1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "1.3";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 				    dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 			       int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 				  const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155 
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 			    dma_addr_t buf)
158 {
159 	u32 lstatus;
160 
161 	bdp->bufPtr = cpu_to_be32(buf);
162 
163 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 		lstatus |= BD_LFLAG(RXBD_WRAP);
166 
167 	gfar_wmb();
168 
169 	bdp->lstatus = cpu_to_be32(lstatus);
170 }
171 
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 	struct gfar_private *priv = netdev_priv(ndev);
175 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 	struct gfar_priv_tx_q *tx_queue = NULL;
177 	struct gfar_priv_rx_q *rx_queue = NULL;
178 	struct txbd8 *txbdp;
179 	struct rxbd8 *rxbdp;
180 	u32 __iomem *rfbptr;
181 	int i, j;
182 	dma_addr_t bufaddr;
183 
184 	for (i = 0; i < priv->num_tx_queues; i++) {
185 		tx_queue = priv->tx_queue[i];
186 		/* Initialize some variables in our dev structure */
187 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 		tx_queue->cur_tx = tx_queue->tx_bd_base;
190 		tx_queue->skb_curtx = 0;
191 		tx_queue->skb_dirtytx = 0;
192 
193 		/* Initialize Transmit Descriptor Ring */
194 		txbdp = tx_queue->tx_bd_base;
195 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 			txbdp->lstatus = 0;
197 			txbdp->bufPtr = 0;
198 			txbdp++;
199 		}
200 
201 		/* Set the last descriptor in the ring to indicate wrap */
202 		txbdp--;
203 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204 					    TXBD_WRAP);
205 	}
206 
207 	rfbptr = &regs->rfbptr0;
208 	for (i = 0; i < priv->num_rx_queues; i++) {
209 		rx_queue = priv->rx_queue[i];
210 		rx_queue->cur_rx = rx_queue->rx_bd_base;
211 		rx_queue->skb_currx = 0;
212 		rxbdp = rx_queue->rx_bd_base;
213 
214 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
215 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
216 
217 			if (skb) {
218 				bufaddr = be32_to_cpu(rxbdp->bufPtr);
219 			} else {
220 				skb = gfar_new_skb(ndev, &bufaddr);
221 				if (!skb) {
222 					netdev_err(ndev, "Can't allocate RX buffers\n");
223 					return -ENOMEM;
224 				}
225 				rx_queue->rx_skbuff[j] = skb;
226 			}
227 
228 			gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229 			rxbdp++;
230 		}
231 
232 		rx_queue->rfbptr = rfbptr;
233 		rfbptr += 2;
234 	}
235 
236 	return 0;
237 }
238 
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241 	void *vaddr;
242 	dma_addr_t addr;
243 	int i, j, k;
244 	struct gfar_private *priv = netdev_priv(ndev);
245 	struct device *dev = priv->dev;
246 	struct gfar_priv_tx_q *tx_queue = NULL;
247 	struct gfar_priv_rx_q *rx_queue = NULL;
248 
249 	priv->total_tx_ring_size = 0;
250 	for (i = 0; i < priv->num_tx_queues; i++)
251 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252 
253 	priv->total_rx_ring_size = 0;
254 	for (i = 0; i < priv->num_rx_queues; i++)
255 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256 
257 	/* Allocate memory for the buffer descriptors */
258 	vaddr = dma_alloc_coherent(dev,
259 				   (priv->total_tx_ring_size *
260 				    sizeof(struct txbd8)) +
261 				   (priv->total_rx_ring_size *
262 				    sizeof(struct rxbd8)),
263 				   &addr, GFP_KERNEL);
264 	if (!vaddr)
265 		return -ENOMEM;
266 
267 	for (i = 0; i < priv->num_tx_queues; i++) {
268 		tx_queue = priv->tx_queue[i];
269 		tx_queue->tx_bd_base = vaddr;
270 		tx_queue->tx_bd_dma_base = addr;
271 		tx_queue->dev = ndev;
272 		/* enet DMA only understands physical addresses */
273 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275 	}
276 
277 	/* Start the rx descriptor ring where the tx ring leaves off */
278 	for (i = 0; i < priv->num_rx_queues; i++) {
279 		rx_queue = priv->rx_queue[i];
280 		rx_queue->rx_bd_base = vaddr;
281 		rx_queue->rx_bd_dma_base = addr;
282 		rx_queue->dev = ndev;
283 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285 	}
286 
287 	/* Setup the skbuff rings */
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		tx_queue = priv->tx_queue[i];
290 		tx_queue->tx_skbuff =
291 			kmalloc_array(tx_queue->tx_ring_size,
292 				      sizeof(*tx_queue->tx_skbuff),
293 				      GFP_KERNEL);
294 		if (!tx_queue->tx_skbuff)
295 			goto cleanup;
296 
297 		for (k = 0; k < tx_queue->tx_ring_size; k++)
298 			tx_queue->tx_skbuff[k] = NULL;
299 	}
300 
301 	for (i = 0; i < priv->num_rx_queues; i++) {
302 		rx_queue = priv->rx_queue[i];
303 		rx_queue->rx_skbuff =
304 			kmalloc_array(rx_queue->rx_ring_size,
305 				      sizeof(*rx_queue->rx_skbuff),
306 				      GFP_KERNEL);
307 		if (!rx_queue->rx_skbuff)
308 			goto cleanup;
309 
310 		for (j = 0; j < rx_queue->rx_ring_size; j++)
311 			rx_queue->rx_skbuff[j] = NULL;
312 	}
313 
314 	if (gfar_init_bds(ndev))
315 		goto cleanup;
316 
317 	return 0;
318 
319 cleanup:
320 	free_skb_resources(priv);
321 	return -ENOMEM;
322 }
323 
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 	u32 __iomem *baddr;
328 	int i;
329 
330 	baddr = &regs->tbase0;
331 	for (i = 0; i < priv->num_tx_queues; i++) {
332 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 		baddr += 2;
334 	}
335 
336 	baddr = &regs->rbase0;
337 	for (i = 0; i < priv->num_rx_queues; i++) {
338 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 		baddr += 2;
340 	}
341 }
342 
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 __iomem *baddr;
347 	int i;
348 
349 	baddr = &regs->rqprm0;
350 	for (i = 0; i < priv->num_rx_queues; i++) {
351 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353 		baddr++;
354 	}
355 }
356 
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359 	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360 
361 	/* set this when rx hw offload (TOE) functions are being used */
362 	priv->uses_rxfcb = 0;
363 
364 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365 		priv->uses_rxfcb = 1;
366 
367 	if (priv->hwts_rx_en)
368 		priv->uses_rxfcb = 1;
369 
370 	if (priv->uses_rxfcb)
371 		frame_size += GMAC_FCB_LEN;
372 
373 	frame_size += priv->padding;
374 
375 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376 		     INCREMENTAL_BUFFER_SIZE;
377 
378 	priv->rx_buffer_size = frame_size;
379 }
380 
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
384 	u32 rctrl = 0;
385 
386 	if (priv->rx_filer_enable) {
387 		rctrl |= RCTRL_FILREN;
388 		/* Program the RIR0 reg with the required distribution */
389 		if (priv->poll_mode == GFAR_SQ_POLLING)
390 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391 		else /* GFAR_MQ_POLLING */
392 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393 	}
394 
395 	/* Restore PROMISC mode */
396 	if (priv->ndev->flags & IFF_PROMISC)
397 		rctrl |= RCTRL_PROM;
398 
399 	if (priv->ndev->features & NETIF_F_RXCSUM)
400 		rctrl |= RCTRL_CHECKSUMMING;
401 
402 	if (priv->extended_hash)
403 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404 
405 	if (priv->padding) {
406 		rctrl &= ~RCTRL_PAL_MASK;
407 		rctrl |= RCTRL_PADDING(priv->padding);
408 	}
409 
410 	/* Enable HW time stamping if requested from user space */
411 	if (priv->hwts_rx_en)
412 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413 
414 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416 
417 	/* Clear the LFC bit */
418 	gfar_write(&regs->rctrl, rctrl);
419 	/* Init flow control threshold values */
420 	gfar_init_rqprm(priv);
421 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422 	rctrl |= RCTRL_LFC;
423 
424 	/* Init rctrl based on our settings */
425 	gfar_write(&regs->rctrl, rctrl);
426 }
427 
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
431 	u32 tctrl = 0;
432 
433 	if (priv->ndev->features & NETIF_F_IP_CSUM)
434 		tctrl |= TCTRL_INIT_CSUM;
435 
436 	if (priv->prio_sched_en)
437 		tctrl |= TCTRL_TXSCHED_PRIO;
438 	else {
439 		tctrl |= TCTRL_TXSCHED_WRRS;
440 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442 	}
443 
444 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445 		tctrl |= TCTRL_VLINS;
446 
447 	gfar_write(&regs->tctrl, tctrl);
448 }
449 
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451 			       unsigned long tx_mask, unsigned long rx_mask)
452 {
453 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
454 	u32 __iomem *baddr;
455 
456 	if (priv->mode == MQ_MG_MODE) {
457 		int i = 0;
458 
459 		baddr = &regs->txic0;
460 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461 			gfar_write(baddr + i, 0);
462 			if (likely(priv->tx_queue[i]->txcoalescing))
463 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
464 		}
465 
466 		baddr = &regs->rxic0;
467 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468 			gfar_write(baddr + i, 0);
469 			if (likely(priv->rx_queue[i]->rxcoalescing))
470 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 		}
472 	} else {
473 		/* Backward compatible case -- even if we enable
474 		 * multiple queues, there's only single reg to program
475 		 */
476 		gfar_write(&regs->txic, 0);
477 		if (likely(priv->tx_queue[0]->txcoalescing))
478 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479 
480 		gfar_write(&regs->rxic, 0);
481 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
482 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483 	}
484 }
485 
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490 
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493 	struct gfar_private *priv = netdev_priv(dev);
494 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495 	unsigned long tx_packets = 0, tx_bytes = 0;
496 	int i;
497 
498 	for (i = 0; i < priv->num_rx_queues; i++) {
499 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
500 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
501 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502 	}
503 
504 	dev->stats.rx_packets = rx_packets;
505 	dev->stats.rx_bytes   = rx_bytes;
506 	dev->stats.rx_dropped = rx_dropped;
507 
508 	for (i = 0; i < priv->num_tx_queues; i++) {
509 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
511 	}
512 
513 	dev->stats.tx_bytes   = tx_bytes;
514 	dev->stats.tx_packets = tx_packets;
515 
516 	return &dev->stats;
517 }
518 
519 static int gfar_set_mac_addr(struct net_device *dev, void *p)
520 {
521 	eth_mac_addr(dev, p);
522 
523 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
524 
525 	return 0;
526 }
527 
528 static const struct net_device_ops gfar_netdev_ops = {
529 	.ndo_open = gfar_enet_open,
530 	.ndo_start_xmit = gfar_start_xmit,
531 	.ndo_stop = gfar_close,
532 	.ndo_change_mtu = gfar_change_mtu,
533 	.ndo_set_features = gfar_set_features,
534 	.ndo_set_rx_mode = gfar_set_multi,
535 	.ndo_tx_timeout = gfar_timeout,
536 	.ndo_do_ioctl = gfar_ioctl,
537 	.ndo_get_stats = gfar_get_stats,
538 	.ndo_set_mac_address = gfar_set_mac_addr,
539 	.ndo_validate_addr = eth_validate_addr,
540 #ifdef CONFIG_NET_POLL_CONTROLLER
541 	.ndo_poll_controller = gfar_netpoll,
542 #endif
543 };
544 
545 static void gfar_ints_disable(struct gfar_private *priv)
546 {
547 	int i;
548 	for (i = 0; i < priv->num_grps; i++) {
549 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
550 		/* Clear IEVENT */
551 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
552 
553 		/* Initialize IMASK */
554 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
555 	}
556 }
557 
558 static void gfar_ints_enable(struct gfar_private *priv)
559 {
560 	int i;
561 	for (i = 0; i < priv->num_grps; i++) {
562 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
563 		/* Unmask the interrupts we look for */
564 		gfar_write(&regs->imask, IMASK_DEFAULT);
565 	}
566 }
567 
568 static void lock_tx_qs(struct gfar_private *priv)
569 {
570 	int i;
571 
572 	for (i = 0; i < priv->num_tx_queues; i++)
573 		spin_lock(&priv->tx_queue[i]->txlock);
574 }
575 
576 static void unlock_tx_qs(struct gfar_private *priv)
577 {
578 	int i;
579 
580 	for (i = 0; i < priv->num_tx_queues; i++)
581 		spin_unlock(&priv->tx_queue[i]->txlock);
582 }
583 
584 static int gfar_alloc_tx_queues(struct gfar_private *priv)
585 {
586 	int i;
587 
588 	for (i = 0; i < priv->num_tx_queues; i++) {
589 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
590 					    GFP_KERNEL);
591 		if (!priv->tx_queue[i])
592 			return -ENOMEM;
593 
594 		priv->tx_queue[i]->tx_skbuff = NULL;
595 		priv->tx_queue[i]->qindex = i;
596 		priv->tx_queue[i]->dev = priv->ndev;
597 		spin_lock_init(&(priv->tx_queue[i]->txlock));
598 	}
599 	return 0;
600 }
601 
602 static int gfar_alloc_rx_queues(struct gfar_private *priv)
603 {
604 	int i;
605 
606 	for (i = 0; i < priv->num_rx_queues; i++) {
607 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
608 					    GFP_KERNEL);
609 		if (!priv->rx_queue[i])
610 			return -ENOMEM;
611 
612 		priv->rx_queue[i]->rx_skbuff = NULL;
613 		priv->rx_queue[i]->qindex = i;
614 		priv->rx_queue[i]->dev = priv->ndev;
615 	}
616 	return 0;
617 }
618 
619 static void gfar_free_tx_queues(struct gfar_private *priv)
620 {
621 	int i;
622 
623 	for (i = 0; i < priv->num_tx_queues; i++)
624 		kfree(priv->tx_queue[i]);
625 }
626 
627 static void gfar_free_rx_queues(struct gfar_private *priv)
628 {
629 	int i;
630 
631 	for (i = 0; i < priv->num_rx_queues; i++)
632 		kfree(priv->rx_queue[i]);
633 }
634 
635 static void unmap_group_regs(struct gfar_private *priv)
636 {
637 	int i;
638 
639 	for (i = 0; i < MAXGROUPS; i++)
640 		if (priv->gfargrp[i].regs)
641 			iounmap(priv->gfargrp[i].regs);
642 }
643 
644 static void free_gfar_dev(struct gfar_private *priv)
645 {
646 	int i, j;
647 
648 	for (i = 0; i < priv->num_grps; i++)
649 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
650 			kfree(priv->gfargrp[i].irqinfo[j]);
651 			priv->gfargrp[i].irqinfo[j] = NULL;
652 		}
653 
654 	free_netdev(priv->ndev);
655 }
656 
657 static void disable_napi(struct gfar_private *priv)
658 {
659 	int i;
660 
661 	for (i = 0; i < priv->num_grps; i++) {
662 		napi_disable(&priv->gfargrp[i].napi_rx);
663 		napi_disable(&priv->gfargrp[i].napi_tx);
664 	}
665 }
666 
667 static void enable_napi(struct gfar_private *priv)
668 {
669 	int i;
670 
671 	for (i = 0; i < priv->num_grps; i++) {
672 		napi_enable(&priv->gfargrp[i].napi_rx);
673 		napi_enable(&priv->gfargrp[i].napi_tx);
674 	}
675 }
676 
677 static int gfar_parse_group(struct device_node *np,
678 			    struct gfar_private *priv, const char *model)
679 {
680 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
681 	int i;
682 
683 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
684 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
685 					  GFP_KERNEL);
686 		if (!grp->irqinfo[i])
687 			return -ENOMEM;
688 	}
689 
690 	grp->regs = of_iomap(np, 0);
691 	if (!grp->regs)
692 		return -ENOMEM;
693 
694 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
695 
696 	/* If we aren't the FEC we have multiple interrupts */
697 	if (model && strcasecmp(model, "FEC")) {
698 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
699 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
700 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
701 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
702 		    gfar_irq(grp, ER)->irq == NO_IRQ)
703 			return -EINVAL;
704 	}
705 
706 	grp->priv = priv;
707 	spin_lock_init(&grp->grplock);
708 	if (priv->mode == MQ_MG_MODE) {
709 		u32 rxq_mask, txq_mask;
710 		int ret;
711 
712 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
713 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
714 
715 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
716 		if (!ret) {
717 			grp->rx_bit_map = rxq_mask ?
