1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 #include "fsl_pq_mdio.h"
104 
105 #define TX_TIMEOUT      (1*HZ)
106 
107 const char gfar_driver_version[] = "1.3";
108 
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116 			   struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 			      int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144 				  const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150 
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 			    dma_addr_t buf)
153 {
154 	u32 lstatus;
155 
156 	bdp->bufPtr = buf;
157 
158 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 		lstatus |= BD_LFLAG(RXBD_WRAP);
161 
162 	eieio();
163 
164 	bdp->lstatus = lstatus;
165 }
166 
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 	struct gfar_private *priv = netdev_priv(ndev);
170 	struct gfar_priv_tx_q *tx_queue = NULL;
171 	struct gfar_priv_rx_q *rx_queue = NULL;
172 	struct txbd8 *txbdp;
173 	struct rxbd8 *rxbdp;
174 	int i, j;
175 
176 	for (i = 0; i < priv->num_tx_queues; i++) {
177 		tx_queue = priv->tx_queue[i];
178 		/* Initialize some variables in our dev structure */
179 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 		tx_queue->cur_tx = tx_queue->tx_bd_base;
182 		tx_queue->skb_curtx = 0;
183 		tx_queue->skb_dirtytx = 0;
184 
185 		/* Initialize Transmit Descriptor Ring */
186 		txbdp = tx_queue->tx_bd_base;
187 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 			txbdp->lstatus = 0;
189 			txbdp->bufPtr = 0;
190 			txbdp++;
191 		}
192 
193 		/* Set the last descriptor in the ring to indicate wrap */
194 		txbdp--;
195 		txbdp->status |= TXBD_WRAP;
196 	}
197 
198 	for (i = 0; i < priv->num_rx_queues; i++) {
199 		rx_queue = priv->rx_queue[i];
200 		rx_queue->cur_rx = rx_queue->rx_bd_base;
201 		rx_queue->skb_currx = 0;
202 		rxbdp = rx_queue->rx_bd_base;
203 
204 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
206 
207 			if (skb) {
208 				gfar_init_rxbdp(rx_queue, rxbdp,
209 						rxbdp->bufPtr);
210 			} else {
211 				skb = gfar_new_skb(ndev);
212 				if (!skb) {
213 					netdev_err(ndev, "Can't allocate RX buffers\n");
214 					goto err_rxalloc_fail;
215 				}
216 				rx_queue->rx_skbuff[j] = skb;
217 
218 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
219 			}
220 
221 			rxbdp++;
222 		}
223 
224 	}
225 
226 	return 0;
227 
228 err_rxalloc_fail:
229 	free_skb_resources(priv);
230 	return -ENOMEM;
231 }
232 
233 static int gfar_alloc_skb_resources(struct net_device *ndev)
234 {
235 	void *vaddr;
236 	dma_addr_t addr;
237 	int i, j, k;
238 	struct gfar_private *priv = netdev_priv(ndev);
239 	struct device *dev = &priv->ofdev->dev;
240 	struct gfar_priv_tx_q *tx_queue = NULL;
241 	struct gfar_priv_rx_q *rx_queue = NULL;
242 
243 	priv->total_tx_ring_size = 0;
244 	for (i = 0; i < priv->num_tx_queues; i++)
245 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
246 
247 	priv->total_rx_ring_size = 0;
248 	for (i = 0; i < priv->num_rx_queues; i++)
249 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
250 
251 	/* Allocate memory for the buffer descriptors */
252 	vaddr = dma_alloc_coherent(dev,
253 			sizeof(struct txbd8) * priv->total_tx_ring_size +
254 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
255 			&addr, GFP_KERNEL);
256 	if (!vaddr) {
257 		netif_err(priv, ifup, ndev,
258 			  "Could not allocate buffer descriptors!\n");
259 		return -ENOMEM;
260 	}
261 
262 	for (i = 0; i < priv->num_tx_queues; i++) {
263 		tx_queue = priv->tx_queue[i];
264 		tx_queue->tx_bd_base = vaddr;
265 		tx_queue->tx_bd_dma_base = addr;
266 		tx_queue->dev = ndev;
267 		/* enet DMA only understands physical addresses */
268 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
270 	}
271 
272 	/* Start the rx descriptor ring where the tx ring leaves off */
273 	for (i = 0; i < priv->num_rx_queues; i++) {
274 		rx_queue = priv->rx_queue[i];
275 		rx_queue->rx_bd_base = vaddr;
276 		rx_queue->rx_bd_dma_base = addr;
277 		rx_queue->dev = ndev;
278 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
280 	}
281 
282 	/* Setup the skbuff rings */
283 	for (i = 0; i < priv->num_tx_queues; i++) {
284 		tx_queue = priv->tx_queue[i];
285 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
286 					      tx_queue->tx_ring_size,
287 					      GFP_KERNEL);
288 		if (!tx_queue->tx_skbuff) {
289 			netif_err(priv, ifup, ndev,
290 				  "Could not allocate tx_skbuff\n");
291 			goto cleanup;
292 		}
293 
294 		for (k = 0; k < tx_queue->tx_ring_size; k++)
295 			tx_queue->tx_skbuff[k] = NULL;
296 	}
297 
298 	for (i = 0; i < priv->num_rx_queues; i++) {
299 		rx_queue = priv->rx_queue[i];
300 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301 					      rx_queue->rx_ring_size,
302 					      GFP_KERNEL);
303 
304 		if (!rx_queue->rx_skbuff) {
305 			netif_err(priv, ifup, ndev,
306 				  "Could not allocate rx_skbuff\n");
307 			goto cleanup;
308 		}
309 
310 		for (j = 0; j < rx_queue->rx_ring_size; j++)
311 			rx_queue->rx_skbuff[j] = NULL;
312 	}
313 
314 	if (gfar_init_bds(ndev))
315 		goto cleanup;
316 
317 	return 0;
318 
319 cleanup:
320 	free_skb_resources(priv);
321 	return -ENOMEM;
322 }
323 
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 	u32 __iomem *baddr;
328 	int i;
329 
330 	baddr = &regs->tbase0;
331 	for (i = 0; i < priv->num_tx_queues; i++) {
332 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 		baddr += 2;
334 	}
335 
336 	baddr = &regs->rbase0;
337 	for (i = 0; i < priv->num_rx_queues; i++) {
338 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 		baddr += 2;
340 	}
341 }
342 
343 static void gfar_init_mac(struct net_device *ndev)
344 {
345 	struct gfar_private *priv = netdev_priv(ndev);
346 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
347 	u32 rctrl = 0;
348 	u32 tctrl = 0;
349 	u32 attrs = 0;
350 
351 	/* write the tx/rx base registers */
352 	gfar_init_tx_rx_base(priv);
353 
354 	/* Configure the coalescing support */
355 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
356 
357 	if (priv->rx_filer_enable) {
358 		rctrl |= RCTRL_FILREN;
359 		/* Program the RIR0 reg with the required distribution */
360 		gfar_write(&regs->rir0, DEFAULT_RIR0);
361 	}
362 
363 	if (ndev->features & NETIF_F_RXCSUM)
364 		rctrl |= RCTRL_CHECKSUMMING;
365 
366 	if (priv->extended_hash) {
367 		rctrl |= RCTRL_EXTHASH;
368 
369 		gfar_clear_exact_match(ndev);
370 		rctrl |= RCTRL_EMEN;
371 	}
372 
373 	if (priv->padding) {
374 		rctrl &= ~RCTRL_PAL_MASK;
375 		rctrl |= RCTRL_PADDING(priv->padding);
376 	}
377 
378 	/* Insert receive time stamps into padding alignment bytes */
379 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
380 		rctrl &= ~RCTRL_PAL_MASK;
381 		rctrl |= RCTRL_PADDING(8);
382 		priv->padding = 8;
383 	}
384 
385 	/* Enable HW time stamping if requested from user space */
386 	if (priv->hwts_rx_en)
387 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
388 
389 	if (ndev->features & NETIF_F_HW_VLAN_RX)
390 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391 
392 	/* Init rctrl based on our settings */
393 	gfar_write(&regs->rctrl, rctrl);
394 
395 	if (ndev->features & NETIF_F_IP_CSUM)
396 		tctrl |= TCTRL_INIT_CSUM;
397 
398 	tctrl |= TCTRL_TXSCHED_PRIO;
399 
400 	gfar_write(&regs->tctrl, tctrl);
401 
402 	/* Set the extraction length and index */
403 	attrs = ATTRELI_EL(priv->rx_stash_size) |
404 		ATTRELI_EI(priv->rx_stash_index);
405 
406 	gfar_write(&regs->attreli, attrs);
407 
408 	/* Start with defaults, and add stashing or locking
409 	 * depending on the approprate variables
410 	 */
411 	attrs = ATTR_INIT_SETTINGS;
412 
413 	if (priv->bd_stash_en)
414 		attrs |= ATTR_BDSTASH;
415 
416 	if (priv->rx_stash_size != 0)
417 		attrs |= ATTR_BUFSTASH;
418 
419 	gfar_write(&regs->attr, attrs);
420 
421 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425 
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428 	struct gfar_private *priv = netdev_priv(dev);
429 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430 	unsigned long tx_packets = 0, tx_bytes = 0;
431 	int i;
432 
433 	for (i = 0; i < priv->num_rx_queues; i++) {
434 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
435 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
436 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437 	}
438 
439 	dev->stats.rx_packets = rx_packets;
440 	dev->stats.rx_bytes   = rx_bytes;
441 	dev->stats.rx_dropped = rx_dropped;
442 
443 	for (i = 0; i < priv->num_tx_queues; i++) {
444 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
446 	}
447 
448 	dev->stats.tx_bytes   = tx_bytes;
449 	dev->stats.tx_packets = tx_packets;
450 
451 	return &dev->stats;
452 }
453 
454 static const struct net_device_ops gfar_netdev_ops = {
455 	.ndo_open = gfar_enet_open,
456 	.ndo_start_xmit = gfar_start_xmit,
457 	.ndo_stop = gfar_close,
458 	.ndo_change_mtu = gfar_change_mtu,
459 	.ndo_set_features = gfar_set_features,
460 	.ndo_set_rx_mode = gfar_set_multi,
461 	.ndo_tx_timeout = gfar_timeout,
462 	.ndo_do_ioctl = gfar_ioctl,
463 	.ndo_get_stats = gfar_get_stats,
464 	.ndo_set_mac_address = eth_mac_addr,
465 	.ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467 	.ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470 
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473 	int i;
474 
475 	for (i = 0; i < priv->num_rx_queues; i++)
476 		spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478 
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_tx_queues; i++)
484 		spin_lock(&priv->tx_queue[i]->txlock);
485 }
486 
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489 	int i;
490 
491 	for (i = 0; i < priv->num_rx_queues; i++)
492 		spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494 
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497 	int i;
498 
499 	for (i = 0; i < priv->num_tx_queues; i++)
500 		spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502 
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505 	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506 	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508 
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512 	return gfar_is_vlan_on(priv) ||
513 	       (priv->ndev->features & NETIF_F_RXCSUM) ||
514 	       (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516 
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519 	int i;
520 
521 	for (i = 0; i < priv->num_tx_queues; i++)
522 		kfree(priv->tx_queue[i]);
523 }
524 
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527 	int i;
528 
529 	for (i = 0; i < priv->num_rx_queues; i++)
530 		kfree(priv->rx_queue[i]);
531 }
532 
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535 	int i;
536 
537 	for (i = 0; i < MAXGROUPS; i++)
538 		if (priv->gfargrp[i].regs)
539 			iounmap(priv->gfargrp[i].regs);
540 }
541 
542 static void disable_napi(struct gfar_private *priv)
543 {
544 	int i;
545 
546 	for (i = 0; i < priv->num_grps; i++)
547 		napi_disable(&priv->gfargrp[i].napi);
548 }
549 
550 static void enable_napi(struct gfar_private *priv)
551 {
552 	int i;
553 
554 	for (i = 0; i < priv->num_grps; i++)
555 		napi_enable(&priv->gfargrp[i].napi);
556 }
557 
558 static int gfar_parse_group(struct device_node *np,
559 			    struct gfar_private *priv, const char *model)
560 {
561 	u32 *queue_mask;
562 
563 	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
564 	if (!priv->gfargrp[priv->num_grps].regs)
565 		return -ENOMEM;
566 
567 	priv->gfargrp[priv->num_grps].interruptTransmit =
568 			irq_of_parse_and_map(np, 0);
569 
570 	/* If we aren't the FEC we have multiple interrupts */
571 	if (model && strcasecmp(model, "FEC")) {
572 		priv->gfargrp[priv->num_grps].interruptReceive =
573 			irq_of_parse_and_map(np, 1);
574 		priv->gfargrp[priv->num_grps].interruptError =
575 			irq_of_parse_and_map(np,2);
576 		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
577 		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
578 		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
579 			return -EINVAL;
580 	}
581 
582 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
583 	priv->gfargrp[priv->num_grps].priv = priv;
584 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
585 	if (priv->mode == MQ_MG_MODE) {
