1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #ifdef CONFIG_PPC 92 #include <asm/reg.h> 93 #include <asm/mpc85xx.h> 94 #endif 95 #include <asm/irq.h> 96 #include <asm/uaccess.h> 97 #include <linux/module.h> 98 #include <linux/dma-mapping.h> 99 #include <linux/crc32.h> 100 #include <linux/mii.h> 101 #include <linux/phy.h> 102 #include <linux/phy_fixed.h> 103 #include <linux/of.h> 104 #include <linux/of_net.h> 105 #include <linux/of_address.h> 106 #include <linux/of_irq.h> 107 108 #include "gianfar.h" 109 110 #define TX_TIMEOUT (1*HZ) 111 112 const char gfar_driver_version[] = "1.3"; 113 114 static int gfar_enet_open(struct net_device *dev); 115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 116 static void gfar_reset_task(struct work_struct *work); 117 static void gfar_timeout(struct net_device *dev); 118 static int gfar_close(struct net_device *dev); 119 static struct sk_buff *gfar_new_skb(struct net_device *dev, 120 dma_addr_t *bufaddr); 121 static int gfar_set_mac_address(struct net_device *dev); 122 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 123 static irqreturn_t gfar_error(int irq, void *dev_id); 124 static irqreturn_t gfar_transmit(int irq, void *dev_id); 125 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 126 static void adjust_link(struct net_device *dev); 127 static noinline void gfar_update_link_state(struct gfar_private *priv); 128 static int init_phy(struct net_device *dev); 129 static int gfar_probe(struct platform_device *ofdev); 130 static int gfar_remove(struct platform_device *ofdev); 131 static void free_skb_resources(struct gfar_private *priv); 132 static void gfar_set_multi(struct net_device *dev); 133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 134 static void gfar_configure_serdes(struct net_device *dev); 135 static int gfar_poll_rx(struct napi_struct *napi, int budget); 136 static int gfar_poll_tx(struct napi_struct *napi, int budget); 137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 139 #ifdef CONFIG_NET_POLL_CONTROLLER 140 static void gfar_netpoll(struct net_device *dev); 141 #endif 142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 145 int amount_pull, struct napi_struct *napi); 146 static void gfar_halt_nodisable(struct gfar_private *priv); 147 static void gfar_clear_exact_match(struct net_device *dev); 148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 149 const u8 *addr); 150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 151 152 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 153 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 154 MODULE_LICENSE("GPL"); 155 156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 157 dma_addr_t buf) 158 { 159 u32 lstatus; 160 161 bdp->bufPtr = cpu_to_be32(buf); 162 163 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 164 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 165 lstatus |= BD_LFLAG(RXBD_WRAP); 166 167 gfar_wmb(); 168 169 bdp->lstatus = cpu_to_be32(lstatus); 170 } 171 172 static int gfar_init_bds(struct net_device *ndev) 173 { 174 struct gfar_private *priv = netdev_priv(ndev); 175 struct gfar __iomem *regs = priv->gfargrp[0].regs; 176 struct gfar_priv_tx_q *tx_queue = NULL; 177 struct gfar_priv_rx_q *rx_queue = NULL; 178 struct txbd8 *txbdp; 179 struct rxbd8 *rxbdp; 180 u32 __iomem *rfbptr; 181 int i, j; 182 dma_addr_t bufaddr; 183 184 for (i = 0; i < priv->num_tx_queues; i++) { 185 tx_queue = priv->tx_queue[i]; 186 /* Initialize some variables in our dev structure */ 187 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 188 tx_queue->dirty_tx = tx_queue->tx_bd_base; 189 tx_queue->cur_tx = tx_queue->tx_bd_base; 190 tx_queue->skb_curtx = 0; 191 tx_queue->skb_dirtytx = 0; 192 193 /* Initialize Transmit Descriptor Ring */ 194 txbdp = tx_queue->tx_bd_base; 195 for (j = 0; j < tx_queue->tx_ring_size; j++) { 196 txbdp->lstatus = 0; 197 txbdp->bufPtr = 0; 198 txbdp++; 199 } 200 201 /* Set the last descriptor in the ring to indicate wrap */ 202 txbdp--; 203 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 204 TXBD_WRAP); 205 } 206 207 rfbptr = ®s->rfbptr0; 208 for (i = 0; i < priv->num_rx_queues; i++) { 209 rx_queue = priv->rx_queue[i]; 210 rx_queue->cur_rx = rx_queue->rx_bd_base; 211 rx_queue->skb_currx = 0; 212 rxbdp = rx_queue->rx_bd_base; 213 214 for (j = 0; j < rx_queue->rx_ring_size; j++) { 215 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 216 217 if (skb) { 218 bufaddr = be32_to_cpu(rxbdp->bufPtr); 219 } else { 220 skb = gfar_new_skb(ndev, &bufaddr); 221 if (!skb) { 222 netdev_err(ndev, "Can't allocate RX buffers\n"); 223 return -ENOMEM; 224 } 225 rx_queue->rx_skbuff[j] = skb; 226 } 227 228 gfar_init_rxbdp(rx_queue, rxbdp, bufaddr); 229 rxbdp++; 230 } 231 232 rx_queue->rfbptr = rfbptr; 233 rfbptr += 2; 234 } 235 236 return 0; 237 } 238 239 static int gfar_alloc_skb_resources(struct net_device *ndev) 240 { 241 void *vaddr; 242 dma_addr_t addr; 243 int i, j, k; 244 struct gfar_private *priv = netdev_priv(ndev); 245 struct device *dev = priv->dev; 246 struct gfar_priv_tx_q *tx_queue = NULL; 247 struct gfar_priv_rx_q *rx_queue = NULL; 248 249 priv->total_tx_ring_size = 0; 250 for (i = 0; i < priv->num_tx_queues; i++) 251 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 252 253 priv->total_rx_ring_size = 0; 254 for (i = 0; i < priv->num_rx_queues; i++) 255 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 256 257 /* Allocate memory for the buffer descriptors */ 258 vaddr = dma_alloc_coherent(dev, 259 (priv->total_tx_ring_size * 260 sizeof(struct txbd8)) + 261 (priv->total_rx_ring_size * 262 sizeof(struct rxbd8)), 263 &addr, GFP_KERNEL); 264 if (!vaddr) 265 return -ENOMEM; 266 267 for (i = 0; i < priv->num_tx_queues; i++) { 268 tx_queue = priv->tx_queue[i]; 269 tx_queue->tx_bd_base = vaddr; 270 tx_queue->tx_bd_dma_base = addr; 271 tx_queue->dev = ndev; 272 /* enet DMA only understands physical addresses */ 273 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 274 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 275 } 276 277 /* Start the rx descriptor ring where the tx ring leaves off */ 278 for (i = 0; i < priv->num_rx_queues; i++) { 279 rx_queue = priv->rx_queue[i]; 280 rx_queue->rx_bd_base = vaddr; 281 rx_queue->rx_bd_dma_base = addr; 282 rx_queue->dev = ndev; 283 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 284 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 285 } 286 287 /* Setup the skbuff rings */ 288 for (i = 0; i < priv->num_tx_queues; i++) { 289 tx_queue = priv->tx_queue[i]; 290 tx_queue->tx_skbuff = 291 kmalloc_array(tx_queue->tx_ring_size, 292 sizeof(*tx_queue->tx_skbuff), 293 GFP_KERNEL); 294 if (!tx_queue->tx_skbuff) 295 goto cleanup; 296 297 for (k = 0; k < tx_queue->tx_ring_size; k++) 298 tx_queue->tx_skbuff[k] = NULL; 299 } 300 301 for (i = 0; i < priv->num_rx_queues; i++) { 302 rx_queue = priv->rx_queue[i]; 303 rx_queue->rx_skbuff = 304 kmalloc_array(rx_queue->rx_ring_size, 305 