718 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
719 		}
720 
721 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
722 		if (!ret) {
723 			grp->tx_bit_map = txq_mask ?
724 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
725 		}
726 
727 		if (priv->poll_mode == GFAR_SQ_POLLING) {
728 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
729 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
730 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
731 		}
732 	} else {
733 		grp->rx_bit_map = 0xFF;
734 		grp->tx_bit_map = 0xFF;
735 	}
736 
737 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
738 	 * right to left, so we need to revert the 8 bits to get the q index
739 	 */
740 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
741 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
742 
743 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
744 	 * also assign queues to groups
745 	 */
746 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
747 		if (!grp->rx_queue)
748 			grp->rx_queue = priv->rx_queue[i];
749 		grp->num_rx_queues++;
750 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
751 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
752 		priv->rx_queue[i]->grp = grp;
753 	}
754 
755 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
756 		if (!grp->tx_queue)
757 			grp->tx_queue = priv->tx_queue[i];
758 		grp->num_tx_queues++;
759 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
760 		priv->tqueue |= (TQUEUE_EN0 >> i);
761 		priv->tx_queue[i]->grp = grp;
762 	}
763 
764 	priv->num_grps++;
765 
766 	return 0;
767 }
768 
769 static int gfar_of_group_count(struct device_node *np)
770 {
771 	struct device_node *child;
772 	int num = 0;
773 
774 	for_each_available_child_of_node(np, child)
775 		if (!of_node_cmp(child->name, "queue-group"))
776 			num++;
777 
778 	return num;
779 }
780 
781 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
782 {
783 	const char *model;
784 	const char *ctype;
785 	const void *mac_addr;
786 	int err = 0, i;
787 	struct net_device *dev = NULL;
788 	struct gfar_private *priv = NULL;
789 	struct device_node *np = ofdev->dev.of_node;
790 	struct device_node *child = NULL;
791 	struct property *stash;
792 	u32 stash_len = 0;
793 	u32 stash_idx = 0;
794 	unsigned int num_tx_qs, num_rx_qs;
795 	unsigned short mode, poll_mode;
796 
797 	if (!np)
798 		return -ENODEV;
799 
800 	if (of_device_is_compatible(np, "fsl,etsec2")) {
801 		mode = MQ_MG_MODE;
802 		poll_mode = GFAR_SQ_POLLING;
803 	} else {
804 		mode = SQ_SG_MODE;
805 		poll_mode = GFAR_SQ_POLLING;
806 	}
807 
808 	if (mode == SQ_SG_MODE) {
809 		num_tx_qs = 1;
810 		num_rx_qs = 1;
811 	} else { /* MQ_MG_MODE */
812 		/* get the actual number of supported groups */
813 		unsigned int num_grps = gfar_of_group_count(np);
814 
815 		if (num_grps == 0 || num_grps > MAXGROUPS) {
816 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
817 				num_grps);
818 			pr_err("Cannot do alloc_etherdev, aborting\n");
819 			return -EINVAL;
820 		}
821 
822 		if (poll_mode == GFAR_SQ_POLLING) {
823 			num_tx_qs = num_grps; /* one txq per int group */
824 			num_rx_qs = num_grps; /* one rxq per int group */
825 		} else { /* GFAR_MQ_POLLING */
826 			u32 tx_queues, rx_queues;
827 			int ret;
828 
829 			/* parse the num of HW tx and rx queues */
830 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
831 						   &tx_queues);
832 			num_tx_qs = ret ? 1 : tx_queues;
833 
834 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
835 						   &rx_queues);
836 			num_rx_qs = ret ? 1 : rx_queues;
837 		}
838 	}
839 
840 	if (num_tx_qs > MAX_TX_QS) {
841 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
842 		       num_tx_qs, MAX_TX_QS);
843 		pr_err("Cannot do alloc_etherdev, aborting\n");
844 		return -EINVAL;
845 	}
846 
847 	if (num_rx_qs > MAX_RX_QS) {
848 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
849 		       num_rx_qs, MAX_RX_QS);
850 		pr_err("Cannot do alloc_etherdev, aborting\n");
851 		return -EINVAL;
852 	}
853 
854 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
855 	dev = *pdev;
856 	if (NULL == dev)
857 		return -ENOMEM;
858 
859 	priv = netdev_priv(dev);
860 	priv->ndev = dev;
861 
862 	priv->mode = mode;
863 	priv->poll_mode = poll_mode;
864 
865 	priv->num_tx_queues = num_tx_qs;
866 	netif_set_real_num_rx_queues(dev, num_rx_qs);
867 	priv->num_rx_queues = num_rx_qs;
868 
869 	err = gfar_alloc_tx_queues(priv);
870 	if (err)
871 		goto tx_alloc_failed;
872 
873 	err = gfar_alloc_rx_queues(priv);
874 	if (err)
875 		goto rx_alloc_failed;
876 
877 	err = of_property_read_string(np, "model", &model);
878 	if (err) {
879 		pr_err("Device model property missing, aborting\n");
880 		goto rx_alloc_failed;
881 	}
882 
883 	/* Init Rx queue filer rule set linked list */
884 	INIT_LIST_HEAD(&priv->rx_list.list);
885 	priv->rx_list.count = 0;
886 	mutex_init(&priv->rx_queue_access);
887 
888 	for (i = 0; i < MAXGROUPS; i++)
889 		priv->gfargrp[i].regs = NULL;
890 
891 	/* Parse and initialize group specific information */
892 	if (priv->mode == MQ_MG_MODE) {
893 		for_each_available_child_of_node(np, child) {
894 			if (of_node_cmp(child->name, "queue-group"))
895 				continue;
896 
897 			err = gfar_parse_group(child, priv, model);
898 			if (err)
899 				goto err_grp_init;
900 		}
901 	} else { /* SQ_SG_MODE */
902 		err = gfar_parse_group(np, priv, model);
903 		if (err)
904 			goto err_grp_init;
905 	}
906 
907 	stash = of_find_property(np, "bd-stash", NULL);
908 
909 	if (stash) {
910 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
911 		priv->bd_stash_en = 1;
912 	}
913 
914 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
915 
916 	if (err == 0)
917 		priv->rx_stash_size = stash_len;
918 
919 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
920 
921 	if (err == 0)
922 		priv->rx_stash_index = stash_idx;
923 
924 	if (stash_len || stash_idx)
925 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
926 
927 	mac_addr = of_get_mac_address(np);
928 
929 	if (mac_addr)
930 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
931 
932 	if (model && !strcasecmp(model, "TSEC"))
933 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
934 				     FSL_GIANFAR_DEV_HAS_COALESCE |
935 				     FSL_GIANFAR_DEV_HAS_RMON |
936 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
937 
938 	if (model && !strcasecmp(model, "eTSEC"))
939 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
940 				     FSL_GIANFAR_DEV_HAS_COALESCE |
941 				     FSL_GIANFAR_DEV_HAS_RMON |
942 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
943 				     FSL_GIANFAR_DEV_HAS_CSUM |
944 				     FSL_GIANFAR_DEV_HAS_VLAN |
945 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
946 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
947 				     FSL_GIANFAR_DEV_HAS_TIMER;
948 
949 	err = of_property_read_string(np, "phy-connection-type", &ctype);
950 
951 	/* We only care about rgmii-id.  The rest are autodetected */
952 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
953 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
954 	else
955 		priv->interface = PHY_INTERFACE_MODE_MII;
956 
957 	if (of_find_property(np, "fsl,magic-packet", NULL))
958 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
959 
960 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
961 
962 	/* In the case of a fixed PHY, the DT node associated
963 	 * to the PHY is the Ethernet MAC DT node.
964 	 */
965 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
966 		err = of_phy_register_fixed_link(np);
967 		if (err)
968 			goto err_grp_init;
969 
970 		priv->phy_node = of_node_get(np);
971 	}
972 
973 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
974 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
975 
976 	return 0;
977 
978 err_grp_init:
979 	unmap_group_regs(priv);
980 rx_alloc_failed:
981 	gfar_free_rx_queues(priv);
982 tx_alloc_failed:
983 	gfar_free_tx_queues(priv);
984 	free_gfar_dev(priv);
985 	return err;
986 }
987 
988 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
989 {
990 	struct hwtstamp_config config;
991 	struct gfar_private *priv = netdev_priv(netdev);
992 
993 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
994 		return -EFAULT;
995 
996 	/* reserved for future extensions */
997 	if (config.flags)
998 		return -EINVAL;
999 
1000 	switch (config.tx_type) {
1001 	case HWTSTAMP_TX_OFF:
1002 		priv->hwts_tx_en = 0;
1003 		break;
1004 	case HWTSTAMP_TX_ON:
1005 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1006 			return -ERANGE;
1007 		priv->hwts_tx_en = 1;
1008 		break;
1009 	default:
1010 		return -ERANGE;
1011 	}
1012 
1013 	switch (config.rx_filter) {
1014 	case HWTSTAMP_FILTER_NONE:
1015 		if (priv->hwts_rx_en) {
1016 			priv->hwts_rx_en = 0;
1017 			reset_gfar(netdev);
1018 		}
1019 		break;
1020 	default:
1021 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1022 			return -ERANGE;
1023 		if (!priv->hwts_rx_en) {
1024 			priv->hwts_rx_en = 1;
1025 			reset_gfar(netdev);
1026 		}
1027 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1028 		break;
1029 	}
1030 
1031 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1032 		-EFAULT : 0;
1033 }
1034 
1035 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1036 {
1037 	struct hwtstamp_config config;
1038 	struct gfar_private *priv = netdev_priv(netdev);
1039 
1040 	config.flags = 0;
1041 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1042 	config.rx_filter = (priv->hwts_rx_en ?