586 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
587 		priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
588 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
590 		priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
591 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592 	} else {
593 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595 	}
596 	priv->num_grps++;
597 
598 	return 0;
599 }
600 
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603 	const char *model;
604 	const char *ctype;
605 	const void *mac_addr;
606 	int err = 0, i;
607 	struct net_device *dev = NULL;
608 	struct gfar_private *priv = NULL;
609 	struct device_node *np = ofdev->dev.of_node;
610 	struct device_node *child = NULL;
611 	const u32 *stash;
612 	const u32 *stash_len;
613 	const u32 *stash_idx;
614 	unsigned int num_tx_qs, num_rx_qs;
615 	u32 *tx_queues, *rx_queues;
616 
617 	if (!np || !of_device_is_available(np))
618 		return -ENODEV;
619 
620 	/* parse the num of tx and rx queues */
621 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622 	num_tx_qs = tx_queues ? *tx_queues : 1;
623 
624 	if (num_tx_qs > MAX_TX_QS) {
625 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626 		       num_tx_qs, MAX_TX_QS);
627 		pr_err("Cannot do alloc_etherdev, aborting\n");
628 		return -EINVAL;
629 	}
630 
631 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632 	num_rx_qs = rx_queues ? *rx_queues : 1;
633 
634 	if (num_rx_qs > MAX_RX_QS) {
635 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636 		       num_rx_qs, MAX_RX_QS);
637 		pr_err("Cannot do alloc_etherdev, aborting\n");
638 		return -EINVAL;
639 	}
640 
641 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642 	dev = *pdev;
643 	if (NULL == dev)
644 		return -ENOMEM;
645 
646 	priv = netdev_priv(dev);
647 	priv->node = ofdev->dev.of_node;
648 	priv->ndev = dev;
649 
650 	priv->num_tx_queues = num_tx_qs;
651 	netif_set_real_num_rx_queues(dev, num_rx_qs);
652 	priv->num_rx_queues = num_rx_qs;
653 	priv->num_grps = 0x0;
654 
655 	/* Init Rx queue filer rule set linked list */
656 	INIT_LIST_HEAD(&priv->rx_list.list);
657 	priv->rx_list.count = 0;
658 	mutex_init(&priv->rx_queue_access);
659 
660 	model = of_get_property(np, "model", NULL);
661 
662 	for (i = 0; i < MAXGROUPS; i++)
663 		priv->gfargrp[i].regs = NULL;
664 
665 	/* Parse and initialize group specific information */
666 	if (of_device_is_compatible(np, "fsl,etsec2")) {
667 		priv->mode = MQ_MG_MODE;
668 		for_each_child_of_node(np, child) {
669 			err = gfar_parse_group(child, priv, model);
670 			if (err)
671 				goto err_grp_init;
672 		}
673 	} else {
674 		priv->mode = SQ_SG_MODE;
675 		err = gfar_parse_group(np, priv, model);
676 		if (err)
677 			goto err_grp_init;
678 	}
679 
680 	for (i = 0; i < priv->num_tx_queues; i++)
681 	       priv->tx_queue[i] = NULL;
682 	for (i = 0; i < priv->num_rx_queues; i++)
683 		priv->rx_queue[i] = NULL;
684 
685 	for (i = 0; i < priv->num_tx_queues; i++) {
686 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687 					    GFP_KERNEL);
688 		if (!priv->tx_queue[i]) {
689 			err = -ENOMEM;
690 			goto tx_alloc_failed;
691 		}
692 		priv->tx_queue[i]->tx_skbuff = NULL;
693 		priv->tx_queue[i]->qindex = i;
694 		priv->tx_queue[i]->dev = dev;
695 		spin_lock_init(&(priv->tx_queue[i]->txlock));
696 	}
697 
698 	for (i = 0; i < priv->num_rx_queues; i++) {
699 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700 					    GFP_KERNEL);
701 		if (!priv->rx_queue[i]) {
702 			err = -ENOMEM;
703 			goto rx_alloc_failed;
704 		}
705 		priv->rx_queue[i]->rx_skbuff = NULL;
706 		priv->rx_queue[i]->qindex = i;
707 		priv->rx_queue[i]->dev = dev;
708 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
709 	}
710 
711 
712 	stash = of_get_property(np, "bd-stash", NULL);
713 
714 	if (stash) {
715 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716 		priv->bd_stash_en = 1;
717 	}
718 
719 	stash_len = of_get_property(np, "rx-stash-len", NULL);
720 
721 	if (stash_len)
722 		priv->rx_stash_size = *stash_len;
723 
724 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725 
726 	if (stash_idx)
727 		priv->rx_stash_index = *stash_idx;
728 
729 	if (stash_len || stash_idx)
730 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731 
732 	mac_addr = of_get_mac_address(np);
733 
734 	if (mac_addr)
735 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
736 
737 	if (model && !strcasecmp(model, "TSEC"))
738 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
739 				     FSL_GIANFAR_DEV_HAS_COALESCE |
740 				     FSL_GIANFAR_DEV_HAS_RMON |
741 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742 
743 	if (model && !strcasecmp(model, "eTSEC"))
744 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
745 				     FSL_GIANFAR_DEV_HAS_COALESCE |
746 				     FSL_GIANFAR_DEV_HAS_RMON |
747 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748 				     FSL_GIANFAR_DEV_HAS_PADDING |
749 				     FSL_GIANFAR_DEV_HAS_CSUM |
750 				     FSL_GIANFAR_DEV_HAS_VLAN |
751 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753 				     FSL_GIANFAR_DEV_HAS_TIMER;
754 
755 	ctype = of_get_property(np, "phy-connection-type", NULL);
756 
757 	/* We only care about rgmii-id.  The rest are autodetected */
758 	if (ctype && !strcmp(ctype, "rgmii-id"))
759 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760 	else
761 		priv->interface = PHY_INTERFACE_MODE_MII;
762 
763 	if (of_get_property(np, "fsl,magic-packet", NULL))
764 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765 
766 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767 
768 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
769 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770 
771 	return 0;
772 
773 rx_alloc_failed:
774 	free_rx_pointers(priv);
775 tx_alloc_failed:
776 	free_tx_pointers(priv);
777 err_grp_init:
778 	unmap_group_regs(priv);
779 	free_netdev(dev);
780 	return err;
781 }
782 
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784 			       struct ifreq *ifr, int cmd)
785 {
786 	struct hwtstamp_config config;
787 	struct gfar_private *priv = netdev_priv(netdev);
788 
789 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790 		return -EFAULT;
791 
792 	/* reserved for future extensions */
793 	if (config.flags)
794 		return -EINVAL;
795 
796 	switch (config.tx_type) {
797 	case HWTSTAMP_TX_OFF:
798 		priv->hwts_tx_en = 0;
799 		break;
800 	case HWTSTAMP_TX_ON:
801 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802 			return -ERANGE;
803 		priv->hwts_tx_en = 1;
804 		break;
805 	default:
806 		return -ERANGE;
807 	}
808 
809 	switch (config.rx_filter) {
810 	case HWTSTAMP_FILTER_NONE:
811 		if (priv->hwts_rx_en) {
812 			stop_gfar(netdev);
813 			priv->hwts_rx_en = 0;
814 			startup_gfar(netdev);
815 		}
816 		break;
817 	default:
818 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819 			return -ERANGE;
820 		if (!priv->hwts_rx_en) {
821 			stop_gfar(netdev);
822 			priv->hwts_rx_en = 1;
823 			startup_gfar(netdev);
824 		}
825 		config.rx_filter = HWTSTAMP_FILTER_ALL;
826 		break;
827 	}
828 
829 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830 		-EFAULT : 0;
831 }
832 
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836 	struct gfar_private *priv = netdev_priv(dev);
837 
838 	if (!netif_running(dev))
839 		return -EINVAL;
840 
841 	if (cmd == SIOCSHWTSTAMP)
842 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
843 
844 	if (!priv->phydev)
845 		return -ENODEV;
846 
847 	return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849 
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852 	unsigned int new_bit_map = 0x0;
853 	int mask = 0x1 << (max_qs - 1), i;
854 
855 	for (i = 0; i < max_qs; i++) {
856 		if (bit_map & mask)
857 			new_bit_map = new_bit_map + (1 << i);
858 		mask = mask >> 0x1;
859 	}
860 	return new_bit_map;
861 }
862 
863 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
864 				   u32 class)
865 {
866 	u32 rqfpr = FPR_FILER_MASK;
867 	u32 rqfcr = 0x0;
868 
869 	rqfar--;
870 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
871 	priv->ftp_rqfpr[rqfar] = rqfpr;
872 	priv->ftp_rqfcr[rqfar] = rqfcr;
873 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874 
875 	rqfar--;
876 	rqfcr = RQFCR_CMP_NOMATCH;
877 	priv->ftp_rqfpr[rqfar] = rqfpr;
878 	priv->ftp_rqfcr[rqfar] = rqfcr;
879 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880 
881 	rqfar--;
882 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
883 	rqfpr = class;
884 	priv->ftp_rqfcr[rqfar] = rqfcr;
885 	priv->ftp_rqfpr[rqfar] = rqfpr;
886 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887 
888 	rqfar--;
889 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
890 	rqfpr = class;
891 	priv->ftp_rqfcr[rqfar] = rqfcr;
892 	priv->ftp_rqfpr[rqfar] = rqfpr;
893 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894 
895 	return rqfar;
896 }
897 
898 static void gfar_init_filer_table(struct gfar_private *priv)
899 {
900 	int i = 0x0;
901 	u32 rqfar = MAX_FILER_IDX;
902 	u32 rqfcr = 0x0;
903 	u32 rqfpr = FPR_FILER_MASK;
904 
905 	/* Default rule */
906 	rqfcr = RQFCR_CMP_MATCH;
907 	priv->ftp_rqfcr[rqfar] = rqfcr;
908 	priv->ftp_rqfpr[rqfar] = rqfpr;
909 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
910 
911 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
912 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
913 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
914 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
915 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
916 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
917 
918 	/* cur_filer_idx indicated the first non-masked rule */
919 	priv->cur_filer_idx = rqfar;
920 
921 	/* Rest are masked rules */
922 	rqfcr = RQFCR_CMP_NOMATCH;
923 	for (i = 0; i < rqfar; i++) {
924 		priv->ftp_rqfcr[i] = rqfcr;
925 		priv->ftp_rqfpr[i] = rqfpr;
926 		gfar_write_filer(priv, i, rqfcr, rqfpr);
927 	}
928 }
929 
930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932 	struct device *dev = &priv->ofdev->dev;
933 	unsigned int pvr = mfspr(SPRN_PVR);
934 	unsigned int svr = mfspr(SPRN_SVR);
935 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
936 	unsigned int rev = svr & 0xffff;
937 
938 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
939 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
940 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
941 		priv->errata |= GFAR_ERRATA_74;
942 
943 	/* MPC8313 and MPC837x all rev */
944 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
945 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946 		priv->errata |= GFAR_ERRATA_76;
947 
948 	/* MPC8313 and MPC837x all rev */
949 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
950 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951 		priv->errata |= GFAR_ERRATA_A002;
952 
953 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
954 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
955 	    (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
956 		priv->errata |= GFAR_ERRATA_12;
957 
958 	if (priv->errata)
959 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
960 			 priv->errata);
961 }
962 
963 /* Set up the ethernet device structure, private data,
964  * and anything else we need before we start
965  */
966 static int gfar_probe(struct platform_device *ofdev)
967 {
968 	u32 tempval;
969 	struct net_device *dev = NULL;
970 	struct gfar_private *priv = NULL;
971 	struct gfar __iomem *regs = NULL;
972 	int err = 0, i, grp_idx = 0;
973 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
974 	u32 isrg = 0;
975 	u32 __iomem *baddr;
976 
977 	err = gfar_of_init(ofdev, &dev);
978 
979 	if (err)
980 		return err;
981 
982 	priv = netdev_priv(dev);
983 	priv->ndev = dev;
984 	priv->ofdev = ofdev;
985 	priv->node = ofdev->dev.of_node;
986 	SET_NETDEV_DEV(dev, &ofdev->dev);
987 
988 	spin_lock_init(&priv->bflock);
989 	INIT_WORK(&priv->reset_task, gfar_reset_task);
990 
991 	dev_set_drvdata(&ofdev->dev, priv);
992 	regs = priv->gfargrp[0].regs;
993 
994 	gfar_detect_errata(priv);
995 
996 	/* Stop the DMA engine now, in case it was running before
997 	 * (The firmware could have used it, and left it running).