sizeof(*rx_queue->rx_skbuff), 306 GFP_KERNEL); 307 if (!rx_queue->rx_skbuff) 308 goto cleanup; 309 310 for (j = 0; j < rx_queue->rx_ring_size; j++) 311 rx_queue->rx_skbuff[j] = NULL; 312 } 313 314 if (gfar_init_bds(ndev)) 315 goto cleanup; 316 317 return 0; 318 319 cleanup: 320 free_skb_resources(priv); 321 return -ENOMEM; 322 } 323 324 static void gfar_init_tx_rx_base(struct gfar_private *priv) 325 { 326 struct gfar __iomem *regs = priv->gfargrp[0].regs; 327 u32 __iomem *baddr; 328 int i; 329 330 baddr = ®s->tbase0; 331 for (i = 0; i < priv->num_tx_queues; i++) { 332 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 333 baddr += 2; 334 } 335 336 baddr = ®s->rbase0; 337 for (i = 0; i < priv->num_rx_queues; i++) { 338 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 339 baddr += 2; 340 } 341 } 342 343 static void gfar_init_rqprm(struct gfar_private *priv) 344 { 345 struct gfar __iomem *regs = priv->gfargrp[0].regs; 346 u32 __iomem *baddr; 347 int i; 348 349 baddr = ®s->rqprm0; 350 for (i = 0; i < priv->num_rx_queues; i++) { 351 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 352 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 353 baddr++; 354 } 355 } 356 357 static void gfar_rx_buff_size_config(struct gfar_private *priv) 358 { 359 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN; 360 361 /* set this when rx hw offload (TOE) functions are being used */ 362 priv->uses_rxfcb = 0; 363 364 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 365 priv->uses_rxfcb = 1; 366 367 if (priv->hwts_rx_en) 368 priv->uses_rxfcb = 1; 369 370 if (priv->uses_rxfcb) 371 frame_size += GMAC_FCB_LEN; 372 373 frame_size += priv->padding; 374 375 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 376 INCREMENTAL_BUFFER_SIZE; 377 378 priv->rx_buffer_size = frame_size; 379 } 380 381 static void gfar_mac_rx_config(struct gfar_private *priv) 382 { 383 struct gfar __iomem *regs = priv->gfargrp[0].regs; 384 u32 rctrl = 0; 385 386 if (priv->rx_filer_enable) { 387 rctrl |= RCTRL_FILREN; 388 /* Program the RIR0 reg with the required distribution */ 389 if (priv->poll_mode == GFAR_SQ_POLLING) 390 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 391 else /* GFAR_MQ_POLLING */ 392 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 393 } 394 395 /* Restore PROMISC mode */ 396 if (priv->ndev->flags & IFF_PROMISC) 397 rctrl |= RCTRL_PROM; 398 399 if (priv->ndev->features & NETIF_F_RXCSUM) 400 rctrl |= RCTRL_CHECKSUMMING; 401 402 if (priv->extended_hash) 403 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 404 405 if (priv->padding) { 406 rctrl &= ~RCTRL_PAL_MASK; 407 rctrl |= RCTRL_PADDING(priv->padding); 408 } 409 410 /* Enable HW time stamping if requested from user space */ 411 if (priv->hwts_rx_en) 412 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 413 414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 415 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 416 417 /* Clear the LFC bit */ 418 gfar_write(®s->rctrl, rctrl); 419 /* Init flow control threshold values */ 420 gfar_init_rqprm(priv); 421 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 422 rctrl |= RCTRL_LFC; 423 424 /* Init rctrl based on our settings */ 425 gfar_write(®s->rctrl, rctrl); 426 } 427 428 static void gfar_mac_tx_config(struct gfar_private *priv) 429 { 430 struct gfar __iomem *regs = priv->gfargrp[0].regs; 431 u32 tctrl = 0; 432 433 if (priv->ndev->features & NETIF_F_IP_CSUM) 434 tctrl |= TCTRL_INIT_CSUM; 435 436 if (priv->prio_sched_en) 437 tctrl |= TCTRL_TXSCHED_PRIO; 438 else { 439 tctrl |= TCTRL_TXSCHED_WRRS; 440 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 441 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 442 } 443 444 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 445 tctrl |= TCTRL_VLINS; 446 447 gfar_write(®s->tctrl, tctrl); 448 } 449 450 static void gfar_configure_coalescing(struct gfar_private *priv, 451 unsigned long tx_mask, unsigned long rx_mask) 452 { 453 struct gfar __iomem *regs = priv->gfargrp[0].regs; 454 u32 __iomem *baddr; 455 456 if (priv->mode == MQ_MG_MODE) { 457 int i = 0; 458 459 baddr = ®s->txic0; 460 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 461 gfar_write(baddr + i, 0); 462 if (likely(priv->tx_queue[i]->txcoalescing)) 463 gfar_write(baddr + i, priv->tx_queue[i]->txic); 464 } 465 466 baddr = ®s->rxic0; 467 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 468 gfar_write(baddr + i, 0); 469 if (likely(priv->rx_queue[i]->rxcoalescing)) 470 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 471 } 472 } else { 473 /* Backward compatible case -- even if we enable 474 * multiple queues, there's only single reg to program 475 */ 476 gfar_write(®s->txic, 0); 477 if (likely(priv->tx_queue[0]->txcoalescing)) 478 gfar_write(®s->txic, priv->tx_queue[0]->txic); 479 480 gfar_write(®s->rxic, 0); 481 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 482 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 483 } 484 } 485 486 void gfar_configure_coalescing_all(struct gfar_private *priv) 487 { 488 gfar_configure_coalescing(priv, 0xFF, 0xFF); 489 } 490 491 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 492 { 493 struct gfar_private *priv = netdev_priv(dev); 494 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 495 unsigned long tx_packets = 0, tx_bytes = 0; 496 int i; 497 498 for (i = 0; i < priv->num_rx_queues; i++) { 499 rx_packets += priv->rx_queue[i]->stats.rx_packets; 500 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 501 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 502 } 503 504 dev->stats.rx_packets = rx_packets; 505 dev->stats.rx_bytes = rx_bytes; 506 dev->stats.rx_dropped = rx_dropped; 507 508 for (i = 0; i < priv->num_tx_queues; i++) { 509 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 510 tx_packets += priv->tx_queue[i]->stats.tx_packets; 511 } 512 513 dev->stats.tx_bytes = tx_bytes; 514 dev->stats.tx_packets = tx_packets; 515 516 return &dev->stats; 517 } 518 519 static int gfar_set_mac_addr(struct net_device *dev, void *p) 520 { 521 eth_mac_addr(dev, p); 522 523 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 524 525 return 0; 526 } 527 528 static const struct net_device_ops gfar_netdev_ops = { 529 .ndo_open = gfar_enet_open, 530 .ndo_start_xmit = gfar_start_xmit, 531 .ndo_stop = gfar_close, 532 .ndo_change_mtu = gfar_change_mtu, 533 .ndo_set_features = gfar_set_features, 534 .ndo_set_rx_mode = gfar_set_multi, 535 .ndo_tx_timeout = gfar_timeout, 536 .ndo_do_ioctl = gfar_ioctl, 537 .ndo_get_stats = gfar_get_stats, 538 .ndo_set_mac_address = gfar_set_mac_addr, 539 .ndo_validate_addr = eth_validate_addr, 540 #ifdef CONFIG_NET_POLL_CONTROLLER 541 .ndo_poll_controller = gfar_netpoll, 542 #endif 543 }; 544 545 static void gfar_ints_disable(struct gfar_private *priv) 546 { 547 int i; 548 for (i = 0; i < priv->num_grps; i++) { 549 struct gfar __iomem *regs = priv->gfargrp[i].regs; 550 /* Clear IEVENT */ 551 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 552 553 /* Initialize IMASK */ 554 gfar_write(®s->imask, IMASK_INIT_CLEAR); 555 } 556 } 557 558 static void gfar_ints_enable(struct gfar_private *priv) 559 { 560 int i; 561 for (i = 0; i < priv->num_grps; i++) { 562 struct gfar __iomem *regs = priv->gfargrp[i].regs; 563 /* Unmask the interrupts we look for */ 564 gfar_write(®s->imask, IMASK_DEFAULT); 565 } 566 } 567 568 static void lock_tx_qs(struct gfar_private *priv) 569 { 570 int i; 571 572 for (i = 0; i < priv->num_tx_queues; i++) 573 spin_lock(&priv->tx_queue[i]->txlock); 574 } 575 576 static void unlock_tx_qs(struct gfar_private *priv) 577 { 578 int i; 579 580 for (i = 0; i < priv->num_tx_queues; i++) 581 spin_unlock(&priv->tx_queue[i]->txlock); 582 } 583 584 static int gfar_alloc_tx_queues(struct gfar_private *priv) 585 { 586 int i; 587 588 for (i = 0; i < priv->num_tx_queues; i++) { 589 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 590 GFP_KERNEL); 591 if (!priv->tx_queue[i]) 592 return -ENOMEM; 593 594 priv->tx_queue[i]->tx_skbuff = NULL; 595 priv->tx_queue[i]->qindex = i; 596 priv->tx_queue[i]->dev = priv->ndev; 597 spin_lock_init(&(priv->tx_queue[i]->txlock)); 598 } 599 return 0; 600 } 601 602 static int gfar_alloc_rx_queues(struct gfar_private *priv) 603 { 604 int i; 605 606 for (i = 0; i < priv->num_rx_queues; i++) { 607 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 608 GFP_KERNEL); 609 if (!priv->rx_queue[i]) 610 return -ENOMEM; 611 612 priv->rx_queue[i]->rx_skbuff = NULL; 613 priv->rx_queue[i]->qindex = i; 614 priv->rx_queue[i]->dev = priv->ndev; 615 } 616 return 0; 617 } 618 619 static void gfar_free_tx_queues(struct gfar_private *priv) 620 { 621 int i; 622 623 for (i = 0; i < priv->num_tx_queues; i++) 624 kfree(priv->tx_queue[i]); 625 } 626 627 static void gfar_free_rx_queues(struct gfar_private *priv) 628 { 629 int i; 630 631 for (i = 0; i < priv->num_rx_queues; i++) 632 kfree(priv->rx_queue[i]); 633 } 634 635 static void unmap_group_regs(struct gfar_private *priv) 636 { 637 int i; 638 639 for (i = 0; i < MAXGROUPS; i++) 640 if (priv->gfargrp[i].regs) 641 iounmap(priv->gfargrp[i].regs); 642 } 643 644 static void free_gfar_dev(struct gfar_private *priv) 645 { 646 int i, j; 647 648 for (i = 0; i < priv->num_grps; i++) 649 for (j = 0; j < GFAR_NUM_IRQS; j++) { 650 kfree(priv->gfargrp[i].irqinfo[j]); 651 priv->gfargrp[i].irqinfo[j] = NULL; 652 } 653 654 free_netdev(priv->ndev); 655 } 656 657 static void disable_napi(struct gfar_private *priv) 658 { 659 int i; 660 661 for (i = 0; i < priv->num_grps; i++) { 662 napi_disable(&priv->gfargrp[i].napi_rx); 663 napi_disable(&priv->gfargrp[i].napi_tx); 664 } 665 } 666 667 static void enable_napi(struct gfar_private *priv) 668 { 669 int i; 670 671 for (i = 0; i < priv->num_grps; i++) { 672 napi_enable(&priv->gfargrp[i].napi_rx); 673 napi_enable(&priv->gfargrp[i].napi_tx); 674 } 675 } 676 677 static int gfar_parse_group(struct device_node *np, 678 struct gfar_private *priv, const char *model) 679 { 680 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 681 int i; 682 683 for (i = 0; i < GFAR_NUM_IRQS; i++) { 684 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 685 GFP_KERNEL); 686 if (!grp->irqinfo[i]) 687 return -ENOMEM; 688 } 689 690 grp->regs = of_iomap(np, 0); 691 if (!grp->regs) 692 return -ENOMEM; 693 694 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 695 696 /* If we aren't the FEC we have multiple interrupts */ 697 if (model && strcasecmp(model, "FEC")) { 698 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 699 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 700 if (gfar_irq(grp, TX)->irq == NO_IRQ || 701 gfar_irq(grp, RX)->irq == NO_IRQ || 702 gfar_irq(grp, ER)->irq == NO_IRQ) 703 return -EINVAL; 704 } 705 706 grp->priv = priv; 707 spin_lock_init(&grp->grplock); 708 if (priv->mode == MQ_MG_MODE) { 709 u32 rxq_mask, txq_mask; 710 int ret; 711 712 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 713 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 714 715 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 716 if (!ret) { 717 grp->rx_bit_map = rxq_mask ? 718 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 719 } 720 721 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 722 if (!ret) { 723 grp->tx_bit_map = txq_mask ? 724 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 725 } 726 727 if (priv->poll_mode == GFAR_SQ_POLLING) { 728 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 729 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 730 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 731 } 732 } else { 733 grp->rx_bit_map = 0xFF; 734 grp->tx_bit_map = 0xFF; 735 } 736 737 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 738 * right to left, so we need to revert the 8 bits to get the q index 739 */ 740 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 741 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 742 743 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 744 * also assign queues to groups 745 */ 746 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 747 if (!grp->rx_queue) 748 grp->rx_queue = priv->rx_queue[i]; 749 grp->num_rx_queues++; 750 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 751 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 752 priv->rx_queue[i]->grp = grp; 753 } 754 755 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 756 if (!grp->tx_queue) 757 grp->tx_queue = priv->tx_queue[i]; 758 grp->num_tx_queues++; 759 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 760 priv->tqueue |= (TQUEUE_EN0 >> i); 761 priv->tx_queue[i]->grp = grp; 762 } 763 764 priv->num_grps++; 765 766 return 0; 767 } 768 769 static int gfar_of_group_count(struct device_node *np) 770 { 771 struct device_node *child; 772 int num = 0; 773 774 for_each_available_child_of_node(np, child) 775 if (!of_node_cmp(child->name, "queue-group")) 776 num++; 777 778 return num; 779 } 780 781 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 782 { 783 const char *model; 784 const char *ctype; 785 const void *mac_addr; 786 int err = 0, i; 787 struct net_device *dev = NULL; 788 struct gfar_private *priv = NULL; 789 struct device_node *np = ofdev->dev.of_node; 790 struct device_node *child = NULL; 791 struct property *stash; 792 u32 stash_len = 0; 793 u32 stash_idx = 0; 794 unsigned int num_tx_qs, num_rx_qs; 795 unsigned short mode, poll_mode; 796 797 if (!np) 798 return -ENODEV; 799 800 if (of_device_is_compatible(np, "fsl,etsec2")) { 801 mode = MQ_MG_MODE; 802 poll_mode = GFAR_SQ_POLLING; 803 } else { 804 mode = SQ_SG_MODE; 805 poll_mode = GFAR_SQ_POLLING; 806 } 807 808 if (mode == SQ_SG_MODE) { 809 num_tx_qs = 1; 810 num_rx_qs = 1; 811 } else { /* MQ_MG_MODE */ 812 /* get the actual number of supported groups */ 813 unsigned int num_grps = gfar_of_group_count(np); 814 815 if (num_grps == 0 || num_grps > MAXGROUPS) { 816 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 817 num_grps); 818 pr_err("Cannot do alloc_etherdev, aborting\n"); 819 return -EINVAL; 820 } 821 822 if (poll_mode == GFAR_SQ_POLLING) { 823 num_tx_qs = num_grps; /* one txq per int group */ 824 num_rx_qs = num_grps; /* one rxq per int group */ 825 } else { /* GFAR_MQ_POLLING */ 826 u32 tx_queues, rx_queues; 827 int ret; 828 829 /* parse the num of HW tx and rx queues */ 830 ret = of_property_read_u32(np, "fsl,num_tx_queues", 831 &tx_queues); 832 num_tx_qs = ret ? 