);
1183 	gfar_write(&regs->igaddr2, 0);
1184 	gfar_write(&regs->igaddr3, 0);
1185 	gfar_write(&regs->igaddr4, 0);
1186 	gfar_write(&regs->igaddr5, 0);
1187 	gfar_write(&regs->igaddr6, 0);
1188 	gfar_write(&regs->igaddr7, 0);
1189 
1190 	gfar_write(&regs->gaddr0, 0);
1191 	gfar_write(&regs->gaddr1, 0);
1192 	gfar_write(&regs->gaddr2, 0);
1193 	gfar_write(&regs->gaddr3, 0);
1194 	gfar_write(&regs->gaddr4, 0);
1195 	gfar_write(&regs->gaddr5, 0);
1196 	gfar_write(&regs->gaddr6, 0);
1197 	gfar_write(&regs->gaddr7, 0);
1198 
1199 	if (priv->extended_hash)
1200 		gfar_clear_exact_match(priv->ndev);
1201 
1202 	gfar_mac_rx_config(priv);
1203 
1204 	gfar_mac_tx_config(priv);
1205 
1206 	gfar_set_mac_address(priv->ndev);
1207 
1208 	gfar_set_multi(priv->ndev);
1209 
1210 	/* clear ievent and imask before configuring coalescing */
1211 	gfar_ints_disable(priv);
1212 
1213 	/* Configure the coalescing support */
1214 	gfar_configure_coalescing_all(priv);
1215 }
1216 
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 	u32 attrs;
1221 
1222 	/* Stop the DMA engine now, in case it was running before
1223 	 * (The firmware could have used it, and left it running).
1224 	 */
1225 	gfar_halt(priv);
1226 
1227 	gfar_mac_reset(priv);
1228 
1229 	/* Zero out the rmon mib registers if it has them */
1230 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232 
1233 		/* Mask off the CAM interrupts */
1234 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236 	}
1237 
1238 	/* Initialize ECNTRL */
1239 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240 
1241 	/* Set the extraction length and index */
1242 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 		ATTRELI_EI(priv->rx_stash_index);
1244 
1245 	gfar_write(&regs->attreli, attrs);
1246 
1247 	/* Start with defaults, and add stashing
1248 	 * depending on driver parameters
1249 	 */
1250 	attrs = ATTR_INIT_SETTINGS;
1251 
1252 	if (priv->bd_stash_en)
1253 		attrs |= ATTR_BDSTASH;
1254 
1255 	if (priv->rx_stash_size != 0)
1256 		attrs |= ATTR_BUFSTASH;
1257 
1258 	gfar_write(&regs->attr, attrs);
1259 
1260 	/* FIFO configs */
1261 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264 
1265 	/* Program the interrupt steering regs, only for MG devices */
1266 	if (priv->num_grps > 1)
1267 		gfar_write_isrg(priv);
1268 }
1269 
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 
1274 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 		priv->extended_hash = 1;
1276 		priv->hash_width = 9;
1277 
1278 		priv->hash_regs[0] = &regs->igaddr0;
1279 		priv->hash_regs[1] = &regs->igaddr1;
1280 		priv->hash_regs[2] = &regs->igaddr2;
1281 		priv->hash_regs[3] = &regs->igaddr3;
1282 		priv->hash_regs[4] = &regs->igaddr4;
1283 		priv->hash_regs[5] = &regs->igaddr5;
1284 		priv->hash_regs[6] = &regs->igaddr6;
1285 		priv->hash_regs[7] = &regs->igaddr7;
1286 		priv->hash_regs[8] = &regs->gaddr0;
1287 		priv->hash_regs[9] = &regs->gaddr1;
1288 		priv->hash_regs[10] = &regs->gaddr2;
1289 		priv->hash_regs[11] = &regs->gaddr3;
1290 		priv->hash_regs[12] = &regs->gaddr4;
1291 		priv->hash_regs[13] = &regs->gaddr5;
1292 		priv->hash_regs[14] = &regs->gaddr6;
1293 		priv->hash_regs[15] = &regs->gaddr7;
1294 
1295 	} else {
1296 		priv->extended_hash = 0;
1297 		priv->hash_width = 8;
1298 
1299 		priv->hash_regs[0] = &regs->gaddr0;
1300 		priv->hash_regs[1] = &regs->gaddr1;
1301 		priv->hash_regs[2] = &regs->gaddr2;
1302 		priv->hash_regs[3] = &regs->gaddr3;
1303 		priv->hash_regs[4] = &regs->gaddr4;
1304 		priv->hash_regs[5] = &regs->gaddr5;
1305 		priv->hash_regs[6] = &regs->gaddr6;
1306 		priv->hash_regs[7] = &regs->gaddr7;
1307 	}
1308 }
1309 
1310 /* Set up the ethernet device structure, private data,
1311  * and anything else we need before we start
1312  */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 	struct net_device *dev = NULL;
1316 	struct gfar_private *priv = NULL;
1317 	int err = 0, i;
1318 
1319 	err = gfar_of_init(ofdev, &dev);
1320 
1321 	if (err)
1322 		return err;
1323 
1324 	priv = netdev_priv(dev);
1325 	priv->ndev = dev;
1326 	priv->ofdev = ofdev;
1327 	priv->dev = &ofdev->dev;
1328 	SET_NETDEV_DEV(dev, &ofdev->dev);
1329 
1330 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1331 
1332 	platform_set_drvdata(ofdev, priv);
1333 
1334 	gfar_detect_errata(priv);
1335 
1336 	/* Set the dev->base_addr to the gfar reg region */
1337 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338 
1339 	/* Fill in the dev structure */
1340 	dev->watchdog_timeo = TX_TIMEOUT;
1341 	dev->mtu = 1500;
1342 	dev->netdev_ops = &gfar_netdev_ops;
1343 	dev->ethtool_ops = &gfar_ethtool_ops;
1344 
1345 	/* Register for napi ...We are registering NAPI for each grp */
1346 	for (i = 0; i < priv->num_grps; i++) {
1347 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1348 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351 				       gfar_poll_tx_sq, 2);
1352 		} else {
1353 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1355 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356 				       gfar_poll_tx, 2);
1357 		}
1358 	}
1359 
1360 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362 				   NETIF_F_RXCSUM;
1363 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365 	}
1366 
1367 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369 				    NETIF_F_HW_VLAN_CTAG_RX;
1370 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371 	}
1372 
1373 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374 
1375 	gfar_init_addr_hash_table(priv);
1376 
1377 	/* Insert receive time stamps into padding alignment bytes */
1378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379 		priv->padding = 8;
1380 
1381 	if (dev->features & NETIF_F_IP_CSUM ||
1382 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383 		dev->needed_headroom = GMAC_FCB_LEN;
1384 
1385 	/* Initializing some of the rx/tx queue level parameters */
1386 	for (i = 0; i < priv->num_tx_queues; i++) {
1387 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391 	}
1392 
1393 	for (i = 0; i < priv->num_rx_queues; i++) {
1394 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397 	}
1398 
1399 	/* always enable rx filer */
1400 	priv->rx_filer_enable = 1;
1401 	/* Enable most messages by default */
1402 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1403 	/* use pritority h/w tx queue scheduling for single queue devices */
1404 	if (priv->num_tx_queues == 1)
1405 		priv->prio_sched_en = 1;
1406 
1407 	set_bit(GFAR_DOWN, &priv->state);
1408 
1409 	gfar_hw_init(priv);
1410 
1411 	/* Carrier starts down, phylib will bring it up */
1412 	netif_carrier_off(dev);
1413 
1414 	err = register_netdev(dev);
1415 
1416 	if (err) {
1417 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1418 		goto register_fail;
1419 	}
1420 
1421 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1422 		priv->wol_supported |= GFAR_WOL_MAGIC;
1423 
1424 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1425 	    priv->rx_filer_enable)
1426 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1427 
1428 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1429 
1430 	/* fill out IRQ number and name fields */
1431 	for (i = 0; i < priv->num_grps; i++) {
1432 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1433 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1434 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1435 				dev->name, "_g", '0' + i, "_tx");
1436 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1437 				dev->name, "_g", '0' + i, "_rx");
1438 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1439 				dev->name, "_g", '0' + i, "_er");
1440 		} else
1441 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1442 	}
1443 
1444 	/* Initialize the filer table */
1445 	gfar_init_filer_table(priv);
1446 
1447 	/* Print out the device info */
1448 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1449 
1450 	/* Even more device info helps when determining which kernel
1451 	 * provided which set of benchmarks.