998 	 */
999 	gfar_halt(dev);
1000 
1001 	/* Reset MAC layer */
1002 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1003 
1004 	/* We need to delay at least 3 TX clocks */
1005 	udelay(2);
1006 
1007 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1008 	gfar_write(&regs->maccfg1, tempval);
1009 
1010 	/* Initialize MACCFG2. */
1011 	tempval = MACCFG2_INIT_SETTINGS;
1012 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1013 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1014 	gfar_write(&regs->maccfg2, tempval);
1015 
1016 	/* Initialize ECNTRL */
1017 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1018 
1019 	/* Set the dev->base_addr to the gfar reg region */
1020 	dev->base_addr = (unsigned long) regs;
1021 
1022 	SET_NETDEV_DEV(dev, &ofdev->dev);
1023 
1024 	/* Fill in the dev structure */
1025 	dev->watchdog_timeo = TX_TIMEOUT;
1026 	dev->mtu = 1500;
1027 	dev->netdev_ops = &gfar_netdev_ops;
1028 	dev->ethtool_ops = &gfar_ethtool_ops;
1029 
1030 	/* Register for napi ...We are registering NAPI for each grp */
1031 	for (i = 0; i < priv->num_grps; i++)
1032 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1033 			       GFAR_DEV_WEIGHT);
1034 
1035 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037 				   NETIF_F_RXCSUM;
1038 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040 	}
1041 
1042 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043 		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044 		dev->features |= NETIF_F_HW_VLAN_RX;
1045 	}
1046 
1047 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048 		priv->extended_hash = 1;
1049 		priv->hash_width = 9;
1050 
1051 		priv->hash_regs[0] = &regs->igaddr0;
1052 		priv->hash_regs[1] = &regs->igaddr1;
1053 		priv->hash_regs[2] = &regs->igaddr2;
1054 		priv->hash_regs[3] = &regs->igaddr3;
1055 		priv->hash_regs[4] = &regs->igaddr4;
1056 		priv->hash_regs[5] = &regs->igaddr5;
1057 		priv->hash_regs[6] = &regs->igaddr6;
1058 		priv->hash_regs[7] = &regs->igaddr7;
1059 		priv->hash_regs[8] = &regs->gaddr0;
1060 		priv->hash_regs[9] = &regs->gaddr1;
1061 		priv->hash_regs[10] = &regs->gaddr2;
1062 		priv->hash_regs[11] = &regs->gaddr3;
1063 		priv->hash_regs[12] = &regs->gaddr4;
1064 		priv->hash_regs[13] = &regs->gaddr5;
1065 		priv->hash_regs[14] = &regs->gaddr6;
1066 		priv->hash_regs[15] = &regs->gaddr7;
1067 
1068 	} else {
1069 		priv->extended_hash = 0;
1070 		priv->hash_width = 8;
1071 
1072 		priv->hash_regs[0] = &regs->gaddr0;
1073 		priv->hash_regs[1] = &regs->gaddr1;
1074 		priv->hash_regs[2] = &regs->gaddr2;
1075 		priv->hash_regs[3] = &regs->gaddr3;
1076 		priv->hash_regs[4] = &regs->gaddr4;
1077 		priv->hash_regs[5] = &regs->gaddr5;
1078 		priv->hash_regs[6] = &regs->gaddr6;
1079 		priv->hash_regs[7] = &regs->gaddr7;
1080 	}
1081 
1082 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083 		priv->padding = DEFAULT_PADDING;
1084 	else
1085 		priv->padding = 0;
1086 
1087 	if (dev->features & NETIF_F_IP_CSUM ||
1088 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089 		dev->needed_headroom = GMAC_FCB_LEN;
1090 
1091 	/* Program the isrg regs only if number of grps > 1 */
1092 	if (priv->num_grps > 1) {
1093 		baddr = &regs->isrg0;
1094 		for (i = 0; i < priv->num_grps; i++) {
1095 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097 			gfar_write(baddr, isrg);
1098 			baddr++;
1099 			isrg = 0x0;
1100 		}
1101 	}
1102 
1103 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1104 	 * but, for_each_set_bit parses from right to left, which
1105 	 * basically reverses the queue numbers
1106 	 */
1107 	for (i = 0; i< priv->num_grps; i++) {
1108 		priv->gfargrp[i].tx_bit_map =
1109 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1110 		priv->gfargrp[i].rx_bit_map =
1111 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1112 	}
1113 
1114 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1115 	 * also assign queues to groups
1116 	 */
1117 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1118 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1119 
1120 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1121 				 priv->num_rx_queues) {
1122 			priv->gfargrp[grp_idx].num_rx_queues++;
1123 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1125 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1126 		}
1127 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1128 
1129 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1130 				 priv->num_tx_queues) {
1131 			priv->gfargrp[grp_idx].num_tx_queues++;
1132 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1133 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1134 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1135 		}
1136 		priv->gfargrp[grp_idx].rstat = rstat;
1137 		priv->gfargrp[grp_idx].tstat = tstat;
1138 		rstat = tstat =0;
1139 	}
1140 
1141 	gfar_write(&regs->rqueue, rqueue);
1142 	gfar_write(&regs->tqueue, tqueue);
1143 
1144 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1145 
1146 	/* Initializing some of the rx/tx queue level parameters */
1147 	for (i = 0; i < priv->num_tx_queues; i++) {
1148 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1149 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1150 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1151 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1152 	}
1153 
1154 	for (i = 0; i < priv->num_rx_queues; i++) {
1155 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1156 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1157 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1158 	}
1159 
1160 	/* always enable rx filer */
1161 	priv->rx_filer_enable = 1;
1162 	/* Enable most messages by default */
1163 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1164 
1165 	/* Carrier starts down, phylib will bring it up */
1166 	netif_carrier_off(dev);
1167 
1168 	err = register_netdev(dev);
1169 
1170 	if (err) {
1171 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1172 		goto register_fail;
1173 	}
1174 
1175 	device_init_wakeup(&dev->dev,
1176 			   priv->device_flags &
1177 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1178 
1179 	/* fill out IRQ number and name fields */
1180 	for (i = 0; i < priv->num_grps; i++) {
1181 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1182 			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1183 				dev->name, "_g", '0' + i, "_tx");
1184 			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1185 				dev->name, "_g", '0' + i, "_rx");
1186 			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1187 				dev->name, "_g", '0' + i, "_er");
1188 		} else
1189 			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1190 	}
1191 
1192 	/* Initialize the filer table */
1193 	gfar_init_filer_table(priv);
1194 
1195 	/* Create all the sysfs files */
1196 	gfar_init_sysfs(dev);
1197 
1198 	/* Print out the device info */
1199 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1200 
1201 	/* Even more device info helps when determining which kernel
1202 	 * provided which set of benchmarks.
1203 	 */
1204 	netdev_info(dev, "Running with NAPI enabled\n");
1205 	for (i = 0; i < priv->num_rx_queues; i++)
1206 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1207 			    i, priv->rx_queue[i]->rx_ring_size);
1208 	for (i = 0; i < priv->num_tx_queues; i++)
1209 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1210 			    i, priv->tx_queue[i]->tx_ring_size);
1211 
1212 	return 0;
1213 
1214 register_fail:
1215 	unmap_group_regs(priv);
1216 	free_tx_pointers(priv);
1217 	free_rx_pointers(priv);
1218 	if (priv->phy_node)
1219 		of_node_put(priv->phy_node);
1220 	if (priv->tbi_node)
1221 		of_node_put(priv->tbi_node);
1222 	free_netdev(dev);
1223 	return err;
1224 }
1225 
1226 static int gfar_remove(struct platform_device *ofdev)
1227 {
1228 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1229 
1230 	if (priv->phy_node)
1231 		of_node_put(priv->phy_node);
1232 	if (priv->tbi_node)
1233 		of_node_put(priv->tbi_node);
1234 
1235 	dev_set_drvdata(&ofdev->dev, NULL);
1236 
1237 	unregister_netdev(priv->ndev);
1238 	unmap_group_regs(priv);
1239 	free_netdev(priv->ndev);
1240 
1241 	return 0;
1242 }
1243 
1244 #ifdef CONFIG_PM
1245 
1246 static int gfar_suspend(struct device *dev)
1247 {
1248 	struct gfar_private *priv = dev_get_drvdata(dev);
1249 	struct net_device *ndev = priv->ndev;
1250 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1251 	unsigned long flags;
1252 	u32 tempval;
1253 
1254 	int magic_packet = priv->wol_en &&
1255 			   (priv->device_flags &
1256 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1257 
1258 	netif_device_detach(ndev);
1259 
1260 	if (netif_running(ndev)) {
1261 
1262 		local_irq_save(flags);
1263 		lock_tx_qs(priv);
1264 		lock_rx_qs(priv);
1265 
1266 		gfar_halt_nodisable(ndev);
1267 
1268 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1269 		tempval = gfar_read(&regs->maccfg1);
1270 
1271 		tempval &= ~MACCFG1_TX_EN;
1272 
1273 		if (!magic_packet)
1274 			tempval &= ~MACCFG1_RX_EN;
1275 
1276 		gfar_write(&regs->maccfg1, tempval);
1277 
1278 		unlock_rx_qs(priv);
1279 		unlock_tx_qs(priv);
1280 		local_irq_restore(flags);
1281 
1282 		disable_napi(priv);
1283 
1284 		if (magic_packet) {
1285 			/* Enable interrupt on Magic Packet */
1286 			gfar_write(&regs->imask, IMASK_MAG);
1287 
1288 			/* Enable Magic Packet mode */
1289 			tempval = gfar_read(&regs->maccfg2);
1290 			tempval |= MACCFG2_MPEN;
1291 			gfar_write(&regs->maccfg2, tempval);
1292 		} else {
1293 			phy_stop(priv->phydev);
1294 		}
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static int gfar_resume(struct device *dev)
1301 {
1302 	struct gfar_private *priv = dev_get_drvdata(dev);
1303 	struct net_device *ndev = priv->ndev;
1304 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1305 	unsigned long flags;
1306 	u32 tempval;
1307 	int magic_packet = priv->wol_en &&
1308 			   (priv->device_flags &
1309 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1310 
1311 	if (!netif_running(ndev)) {
1312 		netif_device_attach(ndev);
1313 		return 0;
1314 	}
1315 
1316 	if (!magic_packet && priv->phydev)
1317 		phy_start(priv->phydev);
1318 
1319 	/* Disable Magic Packet mode, in case something
1320 	 * else woke us up.
1321 	 */
1322 	local_irq_save(flags);
1323 	lock_tx_qs(priv);
1324 	lock_rx_qs(priv);
1325 
1326 	tempval = gfar_read(&regs->maccfg2);
1327 	tempval &= ~MACCFG2_MPEN;
1328 	gfar_write(&regs->maccfg2, tempval);
1329 
1330 	gfar_start(ndev);
1331 
1332 	unlock_rx_qs(priv);
1333 	unlock_tx_qs(priv);
1334 	local_irq_restore(flags);
1335 
1336 	netif_device_attach(ndev);
1337 
1338 	enable_napi(priv);
1339 
1340 	return 0;
1341 }
1342 
1343 static int gfar_restore(struct device *dev)
1344 {
1345 	struct gfar_private *priv = dev_get_drvdata(dev);
1346 	struct net_device *ndev = priv->ndev;
1347 
1348 	if (!netif_running(ndev))
1349 		return 0;
1350 
1351 	gfar_init_bds(ndev);
1352 	init_registers(ndev);
1353 	gfar_set_mac_address(ndev);
1354 	gfar_init_mac(ndev);
1355 	gfar_start(ndev);
1356 
1357 	priv->oldlink = 0;
1358 	priv->oldspeed = 0;
1359 	priv->oldduplex = -1;
1360 
1361 	if (priv->phydev)
1362 		phy_start(priv->phydev);
1363 
1364 	netif_device_attach(ndev);
1365 	enable_napi(priv);
1366 
1367 	return 0;
1368 }
1369 
1370 static struct dev_pm_ops gfar_pm_ops = {
1371 	.suspend = gfar_suspend,
1372 	.resume = gfar_resume,
1373 	.freeze = gfar_suspend,
1374 	.thaw = gfar_resume,
1375 	.restore = gfar_restore,
1376 };
1377 
1378 #define GFAR_PM_OPS (&gfar_pm_ops)
1379 
1380 #else
1381 
1382 #define GFAR_PM_OPS NULL
1383 
1384 #endif
1385 
1386 /* Reads the controller's registers to determine what interface
1387  * connects it to the PHY.