1 : tx_queues; 833 834 ret = of_property_read_u32(np, "fsl,num_rx_queues", 835 &rx_queues); 836 num_rx_qs = ret ? 1 : rx_queues; 837 } 838 } 839 840 if (num_tx_qs > MAX_TX_QS) { 841 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 842 num_tx_qs, MAX_TX_QS); 843 pr_err("Cannot do alloc_etherdev, aborting\n"); 844 return -EINVAL; 845 } 846 847 if (num_rx_qs > MAX_RX_QS) { 848 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 849 num_rx_qs, MAX_RX_QS); 850 pr_err("Cannot do alloc_etherdev, aborting\n"); 851 return -EINVAL; 852 } 853 854 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 855 dev = *pdev; 856 if (NULL == dev) 857 return -ENOMEM; 858 859 priv = netdev_priv(dev); 860 priv->ndev = dev; 861 862 priv->mode = mode; 863 priv->poll_mode = poll_mode; 864 865 priv->num_tx_queues = num_tx_qs; 866 netif_set_real_num_rx_queues(dev, num_rx_qs); 867 priv->num_rx_queues = num_rx_qs; 868 869 err = gfar_alloc_tx_queues(priv); 870 if (err) 871 goto tx_alloc_failed; 872 873 err = gfar_alloc_rx_queues(priv); 874 if (err) 875 goto rx_alloc_failed; 876 877 err = of_property_read_string(np, "model", &model); 878 if (err) { 879 pr_err("Device model property missing, aborting\n"); 880 goto rx_alloc_failed; 881 } 882 883 /* Init Rx queue filer rule set linked list */ 884 INIT_LIST_HEAD(&priv->rx_list.list); 885 priv->rx_list.count = 0; 886 mutex_init(&priv->rx_queue_access); 887 888 for (i = 0; i < MAXGROUPS; i++) 889 priv->gfargrp[i].regs = NULL; 890 891 /* Parse and initialize group specific information */ 892 if (priv->mode == MQ_MG_MODE) { 893 for_each_available_child_of_node(np, child) { 894 if (of_node_cmp(child->name, "queue-group")) 895 continue; 896 897 err = gfar_parse_group(child, priv, model); 898 if (err) 899 goto err_grp_init; 900 } 901 } else { /* SQ_SG_MODE */ 902 err = gfar_parse_group(np, priv, model); 903 if (err) 904 goto err_grp_init; 905 } 906 907 stash = of_find_property(np, "bd-stash", NULL); 908 909 if (stash) { 910 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 911 priv->bd_stash_en = 1; 912 } 913 914 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 915 916 if (err == 0) 917 priv->rx_stash_size = stash_len; 918 919 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 920 921 if (err == 0) 922 priv->rx_stash_index = stash_idx; 923 924 if (stash_len || stash_idx) 925 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 926 927 mac_addr = of_get_mac_address(np); 928 929 if (mac_addr) 930 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 931 932 if (model && !strcasecmp(model, "TSEC")) 933 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 934 FSL_GIANFAR_DEV_HAS_COALESCE | 935 FSL_GIANFAR_DEV_HAS_RMON | 936 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 937 938 if (model && !strcasecmp(model, "eTSEC")) 939 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 940 FSL_GIANFAR_DEV_HAS_COALESCE | 941 FSL_GIANFAR_DEV_HAS_RMON | 942 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 943 FSL_GIANFAR_DEV_HAS_CSUM | 944 FSL_GIANFAR_DEV_HAS_VLAN | 945 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 946 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 947 FSL_GIANFAR_DEV_HAS_TIMER; 948 949 err = of_property_read_string(np, "phy-connection-type", &ctype); 950 951 /* We only care about rgmii-id. The rest are autodetected */ 952 if (err == 0 && !strcmp(ctype, "rgmii-id")) 953 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 954 else 955 priv->interface = PHY_INTERFACE_MODE_MII; 956 957 if (of_find_property(np, "fsl,magic-packet", NULL)) 958 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 959 960 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 961 962 /* In the case of a fixed PHY, the DT node associated 963 * to the PHY is the Ethernet MAC DT node. 964 */ 965 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 966 err = of_phy_register_fixed_link(np); 967 if (err) 968 goto err_grp_init; 969 970 priv->phy_node = of_node_get(np); 971 } 972 973 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 974 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 975 976 return 0; 977 978 err_grp_init: 979 unmap_group_regs(priv); 980 rx_alloc_failed: 981 gfar_free_rx_queues(priv); 982 tx_alloc_failed: 983 gfar_free_tx_queues(priv); 984 free_gfar_dev(priv); 985 return err; 986 } 987 988 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 989 { 990 struct hwtstamp_config config; 991 struct gfar_private *priv = netdev_priv(netdev); 992 993 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 994 return -EFAULT; 995 996 /* reserved for future extensions */ 997 if (config.flags) 998 return -EINVAL; 999 1000 switch (config.tx_type) { 1001 case HWTSTAMP_TX_OFF: 1002 priv->hwts_tx_en = 0; 1003 break; 1004 case HWTSTAMP_TX_ON: 1005 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 1006 return -ERANGE; 1007 priv->hwts_tx_en = 1; 1008 break; 1009 default: 1010 return -ERANGE; 1011 } 1012 1013 switch (config.rx_filter) { 1014 case HWTSTAMP_FILTER_NONE: 1015 if (priv->hwts_rx_en) { 1016 priv->hwts_rx_en = 0; 1017 reset_gfar(netdev); 1018 } 1019 break; 1020 default: 1021 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 1022 return -ERANGE; 1023 if (!priv->hwts_rx_en) { 1024 priv->hwts_rx_en = 1; 1025 reset_gfar(netdev); 1026 } 1027 config.rx_filter = HWTSTAMP_FILTER_ALL; 1028 break; 1029 } 1030 1031 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1032 -EFAULT : 0; 1033 } 1034 1035 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 1036 { 1037 struct hwtstamp_config config; 1038 struct gfar_private *priv = netdev_priv(netdev); 1039 1040 config.flags = 0; 1041 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 1042 config.rx_filter = (priv->hwts_rx_en ? 