1452 	 */
1453 	netdev_info(dev, "Running with NAPI enabled\n");
1454 	for (i = 0; i < priv->num_rx_queues; i++)
1455 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1456 			    i, priv->rx_queue[i]->rx_ring_size);
1457 	for (i = 0; i < priv->num_tx_queues; i++)
1458 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1459 			    i, priv->tx_queue[i]->tx_ring_size);
1460 
1461 	return 0;
1462 
1463 register_fail:
1464 	unmap_group_regs(priv);
1465 	gfar_free_rx_queues(priv);
1466 	gfar_free_tx_queues(priv);
1467 	of_node_put(priv->phy_node);
1468 	of_node_put(priv->tbi_node);
1469 	free_gfar_dev(priv);
1470 	return err;
1471 }
1472 
1473 static int gfar_remove(struct platform_device *ofdev)
1474 {
1475 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1476 
1477 	of_node_put(priv->phy_node);
1478 	of_node_put(priv->tbi_node);
1479 
1480 	unregister_netdev(priv->ndev);
1481 	unmap_group_regs(priv);
1482 	gfar_free_rx_queues(priv);
1483 	gfar_free_tx_queues(priv);
1484 	free_gfar_dev(priv);
1485 
1486 	return 0;
1487 }
1488 
1489 #ifdef CONFIG_PM
1490 
1491 static void __gfar_filer_disable(struct gfar_private *priv)
1492 {
1493 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1494 	u32 temp;
1495 
1496 	temp = gfar_read(&regs->rctrl);
1497 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1498 	gfar_write(&regs->rctrl, temp);
1499 }
1500 
1501 static void __gfar_filer_enable(struct gfar_private *priv)
1502 {
1503 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1504 	u32 temp;
1505 
1506 	temp = gfar_read(&regs->rctrl);
1507 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1508 	gfar_write(&regs->rctrl, temp);
1509 }
1510 
1511 /* Filer rules implementing wol capabilities */
1512 static void gfar_filer_config_wol(struct gfar_private *priv)
1513 {
1514 	unsigned int i;
1515 	u32 rqfcr;
1516 
1517 	__gfar_filer_disable(priv);
1518 
1519 	/* clear the filer table, reject any packet by default */
1520 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1521 	for (i = 0; i <= MAX_FILER_IDX; i++)
1522 		gfar_write_filer(priv, i, rqfcr, 0);
1523 
1524 	i = 0;
1525 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1526 		/* unicast packet, accept it */
1527 		struct net_device *ndev = priv->ndev;
1528 		/* get the default rx queue index */
1529 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1530 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1531 				    (ndev->dev_addr[1] << 8) |
1532 				     ndev->dev_addr[2];
1533 
1534 		rqfcr = (qindex << 10) | RQFCR_AND |
1535 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1536 
1537 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1538 
1539 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1540 				(ndev->dev_addr[4] << 8) |
1541 				 ndev->dev_addr[5];
1542 		rqfcr = (qindex << 10) | RQFCR_GPI |
1543 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1544 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1545 	}
1546 
1547 	__gfar_filer_enable(priv);
1548 }
1549 
1550 static void gfar_filer_restore_table(struct gfar_private *priv)
1551 {
1552 	u32 rqfcr, rqfpr;
1553 	unsigned int i;
1554 
1555 	__gfar_filer_disable(priv);
1556 
1557 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1558 		rqfcr = priv->ftp_rqfcr[i];
1559 		rqfpr = priv->ftp_rqfpr[i];
1560 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1561 	}
1562 
1563 	__gfar_filer_enable(priv);
1564 }
1565 
1566 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1567 static void gfar_start_wol_filer(struct gfar_private *priv)
1568 {
1569 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1570 	u32 tempval;
1571 	int i = 0;
1572 
1573 	/* Enable Rx hw queues */
1574 	gfar_write(&regs->rqueue, priv->rqueue);
1575 
1576 	/* Initialize DMACTRL to have WWR and WOP */
1577 	tempval = gfar_read(&regs->dmactrl);
1578 	tempval |= DMACTRL_INIT_SETTINGS;
1579 	gfar_write(&regs->dmactrl, tempval);
1580 
1581 	/* Make sure we aren't stopped */
1582 	tempval = gfar_read(&regs->dmactrl);
1583 	tempval &= ~DMACTRL_GRS;
1584 	gfar_write(&regs->dmactrl, tempval);
1585 
1586 	for (i = 0; i < priv->num_grps; i++) {
1587 		regs = priv->gfargrp[i].regs;
1588 		/* Clear RHLT, so that the DMA starts polling now */
1589 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1590 		/* enable the Filer General Purpose Interrupt */
1591 		gfar_write(&regs->imask, IMASK_FGPI);
1592 	}
1593 
1594 	/* Enable Rx DMA */
1595 	tempval = gfar_read(&regs->maccfg1);
1596 	tempval |= MACCFG1_RX_EN;
1597 	gfar_write(&regs->maccfg1, tempval);
1598 }
1599 
1600 static int gfar_suspend(struct device *dev)
1601 {
1602 	struct gfar_private *priv = dev_get_drvdata(dev);
1603 	struct net_device *ndev = priv->ndev;
1604 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1605 	u32 tempval;
1606 	u16 wol = priv->wol_opts;
1607 
1608 	if (!netif_running(ndev))
1609 		return 0;
1610 
1611 	disable_napi(priv);
1612 	netif_tx_lock(ndev);
1613 	netif_device_detach(ndev);
1614 	netif_tx_unlock(ndev);
1615 
1616 	gfar_halt(priv);
1617 
1618 	if (wol & GFAR_WOL_MAGIC) {
1619 		/* Enable interrupt on Magic Packet */
1620 		gfar_write(&regs->imask, IMASK_MAG);
1621 
1622 		/* Enable Magic Packet mode */
1623 		tempval = gfar_read(&regs->maccfg2);
1624 		tempval |= MACCFG2_MPEN;
1625 		gfar_write(&regs->maccfg2, tempval);
1626 
1627 		/* re-enable the Rx block */
1628 		tempval = gfar_read(&regs->maccfg1);
1629 		tempval |= MACCFG1_RX_EN;
1630 		gfar_write(&regs->maccfg1, tempval);
1631 
1632 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1633 		gfar_filer_config_wol(priv);
1634 		gfar_start_wol_filer(priv);
1635 
1636 	} else {
1637 		phy_stop(priv->phydev);
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int gfar_resume(struct device *dev)
1644 {
1645 	struct gfar_private *priv = dev_get_drvdata(dev);
1646 	struct net_device *ndev = priv->ndev;
1647 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1648 	u32 tempval;
1649 	u16 wol = priv->wol_opts;
1650 
1651 	if (!netif_running(ndev))
1652 		return 0;
1653 
1654 	if (wol & GFAR_WOL_MAGIC) {
1655 		/* Disable Magic Packet mode */
1656 		tempval = gfar_read(&regs->maccfg2);
1657 		tempval &= ~MACCFG2_MPEN;
1658 		gfar_write(&regs->maccfg2, tempval);
1659 
1660 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1661 		/* need to stop rx only, tx is already down */
1662 		gfar_halt(priv);
1663 		gfar_filer_restore_table(priv);
1664 
1665 	} else {
1666 		phy_start(priv->phydev);
1667 	}
1668 
1669 	gfar_start(priv);
1670 
1671 	netif_device_attach(ndev);
1672 	enable_napi(priv);
1673 
1674 	return 0;
1675 }
1676 
1677 static int gfar_restore(struct device *dev)
1678 {
1679 	struct gfar_private *priv = dev_get_drvdata(dev);
1680 	struct net_device *ndev = priv->ndev;
1681 
1682 	if (!netif_running(ndev)) {
1683 		netif_device_attach(ndev);
1684 
1685 		return 0;
1686 	}
1687 
1688 	gfar_init_bds(ndev);
1689 
1690 	gfar_mac_reset(priv);
1691 
1692 	gfar_init_tx_rx_base(priv);
1693 
1694 	gfar_start(priv);
1695 
1696 	priv->oldlink = 0;
1697 	priv->oldspeed = 0;
1698 	priv->oldduplex = -1;
1699 
1700 	if (priv->phydev)
1701 		phy_start(priv->phydev);
1702 
1703 	netif_device_attach(ndev);
1704 	enable_napi(priv);
1705 
1706 	return 0;
1707 }
1708 
1709 static struct dev_pm_ops gfar_pm_ops = {
1710 	.suspend = gfar_suspend,
1711 	.resume = gfar_resume,
1712 	.freeze = gfar_suspend,
1713 	.thaw = gfar_resume,
1714 	.restore = gfar_restore,
1715 };
1716 
1717 #define GFAR_PM_OPS (&gfar_pm_ops)
1718 
1719 #else
1720 
1721 #define GFAR_PM_OPS NULL
1722 
1723 #endif
1724 
1725 /* Reads the controller's registers to determine what interface
1726  * connects it to the PHY.
1727  */
1728 static phy_interface_t gfar_get_interface(struct net_device *dev)
1729 {
1730 	struct gfar_private *priv = netdev_priv(dev);
1731 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1732 	u32 ecntrl;
1733 
1734 	ecntrl = gfar_read(&regs->ecntrl);
1735 
1736 	if (ecntrl & ECNTRL_SGMII_MODE)
1737 		return PHY_INTERFACE_MODE_SGMII;
1738 
1739 	if (ecntrl & ECNTRL_TBI_MODE) {
1740 		if (ecntrl & ECNTRL_REDUCED_MODE)
1741 			return PHY_INTERFACE_MODE_RTBI;
1742 		else
1743 			return PHY_INTERFACE_MODE_TBI;
1744 	}
1745 
1746 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1747 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1748 			return PHY_INTERFACE_MODE_RMII;
1749 		}
1750 		else {
1751 			phy_interface_t interface = priv->interface;
1752 
1753 			/* This isn't autodetected right now, so it must
1754 			 * be set by the device tree or platform code.
1755 			 */
1756 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1757 				return PHY_INTERFACE_MODE_RGMII_ID;
1758 
1759 			return PHY_INTERFACE_MODE_RGMII;
1760 		}
1761 	}
1762 
1763 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1764 		return PHY_INTERFACE_MODE_GMII;
1765 
1766 	return PHY_INTERFACE_MODE_MII;
1767 }
1768 
1769 
1770 /* Initializes driver's PHY state, and attaches to the PHY.
1771  * Returns 0 on success.
1772  */
1773 static int init_phy(struct net_device *dev)
1774 {
1775 	struct gfar_private *priv = netdev_priv(dev);
1776 	uint gigabit_support =
1777 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1778 		GFAR_SUPPORTED_GBIT : 0;
1779 	phy_interface_t interface;
1780 
1781 	priv->oldlink = 0;
1782 	priv->oldspeed = 0;
1783 	priv->oldduplex = -1;
1784 
1785 	interface = gfar_get_interface(dev);
1786 
1787 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1788 				      interface);
1789 	if (!priv->phydev) {
1790 		dev_err(&dev->dev, "could not attach to PHY\n");
1791 		return -ENODEV;
1792 	}
1793 
1794 	if (interface == PHY_INTERFACE_MODE_SGMII)
1795 		gfar_configure_serdes(dev);
1796 
1797 	/* Remove any features not supported by the controller */
1798 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1799 	priv->phydev->advertising = priv->phydev->supported;
1800 
1801 	/* Add support for flow control, but don't advertise it by default */
1802 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1803 
1804 	return 0;
1805 }
1806 
1807 /* Initialize TBI PHY interface for communicating with the
1808  * SERDES lynx PHY on the chip.  We communicate with this PHY
1809  * through the MDIO bus on each controller, treating it as a
1810  * "normal" PHY at the address found in the TBIPA register.  We assume
1811  * that the TBIPA register is valid.  Either the MDIO bus code will set
1812  * it to a value that doesn't conflict with other PHYs on the bus, or the
1813  * value doesn't matter, as there are no other PHYs on the bus.
1814  */
1815 static void gfar_configure_serdes(struct net_device *dev)
1816 {
1817 	struct gfar_private *priv = netdev_priv(dev);
1818 	struct phy_device *tbiphy;
1819 
1820 	if (!priv->tbi_node) {
1821 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1822 				    "device tree specify a tbi-handle\n");
1823 		return;
1824 	}
1825 
1826 	tbiphy = of_phy_find_device(priv->tbi_node);
1827 	if (!tbiphy) {
1828 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1829 		return;
1830 	}
1831 
1832 	/* If the link is already up, we must already be ok, and don't need to
1833 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1834 	 * everything for us?  Resetting it takes the link down and requires
1835 	 * several seconds for it to come back.