1043 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1044 
1045 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1046 		-EFAULT : 0;
1047 }
1048 
1049 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1050 {
1051 	struct gfar_private *priv = netdev_priv(dev);
1052 
1053 	if (!netif_running(dev))
1054 		return -EINVAL;
1055 
1056 	if (cmd == SIOCSHWTSTAMP)
1057 		return gfar_hwtstamp_set(dev, rq);
1058 	if (cmd == SIOCGHWTSTAMP)
1059 		return gfar_hwtstamp_get(dev, rq);
1060 
1061 	if (!priv->phydev)
1062 		return -ENODEV;
1063 
1064 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1065 }
1066 
1067 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1068 				   u32 class)
1069 {
1070 	u32 rqfpr = FPR_FILER_MASK;
1071 	u32 rqfcr = 0x0;
1072 
1073 	rqfar--;
1074 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1075 	priv->ftp_rqfpr[rqfar] = rqfpr;
1076 	priv->ftp_rqfcr[rqfar] = rqfcr;
1077 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1078 
1079 	rqfar--;
1080 	rqfcr = RQFCR_CMP_NOMATCH;
1081 	priv->ftp_rqfpr[rqfar] = rqfpr;
1082 	priv->ftp_rqfcr[rqfar] = rqfcr;
1083 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1084 
1085 	rqfar--;
1086 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1087 	rqfpr = class;
1088 	priv->ftp_rqfcr[rqfar] = rqfcr;
1089 	priv->ftp_rqfpr[rqfar] = rqfpr;
1090 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1091 
1092 	rqfar--;
1093 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1094 	rqfpr = class;
1095 	priv->ftp_rqfcr[rqfar] = rqfcr;
1096 	priv->ftp_rqfpr[rqfar] = rqfpr;
1097 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1098 
1099 	return rqfar;
1100 }
1101 
1102 static void gfar_init_filer_table(struct gfar_private *priv)
1103 {
1104 	int i = 0x0;
1105 	u32 rqfar = MAX_FILER_IDX;
1106 	u32 rqfcr = 0x0;
1107 	u32 rqfpr = FPR_FILER_MASK;
1108 
1109 	/* Default rule */
1110 	rqfcr = RQFCR_CMP_MATCH;
1111 	priv->ftp_rqfcr[rqfar] = rqfcr;
1112 	priv->ftp_rqfpr[rqfar] = rqfpr;
1113 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1114 
1115 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1116 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1117 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1118 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1119 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1120 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1121 
1122 	/* cur_filer_idx indicated the first non-masked rule */
1123 	priv->cur_filer_idx = rqfar;
1124 
1125 	/* Rest are masked rules */
1126 	rqfcr = RQFCR_CMP_NOMATCH;
1127 	for (i = 0; i < rqfar; i++) {
1128 		priv->ftp_rqfcr[i] = rqfcr;
1129 		priv->ftp_rqfpr[i] = rqfpr;
1130 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1131 	}
1132 }
1133 
1134 #ifdef CONFIG_PPC
1135 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1136 {
1137 	unsigned int pvr = mfspr(SPRN_PVR);
1138 	unsigned int svr = mfspr(SPRN_SVR);
1139 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1140 	unsigned int rev = svr & 0xffff;
1141 
1142 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1143 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1144 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1145 		priv->errata |= GFAR_ERRATA_74;
1146 
1147 	/* MPC8313 and MPC837x all rev */
1148 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1149 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1150 		priv->errata |= GFAR_ERRATA_76;
1151 
1152 	/* MPC8313 Rev < 2.0 */
1153 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1154 		priv->errata |= GFAR_ERRATA_12;
1155 }
1156 
1157 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1158 {
1159 	unsigned int svr = mfspr(SPRN_SVR);
1160 
1161 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1162 		priv->errata |= GFAR_ERRATA_12;
1163 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1164 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1165 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1166 }
1167 #endif
1168 
1169 static void gfar_detect_errata(struct gfar_private *priv)
1170 {
1171 	struct device *dev = &priv->ofdev->dev;
1172 
1173 	/* no plans to fix */
1174 	priv->errata |= GFAR_ERRATA_A002;
1175 
1176 #ifdef CONFIG_PPC
1177 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1178 		__gfar_detect_errata_85xx(priv);
1179 	else /* non-mpc85xx parts, i.e. e300 core based */
1180 		__gfar_detect_errata_83xx(priv);
1181 #endif
1182 
1183 	if (priv->errata)
1184 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1185 			 priv->errata);
1186 }
1187 
1188 void gfar_mac_reset(struct gfar_private *priv)
1189 {
1190 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1191 	u32 tempval;
1192 
1193 	/* Reset MAC layer */
1194 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1195 
1196 	/* We need to delay at least 3 TX clocks */
1197 	udelay(3);
1198 
1199 	/* the soft reset bit is not self-resetting, so we need to
1200 	 * clear it before resuming normal operation
1201 	 */
1202 	gfar_write(&regs->maccfg1, 0);
1203 
1204 	udelay(3);
1205 
1206 	/* Compute rx_buff_size based on config flags */
1207 	gfar_rx_buff_size_config(priv);
1208 
1209 	/* Initialize the max receive frame/buffer lengths */
1210 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1211 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1212 
1213 	/* Initialize the Minimum Frame Length Register */
1214 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1215 
1216 	/* Initialize MACCFG2. */
1217 	tempval = MACCFG2_INIT_SETTINGS;
1218 
1219 	/* If the mtu is larger than the max size for standard
1220 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1221 	 * to allow huge frames, and to check the length
1222 	 */
1223 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1224 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1225 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1226 
1227 	gfar_write(&regs->maccfg2, tempval);
1228 
1229 	/* Clear mac addr hash registers */
1230 	gfar_write(&regs->igaddr0, 0);
1231 	gfar_write(&regs->igaddr1, 0);
1232 	gfar_write(&regs->igaddr2, 0);
1233 	gfar_write(&regs->igaddr3, 0);
1234 	gfar_write(&regs->igaddr4, 0);
1235 	gfar_write(&regs->igaddr5, 0);
1236 	gfar_write(&regs->igaddr6, 0);
1237 	gfar_write(&regs->igaddr7, 0);
1238 
1239 	gfar_write(&regs->gaddr0, 0);
1240 	gfar_write(&regs->gaddr1, 0);
1241 	gfar_write(&regs->gaddr2, 0);
1242 	gfar_write(&regs->gaddr3, 0);
1243 	gfar_write(&regs->gaddr4, 0);
1244 	gfar_write(&regs->gaddr5, 0);
1245 	gfar_write(&regs->gaddr6, 0);
1246 	gfar_write(&regs->gaddr7, 0);
1247 
1248 	if (priv->extended_hash)
1249 		gfar_clear_exact_match(priv->ndev);
1250 
1251 	gfar_mac_rx_config(priv);
1252 
1253 	gfar_mac_tx_config(priv);
1254 
1255 	gfar_set_mac_address(priv->ndev);
1256 
1257 	gfar_set_multi(priv->ndev);
1258 
1259 	/* clear ievent and imask before configuring coalescing */
1260 	gfar_ints_disable(priv);
1261 
1262 	/* Configure the coalescing support */
1263 	gfar_configure_coalescing_all(priv);
1264 }
1265 
1266 static void gfar_hw_init(struct gfar_private *priv)
1267 {
1268 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269 	u32 attrs;
1270 
1271 	/* Stop the DMA engine now, in case it was running before
1272 	 * (The firmware could have used it, and left it running).
1273 	 */
1274 	gfar_halt(priv);
1275 
1276 	gfar_mac_reset(priv);
1277 
1278 	/* Zero out the rmon mib registers if it has them */
1279 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1280 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1281 
1282 		/* Mask off the CAM interrupts */
1283 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1284 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1285 	}
1286 
1287 	/* Initialize ECNTRL */
1288 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1289 
1290 	/* Set the extraction length and index */
1291 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1292 		ATTRELI_EI(priv->rx_stash_index);
1293 
1294 	gfar_write(&regs->attreli, attrs);
1295 
1296 	/* Start with defaults, and add stashing
1297 	 * depending on driver parameters
1298 	 */
1299 	attrs = ATTR_INIT_SETTINGS;
1300 
1301 	if (priv->bd_stash_en)
1302 		attrs |= ATTR_BDSTASH;
1303 
1304 	if (priv->rx_stash_size != 0)
1305 		attrs |= ATTR_BUFSTASH;
1306 
1307 	gfar_write(&regs->attr, attrs);
1308 
1309 	/* FIFO configs */
1310 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1311 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1312 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1313 
1314 	/* Program the interrupt steering regs, only for MG devices */
1315 	if (priv->num_grps > 1)
1316 		gfar_write_isrg(priv);
1317 }
1318 
1319 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1320 {
1321 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322 
1323 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1324 		priv->extended_hash = 1;
1325 		priv->hash_width = 9;
1326 
1327 		priv->hash_regs[0] = &regs->igaddr0;
1328 		priv->hash_regs[1] = &regs->igaddr1;
1329 		priv->hash_regs[2] = &regs->igaddr2;
1330 		priv->hash_regs[3] = &regs->igaddr3;
1331 		priv->hash_regs[4] = &regs->igaddr4;
1332 		priv->hash_regs[5] = &regs->igaddr5;
1333 		priv->hash_regs[6] = &regs->igaddr6;
1334 		priv->hash_regs[7] = &regs->igaddr7;
1335 		priv->hash_regs[8] = &regs->gaddr0;
1336 		priv->hash_regs[9] = &regs->gaddr1;
1337 		priv->hash_regs[10] = &regs->gaddr2;
1338 		priv->hash_regs[11] = &regs->gaddr3;
1339 		priv->hash_regs[12] = &regs->gaddr4;
1340 		priv->hash_regs[13] = &regs->gaddr5;
1341 		priv->hash_regs[14] = &regs->gaddr6;
1342 		priv->hash_regs[15] = &regs->gaddr7;
1343 
1344 	} else {
1345 		priv->extended_hash = 0;
1346 		priv->hash_width = 8;
1347 
1348 		priv->hash_regs[0] = &regs->gaddr0;
1349 		priv->hash_regs[1] = &regs->gaddr1;
1350 		priv->hash_regs[2] = &regs->gaddr2;
1351 		priv->hash_regs[3] = &regs->gaddr3;
1352 		priv->hash_regs[4] = &regs->gaddr4;
1353 		priv->hash_regs[5] = &regs->gaddr5;
1354 		priv->hash_regs[6] = &regs->gaddr6;
1355 		priv->hash_regs[7] = &regs->gaddr7;
1356 	}
1357 }
1358 
1359 /* Set up the ethernet device structure, private data,
1360  * and anything else we need before we start
1361  */
1362 static int gfar_probe(struct platform_device *ofdev)
1363 {
1364 	struct net_device *dev = NULL;
1365 	struct gfar_private *priv = NULL;
1366 	int err = 0, i;
1367 
1368 	err = gfar_of_init(ofdev, &dev);
1369 
1370 	if (err)
1371 		return err;
1372 
1373 	priv = netdev_priv(dev);
1374 	priv->ndev = dev;
1375 	priv->ofdev = ofdev;
1376 	priv->dev = &ofdev->dev;
1377 	SET_NETDEV_DEV(dev, &ofdev->dev);
1378 
1379 	spin_lock_init(&priv->bflock);
1380 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1381 
1382 	platform_set_drvdata(ofdev, priv);
1383 
1384 	gfar_detect_errata(priv);
1385 
1386 	/* Set the dev->base_addr to the gfar reg region */
1387 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1388 
1389 	/* Fill in the dev structure */
1390 	dev->watchdog_timeo = TX_TIMEOUT;
1391 	dev->mtu = 1500;
1392 	dev->netdev_ops = &gfar_netdev_ops;
1393 	dev->ethtool_ops = &gfar_ethtool_ops;
1394 
1395 	/* Register for napi ...We are registering NAPI for each grp */
1396 	for (i = 0; i < priv->num_grps; i++) {
1397 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1398 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1399 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1400 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1401 				       gfar_poll_tx_sq, 2);
1402 		} else {
1403 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1404 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1405 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1406 				       gfar_poll_tx, 2);
1407 		}
1408 	}
1409 
1410 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1411 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1412 				   NETIF_F_RXCSUM;
1413 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1414 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1415 	}
1416 
1417 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1418 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1419 				    NETIF_F_HW_VLAN_CTAG_RX;
1420 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1421 	}
1422 
1423 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1424 
1425 	gfar_init_addr_hash_table(priv);
1426 
1427 	/* Insert receive time stamps into padding alignment bytes */
1428 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1429 		priv->padding = 8;
1430 
1431 	if (dev->features & NETIF_F_IP_CSUM ||
1432 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1433 		dev->needed_headroom = GMAC_FCB_LEN;
1434 
1435 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1436 
1437 	/* Initializing some of the rx/tx queue level parameters */
1438 	for (i = 0; i < priv->num_tx_queues; i++) {
1439 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1440 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1441 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1442 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1443 	}
1444 
1445 	for (i = 0; i < priv->num_rx_queues; i++) {
1446 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1447 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1448 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1449 	}
1450 
1451 	/* always enable rx filer */
1452 	priv->rx_filer_enable = 1;
1453 	/* Enable most messages by default */
1454 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1455 	/* use pritority h/w tx queue scheduling for single queue devices */
1456 	if (priv->num_tx_queues == 1)
1457 		priv->prio_sched_en = 1;
1458 
1459 	set_bit(GFAR_DOWN, &priv->state);
1460 
1461 	gfar_hw_init(priv);
1462 
1463 	/* Carrier starts down, phylib will bring it up */
1464 	netif_carrier_off(dev);
1465 
1466 	err = register_netdev(dev);
1467 
1468 	if (err) {
1469 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1470 		goto register_fail;
1471 	}
1472 
1473 	device_init_wakeup(&dev->dev,
1474 			   priv->device_flags &
1475 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1476 
1477 	/* fill out IRQ number and name fields */
1478 	for (i = 0; i < priv->num_grps; i++) {
1479 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1480 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1481 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1482 				dev->name, "_g", '0' + i, "_tx");
1483 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1484 				dev->name, "_g", '0' + i, "_rx");
1485 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1486 				dev->name, "_g", '0' + i, "_er");
1487 		} else
1488 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1489 	}
1490 
1491 	/* Initialize the filer table */
1492 	gfar_init_filer_table(priv);
1493 
1494 	/* Print out the device info */
1495 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1496 
1497 	/* Even more device info helps when determining which kernel
1498 	 * provided which set of benchmarks.