1388  */
1389 static phy_interface_t gfar_get_interface(struct net_device *dev)
1390 {
1391 	struct gfar_private *priv = netdev_priv(dev);
1392 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1393 	u32 ecntrl;
1394 
1395 	ecntrl = gfar_read(&regs->ecntrl);
1396 
1397 	if (ecntrl & ECNTRL_SGMII_MODE)
1398 		return PHY_INTERFACE_MODE_SGMII;
1399 
1400 	if (ecntrl & ECNTRL_TBI_MODE) {
1401 		if (ecntrl & ECNTRL_REDUCED_MODE)
1402 			return PHY_INTERFACE_MODE_RTBI;
1403 		else
1404 			return PHY_INTERFACE_MODE_TBI;
1405 	}
1406 
1407 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1408 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1409 			return PHY_INTERFACE_MODE_RMII;
1410 		}
1411 		else {
1412 			phy_interface_t interface = priv->interface;
1413 
1414 			/* This isn't autodetected right now, so it must
1415 			 * be set by the device tree or platform code.
1416 			 */
1417 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1418 				return PHY_INTERFACE_MODE_RGMII_ID;
1419 
1420 			return PHY_INTERFACE_MODE_RGMII;
1421 		}
1422 	}
1423 
1424 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1425 		return PHY_INTERFACE_MODE_GMII;
1426 
1427 	return PHY_INTERFACE_MODE_MII;
1428 }
1429 
1430 
1431 /* Initializes driver's PHY state, and attaches to the PHY.
1432  * Returns 0 on success.
1433  */
1434 static int init_phy(struct net_device *dev)
1435 {
1436 	struct gfar_private *priv = netdev_priv(dev);
1437 	uint gigabit_support =
1438 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1439 		SUPPORTED_1000baseT_Full : 0;
1440 	phy_interface_t interface;
1441 
1442 	priv->oldlink = 0;
1443 	priv->oldspeed = 0;
1444 	priv->oldduplex = -1;
1445 
1446 	interface = gfar_get_interface(dev);
1447 
1448 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1449 				      interface);
1450 	if (!priv->phydev)
1451 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1452 							 interface);
1453 	if (!priv->phydev) {
1454 		dev_err(&dev->dev, "could not attach to PHY\n");
1455 		return -ENODEV;
1456 	}
1457 
1458 	if (interface == PHY_INTERFACE_MODE_SGMII)
1459 		gfar_configure_serdes(dev);
1460 
1461 	/* Remove any features not supported by the controller */
1462 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1463 	priv->phydev->advertising = priv->phydev->supported;
1464 
1465 	return 0;
1466 }
1467 
1468 /* Initialize TBI PHY interface for communicating with the
1469  * SERDES lynx PHY on the chip.  We communicate with this PHY
1470  * through the MDIO bus on each controller, treating it as a
1471  * "normal" PHY at the address found in the TBIPA register.  We assume
1472  * that the TBIPA register is valid.  Either the MDIO bus code will set
1473  * it to a value that doesn't conflict with other PHYs on the bus, or the
1474  * value doesn't matter, as there are no other PHYs on the bus.
1475  */
1476 static void gfar_configure_serdes(struct net_device *dev)
1477 {
1478 	struct gfar_private *priv = netdev_priv(dev);
1479 	struct phy_device *tbiphy;
1480 
1481 	if (!priv->tbi_node) {
1482 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1483 				    "device tree specify a tbi-handle\n");
1484 		return;
1485 	}
1486 
1487 	tbiphy = of_phy_find_device(priv->tbi_node);
1488 	if (!tbiphy) {
1489 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1490 		return;
1491 	}
1492 
1493 	/* If the link is already up, we must already be ok, and don't need to
1494 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1495 	 * everything for us?  Resetting it takes the link down and requires
1496 	 * several seconds for it to come back.
1497 	 */
1498 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1499 		return;
1500 
1501 	/* Single clk mode, mii mode off(for serdes communication) */
1502 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1503 
1504 	phy_write(tbiphy, MII_ADVERTISE,
1505 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1506 		  ADVERTISE_1000XPSE_ASYM);
1507 
1508 	phy_write(tbiphy, MII_BMCR,
1509 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1510 		  BMCR_SPEED1000);
1511 }
1512 
1513 static void init_registers(struct net_device *dev)
1514 {
1515 	struct gfar_private *priv = netdev_priv(dev);
1516 	struct gfar __iomem *regs = NULL;
1517 	int i;
1518 
1519 	for (i = 0; i < priv->num_grps; i++) {
1520 		regs = priv->gfargrp[i].regs;
1521 		/* Clear IEVENT */
1522 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1523 
1524 		/* Initialize IMASK */
1525 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1526 	}
1527 
1528 	regs = priv->gfargrp[0].regs;
1529 	/* Init hash registers to zero */
1530 	gfar_write(&regs->igaddr0, 0);
1531 	gfar_write(&regs->igaddr1, 0);
1532 	gfar_write(&regs->igaddr2, 0);
1533 	gfar_write(&regs->igaddr3, 0);
1534 	gfar_write(&regs->igaddr4, 0);
1535 	gfar_write(&regs->igaddr5, 0);
1536 	gfar_write(&regs->igaddr6, 0);
1537 	gfar_write(&regs->igaddr7, 0);
1538 
1539 	gfar_write(&regs->gaddr0, 0);
1540 	gfar_write(&regs->gaddr1, 0);
1541 	gfar_write(&regs->gaddr2, 0);
1542 	gfar_write(&regs->gaddr3, 0);
1543 	gfar_write(&regs->gaddr4, 0);
1544 	gfar_write(&regs->gaddr5, 0);
1545 	gfar_write(&regs->gaddr6, 0);
1546 	gfar_write(&regs->gaddr7, 0);
1547 
1548 	/* Zero out the rmon mib registers if it has them */
1549 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1550 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1551 
1552 		/* Mask off the CAM interrupts */
1553 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1554 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1555 	}
1556 
1557 	/* Initialize the max receive buffer length */
1558 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1559 
1560 	/* Initialize the Minimum Frame Length Register */
1561 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1562 }
1563 
1564 static int __gfar_is_rx_idle(struct gfar_private *priv)
1565 {
1566 	u32 res;
1567 
1568 	/* Normaly TSEC should not hang on GRS commands, so we should
1569 	 * actually wait for IEVENT_GRSC flag.
1570 	 */
1571 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1572 		return 0;
1573 
1574 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1575 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1576 	 * and the Rx can be safely reset.
1577 	 */
1578 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1579 	res &= 0x7f807f80;
1580 	if ((res & 0xffff) == (res >> 16))
1581 		return 1;
1582 
1583 	return 0;
1584 }
1585 
1586 /* Halt the receive and transmit queues */
1587 static void gfar_halt_nodisable(struct net_device *dev)
1588 {
1589 	struct gfar_private *priv = netdev_priv(dev);
1590 	struct gfar __iomem *regs = NULL;
1591 	u32 tempval;
1592 	int i;
1593 
1594 	for (i = 0; i < priv->num_grps; i++) {
1595 		regs = priv->gfargrp[i].regs;
1596 		/* Mask all interrupts */
1597 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1598 
1599 		/* Clear all interrupts */
1600 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1601 	}
1602 
1603 	regs = priv->gfargrp[0].regs;
1604 	/* Stop the DMA, and wait for it to stop */
1605 	tempval = gfar_read(&regs->dmactrl);
1606 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1607 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1608 		int ret;
1609 
1610 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1611 		gfar_write(&regs->dmactrl, tempval);
1612 
1613 		do {
1614 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1615 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1616 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1617 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1618 				ret = __gfar_is_rx_idle(priv);
1619 		} while (!ret);
1620 	}
1621 }
1622 
1623 /* Halt the receive and transmit queues */
1624 void gfar_halt(struct net_device *dev)
1625 {
1626 	struct gfar_private *priv = netdev_priv(dev);
1627 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1628 	u32 tempval;
1629 
1630 	gfar_halt_nodisable(dev);
1631 
1632 	/* Disable Rx and Tx */
1633 	tempval = gfar_read(&regs->maccfg1);
1634 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1635 	gfar_write(&regs->maccfg1, tempval);
1636 }
1637 
1638 static void free_grp_irqs(struct gfar_priv_grp *grp)
1639 {
1640 	free_irq(grp->interruptError, grp);
1641 	free_irq(grp->interruptTransmit, grp);
1642 	free_irq(grp->interruptReceive, grp);
1643 }
1644 
1645 void stop_gfar(struct net_device *dev)
1646 {
1647 	struct gfar_private *priv = netdev_priv(dev);
1648 	unsigned long flags;
1649 	int i;
1650 
1651 	phy_stop(priv->phydev);
1652 
1653 
1654 	/* Lock it down */
1655 	local_irq_save(flags);
1656 	lock_tx_qs(priv);
1657 	lock_rx_qs(priv);
1658 
1659 	gfar_halt(dev);
1660 
1661 	unlock_rx_qs(priv);
1662 	unlock_tx_qs(priv);
1663 	local_irq_restore(flags);
1664 
1665 	/* Free the IRQs */
1666 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1667 		for (i = 0; i < priv->num_grps; i++)
1668 			free_grp_irqs(&priv->gfargrp[i]);
1669 	} else {
1670 		for (i = 0; i < priv->num_grps; i++)
1671 			free_irq(priv->gfargrp[i].interruptTransmit,
1672 				 &priv->gfargrp[i]);
1673 	}
1674 
1675 	free_skb_resources(priv);
1676 }
1677 
1678 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1679 {
1680 	struct txbd8 *txbdp;
1681 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1682 	int i, j;
1683 
1684 	txbdp = tx_queue->tx_bd_base;
1685 
1686 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1687 		if (!tx_queue->tx_skbuff[i])
1688 			continue;
1689 
1690 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1691 				 txbdp->length, DMA_TO_DEVICE);
1692 		txbdp->lstatus = 0;
1693 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1694 		     j++) {
1695 			txbdp++;
1696 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1697 				       txbdp->length, DMA_TO_DEVICE);
1698 		}
1699 		txbdp++;
1700 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1701 		tx_queue->tx_skbuff[i] = NULL;
1702 	}
1703 	kfree(tx_queue->tx_skbuff);
1704 }
1705 
1706 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1707 {
1708 	struct rxbd8 *rxbdp;
1709 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1710 	int i;
1711 
1712 	rxbdp = rx_queue->rx_bd_base;
1713 
1714 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1715 		if (rx_queue->rx_skbuff[i]) {
1716 			dma_unmap_single(&priv->ofdev->dev,
1717 					 rxbdp->bufPtr, priv->rx_buffer_size,
1718 					 DMA_FROM_DEVICE);
1719 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1720 			rx_queue->rx_skbuff[i] = NULL;
1721 		}
1722 		rxbdp->lstatus = 0;
1723 		rxbdp->bufPtr = 0;
1724 		rxbdp++;
1725 	}
1726 	kfree(rx_queue->rx_skbuff);
1727 }
1728 
1729 /* If there are any tx skbs or rx skbs still around, free them.