1836 	 */
1837 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1838 		put_device(&tbiphy->dev);
1839 		return;
1840 	}
1841 
1842 	/* Single clk mode, mii mode off(for serdes communication) */
1843 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1844 
1845 	phy_write(tbiphy, MII_ADVERTISE,
1846 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1847 		  ADVERTISE_1000XPSE_ASYM);
1848 
1849 	phy_write(tbiphy, MII_BMCR,
1850 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1851 		  BMCR_SPEED1000);
1852 
1853 	put_device(&tbiphy->dev);
1854 }
1855 
1856 static int __gfar_is_rx_idle(struct gfar_private *priv)
1857 {
1858 	u32 res;
1859 
1860 	/* Normaly TSEC should not hang on GRS commands, so we should
1861 	 * actually wait for IEVENT_GRSC flag.
1862 	 */
1863 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1864 		return 0;
1865 
1866 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1867 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1868 	 * and the Rx can be safely reset.
1869 	 */
1870 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1871 	res &= 0x7f807f80;
1872 	if ((res & 0xffff) == (res >> 16))
1873 		return 1;
1874 
1875 	return 0;
1876 }
1877 
1878 /* Halt the receive and transmit queues */
1879 static void gfar_halt_nodisable(struct gfar_private *priv)
1880 {
1881 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1882 	u32 tempval;
1883 	unsigned int timeout;
1884 	int stopped;
1885 
1886 	gfar_ints_disable(priv);
1887 
1888 	if (gfar_is_dma_stopped(priv))
1889 		return;
1890 
1891 	/* Stop the DMA, and wait for it to stop */
1892 	tempval = gfar_read(&regs->dmactrl);
1893 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1894 	gfar_write(&regs->dmactrl, tempval);
1895 
1896 retry:
1897 	timeout = 1000;
1898 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1899 		cpu_relax();
1900 		timeout--;
1901 	}
1902 
1903 	if (!timeout)
1904 		stopped = gfar_is_dma_stopped(priv);
1905 
1906 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1907 	    !__gfar_is_rx_idle(priv))
1908 		goto retry;
1909 }
1910 
1911 /* Halt the receive and transmit queues */
1912 void gfar_halt(struct gfar_private *priv)
1913 {
1914 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1915 	u32 tempval;
1916 
1917 	/* Dissable the Rx/Tx hw queues */
1918 	gfar_write(&regs->rqueue, 0);
1919 	gfar_write(&regs->tqueue, 0);
1920 
1921 	mdelay(10);
1922 
1923 	gfar_halt_nodisable(priv);
1924 
1925 	/* Disable Rx/Tx DMA */
1926 	tempval = gfar_read(&regs->maccfg1);
1927 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1928 	gfar_write(&regs->maccfg1, tempval);
1929 }
1930 
1931 void stop_gfar(struct net_device *dev)
1932 {
1933 	struct gfar_private *priv = netdev_priv(dev);
1934 
1935 	netif_tx_stop_all_queues(dev);
1936 
1937 	smp_mb__before_atomic();
1938 	set_bit(GFAR_DOWN, &priv->state);
1939 	smp_mb__after_atomic();
1940 
1941 	disable_napi(priv);
1942 
1943 	/* disable ints and gracefully shut down Rx/Tx DMA */
1944 	gfar_halt(priv);
1945 
1946 	phy_stop(priv->phydev);
1947 
1948 	free_skb_resources(priv);
1949 }
1950 
1951 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1952 {
1953 	struct txbd8 *txbdp;
1954 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1955 	int i, j;
1956 
1957 	txbdp = tx_queue->tx_bd_base;
1958 
1959 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1960 		if (!tx_queue->tx_skbuff[i])
1961 			continue;
1962 
1963 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1964 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1965 		txbdp->lstatus = 0;
1966 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1967 		     j++) {
1968 			txbdp++;
1969 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1970 				       be16_to_cpu(txbdp->length),
1971 				       DMA_TO_DEVICE);
1972 		}
1973 		txbdp++;
1974 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1975 		tx_queue->tx_skbuff[i] = NULL;
1976 	}
1977 	kfree(tx_queue->tx_skbuff);
1978 	tx_queue->tx_skbuff = NULL;
1979 }
1980 
1981 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1982 {
1983 	int i;
1984 
1985 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1986 
1987 	if (rx_queue->skb)
1988 		dev_kfree_skb(rx_queue->skb);
1989 
1990 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1991 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1992 
1993 		rxbdp->lstatus = 0;
1994 		rxbdp->bufPtr = 0;
1995 		rxbdp++;
1996 
1997 		if (!rxb->page)
1998 			continue;
1999 
2000 		dma_unmap_single(rx_queue->dev, rxb->dma,
2001 				 PAGE_SIZE, DMA_FROM_DEVICE);
2002 		__free_page(rxb->page);
2003 
2004 		rxb->page = NULL;
2005 	}
2006 
2007 	kfree(rx_queue->rx_buff);
2008 	rx_queue->rx_buff = NULL;
2009 }
2010 
2011 /* If there are any tx skbs or rx skbs still around, free them.
2012  * Then free tx_skbuff and rx_skbuff
2013  */
2014 static void free_skb_resources(struct gfar_private *priv)
2015 {
2016 	struct gfar_priv_tx_q *tx_queue = NULL;
2017 	struct gfar_priv_rx_q *rx_queue = NULL;
2018 	int i;
2019 
2020 	/* Go through all the buffer descriptors and free their data buffers */
2021 	for (i = 0; i < priv->num_tx_queues; i++) {
2022 		struct netdev_queue *txq;
2023 
2024 		tx_queue = priv->tx_queue[i];
2025 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2026 		if (tx_queue->tx_skbuff)
2027 			free_skb_tx_queue(tx_queue);
2028 		netdev_tx_reset_queue(txq);
2029 	}
2030 
2031 	for (i = 0; i < priv->num_rx_queues; i++) {
2032 		rx_queue = priv->rx_queue[i];
2033 		if (rx_queue->rx_buff)
2034 			free_skb_rx_queue(rx_queue);
2035 	}
2036 
2037 	dma_free_coherent(priv->dev,
2038 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2039 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2040 			  priv->tx_queue[0]->tx_bd_base,
2041 			  priv->tx_queue[0]->tx_bd_dma_base);
2042 }
2043 
2044 void gfar_start(struct gfar_private *priv)
2045 {
2046 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2047 	u32 tempval;
2048 	int i = 0;
2049 
2050 	/* Enable Rx/Tx hw queues */
2051 	gfar_write(&regs->rqueue, priv->rqueue);
2052 	gfar_write(&regs->tqueue, priv->tqueue);
2053 
2054 	/* Initialize DMACTRL to have WWR and WOP */
2055 	tempval = gfar_read(&regs->dmactrl);
2056 	tempval |= DMACTRL_INIT_SETTINGS;
2057 	gfar_write(&regs->dmactrl, tempval);
2058 
2059 	/* Make sure we aren't stopped */
2060 	tempval = gfar_read(&regs->dmactrl);
2061 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2062 	gfar_write(&regs->dmactrl, tempval);
2063 
2064 	for (i = 0; i < priv->num_grps; i++) {
2065 		regs = priv->gfargrp[i].regs;
2066 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2067 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2068 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2069 	}
2070 
2071 	/* Enable Rx/Tx DMA */
2072 	tempval = gfar_read(&regs->maccfg1);
2073 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2074 	gfar_write(&regs->maccfg1, tempval);
2075 
2076 	gfar_ints_enable(priv);
2077 
2078 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2079 }
2080 
2081 static void free_grp_irqs(struct gfar_priv_grp *grp)
2082 {
2083 	free_irq(gfar_irq(grp, TX)->irq, grp);
2084 	free_irq(gfar_irq(grp, RX)->irq, grp);
2085 	free_irq(gfar_irq(grp, ER)->irq, grp);
2086 }
2087 
2088 static int register_grp_irqs(struct gfar_priv_grp *grp)
2089 {
2090 	struct gfar_private *priv = grp->priv;
2091 	struct net_device *dev = priv->ndev;
2092 	int err;
2093 
2094 	/* If the device has multiple interrupts, register for
2095 	 * them.  Otherwise, only register for the one
2096 	 */
2097 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2098 		/* Install our interrupt handlers for Error,
2099 		 * Transmit, and Receive
2100 		 */
2101 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2102 				  gfar_irq(grp, ER)->name, grp);
2103 		if (err < 0) {
2104 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2105 				  gfar_irq(grp, ER)->irq);
2106 
2107 			goto err_irq_fail;
2108 		}
2109 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2110 
2111 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2112 				  gfar_irq(grp, TX)->name, grp);
2113 		if (err < 0) {
2114 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2115 				  gfar_irq(grp, TX)->irq);
2116 			goto tx_irq_fail;
2117 		}
2118 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2119 				  gfar_irq(grp, RX)->name, grp);
2120 		if (err < 0) {
2121 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2122 				  gfar_irq(grp, RX)->irq);
2123 			goto rx_irq_fail;
2124 		}
2125 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2126 
2127 	} else {
2128 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2129 				  gfar_irq(grp, TX)->name, grp);
2130 		if (err < 0) {
2131 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2132 				  gfar_irq(grp, TX)->irq);
2133 			goto err_irq_fail;
2134 		}
2135 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2136 	}
2137 
2138 	return 0;
2139 
2140 rx_irq_fail:
2141 	free_irq(gfar_irq(grp, TX)->irq, grp);
2142 tx_irq_fail:
2143 	free_irq(gfar_irq(grp, ER)->irq, grp);
2144 err_irq_fail:
2145 	return err;
2146 
2147 }
2148 
2149 static void gfar_free_irq(struct gfar_private *priv)
2150 {
2151 	int i;
2152 
2153 	/* Free the IRQs */
2154 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2155 		for (i = 0; i < priv->num_grps; i++)
2156 			free_grp_irqs(&priv->gfargrp[i]);
2157 	} else {
2158 		for (i = 0; i < priv->num_grps; i++)
2159 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2160 				 &priv->gfargrp[i]);
2161 	}
2162 }
2163 
2164 static int gfar_request_irq(struct gfar_private *priv)
2165 {
2166 	int err, i, j;
2167 
2168 	for (i = 0; i < priv->num_grps; i++) {
2169 		err = register_grp_irqs(&priv->gfargrp[i]);
2170 		if (err) {
2171 			for (j = 0; j < i; j++)
2172 				free_grp_irqs(&priv->gfargrp[j]);
2173 			return err;
2174 		}
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /* Bring the controller up and running */
2181 int startup_gfar(struct net_device *ndev)
2182 {
2183 	struct gfar_private *priv = netdev_priv(ndev);
2184 	int err;
2185 
2186 	gfar_mac_reset(priv);
2187 
2188 	err = gfar_alloc_skb_resources(ndev);
2189 	if (err)
2190 		return err;
2191 
2192 	gfar_init_tx_rx_base(priv);
2193 
2194 	smp_mb__before_atomic();
2195 	clear_bit(GFAR_DOWN, &priv->state);
2196 	smp_mb__after_atomic();
2197 
2198 	/* Start Rx/Tx DMA and enable the interrupts */
2199 	gfar_start(priv);
2200 
2201 	/* force link state update after mac reset */
2202 	priv->oldlink = 0;
2203 	priv->oldspeed = 0;
2204 	priv->oldduplex = -1;
2205 
2206 	phy_start(priv->phydev);
2207 
2208 	enable_napi(priv);
2209 
2210 	netif_tx_wake_all_queues(ndev);
2211 
2212 	return 0;
2213 }
2214 
2215 /* Called when something needs to use the ethernet device
2216  * Returns 0 for success.