1043 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 1044 1045 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1046 -EFAULT : 0; 1047 } 1048 1049 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1050 { 1051 struct gfar_private *priv = netdev_priv(dev); 1052 1053 if (!netif_running(dev)) 1054 return -EINVAL; 1055 1056 if (cmd == SIOCSHWTSTAMP) 1057 return gfar_hwtstamp_set(dev, rq); 1058 if (cmd == SIOCGHWTSTAMP) 1059 return gfar_hwtstamp_get(dev, rq); 1060 1061 if (!priv->phydev) 1062 return -ENODEV; 1063 1064 return phy_mii_ioctl(priv->phydev, rq, cmd); 1065 } 1066 1067 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 1068 u32 class) 1069 { 1070 u32 rqfpr = FPR_FILER_MASK; 1071 u32 rqfcr = 0x0; 1072 1073 rqfar--; 1074 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 1075 priv->ftp_rqfpr[rqfar] = rqfpr; 1076 priv->ftp_rqfcr[rqfar] = rqfcr; 1077 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1078 1079 rqfar--; 1080 rqfcr = RQFCR_CMP_NOMATCH; 1081 priv->ftp_rqfpr[rqfar] = rqfpr; 1082 priv->ftp_rqfcr[rqfar] = rqfcr; 1083 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1084 1085 rqfar--; 1086 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 1087 rqfpr = class; 1088 priv->ftp_rqfcr[rqfar] = rqfcr; 1089 priv->ftp_rqfpr[rqfar] = rqfpr; 1090 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1091 1092 rqfar--; 1093 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 1094 rqfpr = class; 1095 priv->ftp_rqfcr[rqfar] = rqfcr; 1096 priv->ftp_rqfpr[rqfar] = rqfpr; 1097 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1098 1099 return rqfar; 1100 } 1101 1102 static void gfar_init_filer_table(struct gfar_private *priv) 1103 { 1104 int i = 0x0; 1105 u32 rqfar = MAX_FILER_IDX; 1106 u32 rqfcr = 0x0; 1107 u32 rqfpr = FPR_FILER_MASK; 1108 1109 /* Default rule */ 1110 rqfcr = RQFCR_CMP_MATCH; 1111 priv->ftp_rqfcr[rqfar] = rqfcr; 1112 priv->ftp_rqfpr[rqfar] = rqfpr; 1113 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1114 1115 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1116 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1117 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1118 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1119 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1120 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1121 1122 /* cur_filer_idx indicated the first non-masked rule */ 1123 priv->cur_filer_idx = rqfar; 1124 1125 /* Rest are masked rules */ 1126 rqfcr = RQFCR_CMP_NOMATCH; 1127 for (i = 0; i < rqfar; i++) { 1128 priv->ftp_rqfcr[i] = rqfcr; 1129 priv->ftp_rqfpr[i] = rqfpr; 1130 gfar_write_filer(priv, i, rqfcr, rqfpr); 1131 } 1132 } 1133 1134 #ifdef CONFIG_PPC 1135 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1136 { 1137 unsigned int pvr = mfspr(SPRN_PVR); 1138 unsigned int svr = mfspr(SPRN_SVR); 1139 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1140 unsigned int rev = svr & 0xffff; 1141 1142 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1143 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1144 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1145 priv->errata |= GFAR_ERRATA_74; 1146 1147 /* MPC8313 and MPC837x all rev */ 1148 if ((pvr == 0x80850010 && mod == 0x80b0) || 1149 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1150 priv->errata |= GFAR_ERRATA_76; 1151 1152 /* MPC8313 Rev < 2.0 */ 1153 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1154 priv->errata |= GFAR_ERRATA_12; 1155 } 1156 1157 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1158 { 1159 unsigned int svr = mfspr(SPRN_SVR); 1160 1161 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1162 priv->errata |= GFAR_ERRATA_12; 1163 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1164 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1165 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1166 } 1167 #endif 1168 1169 static void gfar_detect_errata(struct gfar_private *priv) 1170 { 1171 struct device *dev = &priv->ofdev->dev; 1172 1173 /* no plans to fix */ 1174 priv->errata |= GFAR_ERRATA_A002; 1175 1176 #ifdef CONFIG_PPC 1177 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1178 __gfar_detect_errata_85xx(priv); 1179 else /* non-mpc85xx parts, i.e. e300 core based */ 1180 __gfar_detect_errata_83xx(priv); 1181 #endif 1182 1183 if (priv->errata) 1184 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1185 priv->errata); 1186 } 1187 1188 void gfar_mac_reset(struct gfar_private *priv) 1189 { 1190 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1191 u32 tempval; 1192 1193 /* Reset MAC layer */ 1194 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1195 1196 /* We need to delay at least 3 TX clocks */ 1197 udelay(3); 1198 1199 /* the soft reset bit is not self-resetting, so we need to 1200 * clear it before resuming normal operation 1201 */ 1202 gfar_write(®s->maccfg1, 0); 1203 1204 udelay(3); 1205 1206 /* Compute rx_buff_size based on config flags */ 1207 gfar_rx_buff_size_config(priv); 1208 1209 /* Initialize the max receive frame/buffer lengths */ 1210 gfar_write(®s->maxfrm, priv->rx_buffer_size); 1211 gfar_write(®s->mrblr, priv->rx_buffer_size); 1212 1213 /* Initialize the Minimum Frame Length Register */ 1214 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1215 1216 /* Initialize MACCFG2. */ 1217 tempval = MACCFG2_INIT_SETTINGS; 1218 1219 /* If the mtu is larger than the max size for standard 1220 * ethernet frames (ie, a jumbo frame), then set maccfg2 1221 * to allow huge frames, and to check the length 1222 */ 1223 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 1224 gfar_has_errata(priv, GFAR_ERRATA_74)) 1225 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1226 1227 gfar_write(®s->maccfg2, tempval); 1228 1229 /* Clear mac addr hash registers */ 1230 gfar_write(®s->igaddr0, 0); 1231 gfar_write(®s->igaddr1, 0); 1232 gfar_write(®s->igaddr2, 0); 1233 gfar_write(®s->igaddr3, 0); 1234 gfar_write(®s->igaddr4, 0); 1235 gfar_write(®s->igaddr5, 0); 1236 gfar_write(®s->igaddr6, 0); 1237 gfar_write(®s->igaddr7, 0); 1238 1239 gfar_write(®s->gaddr0, 0); 1240 gfar_write(®s->gaddr1, 0); 1241 gfar_write(®s->gaddr2, 0); 1242 gfar_write(®s->gaddr3, 0); 1243 gfar_write(®s->gaddr4, 0); 1244 gfar_write(®s->gaddr5, 0); 1245 gfar_write(®s->gaddr6, 0); 1246 gfar_write(®s->gaddr7, 0); 1247 1248 if (priv->extended_hash) 1249 gfar_clear_exact_match(priv->ndev); 1250 1251 gfar_mac_rx_config(priv); 1252 1253 gfar_mac_tx_config(priv); 1254 1255 gfar_set_mac_address(priv->ndev); 1256 1257 gfar_set_multi(priv->ndev); 1258 1259 /* clear ievent and imask before configuring coalescing */ 1260 gfar_ints_disable(priv); 1261 1262 /* Configure the coalescing support */ 1263 gfar_configure_coalescing_all(priv); 1264 } 1265 1266 static void gfar_hw_init(struct gfar_private *priv) 1267 { 1268 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1269 u32 attrs; 1270 1271 /* Stop the DMA engine now, in case it was running before 1272 * (The firmware could have used it, and left it running). 