1730  * Then free tx_skbuff and rx_skbuff
1731  */
1732 static void free_skb_resources(struct gfar_private *priv)
1733 {
1734 	struct gfar_priv_tx_q *tx_queue = NULL;
1735 	struct gfar_priv_rx_q *rx_queue = NULL;
1736 	int i;
1737 
1738 	/* Go through all the buffer descriptors and free their data buffers */
1739 	for (i = 0; i < priv->num_tx_queues; i++) {
1740 		struct netdev_queue *txq;
1741 
1742 		tx_queue = priv->tx_queue[i];
1743 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1744 		if (tx_queue->tx_skbuff)
1745 			free_skb_tx_queue(tx_queue);
1746 		netdev_tx_reset_queue(txq);
1747 	}
1748 
1749 	for (i = 0; i < priv->num_rx_queues; i++) {
1750 		rx_queue = priv->rx_queue[i];
1751 		if (rx_queue->rx_skbuff)
1752 			free_skb_rx_queue(rx_queue);
1753 	}
1754 
1755 	dma_free_coherent(&priv->ofdev->dev,
1756 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1757 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1758 			  priv->tx_queue[0]->tx_bd_base,
1759 			  priv->tx_queue[0]->tx_bd_dma_base);
1760 	skb_queue_purge(&priv->rx_recycle);
1761 }
1762 
1763 void gfar_start(struct net_device *dev)
1764 {
1765 	struct gfar_private *priv = netdev_priv(dev);
1766 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1767 	u32 tempval;
1768 	int i = 0;
1769 
1770 	/* Enable Rx and Tx in MACCFG1 */
1771 	tempval = gfar_read(&regs->maccfg1);
1772 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1773 	gfar_write(&regs->maccfg1, tempval);
1774 
1775 	/* Initialize DMACTRL to have WWR and WOP */
1776 	tempval = gfar_read(&regs->dmactrl);
1777 	tempval |= DMACTRL_INIT_SETTINGS;
1778 	gfar_write(&regs->dmactrl, tempval);
1779 
1780 	/* Make sure we aren't stopped */
1781 	tempval = gfar_read(&regs->dmactrl);
1782 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1783 	gfar_write(&regs->dmactrl, tempval);
1784 
1785 	for (i = 0; i < priv->num_grps; i++) {
1786 		regs = priv->gfargrp[i].regs;
1787 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1788 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1789 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1790 		/* Unmask the interrupts we look for */
1791 		gfar_write(&regs->imask, IMASK_DEFAULT);
1792 	}
1793 
1794 	dev->trans_start = jiffies; /* prevent tx timeout */
1795 }
1796 
1797 void gfar_configure_coalescing(struct gfar_private *priv,
1798 			       unsigned long tx_mask, unsigned long rx_mask)
1799 {
1800 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1801 	u32 __iomem *baddr;
1802 	int i = 0;
1803 
1804 	/* Backward compatible case ---- even if we enable
1805 	 * multiple queues, there's only single reg to program
1806 	 */
1807 	gfar_write(&regs->txic, 0);
1808 	if (likely(priv->tx_queue[0]->txcoalescing))
1809 		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1810 
1811 	gfar_write(&regs->rxic, 0);
1812 	if (unlikely(priv->rx_queue[0]->rxcoalescing))
1813 		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1814 
1815 	if (priv->mode == MQ_MG_MODE) {
1816 		baddr = &regs->txic0;
1817 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1818 			gfar_write(baddr + i, 0);
1819 			if (likely(priv->tx_queue[i]->txcoalescing))
1820 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1821 		}
1822 
1823 		baddr = &regs->rxic0;
1824 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1825 			gfar_write(baddr + i, 0);
1826 			if (likely(priv->rx_queue[i]->rxcoalescing))
1827 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1828 		}
1829 	}
1830 }
1831 
1832 static int register_grp_irqs(struct gfar_priv_grp *grp)
1833 {
1834 	struct gfar_private *priv = grp->priv;
1835 	struct net_device *dev = priv->ndev;
1836 	int err;
1837 
1838 	/* If the device has multiple interrupts, register for
1839 	 * them.  Otherwise, only register for the one
1840 	 */
1841 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1842 		/* Install our interrupt handlers for Error,
1843 		 * Transmit, and Receive
1844 		 */
1845 		if ((err = request_irq(grp->interruptError, gfar_error,
1846 				       0, grp->int_name_er, grp)) < 0) {
1847 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1848 				  grp->interruptError);
1849 
1850 			goto err_irq_fail;
1851 		}
1852 
1853 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1854 				       0, grp->int_name_tx, grp)) < 0) {
1855 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1856 				  grp->interruptTransmit);
1857 			goto tx_irq_fail;
1858 		}
1859 
1860 		if ((err = request_irq(grp->interruptReceive, gfar_receive,
1861 				       0, grp->int_name_rx, grp)) < 0) {
1862 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1863 				  grp->interruptReceive);
1864 			goto rx_irq_fail;
1865 		}
1866 	} else {
1867 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1868 				       0, grp->int_name_tx, grp)) < 0) {
1869 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870 				  grp->interruptTransmit);
1871 			goto err_irq_fail;
1872 		}
1873 	}
1874 
1875 	return 0;
1876 
1877 rx_irq_fail:
1878 	free_irq(grp->interruptTransmit, grp);
1879 tx_irq_fail:
1880 	free_irq(grp->interruptError, grp);
1881 err_irq_fail:
1882 	return err;
1883 
1884 }
1885 
1886 /* Bring the controller up and running */
1887 int startup_gfar(struct net_device *ndev)
1888 {
1889 	struct gfar_private *priv = netdev_priv(ndev);
1890 	struct gfar __iomem *regs = NULL;
1891 	int err, i, j;
1892 
1893 	for (i = 0; i < priv->num_grps; i++) {
1894 		regs= priv->gfargrp[i].regs;
1895 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1896 	}
1897 
1898 	regs= priv->gfargrp[0].regs;
1899 	err = gfar_alloc_skb_resources(ndev);
1900 	if (err)
1901 		return err;
1902 
1903 	gfar_init_mac(ndev);
1904 
1905 	for (i = 0; i < priv->num_grps; i++) {
1906 		err = register_grp_irqs(&priv->gfargrp[i]);
1907 		if (err) {
1908 			for (j = 0; j < i; j++)
1909 				free_grp_irqs(&priv->gfargrp[j]);
1910 			goto irq_fail;
1911 		}
1912 	}
1913 
1914 	/* Start the controller */
1915 	gfar_start(ndev);
1916 
1917 	phy_start(priv->phydev);
1918 
1919 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1920 
1921 	return 0;
1922 
1923 irq_fail:
1924 	free_skb_resources(priv);
1925 	return err;
1926 }
1927 
1928 /* Called when something needs to use the ethernet device
1929  * Returns 0 for success.
1930  */
1931 static int gfar_enet_open(struct net_device *dev)
1932 {
1933 	struct gfar_private *priv = netdev_priv(dev);
1934 	int err;
1935 
1936 	enable_napi(priv);
1937 
1938 	skb_queue_head_init(&priv->rx_recycle);
1939 
1940 	/* Initialize a bunch of registers */
1941 	init_registers(dev);
1942 
1943 	gfar_set_mac_address(dev);
1944 
1945 	err = init_phy(dev);
1946 
1947 	if (err) {
1948 		disable_napi(priv);
1949 		return err;
1950 	}
1951 
1952 	err = startup_gfar(dev);
1953 	if (err) {
1954 		disable_napi(priv);
1955 		return err;
1956 	}
1957 
1958 	netif_tx_start_all_queues(dev);
1959 
1960 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1961 
1962 	return err;
1963 }
1964 
1965 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1966 {
1967 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1968 
1969 	memset(fcb, 0, GMAC_FCB_LEN);
1970 
1971 	return fcb;
1972 }
1973 
1974 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1975 				    int fcb_length)
1976 {
1977 	/* If we're here, it's a IP packet with a TCP or UDP
1978 	 * payload.  We set it to checksum, using a pseudo-header
1979 	 * we provide
1980 	 */
1981 	u8 flags = TXFCB_DEFAULT;
1982 
1983 	/* Tell the controller what the protocol is
1984 	 * And provide the already calculated phcs
1985 	 */
1986 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1987 		flags |= TXFCB_UDP;
1988 		fcb->phcs = udp_hdr(skb)->check;
1989 	} else
1990 		fcb->phcs = tcp_hdr(skb)->check;
1991 
1992 	/* l3os is the distance between the start of the
1993 	 * frame (skb->data) and the start of the IP hdr.
1994 	 * l4os is the distance between the start of the
1995 	 * l3 hdr and the l4 hdr
1996 	 */
1997 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1998 	fcb->l4os = skb_network_header_len(skb);
1999 
2000 	fcb->flags = flags;
2001 }
2002 
2003 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2004 {
2005 	fcb->flags |= TXFCB_VLN;
2006 	fcb->vlctl = vlan_tx_tag_get(skb);
2007 }
2008 
2009 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2010 				      struct txbd8 *base, int ring_size)
2011 {
2012 	struct txbd8 *new_bd = bdp + stride;
2013 
2014 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2015 }
2016 
2017 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2018 				      int ring_size)
2019 {
2020 	return skip_txbd(bdp, 1, base, ring_size);
2021 }
2022 
2023 /* This is called by the kernel when a frame is ready for transmission.
2024  * It is pointed to by the dev->hard_start_xmit function pointer
2025  */
2026 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2027 {
2028 	struct gfar_private *priv = netdev_priv(dev);
2029 	struct gfar_priv_tx_q *tx_queue = NULL;
2030 	struct netdev_queue *txq;
2031 	struct gfar __iomem *regs = NULL;
2032 	struct txfcb *fcb = NULL;
2033 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2034 	u32 lstatus;
2035 	int i, rq = 0, do_tstamp = 0;
2036 	u32 bufaddr;
2037 	unsigned long flags;
2038 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2039 
2040 	/* TOE=1 frames larger than 2500 bytes may see excess delays
2041 	 * before start of transmission.
2042 	 */
2043 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2044 		     skb->ip_summed == CHECKSUM_PARTIAL &&
2045 		     skb->len > 2500)) {
2046 		int ret;
2047 
2048 		ret = skb_checksum_help(skb);
2049 		if (ret)
2050 			return ret;
2051 	}
2052 
2053 	rq = skb->queue_mapping;
2054 	tx_queue = priv->tx_queue[rq];
2055 	txq = netdev_get_tx_queue(dev, rq);
2056 	base = tx_queue->tx_bd_base;
2057 	regs = tx_queue->grp->regs;
2058 
2059 	/* check if time stamp should be generated */
2060 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2061 		     priv->hwts_tx_en)) {
2062 		do_tstamp = 1;
2063 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2064 	}
2065 
2066 	/* make space for additional header when fcb is needed */
2067 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2068 	     vlan_tx_tag_present(skb) ||
2069 	     unlikely(do_tstamp)) &&
2070 	    (skb_headroom(skb) < fcb_length)) {
2071 		struct sk_buff *skb_new;
2072 
2073 		skb_new = skb_realloc_headroom(skb, fcb_length);
2074 		if (!skb_new) {
2075 			dev->stats.tx_errors++;
2076 			kfree_skb(skb);
2077 			return NETDEV_TX_OK;
2078 		}
2079 
2080 		if (skb->sk)
2081 			skb_set_owner_w(skb_new, skb->sk);
2082 		consume_skb(skb);
2083 		skb = skb_new;
2084 	}
2085 
2086 	/* total number of fragments in the SKB */
2087 	nr_frags = skb_shinfo(skb)->nr_frags;
2088 
2089 	/* calculate the required number of TxBDs for this skb */
2090 	if (unlikely(do_tstamp))
2091 		nr_txbds = nr_frags + 2;
2092 	else
2093 		nr_txbds = nr_frags + 1;
2094 
2095 	/* check if there is space to queue this packet */
2096 	if (nr_txbds > tx_queue->num_txbdfree) {
2097 		/* no space, stop the queue */
2098 		netif_tx_stop_queue(txq);
2099 		dev->stats.tx_fifo_errors++;
2100 		return NETDEV_TX_BUSY;
2101 	}
2102 
2103 	/* Update transmit stats */
2104 	tx_queue->stats.tx_bytes += skb->len;
2105 	tx_queue->stats.tx_packets++;
2106 
2107 	txbdp = txbdp_start = tx_queue->cur_tx;
2108 	lstatus = txbdp->lstatus;
2109 
2110 	/* Time stamp insertion requires one additional TxBD */
2111 	if (unlikely(do_tstamp))
2112 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2113 						 tx_queue->tx_ring_size);
2114 
2115 	if (nr_frags == 0) {
2116 		if (unlikely(do_tstamp))
2117 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2118 							  TXBD_INTERRUPT);
2119 		else
2120 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2121 	} else {
2122 		/* Place the fragment addresses and lengths into the TxBDs */
2123 		for (i = 0; i < nr_frags; i++) {
2124 			/* Point at the next BD, wrapping as needed */
2125 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2126 
2127 			length = skb_shinfo(skb)->frags[i].size;
2128 
2129 			lstatus = txbdp->lstatus | length |
2130 				  BD_LFLAG(TXBD_READY);
2131 
2132 			/* Handle the last BD specially */
2133 			if (i == nr_frags - 1)
2134 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2135 
2136 			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2137 						   &skb_shinfo(skb)->frags[i],
2138 						   0,
2139 						   length,
2140 						   DMA_TO_DEVICE);
2141 
2142 			/* set the TxBD length and buffer pointer */
2143 			txbdp->bufPtr = bufaddr;
2144 			txbdp->lstatus = lstatus;
2145 		}
2146 
2147 		lstatus = txbdp_start->lstatus;
2148 	}
2149 
2150 	/* Add TxPAL between FCB and frame if required */
2151 	if (unlikely(do_tstamp)) {
2152 		skb_push(skb, GMAC_TXPAL_LEN);
2153 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2154 	}
2155 
2156 	/* Set up checksumming */
2157 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2158 		fcb = gfar_add_fcb(skb);
2159 		/* as specified by errata */
2160 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2161 			     ((unsigned long)fcb % 0x20) > 0x18)) {
2162 			__skb_pull(skb, GMAC_FCB_LEN);
2163 			skb_checksum_help(skb);
2164 		} else {
2165 			lstatus |= BD_LFLAG(TXBD_TOE);
2166 			gfar_tx_checksum(skb, fcb, fcb_length);
2167 		}
2168 	}
2169 
2170 	if (vlan_tx_tag_present(skb)) {
2171 		if (unlikely(NULL == fcb)) {
2172 			fcb = gfar_add_fcb(skb);
2173 			lstatus |= BD_LFLAG(TXBD_TOE);
2174 		}
2175 
2176 		gfar_tx_vlan(skb, fcb);
2177 	}
2178 
2179 	/* Setup tx hardware time stamping if requested */
2180 	if (unlikely(do_tstamp)) {
2181 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2182 		if (fcb == NULL)
2183 			fcb = gfar_add_fcb(skb);
2184 		fcb->ptp = 1;
2185 		lstatus |= BD_LFLAG(TXBD_TOE);
2186 	}
2187 
2188 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2189 					     skb_headlen(skb), DMA_TO_DEVICE);
2190 
2191 	/* If time stamping is requested one additional TxBD must be set up. The
2192 	 * first TxBD points to the FCB and must have a data length of
2193 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2194 	 * the full frame length.