2217  */
2218 static int gfar_enet_open(struct net_device *dev)
2219 {
2220 	struct gfar_private *priv = netdev_priv(dev);
2221 	int err;
2222 
2223 	err = init_phy(dev);
2224 	if (err)
2225 		return err;
2226 
2227 	err = gfar_request_irq(priv);
2228 	if (err)
2229 		return err;
2230 
2231 	err = startup_gfar(dev);
2232 	if (err)
2233 		return err;
2234 
2235 	return err;
2236 }
2237 
2238 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2239 {
2240 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2241 
2242 	memset(fcb, 0, GMAC_FCB_LEN);
2243 
2244 	return fcb;
2245 }
2246 
2247 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2248 				    int fcb_length)
2249 {
2250 	/* If we're here, it's a IP packet with a TCP or UDP
2251 	 * payload.  We set it to checksum, using a pseudo-header
2252 	 * we provide
2253 	 */
2254 	u8 flags = TXFCB_DEFAULT;
2255 
2256 	/* Tell the controller what the protocol is
2257 	 * And provide the already calculated phcs
2258 	 */
2259 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2260 		flags |= TXFCB_UDP;
2261 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2262 	} else
2263 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2264 
2265 	/* l3os is the distance between the start of the
2266 	 * frame (skb->data) and the start of the IP hdr.
2267 	 * l4os is the distance between the start of the
2268 	 * l3 hdr and the l4 hdr
2269 	 */
2270 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2271 	fcb->l4os = skb_network_header_len(skb);
2272 
2273 	fcb->flags = flags;
2274 }
2275 
2276 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2277 {
2278 	fcb->flags |= TXFCB_VLN;
2279 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2280 }
2281 
2282 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2283 				      struct txbd8 *base, int ring_size)
2284 {
2285 	struct txbd8 *new_bd = bdp + stride;
2286 
2287 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2288 }
2289 
2290 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2291 				      int ring_size)
2292 {
2293 	return skip_txbd(bdp, 1, base, ring_size);
2294 }
2295 
2296 /* eTSEC12: csum generation not supported for some fcb offsets */
2297 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2298 				       unsigned long fcb_addr)
2299 {
2300 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2301 	       (fcb_addr % 0x20) > 0x18);
2302 }
2303 
2304 /* eTSEC76: csum generation for frames larger than 2500 may
2305  * cause excess delays before start of transmission
2306  */
2307 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2308 				       unsigned int len)
2309 {
2310 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2311 	       (len > 2500));
2312 }
2313 
2314 /* This is called by the kernel when a frame is ready for transmission.
2315  * It is pointed to by the dev->hard_start_xmit function pointer
2316  */
2317 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2318 {
2319 	struct gfar_private *priv = netdev_priv(dev);
2320 	struct gfar_priv_tx_q *tx_queue = NULL;
2321 	struct netdev_queue *txq;
2322 	struct gfar __iomem *regs = NULL;
2323 	struct txfcb *fcb = NULL;
2324 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2325 	u32 lstatus;
2326 	int i, rq = 0;
2327 	int do_tstamp, do_csum, do_vlan;
2328 	u32 bufaddr;
2329 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2330 
2331 	rq = skb->queue_mapping;
2332 	tx_queue = priv->tx_queue[rq];
2333 	txq = netdev_get_tx_queue(dev, rq);
2334 	base = tx_queue->tx_bd_base;
2335 	regs = tx_queue->grp->regs;
2336 
2337 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2338 	do_vlan = skb_vlan_tag_present(skb);
2339 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2340 		    priv->hwts_tx_en;
2341 
2342 	if (do_csum || do_vlan)
2343 		fcb_len = GMAC_FCB_LEN;
2344 
2345 	/* check if time stamp should be generated */
2346 	if (unlikely(do_tstamp))
2347 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2348 
2349 	/* make space for additional header when fcb is needed */
2350 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2351 		struct sk_buff *skb_new;
2352 
2353 		skb_new = skb_realloc_headroom(skb, fcb_len);
2354 		if (!skb_new) {
2355 			dev->stats.tx_errors++;
2356 			dev_kfree_skb_any(skb);
2357 			return NETDEV_TX_OK;
2358 		}
2359 
2360 		if (skb->sk)
2361 			skb_set_owner_w(skb_new, skb->sk);
2362 		dev_consume_skb_any(skb);
2363 		skb = skb_new;
2364 	}
2365 
2366 	/* total number of fragments in the SKB */
2367 	nr_frags = skb_shinfo(skb)->nr_frags;
2368 
2369 	/* calculate the required number of TxBDs for this skb */
2370 	if (unlikely(do_tstamp))
2371 		nr_txbds = nr_frags + 2;
2372 	else
2373 		nr_txbds = nr_frags + 1;
2374 
2375 	/* check if there is space to queue this packet */
2376 	if (nr_txbds > tx_queue->num_txbdfree) {
2377 		/* no space, stop the queue */
2378 		netif_tx_stop_queue(txq);
2379 		dev->stats.tx_fifo_errors++;
2380 		return NETDEV_TX_BUSY;
2381 	}
2382 
2383 	/* Update transmit stats */
2384 	bytes_sent = skb->len;
2385 	tx_queue->stats.tx_bytes += bytes_sent;
2386 	/* keep Tx bytes on wire for BQL accounting */
2387 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2388 	tx_queue->stats.tx_packets++;
2389 
2390 	txbdp = txbdp_start = tx_queue->cur_tx;
2391 	lstatus = be32_to_cpu(txbdp->lstatus);
2392 
2393 	/* Time stamp insertion requires one additional TxBD */
2394 	if (unlikely(do_tstamp))
2395 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2396 						 tx_queue->tx_ring_size);
2397 
2398 	if (nr_frags == 0) {
2399 		if (unlikely(do_tstamp)) {
2400 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2401 
2402 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2403 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2404 		} else {
2405 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2406 		}
2407 	} else {
2408 		/* Place the fragment addresses and lengths into the TxBDs */
2409 		for (i = 0; i < nr_frags; i++) {
2410 			unsigned int frag_len;
2411 			/* Point at the next BD, wrapping as needed */
2412 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2413 
2414 			frag_len = skb_shinfo(skb)->frags[i].size;
2415 
2416 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2417 				  BD_LFLAG(TXBD_READY);
2418 
2419 			/* Handle the last BD specially */
2420 			if (i == nr_frags - 1)
2421 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2422 
2423 			bufaddr = skb_frag_dma_map(priv->dev,
2424 						   &skb_shinfo(skb)->frags[i],
2425 						   0,
2426 						   frag_len,
2427 						   DMA_TO_DEVICE);
2428 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2429 				goto dma_map_err;
2430 
2431 			/* set the TxBD length and buffer pointer */
2432 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2433 			txbdp->lstatus = cpu_to_be32(lstatus);
2434 		}
2435 
2436 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2437 	}
2438 
2439 	/* Add TxPAL between FCB and frame if required */
2440 	if (unlikely(do_tstamp)) {
2441 		skb_push(skb, GMAC_TXPAL_LEN);
2442 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2443 	}
2444 
2445 	/* Add TxFCB if required */
2446 	if (fcb_len) {
2447 		fcb = gfar_add_fcb(skb);
2448 		lstatus |= BD_LFLAG(TXBD_TOE);
2449 	}
2450 
2451 	/* Set up checksumming */
2452 	if (do_csum) {
2453 		gfar_tx_checksum(skb, fcb, fcb_len);
2454 
2455 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2456 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2457 			__skb_pull(skb, GMAC_FCB_LEN);
2458 			skb_checksum_help(skb);
2459 			if (do_vlan || do_tstamp) {
2460 				/* put back a new fcb for vlan/tstamp TOE */
2461 				fcb = gfar_add_fcb(skb);
2462 			} else {
2463 				/* Tx TOE not used */
2464 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2465 				fcb = NULL;
2466 			}
2467 		}
2468 	}
2469 
2470 	if (do_vlan)
2471 		gfar_tx_vlan(skb, fcb);
2472 
2473 	/* Setup tx hardware time stamping if requested */
2474 	if (unlikely(do_tstamp)) {
2475 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2476 		fcb->ptp = 1;
2477 	}
2478 
2479 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2480 				 DMA_TO_DEVICE);
2481 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2482 		goto dma_map_err;
2483 
2484 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2485 
2486 	/* If time stamping is requested one additional TxBD must be set up. The
2487 	 * first TxBD points to the FCB and must have a data length of
2488 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2489 	 * the full frame length.
2490 	 */
2491 	if (unlikely(do_tstamp)) {
2492 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2493 
2494 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2495 		bufaddr += fcb_len;
2496 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2497 			      (skb_headlen(skb) - fcb_len);
2498 
2499 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2500 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2501 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2502 	} else {
2503 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2504 	}
2505 
2506 	netdev_tx_sent_queue(txq, bytes_sent);
2507 
2508 	gfar_wmb();
2509 
2510 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2511 
2512 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2513 
2514 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2515 
2516 	/* Update the current skb pointer to the next entry we will use
2517 	 * (wrapping if necessary)
2518 	 */
2519 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2520 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2521 
2522 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2523 
2524 	/* We can work in parallel with gfar_clean_tx_ring(), except
2525 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2526 	 * when we were reading the num_txbdfree and checking for available
2527 	 * space, that's because outside of this function it can only grow.