1499 	 */
1500 	netdev_info(dev, "Running with NAPI enabled\n");
1501 	for (i = 0; i < priv->num_rx_queues; i++)
1502 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1503 			    i, priv->rx_queue[i]->rx_ring_size);
1504 	for (i = 0; i < priv->num_tx_queues; i++)
1505 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1506 			    i, priv->tx_queue[i]->tx_ring_size);
1507 
1508 	return 0;
1509 
1510 register_fail:
1511 	unmap_group_regs(priv);
1512 	gfar_free_rx_queues(priv);
1513 	gfar_free_tx_queues(priv);
1514 	of_node_put(priv->phy_node);
1515 	of_node_put(priv->tbi_node);
1516 	free_gfar_dev(priv);
1517 	return err;
1518 }
1519 
1520 static int gfar_remove(struct platform_device *ofdev)
1521 {
1522 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1523 
1524 	of_node_put(priv->phy_node);
1525 	of_node_put(priv->tbi_node);
1526 
1527 	unregister_netdev(priv->ndev);
1528 	unmap_group_regs(priv);
1529 	gfar_free_rx_queues(priv);
1530 	gfar_free_tx_queues(priv);
1531 	free_gfar_dev(priv);
1532 
1533 	return 0;
1534 }
1535 
1536 #ifdef CONFIG_PM
1537 
1538 static int gfar_suspend(struct device *dev)
1539 {
1540 	struct gfar_private *priv = dev_get_drvdata(dev);
1541 	struct net_device *ndev = priv->ndev;
1542 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1543 	unsigned long flags;
1544 	u32 tempval;
1545 
1546 	int magic_packet = priv->wol_en &&
1547 			   (priv->device_flags &
1548 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1549 
1550 	netif_device_detach(ndev);
1551 
1552 	if (netif_running(ndev)) {
1553 
1554 		local_irq_save(flags);
1555 		lock_tx_qs(priv);
1556 
1557 		gfar_halt_nodisable(priv);
1558 
1559 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1560 		tempval = gfar_read(&regs->maccfg1);
1561 
1562 		tempval &= ~MACCFG1_TX_EN;
1563 
1564 		if (!magic_packet)
1565 			tempval &= ~MACCFG1_RX_EN;
1566 
1567 		gfar_write(&regs->maccfg1, tempval);
1568 
1569 		unlock_tx_qs(priv);
1570 		local_irq_restore(flags);
1571 
1572 		disable_napi(priv);
1573 
1574 		if (magic_packet) {
1575 			/* Enable interrupt on Magic Packet */
1576 			gfar_write(&regs->imask, IMASK_MAG);
1577 
1578 			/* Enable Magic Packet mode */
1579 			tempval = gfar_read(&regs->maccfg2);
1580 			tempval |= MACCFG2_MPEN;
1581 			gfar_write(&regs->maccfg2, tempval);
1582 		} else {
1583 			phy_stop(priv->phydev);
1584 		}
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int gfar_resume(struct device *dev)
1591 {
1592 	struct gfar_private *priv = dev_get_drvdata(dev);
1593 	struct net_device *ndev = priv->ndev;
1594 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1595 	unsigned long flags;
1596 	u32 tempval;
1597 	int magic_packet = priv->wol_en &&
1598 			   (priv->device_flags &
1599 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1600 
1601 	if (!netif_running(ndev)) {
1602 		netif_device_attach(ndev);
1603 		return 0;
1604 	}
1605 
1606 	if (!magic_packet && priv->phydev)
1607 		phy_start(priv->phydev);
1608 
1609 	/* Disable Magic Packet mode, in case something
1610 	 * else woke us up.
1611 	 */
1612 	local_irq_save(flags);
1613 	lock_tx_qs(priv);
1614 
1615 	tempval = gfar_read(&regs->maccfg2);
1616 	tempval &= ~MACCFG2_MPEN;
1617 	gfar_write(&regs->maccfg2, tempval);
1618 
1619 	gfar_start(priv);
1620 
1621 	unlock_tx_qs(priv);
1622 	local_irq_restore(flags);
1623 
1624 	netif_device_attach(ndev);
1625 
1626 	enable_napi(priv);
1627 
1628 	return 0;
1629 }
1630 
1631 static int gfar_restore(struct device *dev)
1632 {
1633 	struct gfar_private *priv = dev_get_drvdata(dev);
1634 	struct net_device *ndev = priv->ndev;
1635 
1636 	if (!netif_running(ndev)) {
1637 		netif_device_attach(ndev);
1638 
1639 		return 0;
1640 	}
1641 
1642 	if (gfar_init_bds(ndev)) {
1643 		free_skb_resources(priv);
1644 		return -ENOMEM;
1645 	}
1646 
1647 	gfar_mac_reset(priv);
1648 
1649 	gfar_init_tx_rx_base(priv);
1650 
1651 	gfar_start(priv);
1652 
1653 	priv->oldlink = 0;
1654 	priv->oldspeed = 0;
1655 	priv->oldduplex = -1;
1656 
1657 	if (priv->phydev)
1658 		phy_start(priv->phydev);
1659 
1660 	netif_device_attach(ndev);
1661 	enable_napi(priv);
1662 
1663 	return 0;
1664 }
1665 
1666 static struct dev_pm_ops gfar_pm_ops = {
1667 	.suspend = gfar_suspend,
1668 	.resume = gfar_resume,
1669 	.freeze = gfar_suspend,
1670 	.thaw = gfar_resume,
1671 	.restore = gfar_restore,
1672 };
1673 
1674 #define GFAR_PM_OPS (&gfar_pm_ops)
1675 
1676 #else
1677 
1678 #define GFAR_PM_OPS NULL
1679 
1680 #endif
1681 
1682 /* Reads the controller's registers to determine what interface
1683  * connects it to the PHY.
1684  */
1685 static phy_interface_t gfar_get_interface(struct net_device *dev)
1686 {
1687 	struct gfar_private *priv = netdev_priv(dev);
1688 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1689 	u32 ecntrl;
1690 
1691 	ecntrl = gfar_read(&regs->ecntrl);
1692 
1693 	if (ecntrl & ECNTRL_SGMII_MODE)
1694 		return PHY_INTERFACE_MODE_SGMII;
1695 
1696 	if (ecntrl & ECNTRL_TBI_MODE) {
1697 		if (ecntrl & ECNTRL_REDUCED_MODE)
1698 			return PHY_INTERFACE_MODE_RTBI;
1699 		else
1700 			return PHY_INTERFACE_MODE_TBI;
1701 	}
1702 
1703 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1704 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1705 			return PHY_INTERFACE_MODE_RMII;
1706 		}
1707 		else {
1708 			phy_interface_t interface = priv->interface;
1709 
1710 			/* This isn't autodetected right now, so it must
1711 			 * be set by the device tree or platform code.
1712 			 */
1713 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1714 				return PHY_INTERFACE_MODE_RGMII_ID;
1715 
1716 			return PHY_INTERFACE_MODE_RGMII;
1717 		}
1718 	}
1719 
1720 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1721 		return PHY_INTERFACE_MODE_GMII;
1722 
1723 	return PHY_INTERFACE_MODE_MII;
1724 }
1725 
1726 
1727 /* Initializes driver's PHY state, and attaches to the PHY.
1728  * Returns 0 on success.
1729  */
1730 static int init_phy(struct net_device *dev)
1731 {
1732 	struct gfar_private *priv = netdev_priv(dev);
1733 	uint gigabit_support =
1734 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1735 		GFAR_SUPPORTED_GBIT : 0;
1736 	phy_interface_t interface;
1737 
1738 	priv->oldlink = 0;
1739 	priv->oldspeed = 0;
1740 	priv->oldduplex = -1;
1741 
1742 	interface = gfar_get_interface(dev);
1743 
1744 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1745 				      interface);
1746 	if (!priv->phydev) {
1747 		dev_err(&dev->dev, "could not attach to PHY\n");
1748 		return -ENODEV;
1749 	}
1750 
1751 	if (interface == PHY_INTERFACE_MODE_SGMII)
1752 		gfar_configure_serdes(dev);
1753 
1754 	/* Remove any features not supported by the controller */
1755 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1756 	priv->phydev->advertising = priv->phydev->supported;
1757 
1758 	/* Add support for flow control, but don't advertise it by default */
1759 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1760 
1761 	return 0;
1762 }
1763 
1764 /* Initialize TBI PHY interface for communicating with the
1765  * SERDES lynx PHY on the chip.  We communicate with this PHY
1766  * through the MDIO bus on each controller, treating it as a
1767  * "normal" PHY at the address found in the TBIPA register.  We assume
1768  * that the TBIPA register is valid.  Either the MDIO bus code will set
1769  * it to a value that doesn't conflict with other PHYs on the bus, or the
1770  * value doesn't matter, as there are no other PHYs on the bus.
1771  */
1772 static void gfar_configure_serdes(struct net_device *dev)
1773 {
1774 	struct gfar_private *priv = netdev_priv(dev);
1775 	struct phy_device *tbiphy;
1776 
1777 	if (!priv->tbi_node) {
1778 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1779 				    "device tree specify a tbi-handle\n");
1780 		return;
1781 	}
1782 
1783 	tbiphy = of_phy_find_device(priv->tbi_node);
1784 	if (!tbiphy) {
1785 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1786 		return;
1787 	}
1788 
1789 	/* If the link is already up, we must already be ok, and don't need to
1790 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1791 	 * everything for us?  Resetting it takes the link down and requires
1792 	 * several seconds for it to come back.
1793 	 */
1794 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1795 		return;
1796 
1797 	/* Single clk mode, mii mode off(for serdes communication) */
1798 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1799 
1800 	phy_write(tbiphy, MII_ADVERTISE,
1801 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1802 		  ADVERTISE_1000XPSE_ASYM);
1803 
1804 	phy_write(tbiphy, MII_BMCR,
1805 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1806 		  BMCR_SPEED1000);
1807 }
1808 
1809 static int __gfar_is_rx_idle(struct gfar_private *priv)
1810 {
1811 	u32 res;
1812 
1813 	/* Normaly TSEC should not hang on GRS commands, so we should
1814 	 * actually wait for IEVENT_GRSC flag.
1815 	 */
1816 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1817 		return 0;
1818 
1819 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1820 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1821 	 * and the Rx can be safely reset.
1822 	 */
1823 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1824 	res &= 0x7f807f80;
1825 	if ((res & 0xffff) == (res >> 16))
1826 		return 1;
1827 
1828 	return 0;
1829 }
1830 
1831 /* Halt the receive and transmit queues */
1832 static void gfar_halt_nodisable(struct gfar_private *priv)
1833 {
1834 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1835 	u32 tempval;
1836 	unsigned int timeout;
1837 	int stopped;
1838 
1839 	gfar_ints_disable(priv);
1840 
1841 	if (gfar_is_dma_stopped(priv))
1842 		return;
1843 
1844 	/* Stop the DMA, and wait for it to stop */
1845 	tempval = gfar_read(&regs->dmactrl);
1846 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1847 	gfar_write(&regs->dmactrl, tempval);
1848 
1849 retry:
1850 	timeout = 1000;
1851 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1852 		cpu_relax();
1853 		timeout--;
1854 	}
1855 
1856 	if (!timeout)
1857 		stopped = gfar_is_dma_stopped(priv);
1858 
1859 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1860 	    !__gfar_is_rx_idle(priv))
1861 		goto retry;
1862 }
1863 
1864 /* Halt the receive and transmit queues */
1865 void gfar_halt(struct gfar_private *priv)
1866 {
1867 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1868 	u32 tempval;
1869 
1870 	/* Dissable the Rx/Tx hw queues */
1871 	gfar_write(&regs->rqueue, 0);
1872 	gfar_write(&regs->tqueue, 0);
1873 
1874 	mdelay(10);
1875 
1876 	gfar_halt_nodisable(priv);
1877 
1878 	/* Disable Rx/Tx DMA */
1879 	tempval = gfar_read(&regs->maccfg1);
1880 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1881 	gfar_write(&regs->maccfg1, tempval);
1882 }
1883 
1884 void stop_gfar(struct net_device *dev)
1885 {
1886 	struct gfar_private *priv = netdev_priv(dev);
1887 
1888 	netif_tx_stop_all_queues(dev);
1889 
1890 	smp_mb__before_atomic();
1891 	set_bit(GFAR_DOWN, &priv->state);
1892 	smp_mb__after_atomic();
1893 
1894 	disable_napi(priv);
1895 
1896 	/* disable ints and gracefully shut down Rx/Tx DMA */
1897 	gfar_halt(priv);
1898 
1899 	phy_stop(priv->phydev);
1900 
1901 	free_skb_resources(priv);
1902 }
1903 
1904 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1905 {
1906 	struct txbd8 *txbdp;
1907 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1908 	int i, j;
1909 
1910 	txbdp = tx_queue->tx_bd_base;
1911 
1912 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1913 		if (!tx_queue->tx_skbuff[i])
1914 			continue;
1915 
1916 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1917 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1918 		txbdp->lstatus = 0;
1919 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1920 		     j++) {
1921 			txbdp++;
1922 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1923 				       be16_to_cpu(txbdp->length),
1924 				       DMA_TO_DEVICE);
1925 		}
1926 		txbdp++;
1927 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1928 		tx_queue->tx_skbuff[i] = NULL;
1929 	}
1930 	kfree(tx_queue->tx_skbuff);
1931 	tx_queue->tx_skbuff = NULL;
1932 }
1933 
1934 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1935 {
1936 	struct rxbd8 *rxbdp;
1937 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1938 	int i;
1939 
1940 	rxbdp = rx_queue->rx_bd_base;
1941 
1942 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1943 		if (rx_queue->rx_skbuff[i]) {
1944 			dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1945 					 priv->rx_buffer_size,
1946 					 DMA_FROM_DEVICE);
1947 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1948 			rx_queue->rx_skbuff[i] = NULL;
1949 		}
1950 		rxbdp->lstatus = 0;
1951 		rxbdp->bufPtr = 0;
1952 		rxbdp++;
1953 	}
1954 	kfree(rx_queue->rx_skbuff);
1955 	rx_queue->rx_skbuff = NULL;
1956 }
1957 
1958 /* If there are any tx skbs or rx skbs still around, free them.