1273 */ 1274 gfar_halt(priv); 1275 1276 gfar_mac_reset(priv); 1277 1278 /* Zero out the rmon mib registers if it has them */ 1279 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1280 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1281 1282 /* Mask off the CAM interrupts */ 1283 gfar_write(®s->rmon.cam1, 0xffffffff); 1284 gfar_write(®s->rmon.cam2, 0xffffffff); 1285 } 1286 1287 /* Initialize ECNTRL */ 1288 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1289 1290 /* Set the extraction length and index */ 1291 attrs = ATTRELI_EL(priv->rx_stash_size) | 1292 ATTRELI_EI(priv->rx_stash_index); 1293 1294 gfar_write(®s->attreli, attrs); 1295 1296 /* Start with defaults, and add stashing 1297 * depending on driver parameters 1298 */ 1299 attrs = ATTR_INIT_SETTINGS; 1300 1301 if (priv->bd_stash_en) 1302 attrs |= ATTR_BDSTASH; 1303 1304 if (priv->rx_stash_size != 0) 1305 attrs |= ATTR_BUFSTASH; 1306 1307 gfar_write(®s->attr, attrs); 1308 1309 /* FIFO configs */ 1310 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1311 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1312 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1313 1314 /* Program the interrupt steering regs, only for MG devices */ 1315 if (priv->num_grps > 1) 1316 gfar_write_isrg(priv); 1317 } 1318 1319 static void gfar_init_addr_hash_table(struct gfar_private *priv) 1320 { 1321 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1322 1323 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1324 priv->extended_hash = 1; 1325 priv->hash_width = 9; 1326 1327 priv->hash_regs[0] = ®s->igaddr0; 1328 priv->hash_regs[1] = ®s->igaddr1; 1329 priv->hash_regs[2] = ®s->igaddr2; 1330 priv->hash_regs[3] = ®s->igaddr3; 1331 priv->hash_regs[4] = ®s->igaddr4; 1332 priv->hash_regs[5] = ®s->igaddr5; 1333 priv->hash_regs[6] = ®s->igaddr6; 1334 priv->hash_regs[7] = ®s->igaddr7; 1335 priv->hash_regs[8] = ®s->gaddr0; 1336 priv->hash_regs[9] = ®s->gaddr1; 1337 priv->hash_regs[10] = ®s->gaddr2; 1338 priv->hash_regs[11] = ®s->gaddr3; 1339 priv->hash_regs[12] = ®s->gaddr4; 1340 priv->hash_regs[13] = ®s->gaddr5; 1341 priv->hash_regs[14] = ®s->gaddr6; 1342 priv->hash_regs[15] = ®s->gaddr7; 1343 1344 } else { 1345 priv->extended_hash = 0; 1346 priv->hash_width = 8; 1347 1348 priv->hash_regs[0] = ®s->gaddr0; 1349 priv->hash_regs[1] = ®s->gaddr1; 1350 priv->hash_regs[2] = ®s->gaddr2; 1351 priv->hash_regs[3] = ®s->gaddr3; 1352 priv->hash_regs[4] = ®s->gaddr4; 1353 priv->hash_regs[5] = ®s->gaddr5; 1354 priv->hash_regs[6] = ®s->gaddr6; 1355 priv->hash_regs[7] = ®s->gaddr7; 1356 } 1357 } 1358 1359 /* Set up the ethernet device structure, private data, 1360 * and anything else we need before we start 1361 */ 1362 static int gfar_probe(struct platform_device *ofdev) 1363 { 1364 struct net_device *dev = NULL; 1365 struct gfar_private *priv = NULL; 1366 int err = 0, i; 1367 1368 err = gfar_of_init(ofdev, &dev); 1369 1370 if (err) 1371 return err; 1372 1373 priv = netdev_priv(dev); 1374 priv->ndev = dev; 1375 priv->ofdev = ofdev; 1376 priv->dev = &ofdev->dev; 1377 SET_NETDEV_DEV(dev, &ofdev->dev); 1378 1379 spin_lock_init(&priv->bflock); 1380 INIT_WORK(&priv->reset_task, gfar_reset_task); 1381 1382 platform_set_drvdata(ofdev, priv); 1383 1384 gfar_detect_errata(priv); 1385 1386 /* Set the dev->base_addr to the gfar reg region */ 1387 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1388 1389 /* Fill in the dev structure */ 1390 dev->watchdog_timeo = TX_TIMEOUT; 1391 dev->mtu = 1500; 1392 dev->netdev_ops = &gfar_netdev_ops; 1393 dev->ethtool_ops = &gfar_ethtool_ops; 1394 1395 /* Register for napi ...We are registering NAPI for each grp */ 1396 for (i = 0; i < priv->num_grps; i++) { 1397 if (priv->poll_mode == GFAR_SQ_POLLING) { 1398 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1399 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1400 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1401 gfar_poll_tx_sq, 2); 1402 } else { 1403 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1404 gfar_poll_rx, GFAR_DEV_WEIGHT); 1405 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1406 gfar_poll_tx, 2); 1407 } 1408 } 1409 1410 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1411 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1412 NETIF_F_RXCSUM; 1413 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1414 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1415 } 1416 1417 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1418 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1419 NETIF_F_HW_VLAN_CTAG_RX; 1420 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1421 } 1422 1423 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1424 1425 gfar_init_addr_hash_table(priv); 1426 1427 /* Insert receive time stamps into padding alignment bytes */ 1428 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1429 priv->padding = 8; 1430 1431 if (dev->features & NETIF_F_IP_CSUM || 1432 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1433 dev->needed_headroom = GMAC_FCB_LEN; 1434 1435 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1436 1437 /* Initializing some of the rx/tx queue level parameters */ 1438 for (i = 0; i < priv->num_tx_queues; i++) { 1439 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1440 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1441 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1442 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1443 } 1444 1445 for (i = 0; i < priv->num_rx_queues; i++) { 1446 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1447 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1448 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1449 } 1450 1451 /* always enable rx filer */ 1452 priv->rx_filer_enable = 1; 1453 /* Enable most messages by default */ 1454 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1455 /* use pritority h/w tx queue scheduling for single queue devices */ 1456 if (priv->num_tx_queues == 1) 1457 priv->prio_sched_en = 1; 1458 1459 set_bit(GFAR_DOWN, &priv->state); 1460 1461 gfar_hw_init(priv); 1462 1463 /* Carrier starts down, phylib will bring it up */ 1464 netif_carrier_off(dev); 1465 1466 err = register_netdev(dev); 1467 1468 if (err) { 1469 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1470 goto register_fail; 1471 } 1472 1473 device_init_wakeup(&dev->dev, 1474 priv->device_flags & 1475 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1476 1477 /* fill out IRQ number and name fields */ 1478 for (i = 0; i < priv->num_grps; i++) { 1479 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1480 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1481 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1482 dev->name, "_g", '0' + i, "_tx"); 1483 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1484 dev->name, "_g", '0' + i, "_rx"); 1485 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1486 dev->name, "_g", '0' + i, "_er"); 1487 } else 1488 strcpy(gfar_irq(grp, TX)->name, dev->name); 1489 } 1490 1491 /* Initialize the filer table */ 1492 gfar_init_filer_table(priv); 1493 1494 /* Print out the device info */ 1495 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1496 1497 /* Even more device info helps when determining which kernel 1498 * provided which set of benchmarks. 