2528 	 */
2529 	spin_lock_bh(&tx_queue->txlock);
2530 	/* reduce TxBD free count */
2531 	tx_queue->num_txbdfree -= (nr_txbds);
2532 	spin_unlock_bh(&tx_queue->txlock);
2533 
2534 	/* If the next BD still needs to be cleaned up, then the bds
2535 	 * are full.  We need to tell the kernel to stop sending us stuff.
2536 	 */
2537 	if (!tx_queue->num_txbdfree) {
2538 		netif_tx_stop_queue(txq);
2539 
2540 		dev->stats.tx_fifo_errors++;
2541 	}
2542 
2543 	/* Tell the DMA to go go go */
2544 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2545 
2546 	return NETDEV_TX_OK;
2547 
2548 dma_map_err:
2549 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2550 	if (do_tstamp)
2551 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2552 	for (i = 0; i < nr_frags; i++) {
2553 		lstatus = be32_to_cpu(txbdp->lstatus);
2554 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2555 			break;
2556 
2557 		lstatus &= ~BD_LFLAG(TXBD_READY);
2558 		txbdp->lstatus = cpu_to_be32(lstatus);
2559 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2560 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2561 			       DMA_TO_DEVICE);
2562 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2563 	}
2564 	gfar_wmb();
2565 	dev_kfree_skb_any(skb);
2566 	return NETDEV_TX_OK;
2567 }
2568 
2569 /* Stops the kernel queue, and halts the controller */
2570 static int gfar_close(struct net_device *dev)
2571 {
2572 	struct gfar_private *priv = netdev_priv(dev);
2573 
2574 	cancel_work_sync(&priv->reset_task);
2575 	stop_gfar(dev);
2576 
2577 	/* Disconnect from the PHY */
2578 	phy_disconnect(priv->phydev);
2579 	priv->phydev = NULL;
2580 
2581 	gfar_free_irq(priv);
2582 
2583 	return 0;
2584 }
2585 
2586 /* Changes the mac address if the controller is not running. */
2587 static int gfar_set_mac_address(struct net_device *dev)
2588 {
2589 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2590 
2591 	return 0;
2592 }
2593 
2594 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2595 {
2596 	struct gfar_private *priv = netdev_priv(dev);
2597 	int frame_size = new_mtu + ETH_HLEN;
2598 
2599 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2600 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2601 		return -EINVAL;
2602 	}
2603 
2604 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2605 		cpu_relax();
2606 
2607 	if (dev->flags & IFF_UP)
2608 		stop_gfar(dev);
2609 
2610 	dev->mtu = new_mtu;
2611 
2612 	if (dev->flags & IFF_UP)
2613 		startup_gfar(dev);
2614 
2615 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2616 
2617 	return 0;
2618 }
2619 
2620 void reset_gfar(struct net_device *ndev)
2621 {
2622 	struct gfar_private *priv = netdev_priv(ndev);
2623 
2624 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2625 		cpu_relax();
2626 
2627 	stop_gfar(ndev);
2628 	startup_gfar(ndev);
2629 
2630 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2631 }
2632 
2633 /* gfar_reset_task gets scheduled when a packet has not been
2634  * transmitted after a set amount of time.
2635  * For now, assume that clearing out all the structures, and
2636  * starting over will fix the problem.
2637  */
2638 static void gfar_reset_task(struct work_struct *work)
2639 {
2640 	struct gfar_private *priv = container_of(work, struct gfar_private,
2641 						 reset_task);
2642 	reset_gfar(priv->ndev);
2643 }
2644 
2645 static void gfar_timeout(struct net_device *dev)
2646 {
2647 	struct gfar_private *priv = netdev_priv(dev);
2648 
2649 	dev->stats.tx_errors++;
2650 	schedule_work(&priv->reset_task);
2651 }
2652 
2653 /* Interrupt Handler for Transmit complete */
2654 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2655 {
2656 	struct net_device *dev = tx_queue->dev;
2657 	struct netdev_queue *txq;
2658 	struct gfar_private *priv = netdev_priv(dev);
2659 	struct txbd8 *bdp, *next = NULL;
2660 	struct txbd8 *lbdp = NULL;
2661 	struct txbd8 *base = tx_queue->tx_bd_base;
2662 	struct sk_buff *skb;
2663 	int skb_dirtytx;
2664 	int tx_ring_size = tx_queue->tx_ring_size;
2665 	int frags = 0, nr_txbds = 0;
2666 	int i;
2667 	int howmany = 0;
2668 	int tqi = tx_queue->qindex;
2669 	unsigned int bytes_sent = 0;
2670 	u32 lstatus;
2671 	size_t buflen;
2672 
2673 	txq = netdev_get_tx_queue(dev, tqi);
2674 	bdp = tx_queue->dirty_tx;
2675 	skb_dirtytx = tx_queue->skb_dirtytx;
2676 
2677 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2678 
2679 		frags = skb_shinfo(skb)->nr_frags;
2680 
2681 		/* When time stamping, one additional TxBD must be freed.
2682 		 * Also, we need to dma_unmap_single() the TxPAL.
2683 		 */
2684 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2685 			nr_txbds = frags + 2;
2686 		else
2687 			nr_txbds = frags + 1;
2688 
2689 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2690 
2691 		lstatus = be32_to_cpu(lbdp->lstatus);
2692 
2693 		/* Only clean completed frames */
2694 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2695 		    (lstatus & BD_LENGTH_MASK))
2696 			break;
2697 
2698 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2699 			next = next_txbd(bdp, base, tx_ring_size);
2700 			buflen = be16_to_cpu(next->length) +
2701 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2702 		} else
2703 			buflen = be16_to_cpu(bdp->length);
2704 
2705 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2706 				 buflen, DMA_TO_DEVICE);
2707 
2708 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2709 			struct skb_shared_hwtstamps shhwtstamps;
2710 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2711 					  ~0x7UL);
2712 
2713 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2714 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2715 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2716 			skb_tstamp_tx(skb, &shhwtstamps);
2717 			gfar_clear_txbd_status(bdp);
2718 			bdp = next;
2719 		}
2720 
2721 		gfar_clear_txbd_status(bdp);
2722 		bdp = next_txbd(bdp, base, tx_ring_size);
2723 
2724 		for (i = 0; i < frags; i++) {
2725 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2726 				       be16_to_cpu(bdp->length),
2727 				       DMA_TO_DEVICE);
2728 			gfar_clear_txbd_status(bdp);
2729 			bdp = next_txbd(bdp, base, tx_ring_size);
2730 		}
2731 
2732 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2733 
2734 		dev_kfree_skb_any(skb);
2735 
2736 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2737 
2738 		skb_dirtytx = (skb_dirtytx + 1) &
2739 			      TX_RING_MOD_MASK(tx_ring_size);
2740 
2741 		howmany++;
2742 		spin_lock(&tx_queue->txlock);
2743 		tx_queue->num_txbdfree += nr_txbds;
2744 		spin_unlock(&tx_queue->txlock);
2745 	}
2746 
2747 	/* If we freed a buffer, we can restart transmission, if necessary */
2748 	if (tx_queue->num_txbdfree &&
2749 	    netif_tx_queue_stopped(txq) &&
2750 	    !(test_bit(GFAR_DOWN, &priv->state)))
2751 		netif_wake_subqueue(priv->ndev, tqi);
2752 
2753 	/* Update dirty indicators */
2754 	tx_queue->skb_dirtytx = skb_dirtytx;
2755 	tx_queue->dirty_tx = bdp;
2756 
2757 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2758 }
2759 
2760 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2761 {
2762 	struct page *page;
2763 	dma_addr_t addr;
2764 
2765 	page = dev_alloc_page();
2766 	if (unlikely(!page))
2767 		return false;
2768 
2769 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2770 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2771 		__free_page(page);
2772 
2773 		return false;
2774 	}
2775 
2776 	rxb->dma = addr;
2777 	rxb->page = page;
2778 	rxb->page_offset = 0;
2779 
2780 	return true;
2781 }
2782 
2783 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2784 {
2785 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2786 	struct gfar_extra_stats *estats = &priv->extra_stats;
2787 
2788 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2789 	atomic64_inc(&estats->rx_alloc_err);
2790 }
2791 
2792 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2793 				int alloc_cnt)
2794 {
2795 	struct rxbd8 *bdp;
2796 	struct gfar_rx_buff *rxb;
2797 	int i;
2798 
2799 	i = rx_queue->next_to_use;
2800 	bdp = &rx_queue->rx_bd_base[i];
2801 	rxb = &rx_queue->rx_buff[i];
2802 
2803 	while (alloc_cnt--) {
2804 		/* try reuse page */
2805 		if (unlikely(!rxb->page)) {
2806 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2807 				gfar_rx_alloc_err(rx_queue);
2808 				break;
2809 			}
2810 		}
2811 
2812 		/* Setup the new RxBD */
2813 		gfar_init_rxbdp(rx_queue, bdp,
2814 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2815 
2816 		/* Update to the next pointer */
2817 		bdp++;
2818 		rxb++;
2819 
2820 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2821 			i = 0;
2822 			bdp = rx_queue->rx_bd_base;
2823 			rxb = rx_queue->rx_buff;
2824 		}
2825 	}
2826 
2827 	rx_queue->next_to_use = i;
2828 	rx_queue->next_to_alloc = i;
2829 }
2830 
2831 static void count_errors(u32 lstatus, struct net_device *ndev)
2832 {
2833 	struct gfar_private *priv = netdev_priv(ndev);
2834 	struct net_device_stats *stats = &ndev->stats;
2835 	struct gfar_extra_stats *estats = &priv->extra_stats;
2836 
2837 	/* If the packet was truncated, none of the other errors matter */
2838 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2839 		stats->rx_length_errors++;
2840 
2841 		atomic64_inc(&estats->rx_trunc);
2842 
2843 		return;
2844 	}
2845 	/* Count the errors, if there were any */
2846 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2847 		stats->rx_length_errors++;
2848 
2849 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2850 			atomic64_inc(&estats->rx_large);
2851 		else
2852 			atomic64_inc(&estats->rx_short);
2853 	}
2854 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2855 		stats->rx_frame_errors++;
2856 		atomic64_inc(&estats->rx_nonoctet);
2857 	}
2858 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2859 		atomic64_inc(&estats->rx_crcerr);
2860 		stats->rx_crc_errors++;
2861 	}
2862 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2863 		atomic64_inc(&estats->rx_overrun);
2864 		stats->rx_over_errors++;
2865 	}
2866 }
2867 
2868 irqreturn_t gfar_receive(int irq, void *grp_id)
2869 {
2870 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2871 	unsigned long flags;
2872 	u32 imask, ievent;
2873 
2874 	ievent = gfar_read(&grp->regs->ievent);
2875 
2876 	if (unlikely(ievent & IEVENT_FGPI)) {
2877 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2878 		return IRQ_HANDLED;
2879 	}
2880 
2881 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2882 		spin_lock_irqsave(&grp->grplock, flags);
2883 		imask = gfar_read(&grp->regs->imask);
2884 		imask &= IMASK_RX_DISABLED;
2885 		gfar_write(&grp->regs->imask, imask);
2886 		spin_unlock_irqrestore(&grp->grplock, flags);
2887 		__napi_schedule(&grp->napi_rx);
2888 	} else {
2889 		/* Clear IEVENT, so interrupts aren't called again
2890 		 * because of the packets that have already arrived.