1959  * Then free tx_skbuff and rx_skbuff
1960  */
1961 static void free_skb_resources(struct gfar_private *priv)
1962 {
1963 	struct gfar_priv_tx_q *tx_queue = NULL;
1964 	struct gfar_priv_rx_q *rx_queue = NULL;
1965 	int i;
1966 
1967 	/* Go through all the buffer descriptors and free their data buffers */
1968 	for (i = 0; i < priv->num_tx_queues; i++) {
1969 		struct netdev_queue *txq;
1970 
1971 		tx_queue = priv->tx_queue[i];
1972 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1973 		if (tx_queue->tx_skbuff)
1974 			free_skb_tx_queue(tx_queue);
1975 		netdev_tx_reset_queue(txq);
1976 	}
1977 
1978 	for (i = 0; i < priv->num_rx_queues; i++) {
1979 		rx_queue = priv->rx_queue[i];
1980 		if (rx_queue->rx_skbuff)
1981 			free_skb_rx_queue(rx_queue);
1982 	}
1983 
1984 	dma_free_coherent(priv->dev,
1985 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1986 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1987 			  priv->tx_queue[0]->tx_bd_base,
1988 			  priv->tx_queue[0]->tx_bd_dma_base);
1989 }
1990 
1991 void gfar_start(struct gfar_private *priv)
1992 {
1993 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1994 	u32 tempval;
1995 	int i = 0;
1996 
1997 	/* Enable Rx/Tx hw queues */
1998 	gfar_write(&regs->rqueue, priv->rqueue);
1999 	gfar_write(&regs->tqueue, priv->tqueue);
2000 
2001 	/* Initialize DMACTRL to have WWR and WOP */
2002 	tempval = gfar_read(&regs->dmactrl);
2003 	tempval |= DMACTRL_INIT_SETTINGS;
2004 	gfar_write(&regs->dmactrl, tempval);
2005 
2006 	/* Make sure we aren't stopped */
2007 	tempval = gfar_read(&regs->dmactrl);
2008 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2009 	gfar_write(&regs->dmactrl, tempval);
2010 
2011 	for (i = 0; i < priv->num_grps; i++) {
2012 		regs = priv->gfargrp[i].regs;
2013 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2014 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2015 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2016 	}
2017 
2018 	/* Enable Rx/Tx DMA */
2019 	tempval = gfar_read(&regs->maccfg1);
2020 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2021 	gfar_write(&regs->maccfg1, tempval);
2022 
2023 	gfar_ints_enable(priv);
2024 
2025 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2026 }
2027 
2028 static void free_grp_irqs(struct gfar_priv_grp *grp)
2029 {
2030 	free_irq(gfar_irq(grp, TX)->irq, grp);
2031 	free_irq(gfar_irq(grp, RX)->irq, grp);
2032 	free_irq(gfar_irq(grp, ER)->irq, grp);
2033 }
2034 
2035 static int register_grp_irqs(struct gfar_priv_grp *grp)
2036 {
2037 	struct gfar_private *priv = grp->priv;
2038 	struct net_device *dev = priv->ndev;
2039 	int err;
2040 
2041 	/* If the device has multiple interrupts, register for
2042 	 * them.  Otherwise, only register for the one
2043 	 */
2044 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2045 		/* Install our interrupt handlers for Error,
2046 		 * Transmit, and Receive
2047 		 */
2048 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2049 				  gfar_irq(grp, ER)->name, grp);
2050 		if (err < 0) {
2051 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2052 				  gfar_irq(grp, ER)->irq);
2053 
2054 			goto err_irq_fail;
2055 		}
2056 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2057 				  gfar_irq(grp, TX)->name, grp);
2058 		if (err < 0) {
2059 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2060 				  gfar_irq(grp, TX)->irq);
2061 			goto tx_irq_fail;
2062 		}
2063 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2064 				  gfar_irq(grp, RX)->name, grp);
2065 		if (err < 0) {
2066 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2067 				  gfar_irq(grp, RX)->irq);
2068 			goto rx_irq_fail;
2069 		}
2070 	} else {
2071 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2072 				  gfar_irq(grp, TX)->name, grp);
2073 		if (err < 0) {
2074 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2075 				  gfar_irq(grp, TX)->irq);
2076 			goto err_irq_fail;
2077 		}
2078 	}
2079 
2080 	return 0;
2081 
2082 rx_irq_fail:
2083 	free_irq(gfar_irq(grp, TX)->irq, grp);
2084 tx_irq_fail:
2085 	free_irq(gfar_irq(grp, ER)->irq, grp);
2086 err_irq_fail:
2087 	return err;
2088 
2089 }
2090 
2091 static void gfar_free_irq(struct gfar_private *priv)
2092 {
2093 	int i;
2094 
2095 	/* Free the IRQs */
2096 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2097 		for (i = 0; i < priv->num_grps; i++)
2098 			free_grp_irqs(&priv->gfargrp[i]);
2099 	} else {
2100 		for (i = 0; i < priv->num_grps; i++)
2101 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2102 				 &priv->gfargrp[i]);
2103 	}
2104 }
2105 
2106 static int gfar_request_irq(struct gfar_private *priv)
2107 {
2108 	int err, i, j;
2109 
2110 	for (i = 0; i < priv->num_grps; i++) {
2111 		err = register_grp_irqs(&priv->gfargrp[i]);
2112 		if (err) {
2113 			for (j = 0; j < i; j++)
2114 				free_grp_irqs(&priv->gfargrp[j]);
2115 			return err;
2116 		}
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /* Bring the controller up and running */
2123 int startup_gfar(struct net_device *ndev)
2124 {
2125 	struct gfar_private *priv = netdev_priv(ndev);
2126 	int err;
2127 
2128 	gfar_mac_reset(priv);
2129 
2130 	err = gfar_alloc_skb_resources(ndev);
2131 	if (err)
2132 		return err;
2133 
2134 	gfar_init_tx_rx_base(priv);
2135 
2136 	smp_mb__before_atomic();
2137 	clear_bit(GFAR_DOWN, &priv->state);
2138 	smp_mb__after_atomic();
2139 
2140 	/* Start Rx/Tx DMA and enable the interrupts */
2141 	gfar_start(priv);
2142 
2143 	phy_start(priv->phydev);
2144 
2145 	enable_napi(priv);
2146 
2147 	netif_tx_wake_all_queues(ndev);
2148 
2149 	return 0;
2150 }
2151 
2152 /* Called when something needs to use the ethernet device
2153  * Returns 0 for success.
2154  */
2155 static int gfar_enet_open(struct net_device *dev)
2156 {
2157 	struct gfar_private *priv = netdev_priv(dev);
2158 	int err;
2159 
2160 	err = init_phy(dev);
2161 	if (err)
2162 		return err;
2163 
2164 	err = gfar_request_irq(priv);
2165 	if (err)
2166 		return err;
2167 
2168 	err = startup_gfar(dev);
2169 	if (err)
2170 		return err;
2171 
2172 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2173 
2174 	return err;
2175 }
2176 
2177 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2178 {
2179 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2180 
2181 	memset(fcb, 0, GMAC_FCB_LEN);
2182 
2183 	return fcb;
2184 }
2185 
2186 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2187 				    int fcb_length)
2188 {
2189 	/* If we're here, it's a IP packet with a TCP or UDP
2190 	 * payload.  We set it to checksum, using a pseudo-header
2191 	 * we provide
2192 	 */
2193 	u8 flags = TXFCB_DEFAULT;
2194 
2195 	/* Tell the controller what the protocol is
2196 	 * And provide the already calculated phcs
2197 	 */
2198 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2199 		flags |= TXFCB_UDP;
2200 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2201 	} else
2202 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2203 
2204 	/* l3os is the distance between the start of the
2205 	 * frame (skb->data) and the start of the IP hdr.
2206 	 * l4os is the distance between the start of the
2207 	 * l3 hdr and the l4 hdr
2208 	 */
2209 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2210 	fcb->l4os = skb_network_header_len(skb);
2211 
2212 	fcb->flags = flags;
2213 }
2214 
2215 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2216 {
2217 	fcb->flags |= TXFCB_VLN;
2218 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2219 }
2220 
2221 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2222 				      struct txbd8 *base, int ring_size)
2223 {
2224 	struct txbd8 *new_bd = bdp + stride;
2225 
2226 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2227 }
2228 
2229 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2230 				      int ring_size)
2231 {
2232 	return skip_txbd(bdp, 1, base, ring_size);
2233 }
2234 
2235 /* eTSEC12: csum generation not supported for some fcb offsets */
2236 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2237 				       unsigned long fcb_addr)
2238 {
2239 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2240 	       (fcb_addr % 0x20) > 0x18);
2241 }
2242 
2243 /* eTSEC76: csum generation for frames larger than 2500 may
2244  * cause excess delays before start of transmission
2245  */
2246 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2247 				       unsigned int len)
2248 {
2249 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2250 	       (len > 2500));
2251 }
2252 
2253 /* This is called by the kernel when a frame is ready for transmission.
2254  * It is pointed to by the dev->hard_start_xmit function pointer
2255  */
2256 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2257 {
2258 	struct gfar_private *priv = netdev_priv(dev);
2259 	struct gfar_priv_tx_q *tx_queue = NULL;
2260 	struct netdev_queue *txq;
2261 	struct gfar __iomem *regs = NULL;
2262 	struct txfcb *fcb = NULL;
2263 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2264 	u32 lstatus;
2265 	int i, rq = 0;
2266 	int do_tstamp, do_csum, do_vlan;
2267 	u32 bufaddr;
2268 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2269 
2270 	rq = skb->queue_mapping;
2271 	tx_queue = priv->tx_queue[rq];
2272 	txq = netdev_get_tx_queue(dev, rq);
2273 	base = tx_queue->tx_bd_base;
2274 	regs = tx_queue->grp->regs;
2275 
2276 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2277 	do_vlan = skb_vlan_tag_present(skb);
2278 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2279 		    priv->hwts_tx_en;
2280 
2281 	if (do_csum || do_vlan)
2282 		fcb_len = GMAC_FCB_LEN;
2283 
2284 	/* check if time stamp should be generated */
2285 	if (unlikely(do_tstamp))
2286 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2287 
2288 	/* make space for additional header when fcb is needed */
2289 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2290 		struct sk_buff *skb_new;
2291 
2292 		skb_new = skb_realloc_headroom(skb, fcb_len);
2293 		if (!skb_new) {
2294 			dev->stats.tx_errors++;
2295 			dev_kfree_skb_any(skb);
2296 			return NETDEV_TX_OK;
2297 		}
2298 
2299 		if (skb->sk)
2300 			skb_set_owner_w(skb_new, skb->sk);
2301 		dev_consume_skb_any(skb);
2302 		skb = skb_new;
2303 	}
2304 
2305 	/* total number of fragments in the SKB */
2306 	nr_frags = skb_shinfo(skb)->nr_frags;
2307 
2308 	/* calculate the required number of TxBDs for this skb */
2309 	if (unlikely(do_tstamp))
2310 		nr_txbds = nr_frags + 2;
2311 	else
2312 		nr_txbds = nr_frags + 1;
2313 
2314 	/* check if there is space to queue this packet */
2315 	if (nr_txbds > tx_queue->num_txbdfree) {
2316 		/* no space, stop the queue */
2317 		netif_tx_stop_queue(txq);
2318 		dev->stats.tx_fifo_errors++;
2319 		return NETDEV_TX_BUSY;
2320 	}
2321 
2322 	/* Update transmit stats */
2323 	bytes_sent = skb->len;
2324 	tx_queue->stats.tx_bytes += bytes_sent;
2325 	/* keep Tx bytes on wire for BQL accounting */
2326 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2327 	tx_queue->stats.tx_packets++;
2328 
2329 	txbdp = txbdp_start = tx_queue->cur_tx;
2330 	lstatus = be32_to_cpu(txbdp->lstatus);
2331 
2332 	/* Time stamp insertion requires one additional TxBD */
2333 	if (unlikely(do_tstamp))
2334 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2335 						 tx_queue->tx_ring_size);
2336 
2337 	if (nr_frags == 0) {
2338 		if (unlikely(do_tstamp)) {
2339 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2340 
2341 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2342 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2343 		} else {
2344 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2345 		}
2346 	} else {
2347 		/* Place the fragment addresses and lengths into the TxBDs */
2348 		for (i = 0; i < nr_frags; i++) {
2349 			unsigned int frag_len;
2350 			/* Point at the next BD, wrapping as needed */
2351 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2352 
2353 			frag_len = skb_shinfo(skb)->frags[i].size;
2354 
2355 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2356 				  BD_LFLAG(TXBD_READY);
2357 
2358 			/* Handle the last BD specially */
2359 			if (i == nr_frags - 1)
2360 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2361 
2362 			bufaddr = skb_frag_dma_map(priv->dev,
2363 						   &skb_shinfo(skb)->frags[i],
2364 						   0,
2365 						   frag_len,
2366 						   DMA_TO_DEVICE);
2367 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2368 				goto dma_map_err;
2369 
2370 			/* set the TxBD length and buffer pointer */
2371 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2372 			txbdp->lstatus = cpu_to_be32(lstatus);
2373 		}
2374 
2375 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2376 	}
2377 
2378 	/* Add TxPAL between FCB and frame if required */
2379 	if (unlikely(do_tstamp)) {
2380 		skb_push(skb, GMAC_TXPAL_LEN);
2381 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2382 	}
2383 
2384 	/* Add TxFCB if required */
2385 	if (fcb_len) {
2386 		fcb = gfar_add_fcb(skb);
2387 		lstatus |= BD_LFLAG(TXBD_TOE);
2388 	}
2389 
2390 	/* Set up checksumming */
2391 	if (do_csum) {
2392 		gfar_tx_checksum(skb, fcb, fcb_len);
2393 
2394 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2395 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2396 			__skb_pull(skb, GMAC_FCB_LEN);
2397 			skb_checksum_help(skb);
2398 			if (do_vlan || do_tstamp) {
2399 				/* put back a new fcb for vlan/tstamp TOE */
2400 				fcb = gfar_add_fcb(skb);
2401 			} else {
2402 				/* Tx TOE not used */
2403 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2404 				fcb = NULL;
2405 			}
2406 		}
2407 	}
2408 
2409 	if (do_vlan)
2410 		gfar_tx_vlan(skb, fcb);
2411 
2412 	/* Setup tx hardware time stamping if requested */
2413 	if (unlikely(do_tstamp)) {
2414 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2415 		fcb->ptp = 1;
2416 	}
2417 
2418 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2419 				 DMA_TO_DEVICE);
2420 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2421 		goto dma_map_err;
2422 
2423 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2424 
2425 	/* If time stamping is requested one additional TxBD must be set up. The
2426 	 * first TxBD points to the FCB and must have a data length of
2427 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2428 	 * the full frame length.