1499 */ 1500 netdev_info(dev, "Running with NAPI enabled\n"); 1501 for (i = 0; i < priv->num_rx_queues; i++) 1502 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1503 i, priv->rx_queue[i]->rx_ring_size); 1504 for (i = 0; i < priv->num_tx_queues; i++) 1505 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1506 i, priv->tx_queue[i]->tx_ring_size); 1507 1508 return 0; 1509 1510 register_fail: 1511 unmap_group_regs(priv); 1512 gfar_free_rx_queues(priv); 1513 gfar_free_tx_queues(priv); 1514 of_node_put(priv->phy_node); 1515 of_node_put(priv->tbi_node); 1516 free_gfar_dev(priv); 1517 return err; 1518 } 1519 1520 static int gfar_remove(struct platform_device *ofdev) 1521 { 1522 struct gfar_private *priv = platform_get_drvdata(ofdev); 1523 1524 of_node_put(priv->phy_node); 1525 of_node_put(priv->tbi_node); 1526 1527 unregister_netdev(priv->ndev); 1528 unmap_group_regs(priv); 1529 gfar_free_rx_queues(priv); 1530 gfar_free_tx_queues(priv); 1531 free_gfar_dev(priv); 1532 1533 return 0; 1534 } 1535 1536 #ifdef CONFIG_PM 1537 1538 static int gfar_suspend(struct device *dev) 1539 { 1540 struct gfar_private *priv = dev_get_drvdata(dev); 1541 struct net_device *ndev = priv->ndev; 1542 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1543 unsigned long flags; 1544 u32 tempval; 1545 1546 int magic_packet = priv->wol_en && 1547 (priv->device_flags & 1548 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1549 1550 netif_device_detach(ndev); 1551 1552 if (netif_running(ndev)) { 1553 1554 local_irq_save(flags); 1555 lock_tx_qs(priv); 1556 1557 gfar_halt_nodisable(priv); 1558 1559 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1560 tempval = gfar_read(®s->maccfg1); 1561 1562 tempval &= ~MACCFG1_TX_EN; 1563 1564 if (!magic_packet) 1565 tempval &= ~MACCFG1_RX_EN; 1566 1567 gfar_write(®s->maccfg1, tempval); 1568 1569 unlock_tx_qs(priv); 1570 local_irq_restore(flags); 1571 1572 disable_napi(priv); 1573 1574 if (magic_packet) { 1575 /* Enable interrupt on Magic Packet */ 1576 gfar_write(®s->imask, IMASK_MAG); 1577 1578 /* Enable Magic Packet mode */ 1579 tempval = gfar_read(®s->maccfg2); 1580 tempval |= MACCFG2_MPEN; 1581 gfar_write(®s->maccfg2, tempval); 1582 } else { 1583 phy_stop(priv->phydev); 1584 } 1585 } 1586 1587 return 0; 1588 } 1589 1590 static int gfar_resume(struct device *dev) 1591 { 1592 struct gfar_private *priv = dev_get_drvdata(dev); 1593 struct net_device *ndev = priv->ndev; 1594 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1595 unsigned long flags; 1596 u32 tempval; 1597 int magic_packet = priv->wol_en && 1598 (priv->device_flags & 1599 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1600 1601 if (!netif_running(ndev)) { 1602 netif_device_attach(ndev); 1603 return 0; 1604 } 1605 1606 if (!magic_packet && priv->phydev) 1607 phy_start(priv->phydev); 1608 1609 /* Disable Magic Packet mode, in case something 1610 * else woke us up. 1611 */ 1612 local_irq_save(flags); 1613 lock_tx_qs(priv); 1614 1615 tempval = gfar_read(®s->maccfg2); 1616 tempval &= ~MACCFG2_MPEN; 1617 gfar_write(®s->maccfg2, tempval); 1618 1619 gfar_start(priv); 1620 1621 unlock_tx_qs(priv); 1622 local_irq_restore(flags); 1623 1624 netif_device_attach(ndev); 1625 1626 enable_napi(priv); 1627 1628 return 0; 1629 } 1630 1631 static int gfar_restore(struct device *dev) 1632 { 1633 struct gfar_private *priv = dev_get_drvdata(dev); 1634 struct net_device *ndev = priv->ndev; 1635 1636 if (!netif_running(ndev)) { 1637 netif_device_attach(ndev); 1638 1639 return 0; 1640 } 1641 1642 if (gfar_init_bds(ndev)) { 1643 free_skb_resources(priv); 1644 return -ENOMEM; 1645 } 1646 1647 gfar_mac_reset(priv); 1648 1649 gfar_init_tx_rx_base(priv); 1650 1651 gfar_start(priv); 1652 1653 priv->oldlink = 0; 1654 priv->oldspeed = 0; 1655 priv->oldduplex = -1; 1656 1657 if (priv->phydev) 1658 phy_start(priv->phydev); 1659 1660 netif_device_attach(ndev); 1661 enable_napi(priv); 1662 1663 return 0; 1664 } 1665 1666 static struct dev_pm_ops gfar_pm_ops = { 1667 .suspend = gfar_suspend, 1668 .resume = gfar_resume, 1669 .freeze = gfar_suspend, 1670 .thaw = gfar_resume, 1671 .restore = gfar_restore, 1672 }; 1673 1674 #define GFAR_PM_OPS (&gfar_pm_ops) 1675 1676 #else 1677 1678 #define GFAR_PM_OPS NULL 1679 1680 #endif 1681 1682 /* Reads the controller's registers to determine what interface 1683 * connects it to the PHY. 1684 */ 1685 static phy_interface_t gfar_get_interface(struct net_device *dev) 1686 { 1687 struct gfar_private *priv = netdev_priv(dev); 1688 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1689 u32 ecntrl; 1690 1691 ecntrl = gfar_read(®s->ecntrl); 1692 1693 if (ecntrl & ECNTRL_SGMII_MODE) 1694 return PHY_INTERFACE_MODE_SGMII; 1695 1696 if (ecntrl & ECNTRL_TBI_MODE) { 1697 if (ecntrl & ECNTRL_REDUCED_MODE) 1698 return PHY_INTERFACE_MODE_RTBI; 1699 else 1700 return PHY_INTERFACE_MODE_TBI; 1701 } 1702 1703 if (ecntrl & ECNTRL_REDUCED_MODE) { 1704 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1705 return PHY_INTERFACE_MODE_RMII; 1706 } 1707 else { 1708 phy_interface_t interface = priv->interface; 1709 1710 /* This isn't autodetected right now, so it must 1711 * be set by the device tree or platform code. 1712 */ 1713 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1714 return PHY_INTERFACE_MODE_RGMII_ID; 1715 1716 return PHY_INTERFACE_MODE_RGMII; 1717 } 1718 } 1719 1720 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1721 return PHY_INTERFACE_MODE_GMII; 1722 1723 return PHY_INTERFACE_MODE_MII; 1724 } 1725 1726 1727 /* Initializes driver's PHY state, and attaches to the PHY. 1728 * Returns 0 on success. 1729 */ 1730 static int init_phy(struct net_device *dev) 1731 { 1732 struct gfar_private *priv = netdev_priv(dev); 1733 uint gigabit_support = 1734 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1735 GFAR_SUPPORTED_GBIT : 0; 1736 phy_interface_t interface; 1737 1738 priv->oldlink = 0; 1739 priv->oldspeed = 0; 1740 priv->oldduplex = -1; 1741 1742 interface = gfar_get_interface(dev); 1743 1744 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1745 interface); 1746 if (!priv->phydev) { 1747 dev_err(&dev->dev, "could not attach to PHY\n"); 1748 return -ENODEV; 1749 } 1750 1751 if (interface == PHY_INTERFACE_MODE_SGMII) 1752 gfar_configure_serdes(dev); 1753 1754 /* Remove any features not supported by the controller */ 1755 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1756 priv->phydev->advertising = priv->phydev->supported; 1757 1758 /* Add support for flow control, but don't advertise it by default */ 1759 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); 1760 1761 return 0; 1762 } 1763 1764 /* Initialize TBI PHY interface for communicating with the 1765 * SERDES lynx PHY on the chip. We communicate with this PHY 1766 * through the MDIO bus on each controller, treating it as a 1767 * "normal" PHY at the address found in the TBIPA register. We assume 1768 * that the TBIPA register is valid. Either the MDIO bus code will set 1769 * it to a value that doesn't conflict with other PHYs on the bus, or the 1770 * value doesn't matter, as there are no other PHYs on the bus. 1771 */ 1772 static void gfar_configure_serdes(struct