2891 		 */
2892 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2893 	}
2894 
2895 	return IRQ_HANDLED;
2896 }
2897 
2898 /* Interrupt Handler for Transmit complete */
2899 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2900 {
2901 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2902 	unsigned long flags;
2903 	u32 imask;
2904 
2905 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2906 		spin_lock_irqsave(&grp->grplock, flags);
2907 		imask = gfar_read(&grp->regs->imask);
2908 		imask &= IMASK_TX_DISABLED;
2909 		gfar_write(&grp->regs->imask, imask);
2910 		spin_unlock_irqrestore(&grp->grplock, flags);
2911 		__napi_schedule(&grp->napi_tx);
2912 	} else {
2913 		/* Clear IEVENT, so interrupts aren't called again
2914 		 * because of the packets that have already arrived.
2915 		 */
2916 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2917 	}
2918 
2919 	return IRQ_HANDLED;
2920 }
2921 
2922 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2923 			     struct sk_buff *skb, bool first)
2924 {
2925 	unsigned int size = lstatus & BD_LENGTH_MASK;
2926 	struct page *page = rxb->page;
2927 
2928 	/* Remove the FCS from the packet length */
2929 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2930 		size -= ETH_FCS_LEN;
2931 
2932 	if (likely(first))
2933 		skb_put(skb, size);
2934 	else
2935 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2936 				rxb->page_offset + RXBUF_ALIGNMENT,
2937 				size, GFAR_RXB_TRUESIZE);
2938 
2939 	/* try reuse page */
2940 	if (unlikely(page_count(page) != 1))
2941 		return false;
2942 
2943 	/* change offset to the other half */
2944 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2945 
2946 	atomic_inc(&page->_count);
2947 
2948 	return true;
2949 }
2950 
2951 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2952 			       struct gfar_rx_buff *old_rxb)
2953 {
2954 	struct gfar_rx_buff *new_rxb;
2955 	u16 nta = rxq->next_to_alloc;
2956 
2957 	new_rxb = &rxq->rx_buff[nta];
2958 
2959 	/* find next buf that can reuse a page */
2960 	nta++;
2961 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2962 
2963 	/* copy page reference */
2964 	*new_rxb = *old_rxb;
2965 
2966 	/* sync for use by the device */
2967 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2968 					 old_rxb->page_offset,
2969 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2970 }
2971 
2972 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2973 					    u32 lstatus, struct sk_buff *skb)
2974 {
2975 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2976 	struct page *page = rxb->page;
2977 	bool first = false;
2978 
2979 	if (likely(!skb)) {
2980 		void *buff_addr = page_address(page) + rxb->page_offset;
2981 
2982 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2983 		if (unlikely(!skb)) {
2984 			gfar_rx_alloc_err(rx_queue);
2985 			return NULL;
2986 		}
2987 		skb_reserve(skb, RXBUF_ALIGNMENT);
2988 		first = true;
2989 	}
2990 
2991 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2992 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2993 
2994 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2995 		/* reuse the free half of the page */
2996 		gfar_reuse_rx_page(rx_queue, rxb);
2997 	} else {
2998 		/* page cannot be reused, unmap it */
2999 		dma_unmap_page(rx_queue->dev, rxb->dma,
3000 			       PAGE_SIZE, DMA_FROM_DEVICE);
3001 	}
3002 
3003 	/* clear rxb content */
3004 	rxb->page = NULL;
3005 
3006 	return skb;
3007 }
3008 
3009 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3010 {
3011 	/* If valid headers were found, and valid sums
3012 	 * were verified, then we tell the kernel that no
3013 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3014 	 */
3015 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3016 	    (RXFCB_CIP | RXFCB_CTU))
3017 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3018 	else
3019 		skb_checksum_none_assert(skb);
3020 }
3021 
3022 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3023 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3024 {
3025 	struct gfar_private *priv = netdev_priv(ndev);
3026 	struct rxfcb *fcb = NULL;
3027 
3028 	/* fcb is at the beginning if exists */
3029 	fcb = (struct rxfcb *)skb->data;
3030 
3031 	/* Remove the FCB from the skb
3032 	 * Remove the padded bytes, if there are any
3033 	 */
3034 	if (priv->uses_rxfcb)
3035 		skb_pull(skb, GMAC_FCB_LEN);
3036 
3037 	/* Get receive timestamp from the skb */
3038 	if (priv->hwts_rx_en) {
3039 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3040 		u64 *ns = (u64 *) skb->data;
3041 
3042 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3043 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3044 	}
3045 
3046 	if (priv->padding)
3047 		skb_pull(skb, priv->padding);
3048 
3049 	if (ndev->features & NETIF_F_RXCSUM)
3050 		gfar_rx_checksum(skb, fcb);
3051 
3052 	/* Tell the skb what kind of packet this is */
3053 	skb->protocol = eth_type_trans(skb, ndev);
3054 
3055 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3056 	 * Even if vlan rx accel is disabled, on some chips
3057 	 * RXFCB_VLN is pseudo randomly set.
3058 	 */
3059 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3060 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3061 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3062 				       be16_to_cpu(fcb->vlctl));
3063 }
3064 
3065 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3066  * until the budget/quota has been reached. Returns the number
3067  * of frames handled
3068  */
3069 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3070 {
3071 	struct net_device *ndev = rx_queue->ndev;
3072 	struct gfar_private *priv = netdev_priv(ndev);
3073 	struct rxbd8 *bdp;
3074 	int i, howmany = 0;
3075 	struct sk_buff *skb = rx_queue->skb;
3076 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3077 	unsigned int total_bytes = 0, total_pkts = 0;
3078 
3079 	/* Get the first full descriptor */
3080 	i = rx_queue->next_to_clean;
3081 
3082 	while (rx_work_limit--) {
3083 		u32 lstatus;
3084 
3085 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3086 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3087 			cleaned_cnt = 0;
3088 		}
3089 
3090 		bdp = &rx_queue->rx_bd_base[i];
3091 		lstatus = be32_to_cpu(bdp->lstatus);
3092 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3093 			break;
3094 
3095 		/* order rx buffer descriptor reads */
3096 		rmb();
3097 
3098 		/* fetch next to clean buffer from the ring */
3099 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3100 		if (unlikely(!skb))
3101 			break;
3102 
3103 		cleaned_cnt++;
3104 		howmany++;
3105 
3106 		if (unlikely(++i == rx_queue->rx_ring_size))
3107 			i = 0;
3108 
3109 		rx_queue->next_to_clean = i;
3110 
3111 		/* fetch next buffer if not the last in frame */
3112 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3113 			continue;
3114 
3115 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3116 			count_errors(lstatus, ndev);
3117 
3118 			/* discard faulty buffer */
3119 			dev_kfree_skb(skb);
3120 			skb = NULL;
3121 			rx_queue->stats.rx_dropped++;
3122 			continue;
3123 		}
3124 
3125 		/* Increment the number of packets */
3126 		total_pkts++;
3127 		total_bytes += skb->len;
3128 
3129 		skb_record_rx_queue(skb, rx_queue->qindex);
3130 
3131 		gfar_process_frame(ndev, skb);
3132 
3133 		/* Send the packet up the stack */
3134 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3135 
3136 		skb = NULL;
3137 	}
3138 
3139 	/* Store incomplete frames for completion */
3140 	rx_queue->skb = skb;
3141 
3142 	rx_queue->stats.rx_packets += total_pkts;
3143 	rx_queue->stats.rx_bytes += total_bytes;
3144 
3145 	if (cleaned_cnt)
3146 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3147 
3148 	/* Update Last Free RxBD pointer for LFC */
3149 	if (unlikely(priv->tx_actual_en)) {
3150 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3151 
3152 		gfar_write(rx_queue->rfbptr, bdp_dma);
3153 	}
3154 
3155 	return howmany;
3156 }
3157 
3158 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3159 {
3160 	struct gfar_priv_grp *gfargrp =
3161 		container_of(napi, struct gfar_priv_grp, napi_rx);
3162 	struct gfar __iomem *regs = gfargrp->regs;
3163 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3164 	int work_done = 0;
3165 
3166 	/* Clear IEVENT, so interrupts aren't called again
3167 	 * because of the packets that have already arrived
3168 	 */
3169 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3170 
3171 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3172 
3173 	if (work_done < budget) {
3174 		u32 imask;
3175 		napi_complete(napi);
3176 		/* Clear the halt bit in RSTAT */
3177 		gfar_write(&regs->rstat, gfargrp->rstat);
3178 
3179 		spin_lock_irq(&gfargrp->grplock);
3180 		imask = gfar_read(&regs->imask);
3181 		imask |= IMASK_RX_DEFAULT;
3182 		gfar_write(&regs->imask, imask);
3183 		spin_unlock_irq(&gfargrp->grplock);
3184 	}
3185 
3186 	return work_done;
3187 }
3188 
3189 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3190 {
3191 	struct gfar_priv_grp *gfargrp =
3192 		container_of(napi, struct gfar_priv_grp, napi_tx);
3193 	struct gfar __iomem *regs = gfargrp->regs;
3194 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3195 	u32 imask;
3196 
3197 	/* Clear IEVENT, so interrupts aren't called again
3198 	 * because of the packets that have already arrived
3199 	 */
3200 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3201 
3202 	/* run Tx cleanup to completion */
3203 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3204 		gfar_clean_tx_ring(tx_queue);
3205 
3206 	napi_complete(napi);
3207 