2195 	 */
2196 	if (unlikely(do_tstamp)) {
2197 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2198 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2199 					 (skb_headlen(skb) - fcb_length);
2200 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2201 	} else {
2202 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2203 	}
2204 
2205 	netdev_tx_sent_queue(txq, skb->len);
2206 
2207 	/* We can work in parallel with gfar_clean_tx_ring(), except
2208 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2209 	 * when we were reading the num_txbdfree and checking for available
2210 	 * space, that's because outside of this function it can only grow,
2211 	 * and once we've got needed space, it cannot suddenly disappear.
2212 	 *
2213 	 * The lock also protects us from gfar_error(), which can modify
2214 	 * regs->tstat and thus retrigger the transfers, which is why we
2215 	 * also must grab the lock before setting ready bit for the first
2216 	 * to be transmitted BD.
2217 	 */
2218 	spin_lock_irqsave(&tx_queue->txlock, flags);
2219 
2220 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2221 	 * semantics (it requires synchronization between cacheable and
2222 	 * uncacheable mappings, which eieio doesn't provide and which we
2223 	 * don't need), thus requiring a more expensive sync instruction.  At
2224 	 * some point, the set of architecture-independent barrier functions
2225 	 * should be expanded to include weaker barriers.
2226 	 */
2227 	eieio();
2228 
2229 	txbdp_start->lstatus = lstatus;
2230 
2231 	eieio(); /* force lstatus write before tx_skbuff */
2232 
2233 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2234 
2235 	/* Update the current skb pointer to the next entry we will use
2236 	 * (wrapping if necessary)
2237 	 */
2238 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2239 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2240 
2241 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2242 
2243 	/* reduce TxBD free count */
2244 	tx_queue->num_txbdfree -= (nr_txbds);
2245 
2246 	/* If the next BD still needs to be cleaned up, then the bds
2247 	 * are full.  We need to tell the kernel to stop sending us stuff.
2248 	 */
2249 	if (!tx_queue->num_txbdfree) {
2250 		netif_tx_stop_queue(txq);
2251 
2252 		dev->stats.tx_fifo_errors++;
2253 	}
2254 
2255 	/* Tell the DMA to go go go */
2256 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2257 
2258 	/* Unlock priv */
2259 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2260 
2261 	return NETDEV_TX_OK;
2262 }
2263 
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device *dev)
2266 {
2267 	struct gfar_private *priv = netdev_priv(dev);
2268 
2269 	disable_napi(priv);
2270 
2271 	cancel_work_sync(&priv->reset_task);
2272 	stop_gfar(dev);
2273 
2274 	/* Disconnect from the PHY */
2275 	phy_disconnect(priv->phydev);
2276 	priv->phydev = NULL;
2277 
2278 	netif_tx_stop_all_queues(dev);
2279 
2280 	return 0;
2281 }
2282 
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device *dev)
2285 {
2286 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2287 
2288 	return 0;
2289 }
2290 
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2293 {
2294 	struct gfar __iomem *regs;
2295 	u32 tempval;
2296 
2297 	regs = priv->gfargrp[0].regs;
2298 
2299 	tempval = gfar_read(&regs->rctrl);
2300 	/* If parse is no longer required, then disable parser */
2301 	if (tempval & RCTRL_REQ_PARSER)
2302 		tempval |= RCTRL_PRSDEP_INIT;
2303 	else
2304 		tempval &= ~RCTRL_PRSDEP_INIT;
2305 	gfar_write(&regs->rctrl, tempval);
2306 }
2307 
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2310 {
2311 	struct gfar_private *priv = netdev_priv(dev);
2312 	struct gfar __iomem *regs = NULL;
2313 	unsigned long flags;
2314 	u32 tempval;
2315 
2316 	regs = priv->gfargrp[0].regs;
2317 	local_irq_save(flags);
2318 	lock_rx_qs(priv);
2319 
2320 	if (features & NETIF_F_HW_VLAN_TX) {
2321 		/* Enable VLAN tag insertion */
2322 		tempval = gfar_read(&regs->tctrl);
2323 		tempval |= TCTRL_VLINS;
2324 		gfar_write(&regs->tctrl, tempval);
2325 	} else {
2326 		/* Disable VLAN tag insertion */
2327 		tempval = gfar_read(&regs->tctrl);
2328 		tempval &= ~TCTRL_VLINS;
2329 		gfar_write(&regs->tctrl, tempval);
2330 	}
2331 
2332 	if (features & NETIF_F_HW_VLAN_RX) {
2333 		/* Enable VLAN tag extraction */
2334 		tempval = gfar_read(&regs->rctrl);
2335 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336 		gfar_write(&regs->rctrl, tempval);
2337 	} else {
2338 		/* Disable VLAN tag extraction */
2339 		tempval = gfar_read(&regs->rctrl);
2340 		tempval &= ~RCTRL_VLEX;
2341 		gfar_write(&regs->rctrl, tempval);
2342 
2343 		gfar_check_rx_parser_mode(priv);
2344 	}
2345 
2346 	gfar_change_mtu(dev, dev->mtu);
2347 
2348 	unlock_rx_qs(priv);
2349 	local_irq_restore(flags);
2350 }
2351 
2352 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2353 {
2354 	int tempsize, tempval;
2355 	struct gfar_private *priv = netdev_priv(dev);
2356 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357 	int oldsize = priv->rx_buffer_size;
2358 	int frame_size = new_mtu + ETH_HLEN;
2359 
2360 	if (gfar_is_vlan_on(priv))
2361 		frame_size += VLAN_HLEN;
2362 
2363 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365 		return -EINVAL;
2366 	}
2367 
2368 	if (gfar_uses_fcb(priv))
2369 		frame_size += GMAC_FCB_LEN;
2370 
2371 	frame_size += priv->padding;
2372 
2373 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2374 		   INCREMENTAL_BUFFER_SIZE;
2375 
2376 	/* Only stop and start the controller if it isn't already
2377 	 * stopped, and we changed something
2378 	 */
2379 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380 		stop_gfar(dev);
2381 
2382 	priv->rx_buffer_size = tempsize;
2383 
2384 	dev->mtu = new_mtu;
2385 
2386 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2388 
2389 	/* If the mtu is larger than the max size for standard
2390 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2391 	 * to allow huge frames, and to check the length
2392 	 */
2393 	tempval = gfar_read(&regs->maccfg2);
2394 
2395 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2396 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2397 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2398 	else
2399 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2400 
2401 	gfar_write(&regs->maccfg2, tempval);
2402 
2403 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2404 		startup_gfar(dev);
2405 
2406 	return 0;
2407 }
2408 
2409 /* gfar_reset_task gets scheduled when a packet has not been
2410  * transmitted after a set amount of time.
2411  * For now, assume that clearing out all the structures, and
2412  * starting over will fix the problem.
2413  */
2414 static void gfar_reset_task(struct work_struct *work)
2415 {
2416 	struct gfar_private *priv = container_of(work, struct gfar_private,
2417 						 reset_task);
2418 	struct net_device *dev = priv->ndev;
2419 
2420 	if (dev->flags & IFF_UP) {
2421 		netif_tx_stop_all_queues(dev);
2422 		stop_gfar(dev);
2423 		startup_gfar(dev);
2424 		netif_tx_start_all_queues(dev);
2425 	}
2426 
2427 	netif_tx_schedule_all(dev);
2428 }
2429 
2430 static void gfar_timeout(struct net_device *dev)
2431 {
2432 	struct gfar_private *priv = netdev_priv(dev);
2433 
2434 	dev->stats.tx_errors++;
2435 	schedule_work(&priv->reset_task);
2436 }
2437 
2438 static void gfar_align_skb(struct sk_buff *skb)
2439 {
2440 	/* We need the data buffer to be aligned properly.  We will reserve
2441 	 * as many bytes as needed to align the data properly
2442 	 */
2443 	skb_reserve(skb, RXBUF_ALIGNMENT -
2444 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2445 }
2446 
2447 /* Interrupt Handler for Transmit complete */
2448 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2449 {
2450 	struct net_device *dev = tx_queue->dev;
2451 	struct netdev_queue *txq;
2452 	struct gfar_private *priv = netdev_priv(dev);
2453 	struct gfar_priv_rx_q *rx_queue = NULL;
2454 	struct txbd8 *bdp, *next = NULL;
2455 	struct txbd8 *lbdp = NULL;
2456 	struct txbd8 *base = tx_queue->tx_bd_base;
2457 	struct sk_buff *skb;
2458 	int skb_dirtytx;
2459 	int tx_ring_size = tx_queue->tx_ring_size;
2460 	int frags = 0, nr_txbds = 0;
2461 	int i;
2462 	int howmany = 0;
2463 	int tqi = tx_queue->qindex;
2464 	unsigned int bytes_sent = 0;
2465 	u32 lstatus;
2466 	size_t buflen;
2467 
2468 	rx_queue = priv->rx_queue[tqi];
2469 	txq = netdev_get_tx_queue(dev, tqi);
2470 	bdp = tx_queue->dirty_tx;
2471 	skb_dirtytx = tx_queue->skb_dirtytx;
2472 
2473 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2474 		unsigned long flags;
2475 
2476 		frags = skb_shinfo(skb)->nr_frags;
2477 
2478 		/* When time stamping, one additional TxBD must be freed.
2479 		 * Also, we need to dma_unmap_single() the TxPAL.
2480 		 */
2481 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2482 			nr_txbds = frags + 2;
2483 		else
2484 			nr_txbds = frags + 1;
2485 
2486 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2487 
2488 		lstatus = lbdp->lstatus;
2489 
2490 		/* Only clean completed frames */
2491 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2492 		    (lstatus & BD_LENGTH_MASK))
2493 			break;
2494 
2495 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2496 			next = next_txbd(bdp, base, tx_ring_size);
2497 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2498 		} else
2499 			buflen = bdp->length;
2500 
2501 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2502 				 buflen, DMA_TO_DEVICE);
2503 
2504 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2505 			struct skb_shared_hwtstamps shhwtstamps;
2506 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2507 
2508 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2509 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2510 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2511 			skb_tstamp_tx(skb, &shhwtstamps);
2512 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2513 			bdp = next;
2514 		}
2515 
2516 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2517 		bdp = next_txbd(bdp, base, tx_ring_size);
2518 
2519 		for (i = 0; i < frags; i++) {
2520 			dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2521 				       bdp->length, DMA_TO_DEVICE);
2522 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2523 			bdp = next_txbd(bdp, base, tx_ring_size);
2524 		}
2525 
2526 		bytes_sent += skb->len;
2527 
2528 		/* If there's room in the queue (limit it to rx_buffer_size)
2529 		 * we add this skb back into the pool, if it's the right size
2530 		 */
2531 		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2532 		    skb_recycle_check(skb, priv->rx_buffer_size +
2533 				      RXBUF_ALIGNMENT)) {
2534 			gfar_align_skb(skb);
2535 			skb_queue_head(&priv->rx_recycle, skb);
2536 		} else
2537 			dev_kfree_skb_any(skb);
2538 
2539 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2540 
2541 		skb_dirtytx = (skb_dirtytx + 1) &
2542 			      TX_RING_MOD_MASK(tx_ring_size);
2543 
2544 		howmany++;
2545 		spin_lock_irqsave(&tx_queue->txlock, flags);
2546 		tx_queue->num_txbdfree += nr_txbds;
2547 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2548 	}
2549 
2550 	/* If we freed a buffer, we can restart transmission, if necessary */
2551 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2552 		netif_wake_subqueue(dev, tqi);
2553 
2554 	/* Update dirty indicators */
2555 	tx_queue->skb_dirtytx = skb_dirtytx;
2556 	tx_queue->dirty_tx = bdp;
2557 
2558 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2559 
2560 	return howmany;
2561 }
2562 
2563 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2564 {
2565 	unsigned long flags;
2566 
2567 	spin_lock_irqsave(&gfargrp->grplock, flags);
2568 	if (napi_schedule_prep(&gfargrp->napi)) {
2569 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2570 		__napi_schedule(&gfargrp->napi);
2571 	} else {
2572 		/* Clear IEVENT, so interrupts aren't called again
2573 		 * because of the packets that have already arrived.