2429 	 */
2430 	if (unlikely(do_tstamp)) {
2431 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2432 
2433 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2434 		bufaddr += fcb_len;
2435 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2436 			      (skb_headlen(skb) - fcb_len);
2437 
2438 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2439 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2440 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2441 	} else {
2442 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2443 	}
2444 
2445 	netdev_tx_sent_queue(txq, bytes_sent);
2446 
2447 	gfar_wmb();
2448 
2449 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2450 
2451 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2452 
2453 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2454 
2455 	/* Update the current skb pointer to the next entry we will use
2456 	 * (wrapping if necessary)
2457 	 */
2458 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2459 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2460 
2461 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2462 
2463 	/* We can work in parallel with gfar_clean_tx_ring(), except
2464 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2465 	 * when we were reading the num_txbdfree and checking for available
2466 	 * space, that's because outside of this function it can only grow.
2467 	 */
2468 	spin_lock_bh(&tx_queue->txlock);
2469 	/* reduce TxBD free count */
2470 	tx_queue->num_txbdfree -= (nr_txbds);
2471 	spin_unlock_bh(&tx_queue->txlock);
2472 
2473 	/* If the next BD still needs to be cleaned up, then the bds
2474 	 * are full.  We need to tell the kernel to stop sending us stuff.
2475 	 */
2476 	if (!tx_queue->num_txbdfree) {
2477 		netif_tx_stop_queue(txq);
2478 
2479 		dev->stats.tx_fifo_errors++;
2480 	}
2481 
2482 	/* Tell the DMA to go go go */
2483 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2484 
2485 	return NETDEV_TX_OK;
2486 
2487 dma_map_err:
2488 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2489 	if (do_tstamp)
2490 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2491 	for (i = 0; i < nr_frags; i++) {
2492 		lstatus = be32_to_cpu(txbdp->lstatus);
2493 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2494 			break;
2495 
2496 		lstatus &= ~BD_LFLAG(TXBD_READY);
2497 		txbdp->lstatus = cpu_to_be32(lstatus);
2498 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2499 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2500 			       DMA_TO_DEVICE);
2501 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2502 	}
2503 	gfar_wmb();
2504 	dev_kfree_skb_any(skb);
2505 	return NETDEV_TX_OK;
2506 }
2507 
2508 /* Stops the kernel queue, and halts the controller */
2509 static int gfar_close(struct net_device *dev)
2510 {
2511 	struct gfar_private *priv = netdev_priv(dev);
2512 
2513 	cancel_work_sync(&priv->reset_task);
2514 	stop_gfar(dev);
2515 
2516 	/* Disconnect from the PHY */
2517 	phy_disconnect(priv->phydev);
2518 	priv->phydev = NULL;
2519 
2520 	gfar_free_irq(priv);
2521 
2522 	return 0;
2523 }
2524 
2525 /* Changes the mac address if the controller is not running. */
2526 static int gfar_set_mac_address(struct net_device *dev)
2527 {
2528 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2529 
2530 	return 0;
2531 }
2532 
2533 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2534 {
2535 	struct gfar_private *priv = netdev_priv(dev);
2536 	int frame_size = new_mtu + ETH_HLEN;
2537 
2538 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2539 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2540 		return -EINVAL;
2541 	}
2542 
2543 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2544 		cpu_relax();
2545 
2546 	if (dev->flags & IFF_UP)
2547 		stop_gfar(dev);
2548 
2549 	dev->mtu = new_mtu;
2550 
2551 	if (dev->flags & IFF_UP)
2552 		startup_gfar(dev);
2553 
2554 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2555 
2556 	return 0;
2557 }
2558 
2559 void reset_gfar(struct net_device *ndev)
2560 {
2561 	struct gfar_private *priv = netdev_priv(ndev);
2562 
2563 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2564 		cpu_relax();
2565 
2566 	stop_gfar(ndev);
2567 	startup_gfar(ndev);
2568 
2569 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2570 }
2571 
2572 /* gfar_reset_task gets scheduled when a packet has not been
2573  * transmitted after a set amount of time.
2574  * For now, assume that clearing out all the structures, and
2575  * starting over will fix the problem.
2576  */
2577 static void gfar_reset_task(struct work_struct *work)
2578 {
2579 	struct gfar_private *priv = container_of(work, struct gfar_private,
2580 						 reset_task);
2581 	reset_gfar(priv->ndev);
2582 }
2583 
2584 static void gfar_timeout(struct net_device *dev)
2585 {
2586 	struct gfar_private *priv = netdev_priv(dev);
2587 
2588 	dev->stats.tx_errors++;
2589 	schedule_work(&priv->reset_task);
2590 }
2591 
2592 static void gfar_align_skb(struct sk_buff *skb)
2593 {
2594 	/* We need the data buffer to be aligned properly.  We will reserve
2595 	 * as many bytes as needed to align the data properly
2596 	 */
2597 	skb_reserve(skb, RXBUF_ALIGNMENT -
2598 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2599 }
2600 
2601 /* Interrupt Handler for Transmit complete */
2602 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2603 {
2604 	struct net_device *dev = tx_queue->dev;
2605 	struct netdev_queue *txq;
2606 	struct gfar_private *priv = netdev_priv(dev);
2607 	struct txbd8 *bdp, *next = NULL;
2608 	struct txbd8 *lbdp = NULL;
2609 	struct txbd8 *base = tx_queue->tx_bd_base;
2610 	struct sk_buff *skb;
2611 	int skb_dirtytx;
2612 	int tx_ring_size = tx_queue->tx_ring_size;
2613 	int frags = 0, nr_txbds = 0;
2614 	int i;
2615 	int howmany = 0;
2616 	int tqi = tx_queue->qindex;
2617 	unsigned int bytes_sent = 0;
2618 	u32 lstatus;
2619 	size_t buflen;
2620 
2621 	txq = netdev_get_tx_queue(dev, tqi);
2622 	bdp = tx_queue->dirty_tx;
2623 	skb_dirtytx = tx_queue->skb_dirtytx;
2624 
2625 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2626 
2627 		frags = skb_shinfo(skb)->nr_frags;
2628 
2629 		/* When time stamping, one additional TxBD must be freed.
2630 		 * Also, we need to dma_unmap_single() the TxPAL.
2631 		 */
2632 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2633 			nr_txbds = frags + 2;
2634 		else
2635 			nr_txbds = frags + 1;
2636 
2637 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2638 
2639 		lstatus = be32_to_cpu(lbdp->lstatus);
2640 
2641 		/* Only clean completed frames */
2642 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2643 		    (lstatus & BD_LENGTH_MASK))
2644 			break;
2645 
2646 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2647 			next = next_txbd(bdp, base, tx_ring_size);
2648 			buflen = be16_to_cpu(next->length) +
2649 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2650 		} else
2651 			buflen = be16_to_cpu(bdp->length);
2652 
2653 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2654 				 buflen, DMA_TO_DEVICE);
2655 
2656 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2657 			struct skb_shared_hwtstamps shhwtstamps;
2658 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2659 
2660 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2661 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2662 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2663 			skb_tstamp_tx(skb, &shhwtstamps);
2664 			gfar_clear_txbd_status(bdp);
2665 			bdp = next;
2666 		}
2667 
2668 		gfar_clear_txbd_status(bdp);
2669 		bdp = next_txbd(bdp, base, tx_ring_size);
2670 
2671 		for (i = 0; i < frags; i++) {
2672 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2673 				       be16_to_cpu(bdp->length),
2674 				       DMA_TO_DEVICE);
2675 			gfar_clear_txbd_status(bdp);
2676 			bdp = next_txbd(bdp, base, tx_ring_size);
2677 		}
2678 
2679 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2680 
2681 		dev_kfree_skb_any(skb);
2682 
2683 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2684 
2685 		skb_dirtytx = (skb_dirtytx + 1) &
2686 			      TX_RING_MOD_MASK(tx_ring_size);
2687 
2688 		howmany++;
2689 		spin_lock(&tx_queue->txlock);
2690 		tx_queue->num_txbdfree += nr_txbds;
2691 		spin_unlock(&tx_queue->txlock);
2692 	}
2693 
2694 	/* If we freed a buffer, we can restart transmission, if necessary */
2695 	if (tx_queue->num_txbdfree &&
2696 	    netif_tx_queue_stopped(txq) &&
2697 	    !(test_bit(GFAR_DOWN, &priv->state)))
2698 		netif_wake_subqueue(priv->ndev, tqi);
2699 
2700 	/* Update dirty indicators */
2701 	tx_queue->skb_dirtytx = skb_dirtytx;
2702 	tx_queue->dirty_tx = bdp;
2703 
2704 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2705 }
2706 
2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2708 {
2709 	struct gfar_private *priv = netdev_priv(dev);
2710 	struct sk_buff *skb;
2711 
2712 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2713 	if (!skb)
2714 		return NULL;
2715 
2716 	gfar_align_skb(skb);
2717 
2718 	return skb;
2719 }
2720 
2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2722 {
2723 	struct gfar_private *priv = netdev_priv(dev);
2724 	struct sk_buff *skb;
2725 	dma_addr_t addr;
2726 
2727 	skb = gfar_alloc_skb(dev);
2728 	if (!skb)
2729 		return NULL;
2730 
2731 	addr = dma_map_single(priv->dev, skb->data,
2732 			      priv->rx_buffer_size, DMA_FROM_DEVICE);
2733 	if (unlikely(dma_mapping_error(priv->dev, addr))) {
2734 		dev_kfree_skb_any(skb);
2735 		return NULL;
2736 	}
2737 
2738 	*bufaddr = addr;
2739 	return skb;
2740 }
2741 
2742 static inline void count_errors(unsigned short status, struct net_device *dev)
2743 {
2744 	struct gfar_private *priv = netdev_priv(dev);
2745 	struct net_device_stats *stats = &dev->stats;
2746 	struct gfar_extra_stats *estats = &priv->extra_stats;
2747 
2748 	/* If the packet was truncated, none of the other errors matter */
2749 	if (status & RXBD_TRUNCATED) {
2750 		stats->rx_length_errors++;
2751 
2752 		atomic64_inc(&estats->rx_trunc);
2753 
2754 		return;
2755 	}
2756 	/* Count the errors, if there were any */
2757 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2758 		stats->rx_length_errors++;
2759 
2760 		if (status & RXBD_LARGE)
2761 			atomic64_inc(&estats->rx_large);
2762 		else
2763 			atomic64_inc(&estats->rx_short);
2764 	}
2765 	if (status & RXBD_NONOCTET) {
2766 		stats->rx_frame_errors++;
2767 		atomic64_inc(&estats->rx_nonoctet);
2768 	}
2769 	if (status & RXBD_CRCERR) {
2770 		atomic64_inc(&estats->rx_crcerr);
2771 		stats->rx_crc_errors++;
2772 	}
2773 	if (status & RXBD_OVERRUN) {
2774 		atomic64_inc(&estats->rx_overrun);
2775 		stats->rx_crc_errors++;
2776 	}
2777 }
2778 
2779 irqreturn_t gfar_receive(int irq, void *grp_id)
2780 {
2781 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2782 	unsigned long flags;
2783 	u32 imask;
2784 
2785 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2786 		spin_lock_irqsave(&grp->grplock, flags);
2787 		imask = gfar_read(&grp->regs->imask);
2788 		imask &= IMASK_RX_DISABLED;
2789 		gfar_write(&grp->regs->imask, imask);
2790 		spin_unlock_irqrestore(&grp->grplock, flags);
2791 		__napi_schedule(&grp->napi_rx);
2792 	} else {
2793 		/* Clear IEVENT, so interrupts aren't called again
2794 		 * because of the packets that have already arrived.
2795 		 */
2796 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2797 	}
2798 
2799 	return IRQ_HANDLED;
2800 }
2801 
2802 /* Interrupt Handler for Transmit complete */
2803 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2804 {
2805 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2806 	unsigned long flags;
2807 	u32 imask;
2808 
2809 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2810 		spin_lock_irqsave(&grp->grplock, flags);
2811 		imask = gfar_read(&grp->regs->imask);
2812 		imask &= IMASK_TX_DISABLED;
2813 		gfar_write(&grp->regs->imask, imask);
2814 		spin_unlock_irqrestore(&grp->grplock, flags);
2815 		__napi_schedule(&grp->napi_tx);
2816 	} else {
2817 		/* Clear IEVENT, so interrupts aren't called again
2818 		 * because of the packets that have already arrived.