3208 	spin_lock_irq(&gfargrp->grplock);
3209 	imask = gfar_read(&regs->imask);
3210 	imask |= IMASK_TX_DEFAULT;
3211 	gfar_write(&regs->imask, imask);
3212 	spin_unlock_irq(&gfargrp->grplock);
3213 
3214 	return 0;
3215 }
3216 
3217 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3218 {
3219 	struct gfar_priv_grp *gfargrp =
3220 		container_of(napi, struct gfar_priv_grp, napi_rx);
3221 	struct gfar_private *priv = gfargrp->priv;
3222 	struct gfar __iomem *regs = gfargrp->regs;
3223 	struct gfar_priv_rx_q *rx_queue = NULL;
3224 	int work_done = 0, work_done_per_q = 0;
3225 	int i, budget_per_q = 0;
3226 	unsigned long rstat_rxf;
3227 	int num_act_queues;
3228 
3229 	/* Clear IEVENT, so interrupts aren't called again
3230 	 * because of the packets that have already arrived
3231 	 */
3232 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3233 
3234 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3235 
3236 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3237 	if (num_act_queues)
3238 		budget_per_q = budget/num_act_queues;
3239 
3240 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3241 		/* skip queue if not active */
3242 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3243 			continue;
3244 
3245 		rx_queue = priv->rx_queue[i];
3246 		work_done_per_q =
3247 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3248 		work_done += work_done_per_q;
3249 
3250 		/* finished processing this queue */
3251 		if (work_done_per_q < budget_per_q) {
3252 			/* clear active queue hw indication */
3253 			gfar_write(&regs->rstat,
3254 				   RSTAT_CLEAR_RXF0 >> i);
3255 			num_act_queues--;
3256 
3257 			if (!num_act_queues)
3258 				break;
3259 		}
3260 	}
3261 
3262 	if (!num_act_queues) {
3263 		u32 imask;
3264 		napi_complete(napi);
3265 
3266 		/* Clear the halt bit in RSTAT */
3267 		gfar_write(&regs->rstat, gfargrp->rstat);
3268 
3269 		spin_lock_irq(&gfargrp->grplock);
3270 		imask = gfar_read(&regs->imask);
3271 		imask |= IMASK_RX_DEFAULT;
3272 		gfar_write(&regs->imask, imask);
3273 		spin_unlock_irq(&gfargrp->grplock);
3274 	}
3275 
3276 	return work_done;
3277 }
3278 
3279 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3280 {
3281 	struct gfar_priv_grp *gfargrp =
3282 		container_of(napi, struct gfar_priv_grp, napi_tx);
3283 	struct gfar_private *priv = gfargrp->priv;
3284 	struct gfar __iomem *regs = gfargrp->regs;
3285 	struct gfar_priv_tx_q *tx_queue = NULL;
3286 	int has_tx_work = 0;
3287 	int i;
3288 
3289 	/* Clear IEVENT, so interrupts aren't called again
3290 	 * because of the packets that have already arrived
3291 	 */
3292 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3293 
3294 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3295 		tx_queue = priv->tx_queue[i];
3296 		/* run Tx cleanup to completion */
3297 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3298 			gfar_clean_tx_ring(tx_queue);
3299 			has_tx_work = 1;
3300 		}
3301 	}
3302 
3303 	if (!has_tx_work) {
3304 		u32 imask;
3305 		napi_complete(napi);
3306 
3307 		spin_lock_irq(&gfargrp->grplock);
3308 		imask = gfar_read(&regs->imask);
3309 		imask |= IMASK_TX_DEFAULT;
3310 		gfar_write(&regs->imask, imask);
3311 		spin_unlock_irq(&gfargrp->grplock);
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 
3318 #ifdef CONFIG_NET_POLL_CONTROLLER
3319 /* Polling 'interrupt' - used by things like netconsole to send skbs
3320  * without having to re-enable interrupts. It's not called while
3321  * the interrupt routine is executing.
3322  */
3323 static void gfar_netpoll(struct net_device *dev)
3324 {
3325 	struct gfar_private *priv = netdev_priv(dev);
3326 	int i;
3327 
3328 	/* If the device has multiple interrupts, run tx/rx */
3329 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3330 		for (i = 0; i < priv->num_grps; i++) {
3331 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3332 
3333 			disable_irq(gfar_irq(grp, TX)->irq);
3334 			disable_irq(gfar_irq(grp, RX)->irq);
3335 			disable_irq(gfar_irq(grp, ER)->irq);
3336 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3337 			enable_irq(gfar_irq(grp, ER)->irq);
3338 			enable_irq(gfar_irq(grp, RX)->irq);
3339 			enable_irq(gfar_irq(grp, TX)->irq);
3340 		}
3341 	} else {
3342 		for (i = 0; i < priv->num_grps; i++) {
3343 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3344 
3345 			disable_irq(gfar_irq(grp, TX)->irq);
3346 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3347 			enable_irq(gfar_irq(grp, TX)->irq);
3348 		}
3349 	}
3350 }
3351 #endif
3352 
3353 /* The interrupt handler for devices with one interrupt */
3354 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3355 {
3356 	struct gfar_priv_grp *gfargrp = grp_id;
3357 
3358 	/* Save ievent for future reference */
3359 	u32 events = gfar_read(&gfargrp->regs->ievent);
3360 
3361 	/* Check for reception */
3362 	if (events & IEVENT_RX_MASK)
3363 		gfar_receive(irq, grp_id);
3364 
3365 	/* Check for transmit completion */
3366 	if (events & IEVENT_TX_MASK)
3367 		gfar_transmit(irq, grp_id);
3368 
3369 	/* Check for errors */
3370 	if (events & IEVENT_ERR_MASK)
3371 		gfar_error(irq, grp_id);
3372 
3373 	return IRQ_HANDLED;
3374 }
3375 
3376 /* Called every time the controller might need to be made
3377  * aware of new link state.  The PHY code conveys this
3378  * information through variables in the phydev structure, and this
3379  * function converts those variables into the appropriate
3380  * register values, and can bring down the device if needed.
3381  */
3382 static void adjust_link(struct net_device *dev)
3383 {
3384 	struct gfar_private *priv = netdev_priv(dev);
3385 	struct phy_device *phydev = priv->phydev;
3386 
3387 	if (unlikely(phydev->link != priv->oldlink ||
3388 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3389 				       phydev->speed != priv->oldspeed))))
3390 		gfar_update_link_state(priv);
3391 }
3392 
3393 /* Update the hash table based on the current list of multicast
3394  * addresses we subscribe to.  Also, change the promiscuity of
3395  * the device based on the flags (this function is called
3396  * whenever dev->flags is changed
3397  */
3398 static void gfar_set_multi(struct net_device *dev)
3399 {
3400 	struct netdev_hw_addr *ha;
3401 	struct gfar_private *priv = netdev_priv(dev);
3402 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3403 	u32 tempval;
3404 
3405 	if (dev->flags & IFF_PROMISC) {
3406 		/* Set RCTRL to PROM */
3407 		tempval = gfar_read(&regs->rctrl);
3408 		tempval |= RCTRL_PROM;
3409 		gfar_write(&regs->rctrl, tempval);
3410 	} else {
3411 		/* Set RCTRL to not PROM */
3412 		tempval = gfar_read(&regs->rctrl);
3413 		tempval &= ~(RCTRL_PROM);
3414 		gfar_write(&regs->rctrl, tempval);
3415 	}
3416 
3417 	if (dev->flags & IFF_ALLMULTI) {
3418 		/* Set the hash to rx all multicast frames */
3419 		gfar_write(&regs->igaddr0, 0xffffffff);
3420 		gfar_write(&regs->igaddr1, 0xffffffff);
3421 		gfar_write(&regs->igaddr2, 0xffffffff);
3422 		gfar_write(&regs->igaddr3, 0xffffffff);
3423 		gfar_write(&regs->igaddr4, 0xffffffff);
3424 		gfar_write(&regs->igaddr5, 0xffffffff);
3425 		gfar_write(&regs->igaddr6, 0xffffffff);
3426 		gfar_write(&regs->igaddr7, 0xffffffff);
3427 		gfar_write(&regs->gaddr0, 0xffffffff);
3428 		gfar_write(&regs->gaddr1, 0xffffffff);
3429 		gfar_write(&regs->gaddr2, 0xffffffff);
3430 		gfar_write(&regs->gaddr3, 0xffffffff);
3431 		gfar_write(&regs->gaddr4, 0xffffffff);
3432 		gfar_write(&regs->gaddr5, 0xffffffff);
3433 		gfar_write(&regs->gaddr6, 0xffffffff);
3434 		gfar_write(&regs->gaddr7, 0xffffffff);
3435 	} else {
3436 		int em_num;
3437 		int idx;
3438 
3439 		/* zero out the hash */
3440 		gfar_write(&regs->igaddr0, 0x0);
3441 		gfar_write(&regs->igaddr1, 0x0);
3442 		gfar_write(&regs->igaddr2, 0x0);
3443 		gfar_write(&regs->igaddr3, 0x0);
3444 		gfar_write(&regs->igaddr4, 0x0);
3445 		gfar_write(&regs->igaddr5, 0x0);
3446 		gfar_write(&regs->igaddr6, 0x0);
3447 		gfar_write(&regs->igaddr7, 0x0);
3448 		gfar_write(&regs->gaddr0, 0x0);
3449 		gfar_write(&regs->gaddr1, 0x0);
3450 		gfar_write(&regs->gaddr2, 0x0);
3451 		gfar_write(&regs->gaddr3, 0x0);
3452 		gfar_write(&regs->gaddr4, 0x0);
3453 		gfar_write(&regs->gaddr5, 0x0);
3454 		gfar_write(&regs->gaddr6, 0x0);
3455 		gfar_write(&regs->gaddr7, 0x0);
3456 
3457 		/* If we have extended hash tables, we need to
3458 		 * clear the exact match registers to prepare for
3459 		 * setting them
3460 		 */
3461 		if (priv->extended_hash) {
3462 			em_num = GFAR_EM_NUM + 1;
3463 			gfar_clear_exact_match(dev);
3464 			idx = 1;
3465 		} else {
3466 			idx = 0;
3467 			em_num = 0;
3468 		}
3469 
3470 		if (netdev_mc_empty(dev))
3471 			return;
3472 
3473 		/* Parse the list, and set the appropriate bits */
3474 		netdev_for_each_mc_addr(ha, dev) {
3475 			if (idx < em_num) {
3476 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3477 				idx++;
3478 			} else
3479 				gfar_set_hash_for_addr(dev, ha->addr);
3480 		}
3481 	}
3482 }
3483 
3484 
3485 /* Clears each of the exact match registers to zero, so they
3486  * don't interfere with normal reception
3487  */
3488 static void gfar_clear_exact_match(struct net_device *dev)
3489 {
3490 	int idx;
3491 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3492 
3493 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3494 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3495 }
3496 
3497 /* Set the appropriate hash bit for the given addr */
3498 /* The algorithm works like so:
3499  * 1) Take the Destination Address (ie the multicast address), and
3500  * do a CRC on it (little endian), and reverse the bits of the
3501  * result.