2574 		 */
2575 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2576 	}
2577 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2578 
2579 }
2580 
2581 /* Interrupt Handler for Transmit complete */
2582 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2583 {
2584 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2585 	return IRQ_HANDLED;
2586 }
2587 
2588 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2589 			   struct sk_buff *skb)
2590 {
2591 	struct net_device *dev = rx_queue->dev;
2592 	struct gfar_private *priv = netdev_priv(dev);
2593 	dma_addr_t buf;
2594 
2595 	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2596 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2597 	gfar_init_rxbdp(rx_queue, bdp, buf);
2598 }
2599 
2600 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2601 {
2602 	struct gfar_private *priv = netdev_priv(dev);
2603 	struct sk_buff *skb = NULL;
2604 
2605 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2606 	if (!skb)
2607 		return NULL;
2608 
2609 	gfar_align_skb(skb);
2610 
2611 	return skb;
2612 }
2613 
2614 struct sk_buff *gfar_new_skb(struct net_device *dev)
2615 {
2616 	struct gfar_private *priv = netdev_priv(dev);
2617 	struct sk_buff *skb = NULL;
2618 
2619 	skb = skb_dequeue(&priv->rx_recycle);
2620 	if (!skb)
2621 		skb = gfar_alloc_skb(dev);
2622 
2623 	return skb;
2624 }
2625 
2626 static inline void count_errors(unsigned short status, struct net_device *dev)
2627 {
2628 	struct gfar_private *priv = netdev_priv(dev);
2629 	struct net_device_stats *stats = &dev->stats;
2630 	struct gfar_extra_stats *estats = &priv->extra_stats;
2631 
2632 	/* If the packet was truncated, none of the other errors matter */
2633 	if (status & RXBD_TRUNCATED) {
2634 		stats->rx_length_errors++;
2635 
2636 		estats->rx_trunc++;
2637 
2638 		return;
2639 	}
2640 	/* Count the errors, if there were any */
2641 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2642 		stats->rx_length_errors++;
2643 
2644 		if (status & RXBD_LARGE)
2645 			estats->rx_large++;
2646 		else
2647 			estats->rx_short++;
2648 	}
2649 	if (status & RXBD_NONOCTET) {
2650 		stats->rx_frame_errors++;
2651 		estats->rx_nonoctet++;
2652 	}
2653 	if (status & RXBD_CRCERR) {
2654 		estats->rx_crcerr++;
2655 		stats->rx_crc_errors++;
2656 	}
2657 	if (status & RXBD_OVERRUN) {
2658 		estats->rx_overrun++;
2659 		stats->rx_crc_errors++;
2660 	}
2661 }
2662 
2663 irqreturn_t gfar_receive(int irq, void *grp_id)
2664 {
2665 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2666 	return IRQ_HANDLED;
2667 }
2668 
2669 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2670 {
2671 	/* If valid headers were found, and valid sums
2672 	 * were verified, then we tell the kernel that no
2673 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2674 	 */
2675 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2676 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2677 	else
2678 		skb_checksum_none_assert(skb);
2679 }
2680 
2681 
2682 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2683 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2684 			      int amount_pull, struct napi_struct *napi)
2685 {
2686 	struct gfar_private *priv = netdev_priv(dev);
2687 	struct rxfcb *fcb = NULL;
2688 
2689 	gro_result_t ret;
2690 
2691 	/* fcb is at the beginning if exists */
2692 	fcb = (struct rxfcb *)skb->data;
2693 
2694 	/* Remove the FCB from the skb
2695 	 * Remove the padded bytes, if there are any
2696 	 */
2697 	if (amount_pull) {
2698 		skb_record_rx_queue(skb, fcb->rq);
2699 		skb_pull(skb, amount_pull);
2700 	}
2701 
2702 	/* Get receive timestamp from the skb */
2703 	if (priv->hwts_rx_en) {
2704 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2705 		u64 *ns = (u64 *) skb->data;
2706 
2707 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2708 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2709 	}
2710 
2711 	if (priv->padding)
2712 		skb_pull(skb, priv->padding);
2713 
2714 	if (dev->features & NETIF_F_RXCSUM)
2715 		gfar_rx_checksum(skb, fcb);
2716 
2717 	/* Tell the skb what kind of packet this is */
2718 	skb->protocol = eth_type_trans(skb, dev);
2719 
2720 	/* There's need to check for NETIF_F_HW_VLAN_RX here.
2721 	 * Even if vlan rx accel is disabled, on some chips
2722 	 * RXFCB_VLN is pseudo randomly set.
2723 	 */
2724 	if (dev->features & NETIF_F_HW_VLAN_RX &&
2725 	    fcb->flags & RXFCB_VLN)
2726 		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2727 
2728 	/* Send the packet up the stack */
2729 	ret = napi_gro_receive(napi, skb);
2730 
2731 	if (GRO_DROP == ret)
2732 		priv->extra_stats.kernel_dropped++;
2733 
2734 	return 0;
2735 }
2736 
2737 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2738  * until the budget/quota has been reached. Returns the number
2739  * of frames handled
2740  */
2741 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2742 {
2743 	struct net_device *dev = rx_queue->dev;
2744 	struct rxbd8 *bdp, *base;
2745 	struct sk_buff *skb;
2746 	int pkt_len;
2747 	int amount_pull;
2748 	int howmany = 0;
2749 	struct gfar_private *priv = netdev_priv(dev);
2750 
2751 	/* Get the first full descriptor */
2752 	bdp = rx_queue->cur_rx;
2753 	base = rx_queue->rx_bd_base;
2754 
2755 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2756 
2757 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2758 		struct sk_buff *newskb;
2759 
2760 		rmb();
2761 
2762 		/* Add another skb for the future */
2763 		newskb = gfar_new_skb(dev);
2764 
2765 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2766 
2767 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2768 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2769 
2770 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2771 			     bdp->length > priv->rx_buffer_size))
2772 			bdp->status = RXBD_LARGE;
2773 
2774 		/* We drop the frame if we failed to allocate a new buffer */
2775 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2776 			     bdp->status & RXBD_ERR)) {
2777 			count_errors(bdp->status, dev);
2778 
2779 			if (unlikely(!newskb))
2780 				newskb = skb;
2781 			else if (skb)
2782 				skb_queue_head(&priv->rx_recycle, skb);
2783 		} else {
2784 			/* Increment the number of packets */
2785 			rx_queue->stats.rx_packets++;
2786 			howmany++;
2787 
2788 			if (likely(skb)) {
2789 				pkt_len = bdp->length - ETH_FCS_LEN;
2790 				/* Remove the FCS from the packet length */
2791 				skb_put(skb, pkt_len);
2792 				rx_queue->stats.rx_bytes += pkt_len;
2793 				skb_record_rx_queue(skb, rx_queue->qindex);
2794 				gfar_process_frame(dev, skb, amount_pull,
2795 						   &rx_queue->grp->napi);
2796 
2797 			} else {
2798 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2799 				rx_queue->stats.rx_dropped++;
2800 				priv->extra_stats.rx_skbmissing++;
2801 			}
2802 
2803 		}
2804 
2805 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2806 
2807 		/* Setup the new bdp */
2808 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2809 
2810 		/* Update to the next pointer */
2811 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2812 
2813 		/* update to point at the next skb */
2814 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2815 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2816 	}
2817 
2818 	/* Update the current rxbd pointer to be the next one */
2819 	rx_queue->cur_rx = bdp;
2820 
2821 	return howmany;
2822 }
2823 
2824 static int gfar_poll(struct napi_struct *napi, int budget)
2825 {
2826 	struct gfar_priv_grp *gfargrp =
2827 		container_of(napi, struct gfar_priv_grp, napi);
2828 	struct gfar_private *priv = gfargrp->priv;
2829 	struct gfar __iomem *regs = gfargrp->regs;
2830 	struct gfar_priv_tx_q *tx_queue = NULL;
2831 	struct gfar_priv_rx_q *rx_queue = NULL;
2832 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2833 	int tx_cleaned = 0, i, left_over_budget = budget;
2834 	unsigned long serviced_queues = 0;
2835 	int num_queues = 0;
2836 
2837 	num_queues = gfargrp->num_rx_queues;
2838 	budget_per_queue = budget/num_queues;
2839 
2840 	/* Clear IEVENT, so interrupts aren't called again
2841 	 * because of the packets that have already arrived
2842 	 */
2843 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2844 
2845 	while (num_queues && left_over_budget) {
2846 		budget_per_queue = left_over_budget/num_queues;
2847 		left_over_budget = 0;
2848 
2849 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2850 			if (test_bit(i, &serviced_queues))
2851 				continue;
2852 			rx_queue = priv->rx_queue[i];
2853 			tx_queue = priv->tx_queue[rx_queue->qindex];
2854 
2855 			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2856 			rx_cleaned_per_queue =
2857 				gfar_clean_rx_ring(rx_queue, budget_per_queue);
2858 			rx_cleaned += rx_cleaned_per_queue;
2859 			if (rx_cleaned_per_queue < budget_per_queue) {
2860 				left_over_budget = left_over_budget +
2861 					(budget_per_queue -
2862 					 rx_cleaned_per_queue);
2863 				set_bit(i, &serviced_queues);
2864 				num_queues--;
2865 			}
2866 		}
2867 	}
2868 
2869 	if (tx_cleaned)
2870 		return budget;
2871 
2872 	if (rx_cleaned < budget) {
2873 		napi_complete(napi);
2874 
2875 		/* Clear the halt bit in RSTAT */
2876 		gfar_write(&regs->rstat, gfargrp->rstat);
2877 
2878 		gfar_write(&regs->imask, IMASK_DEFAULT);
2879 
2880 		/* If we are coalescing interrupts, update the timer
2881 		 * Otherwise, clear it
2882 		 */
2883 		gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2884 					  gfargrp->tx_bit_map);
2885 	}
2886 
2887 	return rx_cleaned;
2888 }
2889 
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 /* Polling 'interrupt' - used by things like netconsole to send skbs
2892  * without having to re-enable interrupts. It's not called while
2893  * the interrupt routine is executing.
2894  */
2895 static void gfar_netpoll(struct net_device *dev)
2896 {
2897 	struct gfar_private *priv = netdev_priv(dev);
2898 	int i;
2899 
2900 	/* If the device has multiple interrupts, run tx/rx */
2901 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2902 		for (i = 0; i < priv->num_grps; i++) {
2903 			disable_irq(priv->gfargrp[i].interruptTransmit);
2904 			disable_irq(priv->gfargrp[i].interruptReceive);
2905 			disable_irq(priv->gfargrp[i].interruptError);
2906 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907 				       &priv->gfargrp[i]);
2908 			enable_irq(priv->gfargrp[i].interruptError);
2909 			enable_irq(priv->gfargrp[i].interruptReceive);
2910 			enable_irq(priv->gfargrp[i].interruptTransmit);
2911 		}
2912 	} else {
2913 		for (i = 0; i < priv->num_grps; i++) {
2914 			disable_irq(priv->gfargrp[i].interruptTransmit);
2915 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2916 				       &priv->gfargrp[i]);
2917 			enable_irq(priv->gfargrp[i].interruptTransmit);
2918 		}
2919 	}
2920 }
2921 #endif
2922 
2923 /* The interrupt handler for devices with one interrupt */
2924 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2925 {
2926 	struct gfar_priv_grp *gfargrp = grp_id;
2927 
2928 	/* Save ievent for future reference */
2929 	u32 events = gfar_read(&gfargrp->regs->ievent);
2930 
2931 	/* Check for reception */
2932 	if (events & IEVENT_RX_MASK)
2933 		gfar_receive(irq, grp_id);
2934 
2935 	/* Check for transmit completion */
2936 	if (events & IEVENT_TX_MASK)
2937 		gfar_transmit(irq, grp_id);
2938 
2939 	/* Check for errors */
2940 	if (events & IEVENT_ERR_MASK)
2941 		gfar_error(irq, grp_id);
2942 
2943 	return IRQ_HANDLED;
2944 }
2945 
2946 /* Called every time the controller might need to be made
2947  * aware of new link state.  The PHY code conveys this
2948  * information through variables in the phydev structure, and this
2949  * function converts those variables into the appropriate
2950  * register values, and can bring down the device if needed.