2819 		 */
2820 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2821 	}
2822 
2823 	return IRQ_HANDLED;
2824 }
2825 
2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2827 {
2828 	/* If valid headers were found, and valid sums
2829 	 * were verified, then we tell the kernel that no
2830 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2831 	 */
2832 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2833 	    (RXFCB_CIP | RXFCB_CTU))
2834 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2835 	else
2836 		skb_checksum_none_assert(skb);
2837 }
2838 
2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2841 			       int amount_pull, struct napi_struct *napi)
2842 {
2843 	struct gfar_private *priv = netdev_priv(dev);
2844 	struct rxfcb *fcb = NULL;
2845 
2846 	/* fcb is at the beginning if exists */
2847 	fcb = (struct rxfcb *)skb->data;
2848 
2849 	/* Remove the FCB from the skb
2850 	 * Remove the padded bytes, if there are any
2851 	 */
2852 	if (amount_pull) {
2853 		skb_record_rx_queue(skb, fcb->rq);
2854 		skb_pull(skb, amount_pull);
2855 	}
2856 
2857 	/* Get receive timestamp from the skb */
2858 	if (priv->hwts_rx_en) {
2859 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2860 		u64 *ns = (u64 *) skb->data;
2861 
2862 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2863 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2864 	}
2865 
2866 	if (priv->padding)
2867 		skb_pull(skb, priv->padding);
2868 
2869 	if (dev->features & NETIF_F_RXCSUM)
2870 		gfar_rx_checksum(skb, fcb);
2871 
2872 	/* Tell the skb what kind of packet this is */
2873 	skb->protocol = eth_type_trans(skb, dev);
2874 
2875 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2876 	 * Even if vlan rx accel is disabled, on some chips
2877 	 * RXFCB_VLN is pseudo randomly set.
2878 	 */
2879 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2880 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2881 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2882 				       be16_to_cpu(fcb->vlctl));
2883 
2884 	/* Send the packet up the stack */
2885 	napi_gro_receive(napi, skb);
2886 
2887 }
2888 
2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2890  * until the budget/quota has been reached. Returns the number
2891  * of frames handled
2892  */
2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2894 {
2895 	struct net_device *dev = rx_queue->dev;
2896 	struct rxbd8 *bdp, *base;
2897 	struct sk_buff *skb;
2898 	int pkt_len;
2899 	int amount_pull;
2900 	int howmany = 0;
2901 	struct gfar_private *priv = netdev_priv(dev);
2902 
2903 	/* Get the first full descriptor */
2904 	bdp = rx_queue->cur_rx;
2905 	base = rx_queue->rx_bd_base;
2906 
2907 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2908 
2909 	while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2910 		struct sk_buff *newskb;
2911 		dma_addr_t bufaddr;
2912 
2913 		rmb();
2914 
2915 		/* Add another skb for the future */
2916 		newskb = gfar_new_skb(dev, &bufaddr);
2917 
2918 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2919 
2920 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2921 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2922 
2923 		if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2924 			     be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2925 			bdp->status = cpu_to_be16(RXBD_LARGE);
2926 
2927 		/* We drop the frame if we failed to allocate a new buffer */
2928 		if (unlikely(!newskb ||
2929 			     !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2930 			     be16_to_cpu(bdp->status) & RXBD_ERR)) {
2931 			count_errors(be16_to_cpu(bdp->status), dev);
2932 
2933 			if (unlikely(!newskb)) {
2934 				newskb = skb;
2935 				bufaddr = be32_to_cpu(bdp->bufPtr);
2936 			} else if (skb)
2937 				dev_kfree_skb(skb);
2938 		} else {
2939 			/* Increment the number of packets */
2940 			rx_queue->stats.rx_packets++;
2941 			howmany++;
2942 
2943 			if (likely(skb)) {
2944 				pkt_len = be16_to_cpu(bdp->length) -
2945 					  ETH_FCS_LEN;
2946 				/* Remove the FCS from the packet length */
2947 				skb_put(skb, pkt_len);
2948 				rx_queue->stats.rx_bytes += pkt_len;
2949 				skb_record_rx_queue(skb, rx_queue->qindex);
2950 				gfar_process_frame(dev, skb, amount_pull,
2951 						   &rx_queue->grp->napi_rx);
2952 
2953 			} else {
2954 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2955 				rx_queue->stats.rx_dropped++;
2956 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2957 			}
2958 
2959 		}
2960 
2961 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2962 
2963 		/* Setup the new bdp */
2964 		gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2965 
2966 		/* Update Last Free RxBD pointer for LFC */
2967 		if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2968 			gfar_write(rx_queue->rfbptr, (u32)bdp);
2969 
2970 		/* Update to the next pointer */
2971 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2972 
2973 		/* update to point at the next skb */
2974 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2975 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2976 	}
2977 
2978 	/* Update the current rxbd pointer to be the next one */
2979 	rx_queue->cur_rx = bdp;
2980 
2981 	return howmany;
2982 }
2983 
2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2985 {
2986 	struct gfar_priv_grp *gfargrp =
2987 		container_of(napi, struct gfar_priv_grp, napi_rx);
2988 	struct gfar __iomem *regs = gfargrp->regs;
2989 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2990 	int work_done = 0;
2991 
2992 	/* Clear IEVENT, so interrupts aren't called again
2993 	 * because of the packets that have already arrived
2994 	 */
2995 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2996 
2997 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2998 
2999 	if (work_done < budget) {
3000 		u32 imask;
3001 		napi_complete(napi);
3002 		/* Clear the halt bit in RSTAT */
3003 		gfar_write(&regs->rstat, gfargrp->rstat);
3004 
3005 		spin_lock_irq(&gfargrp->grplock);
3006 		imask = gfar_read(&regs->imask);
3007 		imask |= IMASK_RX_DEFAULT;
3008 		gfar_write(&regs->imask, imask);
3009 		spin_unlock_irq(&gfargrp->grplock);
3010 	}
3011 
3012 	return work_done;
3013 }
3014 
3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3016 {
3017 	struct gfar_priv_grp *gfargrp =
3018 		container_of(napi, struct gfar_priv_grp, napi_tx);
3019 	struct gfar __iomem *regs = gfargrp->regs;
3020 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3021 	u32 imask;
3022 
3023 	/* Clear IEVENT, so interrupts aren't called again
3024 	 * because of the packets that have already arrived
3025 	 */
3026 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3027 
3028 	/* run Tx cleanup to completion */
3029 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3030 		gfar_clean_tx_ring(tx_queue);
3031 
3032 	napi_complete(napi);
3033 
3034 	spin_lock_irq(&gfargrp->grplock);
3035 	imask = gfar_read(&regs->imask);
3036 	imask |= IMASK_TX_DEFAULT;
3037 	gfar_write(&regs->imask, imask);
3038 	spin_unlock_irq(&gfargrp->grplock);
3039 
3040 	return 0;
3041 }
3042 
3043 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3044 {
3045 	struct gfar_priv_grp *gfargrp =
3046 		container_of(napi, struct gfar_priv_grp, napi_rx);
3047 	struct gfar_private *priv = gfargrp->priv;
3048 	struct gfar __iomem *regs = gfargrp->regs;
3049 	struct gfar_priv_rx_q *rx_queue = NULL;
3050 	int work_done = 0, work_done_per_q = 0;
3051 	int i, budget_per_q = 0;
3052 	unsigned long rstat_rxf;
3053 	int num_act_queues;
3054 
3055 	/* Clear IEVENT, so interrupts aren't called again
3056 	 * because of the packets that have already arrived
3057 	 */
3058 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3059 
3060 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3061 
3062 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3063 	if (num_act_queues)
3064 		budget_per_q = budget/num_act_queues;
3065 
3066 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3067 		/* skip queue if not active */
3068 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3069 			continue;
3070 
3071 		rx_queue = priv->rx_queue[i];
3072 		work_done_per_q =
3073 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3074 		work_done += work_done_per_q;
3075 
3076 		/* finished processing this queue */
3077 		if (work_done_per_q < budget_per_q) {
3078 			/* clear active queue hw indication */
3079 			gfar_write(&regs->rstat,
3080 				   RSTAT_CLEAR_RXF0 >> i);
3081 			num_act_queues--;
3082 
3083 			if (!num_act_queues)
3084 				break;
3085 		}
3086 	}
3087 
3088 	if (!num_act_queues) {
3089 		u32 imask;
3090 		napi_complete(napi);
3091 
3092 		/* Clear the halt bit in RSTAT */
3093 		gfar_write(&regs->rstat, gfargrp->rstat);
3094 
3095 		spin_lock_irq(&gfargrp->grplock);
3096 		imask = gfar_read(&regs->imask);
3097 		imask |= IMASK_RX_DEFAULT;
3098 		gfar_write(&regs->imask, imask);
3099 		spin_unlock_irq(&gfargrp->grplock);
3100 	}
3101 
3102 	return work_done;
3103 }
3104 
3105 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3106 {
3107 	struct gfar_priv_grp *gfargrp =
3108 		container_of(napi, struct gfar_priv_grp, napi_tx);
3109 	struct gfar_private *priv = gfargrp->priv;
3110 	struct gfar __iomem *regs = gfargrp->regs;
3111 	struct gfar_priv_tx_q *tx_queue = NULL;
3112 	int has_tx_work = 0;
3113 	int i;
3114 
3115 	/* Clear IEVENT, so interrupts aren't called again
3116 	 * because of the packets that have already arrived
3117 	 */
3118 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3119 
3120 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3121 		tx_queue = priv->tx_queue[i];
3122 		/* run Tx cleanup to completion */
3123 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3124 			gfar_clean_tx_ring(tx_queue);
3125 			has_tx_work = 1;
3126 		}
3127 	}
3128 
3129 	if (!has_tx_work) {
3130 		u32 imask;
3131 		napi_complete(napi);
3132 
3133 		spin_lock_irq(&gfargrp->grplock);
3134 		imask = gfar_read(&regs->imask);
3135 		imask |= IMASK_TX_DEFAULT;
3136 		gfar_write(&regs->imask, imask);
3137 		spin_unlock_irq(&gfargrp->grplock);
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 
3144 #ifdef CONFIG_NET_POLL_CONTROLLER
3145 /* Polling 'interrupt' - used by things like netconsole to send skbs
3146  * without having to re-enable interrupts. It's not called while
3147  * the interrupt routine is executing.
3148  */
3149 static void gfar_netpoll(struct net_device *dev)
3150 {
3151 	struct gfar_private *priv = netdev_priv(dev);
3152 	int i;
3153 
3154 	/* If the device has multiple interrupts, run tx/rx */
3155 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3156 		for (i = 0; i < priv->num_grps; i++) {
3157 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3158 
3159 			disable_irq(gfar_irq(grp, TX)->irq);
3160 			disable_irq(gfar_irq(grp, RX)->irq);
3161 			disable_irq(gfar_irq(grp, ER)->irq);
3162 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3163 			enable_irq(gfar_irq(grp, ER)->irq);
3164 			enable_irq(gfar_irq(grp, RX)->irq);
3165 			enable_irq(gfar_irq(grp, TX)->irq);
3166 		}
3167 	} else {
3168 		for (i = 0; i < priv->num_grps; i++) {
3169 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3170 
3171 			disable_irq(gfar_irq(grp, TX)->irq);
3172 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3173 			enable_irq(gfar_irq(grp, TX)->irq);
3174 		}
3175 	}
3176 }
3177 #endif
3178 
3179 /* The interrupt handler for devices with one interrupt */
3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3181 {
3182 	struct gfar_priv_grp *gfargrp = grp_id;
3183 
3184 	/* Save ievent for future reference */
3185 	u32 events = gfar_read(&gfargrp->regs->ievent);
3186 
3187 	/* Check for reception */
3188 	if (events & IEVENT_RX_MASK)
3189 		gfar_receive(irq, grp_id);
3190 
3191 	/* Check for transmit completion */
3192 	if (events & IEVENT_TX_MASK)
3193 		gfar_transmit(irq, grp_id);
3194 
3195 	/* Check for errors */
3196 	if (events & IEVENT_ERR_MASK)
3197 		gfar_error(irq, grp_id);
3198 
3199 	return IRQ_HANDLED;
3200 }
3201 
3202 /* Called every time the controller might need to be made
3203  * aware of new link state.  The PHY code conveys this
3204  * information through variables in the phydev structure, and this
3205  * function converts those variables into the appropriate
3206  * register values, and can bring down the device if needed.