3502  * 2) Use the 8 most significant bits as a hash into a 256-entry
3503  * table.  The table is controlled through 8 32-bit registers:
3504  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3505  * gaddr7.  This means that the 3 most significant bits in the
3506  * hash index which gaddr register to use, and the 5 other bits
3507  * indicate which bit (assuming an IBM numbering scheme, which
3508  * for PowerPC (tm) is usually the case) in the register holds
3509  * the entry.
3510  */
3511 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3512 {
3513 	u32 tempval;
3514 	struct gfar_private *priv = netdev_priv(dev);
3515 	u32 result = ether_crc(ETH_ALEN, addr);
3516 	int width = priv->hash_width;
3517 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3518 	u8 whichreg = result >> (32 - width + 5);
3519 	u32 value = (1 << (31-whichbit));
3520 
3521 	tempval = gfar_read(priv->hash_regs[whichreg]);
3522 	tempval |= value;
3523 	gfar_write(priv->hash_regs[whichreg], tempval);
3524 }
3525 
3526 
3527 /* There are multiple MAC Address register pairs on some controllers
3528  * This function sets the numth pair to a given address
3529  */
3530 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3531 				  const u8 *addr)
3532 {
3533 	struct gfar_private *priv = netdev_priv(dev);
3534 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3535 	u32 tempval;
3536 	u32 __iomem *macptr = &regs->macstnaddr1;
3537 
3538 	macptr += num*2;
3539 
3540 	/* For a station address of 0x12345678ABCD in transmission
3541 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3542 	 * MACnADDR2 is set to 0x34120000.
3543 	 */
3544 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3545 		  (addr[3] << 8)  |  addr[2];
3546 
3547 	gfar_write(macptr, tempval);
3548 
3549 	tempval = (addr[1] << 24) | (addr[0] << 16);
3550 
3551 	gfar_write(macptr+1, tempval);
3552 }
3553 
3554 /* GFAR error interrupt handler */
3555 static irqreturn_t gfar_error(int irq, void *grp_id)
3556 {
3557 	struct gfar_priv_grp *gfargrp = grp_id;
3558 	struct gfar __iomem *regs = gfargrp->regs;
3559 	struct gfar_private *priv= gfargrp->priv;
3560 	struct net_device *dev = priv->ndev;
3561 
3562 	/* Save ievent for future reference */
3563 	u32 events = gfar_read(&regs->ievent);
3564 
3565 	/* Clear IEVENT */
3566 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3567 
3568 	/* Magic Packet is not an error. */
3569 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3570 	    (events & IEVENT_MAG))
3571 		events &= ~IEVENT_MAG;
3572 
3573 	/* Hmm... */
3574 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3575 		netdev_dbg(dev,
3576 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3577 			   events, gfar_read(&regs->imask));
3578 
3579 	/* Update the error counters */
3580 	if (events & IEVENT_TXE) {
3581 		dev->stats.tx_errors++;
3582 
3583 		if (events & IEVENT_LC)
3584 			dev->stats.tx_window_errors++;
3585 		if (events & IEVENT_CRL)
3586 			dev->stats.tx_aborted_errors++;
3587 		if (events & IEVENT_XFUN) {
3588 			netif_dbg(priv, tx_err, dev,
3589 				  "TX FIFO underrun, packet dropped\n");
3590 			dev->stats.tx_dropped++;
3591 			atomic64_inc(&priv->extra_stats.tx_underrun);
3592 
3593 			schedule_work(&priv->reset_task);
3594 		}
3595 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3596 	}
3597 	if (events & IEVENT_BSY) {
3598 		dev->stats.rx_over_errors++;
3599 		atomic64_inc(&priv->extra_stats.rx_bsy);
3600 
3601 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3602 			  gfar_read(&regs->rstat));
3603 	}
3604 	if (events & IEVENT_BABR) {
3605 		dev->stats.rx_errors++;
3606 		atomic64_inc(&priv->extra_stats.rx_babr);
3607 
3608 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3609 	}
3610 	if (events & IEVENT_EBERR) {
3611 		atomic64_inc(&priv->extra_stats.eberr);
3612 		netif_dbg(priv, rx_err, dev, "bus error\n");
3613 	}
3614 	if (events & IEVENT_RXC)
3615 		netif_dbg(priv, rx_status, dev, "control frame\n");
3616 
3617 	if (events & IEVENT_BABT) {
3618 		atomic64_inc(&priv->extra_stats.tx_babt);
3619 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3620 	}
3621 	return IRQ_HANDLED;
3622 }
3623 
3624 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3625 {
3626 	struct phy_device *phydev = priv->phydev;
3627 	u32 val = 0;
3628 
3629 	if (!phydev->duplex)
3630 		return val;
3631 
3632 	if (!priv->pause_aneg_en) {
3633 		if (priv->tx_pause_en)
3634 			val |= MACCFG1_TX_FLOW;
3635 		if (priv->rx_pause_en)
3636 			val |= MACCFG1_RX_FLOW;
3637 	} else {
3638 		u16 lcl_adv, rmt_adv;
3639 		u8 flowctrl;
3640 		/* get link partner capabilities */
3641 		rmt_adv = 0;
3642 		if (phydev->pause)
3643 			rmt_adv = LPA_PAUSE_CAP;
3644 		if (phydev->asym_pause)
3645 			rmt_adv |= LPA_PAUSE_ASYM;
3646 
3647 		lcl_adv = 0;
3648 		if (phydev->advertising & ADVERTISED_Pause)
3649 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3650 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3651 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3652 
3653 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3654 		if (flowctrl & FLOW_CTRL_TX)
3655 			val |= MACCFG1_TX_FLOW;
3656 		if (flowctrl & FLOW_CTRL_RX)
3657 			val |= MACCFG1_RX_FLOW;
3658 	}
3659 
3660 	return val;
3661 }
3662 
3663 static noinline void gfar_update_link_state(struct gfar_private *priv)
3664 {
3665 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3666 	struct phy_device *phydev = priv->phydev;
3667 	struct gfar_priv_rx_q *rx_queue = NULL;
3668 	int i;
3669 
3670 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3671 		return;
3672 
3673 	if (phydev->link) {
3674 		u32 tempval1 = gfar_read(&regs->maccfg1);
3675 		u32 tempval = gfar_read(&regs->maccfg2);
3676 		u32 ecntrl = gfar_read(&regs->ecntrl);
3677 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3678 
3679 		if (phydev->duplex != priv->oldduplex) {
3680 			if (!(phydev->duplex))
3681 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3682 			else
3683 				tempval |= MACCFG2_FULL_DUPLEX;
3684 
3685 			priv->oldduplex = phydev->duplex;
3686 		}
3687 
3688 		if (phydev->speed != priv->oldspeed) {
3689 			switch (phydev->speed) {
3690 			case 1000:
3691 				tempval =
3692 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3693 
3694 				ecntrl &= ~(ECNTRL_R100);
3695 				break;
3696 			case 100:
3697 			case 10:
3698 				tempval =
3699 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3700 
3701 				/* Reduced mode distinguishes
3702 				 * between 10 and 100
3703 				 */
3704 				if (phydev->speed == SPEED_100)
3705 					ecntrl |= ECNTRL_R100;
3706 				else
3707 					ecntrl &= ~(ECNTRL_R100);
3708 				break;
3709 			default:
3710 				netif_warn(priv, link, priv->ndev,
3711 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3712 					   phydev->speed);
3713 				break;
3714 			}
3715 
3716 			priv->oldspeed = phydev->speed;
3717 		}
3718 
3719 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3720 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3721 
3722 		/* Turn last free buffer recording on */
3723 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3724 			for (i = 0; i < priv->num_rx_queues; i++) {
3725 				u32 bdp_dma;
3726 
3727 				rx_queue = priv->rx_queue[i];
3728 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3729 				gfar_write(rx_queue->rfbptr, bdp_dma);
3730 			}
3731 
3732 			priv->tx_actual_en = 1;
3733 		}
3734 
3735 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3736 			priv->tx_actual_en = 0;
3737 
3738 		gfar_write(&regs->maccfg1, tempval1);
3739 		gfar_write(&regs->maccfg2, tempval);
3740 		gfar_write(&regs->ecntrl, ecntrl);
3741 
3742 		if (!priv->oldlink)
3743 			priv->oldlink = 1;
3744 
3745 	} else if (priv->oldlink) {
3746 		priv->oldlink = 0;
3747 		priv->oldspeed = 0;
3748 		priv->oldduplex = -1;
3749 	}
3750 
3751 	if (netif_msg_link(priv))
3752 		phy_print_status(phydev);
3753 }
3754 
3755 static const struct of_device_id gfar_match[] =
3756 {
3757 	{
3758 		.type = "network",
3759 		.compatible = "gianfar",
3760 	},
3761 	{
3762 		.compatible = "fsl,etsec2",
3763 	},
3764 	{},
3765 };
3766 MODULE_DEVICE_TABLE(of, gfar_match);
3767 
3768 /* Structure for a device driver */
3769 static struct platform_driver gfar_driver = {
3770 	.driver = {
3771 		.name = "fsl-gianfar",
3772 		.pm = GFAR_PM_OPS,
3773 		.of_match_table = gfar_match,
3774 	},
3775 	.probe = gfar_probe,
3776 	.remove = gfar_remove,
3777 };
3778 
3779 module_platform_driver(gfar_driver);
3780