2951  */
2952 static void adjust_link(struct net_device *dev)
2953 {
2954 	struct gfar_private *priv = netdev_priv(dev);
2955 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2956 	unsigned long flags;
2957 	struct phy_device *phydev = priv->phydev;
2958 	int new_state = 0;
2959 
2960 	local_irq_save(flags);
2961 	lock_tx_qs(priv);
2962 
2963 	if (phydev->link) {
2964 		u32 tempval = gfar_read(&regs->maccfg2);
2965 		u32 ecntrl = gfar_read(&regs->ecntrl);
2966 
2967 		/* Now we make sure that we can be in full duplex mode.
2968 		 * If not, we operate in half-duplex mode.
2969 		 */
2970 		if (phydev->duplex != priv->oldduplex) {
2971 			new_state = 1;
2972 			if (!(phydev->duplex))
2973 				tempval &= ~(MACCFG2_FULL_DUPLEX);
2974 			else
2975 				tempval |= MACCFG2_FULL_DUPLEX;
2976 
2977 			priv->oldduplex = phydev->duplex;
2978 		}
2979 
2980 		if (phydev->speed != priv->oldspeed) {
2981 			new_state = 1;
2982 			switch (phydev->speed) {
2983 			case 1000:
2984 				tempval =
2985 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2986 
2987 				ecntrl &= ~(ECNTRL_R100);
2988 				break;
2989 			case 100:
2990 			case 10:
2991 				tempval =
2992 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2993 
2994 				/* Reduced mode distinguishes
2995 				 * between 10 and 100
2996 				 */
2997 				if (phydev->speed == SPEED_100)
2998 					ecntrl |= ECNTRL_R100;
2999 				else
3000 					ecntrl &= ~(ECNTRL_R100);
3001 				break;
3002 			default:
3003 				netif_warn(priv, link, dev,
3004 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3005 					   phydev->speed);
3006 				break;
3007 			}
3008 
3009 			priv->oldspeed = phydev->speed;
3010 		}
3011 
3012 		gfar_write(&regs->maccfg2, tempval);
3013 		gfar_write(&regs->ecntrl, ecntrl);
3014 
3015 		if (!priv->oldlink) {
3016 			new_state = 1;
3017 			priv->oldlink = 1;
3018 		}
3019 	} else if (priv->oldlink) {
3020 		new_state = 1;
3021 		priv->oldlink = 0;
3022 		priv->oldspeed = 0;
3023 		priv->oldduplex = -1;
3024 	}
3025 
3026 	if (new_state && netif_msg_link(priv))
3027 		phy_print_status(phydev);
3028 	unlock_tx_qs(priv);
3029 	local_irq_restore(flags);
3030 }
3031 
3032 /* Update the hash table based on the current list of multicast
3033  * addresses we subscribe to.  Also, change the promiscuity of
3034  * the device based on the flags (this function is called
3035  * whenever dev->flags is changed
3036  */
3037 static void gfar_set_multi(struct net_device *dev)
3038 {
3039 	struct netdev_hw_addr *ha;
3040 	struct gfar_private *priv = netdev_priv(dev);
3041 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3042 	u32 tempval;
3043 
3044 	if (dev->flags & IFF_PROMISC) {
3045 		/* Set RCTRL to PROM */
3046 		tempval = gfar_read(&regs->rctrl);
3047 		tempval |= RCTRL_PROM;
3048 		gfar_write(&regs->rctrl, tempval);
3049 	} else {
3050 		/* Set RCTRL to not PROM */
3051 		tempval = gfar_read(&regs->rctrl);
3052 		tempval &= ~(RCTRL_PROM);
3053 		gfar_write(&regs->rctrl, tempval);
3054 	}
3055 
3056 	if (dev->flags & IFF_ALLMULTI) {
3057 		/* Set the hash to rx all multicast frames */
3058 		gfar_write(&regs->igaddr0, 0xffffffff);
3059 		gfar_write(&regs->igaddr1, 0xffffffff);
3060 		gfar_write(&regs->igaddr2, 0xffffffff);
3061 		gfar_write(&regs->igaddr3, 0xffffffff);
3062 		gfar_write(&regs->igaddr4, 0xffffffff);
3063 		gfar_write(&regs->igaddr5, 0xffffffff);
3064 		gfar_write(&regs->igaddr6, 0xffffffff);
3065 		gfar_write(&regs->igaddr7, 0xffffffff);
3066 		gfar_write(&regs->gaddr0, 0xffffffff);
3067 		gfar_write(&regs->gaddr1, 0xffffffff);
3068 		gfar_write(&regs->gaddr2, 0xffffffff);
3069 		gfar_write(&regs->gaddr3, 0xffffffff);
3070 		gfar_write(&regs->gaddr4, 0xffffffff);
3071 		gfar_write(&regs->gaddr5, 0xffffffff);
3072 		gfar_write(&regs->gaddr6, 0xffffffff);
3073 		gfar_write(&regs->gaddr7, 0xffffffff);
3074 	} else {
3075 		int em_num;
3076 		int idx;
3077 
3078 		/* zero out the hash */
3079 		gfar_write(&regs->igaddr0, 0x0);
3080 		gfar_write(&regs->igaddr1, 0x0);
3081 		gfar_write(&regs->igaddr2, 0x0);
3082 		gfar_write(&regs->igaddr3, 0x0);
3083 		gfar_write(&regs->igaddr4, 0x0);
3084 		gfar_write(&regs->igaddr5, 0x0);
3085 		gfar_write(&regs->igaddr6, 0x0);
3086 		gfar_write(&regs->igaddr7, 0x0);
3087 		gfar_write(&regs->gaddr0, 0x0);
3088 		gfar_write(&regs->gaddr1, 0x0);
3089 		gfar_write(&regs->gaddr2, 0x0);
3090 		gfar_write(&regs->gaddr3, 0x0);
3091 		gfar_write(&regs->gaddr4, 0x0);
3092 		gfar_write(&regs->gaddr5, 0x0);
3093 		gfar_write(&regs->gaddr6, 0x0);
3094 		gfar_write(&regs->gaddr7, 0x0);
3095 
3096 		/* If we have extended hash tables, we need to
3097 		 * clear the exact match registers to prepare for
3098 		 * setting them
3099 		 */
3100 		if (priv->extended_hash) {
3101 			em_num = GFAR_EM_NUM + 1;
3102 			gfar_clear_exact_match(dev);
3103 			idx = 1;
3104 		} else {
3105 			idx = 0;
3106 			em_num = 0;
3107 		}
3108 
3109 		if (netdev_mc_empty(dev))
3110 			return;
3111 
3112 		/* Parse the list, and set the appropriate bits */
3113 		netdev_for_each_mc_addr(ha, dev) {
3114 			if (idx < em_num) {
3115 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3116 				idx++;
3117 			} else
3118 				gfar_set_hash_for_addr(dev, ha->addr);
3119 		}
3120 	}
3121 }
3122 
3123 
3124 /* Clears each of the exact match registers to zero, so they
3125  * don't interfere with normal reception
3126  */
3127 static void gfar_clear_exact_match(struct net_device *dev)
3128 {
3129 	int idx;
3130 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3131 
3132 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3133 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3134 }
3135 
3136 /* Set the appropriate hash bit for the given addr */
3137 /* The algorithm works like so:
3138  * 1) Take the Destination Address (ie the multicast address), and
3139  * do a CRC on it (little endian), and reverse the bits of the
3140  * result.
3141  * 2) Use the 8 most significant bits as a hash into a 256-entry
3142  * table.  The table is controlled through 8 32-bit registers:
3143  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3144  * gaddr7.  This means that the 3 most significant bits in the
3145  * hash index which gaddr register to use, and the 5 other bits
3146  * indicate which bit (assuming an IBM numbering scheme, which
3147  * for PowerPC (tm) is usually the case) in the register holds
3148  * the entry.
3149  */
3150 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3151 {
3152 	u32 tempval;
3153 	struct gfar_private *priv = netdev_priv(dev);
3154 	u32 result = ether_crc(ETH_ALEN, addr);
3155 	int width = priv->hash_width;
3156 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3157 	u8 whichreg = result >> (32 - width + 5);
3158 	u32 value = (1 << (31-whichbit));
3159 
3160 	tempval = gfar_read(priv->hash_regs[whichreg]);
3161 	tempval |= value;
3162 	gfar_write(priv->hash_regs[whichreg], tempval);
3163 }
3164 
3165 
3166 /* There are multiple MAC Address register pairs on some controllers
3167  * This function sets the numth pair to a given address
3168  */
3169 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3170 				  const u8 *addr)
3171 {
3172 	struct gfar_private *priv = netdev_priv(dev);
3173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3174 	int idx;
3175 	char tmpbuf[ETH_ALEN];
3176 	u32 tempval;
3177 	u32 __iomem *macptr = &regs->macstnaddr1;
3178 
3179 	macptr += num*2;
3180 
3181 	/* Now copy it into the mac registers backwards, cuz
3182 	 * little endian is silly
3183 	 */
3184 	for (idx = 0; idx < ETH_ALEN; idx++)
3185 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3186 
3187 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3188 
3189 	tempval = *((u32 *) (tmpbuf + 4));
3190 
3191 	gfar_write(macptr+1, tempval);
3192 }
3193 
3194 /* GFAR error interrupt handler */
3195 static irqreturn_t gfar_error(int irq, void *grp_id)
3196 {
3197 	struct gfar_priv_grp *gfargrp = grp_id;
3198 	struct gfar __iomem *regs = gfargrp->regs;
3199 	struct gfar_private *priv= gfargrp->priv;
3200 	struct net_device *dev = priv->ndev;
3201 
3202 	/* Save ievent for future reference */
3203 	u32 events = gfar_read(&regs->ievent);
3204 
3205 	/* Clear IEVENT */
3206 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3207 
3208 	/* Magic Packet is not an error. */
3209 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3210 	    (events & IEVENT_MAG))
3211 		events &= ~IEVENT_MAG;
3212 
3213 	/* Hmm... */
3214 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3215 		netdev_dbg(dev,
3216 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3217 			   events, gfar_read(&regs->imask));
3218 
3219 	/* Update the error counters */
3220 	if (events & IEVENT_TXE) {
3221 		dev->stats.tx_errors++;
3222 
3223 		if (events & IEVENT_LC)
3224 			dev->stats.tx_window_errors++;
3225 		if (events & IEVENT_CRL)
3226 			dev->stats.tx_aborted_errors++;
3227 		if (events & IEVENT_XFUN) {
3228 			unsigned long flags;
3229 
3230 			netif_dbg(priv, tx_err, dev,
3231 				  "TX FIFO underrun, packet dropped\n");
3232 			dev->stats.tx_dropped++;
3233 			priv->extra_stats.tx_underrun++;
3234 
3235 			local_irq_save(flags);
3236 			lock_tx_qs(priv);
3237 
3238 			/* Reactivate the Tx Queues */
3239 			gfar_write(&regs->tstat, gfargrp->tstat);
3240 
3241 			unlock_tx_qs(priv);
3242 			local_irq_restore(flags);
3243 		}
3244 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3245 	}
3246 	if (events & IEVENT_BSY) {
3247 		dev->stats.rx_errors++;
3248 		priv->extra_stats.rx_bsy++;
3249 
3250 		gfar_receive(irq, grp_id);
3251 
3252 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3253 			  gfar_read(&regs->rstat));
3254 	}
3255 	if (events & IEVENT_BABR) {
3256 		dev->stats.rx_errors++;
3257 		priv->extra_stats.rx_babr++;
3258 
3259 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3260 	}
3261 	if (events & IEVENT_EBERR) {
3262 		priv->extra_stats.eberr++;
3263 		netif_dbg(priv, rx_err, dev, "bus error\n");
3264 	}
3265 	if (events & IEVENT_RXC)
3266 		netif_dbg(priv, rx_status, dev, "control frame\n");
3267 
3268 	if (events & IEVENT_BABT) {
3269 		priv->extra_stats.tx_babt++;
3270 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3271 	}
3272 	return IRQ_HANDLED;
3273 }
3274 
3275 static struct of_device_id gfar_match[] =
3276 {
3277 	{
3278 		.type = "network",
3279 		.compatible = "gianfar",
3280 	},
3281 	{
3282 		.compatible = "fsl,etsec2",
3283 	},
3284 	{},
3285 };
3286 MODULE_DEVICE_TABLE(of, gfar_match);
3287 
3288 /* Structure for a device driver */
3289 static struct platform_driver gfar_driver = {
3290 	.driver = {
3291 		.name = "fsl-gianfar",
3292 		.owner = THIS_MODULE,
3293 		.pm = GFAR_PM_OPS,
3294 		.of_match_table = gfar_match,
3295 	},
3296 	.probe = gfar_probe,
3297 	.remove = gfar_remove,
3298 };
3299 
3300 module_platform_driver(gfar_driver);
3301