3207  */
3208 static void adjust_link(struct net_device *dev)
3209 {
3210 	struct gfar_private *priv = netdev_priv(dev);
3211 	struct phy_device *phydev = priv->phydev;
3212 
3213 	if (unlikely(phydev->link != priv->oldlink ||
3214 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3215 				       phydev->speed != priv->oldspeed))))
3216 		gfar_update_link_state(priv);
3217 }
3218 
3219 /* Update the hash table based on the current list of multicast
3220  * addresses we subscribe to.  Also, change the promiscuity of
3221  * the device based on the flags (this function is called
3222  * whenever dev->flags is changed
3223  */
3224 static void gfar_set_multi(struct net_device *dev)
3225 {
3226 	struct netdev_hw_addr *ha;
3227 	struct gfar_private *priv = netdev_priv(dev);
3228 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3229 	u32 tempval;
3230 
3231 	if (dev->flags & IFF_PROMISC) {
3232 		/* Set RCTRL to PROM */
3233 		tempval = gfar_read(&regs->rctrl);
3234 		tempval |= RCTRL_PROM;
3235 		gfar_write(&regs->rctrl, tempval);
3236 	} else {
3237 		/* Set RCTRL to not PROM */
3238 		tempval = gfar_read(&regs->rctrl);
3239 		tempval &= ~(RCTRL_PROM);
3240 		gfar_write(&regs->rctrl, tempval);
3241 	}
3242 
3243 	if (dev->flags & IFF_ALLMULTI) {
3244 		/* Set the hash to rx all multicast frames */
3245 		gfar_write(&regs->igaddr0, 0xffffffff);
3246 		gfar_write(&regs->igaddr1, 0xffffffff);
3247 		gfar_write(&regs->igaddr2, 0xffffffff);
3248 		gfar_write(&regs->igaddr3, 0xffffffff);
3249 		gfar_write(&regs->igaddr4, 0xffffffff);
3250 		gfar_write(&regs->igaddr5, 0xffffffff);
3251 		gfar_write(&regs->igaddr6, 0xffffffff);
3252 		gfar_write(&regs->igaddr7, 0xffffffff);
3253 		gfar_write(&regs->gaddr0, 0xffffffff);
3254 		gfar_write(&regs->gaddr1, 0xffffffff);
3255 		gfar_write(&regs->gaddr2, 0xffffffff);
3256 		gfar_write(&regs->gaddr3, 0xffffffff);
3257 		gfar_write(&regs->gaddr4, 0xffffffff);
3258 		gfar_write(&regs->gaddr5, 0xffffffff);
3259 		gfar_write(&regs->gaddr6, 0xffffffff);
3260 		gfar_write(&regs->gaddr7, 0xffffffff);
3261 	} else {
3262 		int em_num;
3263 		int idx;
3264 
3265 		/* zero out the hash */
3266 		gfar_write(&regs->igaddr0, 0x0);
3267 		gfar_write(&regs->igaddr1, 0x0);
3268 		gfar_write(&regs->igaddr2, 0x0);
3269 		gfar_write(&regs->igaddr3, 0x0);
3270 		gfar_write(&regs->igaddr4, 0x0);
3271 		gfar_write(&regs->igaddr5, 0x0);
3272 		gfar_write(&regs->igaddr6, 0x0);
3273 		gfar_write(&regs->igaddr7, 0x0);
3274 		gfar_write(&regs->gaddr0, 0x0);
3275 		gfar_write(&regs->gaddr1, 0x0);
3276 		gfar_write(&regs->gaddr2, 0x0);
3277 		gfar_write(&regs->gaddr3, 0x0);
3278 		gfar_write(&regs->gaddr4, 0x0);
3279 		gfar_write(&regs->gaddr5, 0x0);
3280 		gfar_write(&regs->gaddr6, 0x0);
3281 		gfar_write(&regs->gaddr7, 0x0);
3282 
3283 		/* If we have extended hash tables, we need to
3284 		 * clear the exact match registers to prepare for
3285 		 * setting them
3286 		 */
3287 		if (priv->extended_hash) {
3288 			em_num = GFAR_EM_NUM + 1;
3289 			gfar_clear_exact_match(dev);
3290 			idx = 1;
3291 		} else {
3292 			idx = 0;
3293 			em_num = 0;
3294 		}
3295 
3296 		if (netdev_mc_empty(dev))
3297 			return;
3298 
3299 		/* Parse the list, and set the appropriate bits */
3300 		netdev_for_each_mc_addr(ha, dev) {
3301 			if (idx < em_num) {
3302 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3303 				idx++;
3304 			} else
3305 				gfar_set_hash_for_addr(dev, ha->addr);
3306 		}
3307 	}
3308 }
3309 
3310 
3311 /* Clears each of the exact match registers to zero, so they
3312  * don't interfere with normal reception
3313  */
3314 static void gfar_clear_exact_match(struct net_device *dev)
3315 {
3316 	int idx;
3317 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3318 
3319 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3320 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3321 }
3322 
3323 /* Set the appropriate hash bit for the given addr */
3324 /* The algorithm works like so:
3325  * 1) Take the Destination Address (ie the multicast address), and
3326  * do a CRC on it (little endian), and reverse the bits of the
3327  * result.
3328  * 2) Use the 8 most significant bits as a hash into a 256-entry
3329  * table.  The table is controlled through 8 32-bit registers:
3330  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3331  * gaddr7.  This means that the 3 most significant bits in the
3332  * hash index which gaddr register to use, and the 5 other bits
3333  * indicate which bit (assuming an IBM numbering scheme, which
3334  * for PowerPC (tm) is usually the case) in the register holds
3335  * the entry.
3336  */
3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3338 {
3339 	u32 tempval;
3340 	struct gfar_private *priv = netdev_priv(dev);
3341 	u32 result = ether_crc(ETH_ALEN, addr);
3342 	int width = priv->hash_width;
3343 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3344 	u8 whichreg = result >> (32 - width + 5);
3345 	u32 value = (1 << (31-whichbit));
3346 
3347 	tempval = gfar_read(priv->hash_regs[whichreg]);
3348 	tempval |= value;
3349 	gfar_write(priv->hash_regs[whichreg], tempval);
3350 }
3351 
3352 
3353 /* There are multiple MAC Address register pairs on some controllers
3354  * This function sets the numth pair to a given address
3355  */
3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3357 				  const u8 *addr)
3358 {
3359 	struct gfar_private *priv = netdev_priv(dev);
3360 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3361 	u32 tempval;
3362 	u32 __iomem *macptr = &regs->macstnaddr1;
3363 
3364 	macptr += num*2;
3365 
3366 	/* For a station address of 0x12345678ABCD in transmission
3367 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3368 	 * MACnADDR2 is set to 0x34120000.
3369 	 */
3370 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3371 		  (addr[3] << 8)  |  addr[2];
3372 
3373 	gfar_write(macptr, tempval);
3374 
3375 	tempval = (addr[1] << 24) | (addr[0] << 16);
3376 
3377 	gfar_write(macptr+1, tempval);
3378 }
3379 
3380 /* GFAR error interrupt handler */
3381 static irqreturn_t gfar_error(int irq, void *grp_id)
3382 {
3383 	struct gfar_priv_grp *gfargrp = grp_id;
3384 	struct gfar __iomem *regs = gfargrp->regs;
3385 	struct gfar_private *priv= gfargrp->priv;
3386 	struct net_device *dev = priv->ndev;
3387 
3388 	/* Save ievent for future reference */
3389 	u32 events = gfar_read(&regs->ievent);
3390 
3391 	/* Clear IEVENT */
3392 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3393 
3394 	/* Magic Packet is not an error. */
3395 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3396 	    (events & IEVENT_MAG))
3397 		events &= ~IEVENT_MAG;
3398 
3399 	/* Hmm... */
3400 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3401 		netdev_dbg(dev,
3402 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3403 			   events, gfar_read(&regs->imask));
3404 
3405 	/* Update the error counters */
3406 	if (events & IEVENT_TXE) {
3407 		dev->stats.tx_errors++;
3408 
3409 		if (events & IEVENT_LC)
3410 			dev->stats.tx_window_errors++;
3411 		if (events & IEVENT_CRL)
3412 			dev->stats.tx_aborted_errors++;
3413 		if (events & IEVENT_XFUN) {
3414 			netif_dbg(priv, tx_err, dev,
3415 				  "TX FIFO underrun, packet dropped\n");
3416 			dev->stats.tx_dropped++;
3417 			atomic64_inc(&priv->extra_stats.tx_underrun);
3418 
3419 			schedule_work(&priv->reset_task);
3420 		}
3421 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3422 	}
3423 	if (events & IEVENT_BSY) {
3424 		dev->stats.rx_errors++;
3425 		atomic64_inc(&priv->extra_stats.rx_bsy);
3426 
3427 		gfar_receive(irq, grp_id);
3428 
3429 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3430 			  gfar_read(&regs->rstat));
3431 	}
3432 	if (events & IEVENT_BABR) {
3433 		dev->stats.rx_errors++;
3434 		atomic64_inc(&priv->extra_stats.rx_babr);
3435 
3436 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3437 	}
3438 	if (events & IEVENT_EBERR) {
3439 		atomic64_inc(&priv->extra_stats.eberr);
3440 		netif_dbg(priv, rx_err, dev, "bus error\n");
3441 	}
3442 	if (events & IEVENT_RXC)
3443 		netif_dbg(priv, rx_status, dev, "control frame\n");
3444 
3445 	if (events & IEVENT_BABT) {
3446 		atomic64_inc(&priv->extra_stats.tx_babt);
3447 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3448 	}
3449 	return IRQ_HANDLED;
3450 }
3451 
3452 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3453 {
3454 	struct phy_device *phydev = priv->phydev;
3455 	u32 val = 0;
3456 
3457 	if (!phydev->duplex)
3458 		return val;
3459 
3460 	if (!priv->pause_aneg_en) {
3461 		if (priv->tx_pause_en)
3462 			val |= MACCFG1_TX_FLOW;
3463 		if (priv->rx_pause_en)
3464 			val |= MACCFG1_RX_FLOW;
3465 	} else {
3466 		u16 lcl_adv, rmt_adv;
3467 		u8 flowctrl;
3468 		/* get link partner capabilities */
3469 		rmt_adv = 0;
3470 		if (phydev->pause)
3471 			rmt_adv = LPA_PAUSE_CAP;
3472 		if (phydev->asym_pause)
3473 			rmt_adv |= LPA_PAUSE_ASYM;
3474 
3475 		lcl_adv = 0;
3476 		if (phydev->advertising & ADVERTISED_Pause)
3477 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3478 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3479 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3480 
3481 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3482 		if (flowctrl & FLOW_CTRL_TX)
3483 			val |= MACCFG1_TX_FLOW;
3484 		if (flowctrl & FLOW_CTRL_RX)
3485 			val |= MACCFG1_RX_FLOW;
3486 	}
3487 
3488 	return val;
3489 }
3490 
3491 static noinline void gfar_update_link_state(struct gfar_private *priv)
3492 {
3493 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3494 	struct phy_device *phydev = priv->phydev;
3495 	struct gfar_priv_rx_q *rx_queue = NULL;
3496 	int i;
3497 	struct rxbd8 *bdp;
3498 
3499 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3500 		return;
3501 
3502 	if (phydev->link) {
3503 		u32 tempval1 = gfar_read(&regs->maccfg1);
3504 		u32 tempval = gfar_read(&regs->maccfg2);
3505 		u32 ecntrl = gfar_read(&regs->ecntrl);
3506 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3507 
3508 		if (phydev->duplex != priv->oldduplex) {
3509 			if (!(phydev->duplex))
3510 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3511 			else
3512 				tempval |= MACCFG2_FULL_DUPLEX;
3513 
3514 			priv->oldduplex = phydev->duplex;
3515 		}
3516 
3517 		if (phydev->speed != priv->oldspeed) {
3518 			switch (phydev->speed) {
3519 			case 1000:
3520 				tempval =
3521 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3522 
3523 				ecntrl &= ~(ECNTRL_R100);
3524 				break;
3525 			case 100:
3526 			case 10:
3527 				tempval =
3528 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3529 
3530 				/* Reduced mode distinguishes
3531 				 * between 10 and 100
3532 				 */
3533 				if (phydev->speed == SPEED_100)
3534 					ecntrl |= ECNTRL_R100;
3535 				else
3536 					ecntrl &= ~(ECNTRL_R100);
3537 				break;
3538 			default:
3539 				netif_warn(priv, link, priv->ndev,
3540 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3541 					   phydev->speed);
3542 				break;
3543 			}
3544 
3545 			priv->oldspeed = phydev->speed;
3546 		}
3547 
3548 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3549 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3550 
3551 		/* Turn last free buffer recording on */
3552 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3553 			for (i = 0; i < priv->num_rx_queues; i++) {
3554 				rx_queue = priv->rx_queue[i];
3555 				bdp = rx_queue->cur_rx;
3556 				/* skip to previous bd */
3557 				bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3558 					      rx_queue->rx_bd_base,
3559 					      rx_queue->rx_ring_size);
3560 
3561 				if (rx_queue->rfbptr)
3562 					gfar_write(rx_queue->rfbptr, (u32)bdp);
3563 			}
3564 
3565 			priv->tx_actual_en = 1;
3566 		}
3567 
3568 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3569 			priv->tx_actual_en = 0;
3570 
3571 		gfar_write(&regs->maccfg1, tempval1);
3572 		gfar_write(&regs->maccfg2, tempval);
3573 		gfar_write(&regs->ecntrl, ecntrl);
3574 
3575 		if (!priv->oldlink)
3576 			priv->oldlink = 1;
3577 
3578 	} else if (priv->oldlink) {
3579 		priv->oldlink = 0;
3580 		priv->oldspeed = 0;
3581 		priv->oldduplex = -1;
3582 	}
3583 
3584 	if (netif_msg_link(priv))
3585 		phy_print_status(phydev);
3586 }
3587 
3588 static const struct of_device_id gfar_match[] =
3589 {
3590 	{
3591 		.type = "network",
3592 		.compatible = "gianfar",
3593 	},
3594 	{
3595 		.compatible = "fsl,etsec2",
3596 	},
3597 	{},
3598 };
3599 MODULE_DEVICE_TABLE(of, gfar_match);
3600 
3601 /* Structure for a device driver */
3602 static struct platform_driver gfar_driver = {
3603 	.driver = {
3604 		.name = "fsl-gianfar",
3605 		.pm = GFAR_PM_OPS,
3606 		.of_match_table = gfar_match,
3607 	},
3608 	.probe = gfar_probe,
3609 	.remove = gfar_remove,
3610 };
3611 
3612 module_platform_driver(gfar_driver);
3613