net_device *dev) 1773 { 1774 struct gfar_private *priv = netdev_priv(dev); 1775 struct phy_device *tbiphy; 1776 1777 if (!priv->tbi_node) { 1778 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1779 "device tree specify a tbi-handle\n"); 1780 return; 1781 } 1782 1783 tbiphy = of_phy_find_device(priv->tbi_node); 1784 if (!tbiphy) { 1785 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1786 return; 1787 } 1788 1789 /* If the link is already up, we must already be ok, and don't need to 1790 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1791 * everything for us? Resetting it takes the link down and requires 1792 * several seconds for it to come back. 1793 */ 1794 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1795 return; 1796 1797 /* Single clk mode, mii mode off(for serdes communication) */ 1798 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1799 1800 phy_write(tbiphy, MII_ADVERTISE, 1801 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1802 ADVERTISE_1000XPSE_ASYM); 1803 1804 phy_write(tbiphy, MII_BMCR, 1805 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1806 BMCR_SPEED1000); 1807 } 1808 1809 static int __gfar_is_rx_idle(struct gfar_private *priv) 1810 { 1811 u32 res; 1812 1813 /* Normaly TSEC should not hang on GRS commands, so we should 1814 * actually wait for IEVENT_GRSC flag. 1815 */ 1816 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1817 return 0; 1818 1819 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1820 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1821 * and the Rx can be safely reset. 1822 */ 1823 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1824 res &= 0x7f807f80; 1825 if ((res & 0xffff) == (res >> 16)) 1826 return 1; 1827 1828 return 0; 1829 } 1830 1831 /* Halt the receive and transmit queues */ 1832 static void gfar_halt_nodisable(struct gfar_private *priv) 1833 { 1834 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1835 u32 tempval; 1836 unsigned int timeout; 1837 int stopped; 1838 1839 gfar_ints_disable(priv); 1840 1841 if (gfar_is_dma_stopped(priv)) 1842 return; 1843 1844 /* Stop the DMA, and wait for it to stop */ 1845 tempval = gfar_read(®s->dmactrl); 1846 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1847 gfar_write(®s->dmactrl, tempval); 1848 1849 retry: 1850 timeout = 1000; 1851 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1852 cpu_relax(); 1853 timeout--; 1854 } 1855 1856 if (!timeout) 1857 stopped = gfar_is_dma_stopped(priv); 1858 1859 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1860 !__gfar_is_rx_idle(priv)) 1861 goto retry; 1862 } 1863 1864 /* Halt the receive and transmit queues */ 1865 void gfar_halt(struct gfar_private *priv) 1866 { 1867 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1868 u32 tempval; 1869 1870 /* Dissable the Rx/Tx hw queues */ 1871 gfar_write(®s->rqueue, 0); 1872 gfar_write(®s->tqueue, 0); 1873 1874 mdelay(10); 1875 1876 gfar_halt_nodisable(priv); 1877 1878 /* Disable Rx/Tx DMA */ 1879 tempval = gfar_read(®s->maccfg1); 1880 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1881 gfar_write(®s->maccfg1, tempval); 1882 } 1883 1884 void stop_gfar(struct net_device *dev) 1885 { 1886 struct gfar_private *priv = netdev_priv(dev); 1887 1888 netif_tx_stop_all_queues(dev); 1889 1890 smp_mb__before_atomic(); 1891 set_bit(GFAR_DOWN, &priv->state); 1892 smp_mb__after_atomic(); 1893 1894 disable_napi(priv); 1895 1896 /* disable ints and gracefully shut down Rx/Tx DMA */ 1897 gfar_halt(priv); 1898 1899 phy_stop(priv->phydev); 1900 1901 free_skb_resources(priv); 1902 } 1903 1904 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1905 { 1906 struct txbd8 *txbdp; 1907 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1908 int i, j; 1909 1910 txbdp = tx_queue->tx_bd_base; 1911 1912 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1913 if (!tx_queue->tx_skbuff[i]) 1914 continue; 1915 1916 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1917 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1918 txbdp->lstatus = 0; 1919 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1920 j++) { 1921 txbdp++; 1922 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1923 be16_to_cpu(txbdp->length), 1924 DMA_TO_DEVICE); 1925 } 1926 txbdp++; 1927 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1928 tx_queue->tx_skbuff[i] = NULL; 1929 } 1930 kfree(tx_queue->tx_skbuff); 1931 tx_queue->tx_skbuff = NULL; 1932 } 1933 1934 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1935 { 1936 struct rxbd8 *rxbdp; 1937 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1938 int i; 1939 1940 rxbdp = rx_queue->rx_bd_base; 1941 1942 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1943 if (rx_queue->rx_skbuff[i]) { 1944 dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr), 1945 priv->rx_buffer_size, 1946 DMA_FROM_DEVICE); 1947 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1948 rx_queue->rx_skbuff[i] = NULL; 1949 } 1950 rxbdp->lstatus = 0; 1951 rxbdp->bufPtr = 0; 1952 rxbdp++; 1953 } 1954 kfree(rx_queue->rx_skbuff); 1955 rx_queue->rx_skbuff = NULL; 1956 } 1957 1958 /* If there are any tx skbs or rx skbs still around, free them. 1959 * Then free tx_skbuff and rx_skbuff 1960 */ 1961 static void free_skb_resources(struct gfar_private *priv) 1962 { 1963 struct gfar_priv_tx_q *tx_queue = NULL; 1964 struct gfar_priv_rx_q *rx_queue = NULL; 1965 int i; 1966 1967 /* Go through all the buffer descriptors and free their data buffers */ 1968 for (i = 0; i < priv->num_tx_queues; i++) { 1969 struct netdev_queue *txq; 1970 1971 tx_queue = priv->tx_queue[i]; 1972 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1973 if (tx_queue->tx_skbuff) 1974 free_skb_tx_queue(tx_queue); 1975 netdev_tx_reset_queue(txq); 1976 } 1977 1978 for (i = 0; i < priv->num_rx_queues; i++) { 1979 rx_queue = priv->rx_queue[i]; 1980 if (rx_queue->rx_skbuff) 1981 free_skb_rx_queue(rx_queue); 1982 } 1983 1984 dma_free_coherent(priv->dev, 1985 sizeof(struct txbd8) * priv->total_tx_ring_size + 1986 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1987 priv->tx_queue[0]->tx_bd_base, 1988 priv->tx_queue[0]->tx_bd_dma_base); 1989 } 1990 1991 void gfar_start(struct gfar_private *priv) 1992 { 1993 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1994 u32 tempval; 1995 int i = 0; 1996 1997 /* Enable Rx/Tx hw queues */ 1998 gfar_write(®s->rqueue, priv->rqueue); 1999 gfar_write(®s->tqueue, priv->tqueue); 2000 2001 /* Initialize DMACTRL to have WWR and WOP */ 2002 tempval = gfar_read(®s->dmactrl); 2003 tempval |= DMACTRL_INIT_SETTINGS; 2004 gfar_write(®s->dmactrl, tempval); 2005 2006 /* Make sure we aren't stopped */ 2007 tempval = gfar_read(®s->dmactrl); 2008 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 2009 gfar_write(®s->dmactrl, tempval); 2010 2011 for (i = 0; i < priv->num_grps; i++) { 2012 regs = priv->gfargrp[i].regs; 2013 /* Clear THLT/RHLT, so that the DMA starts polling now */ 2014 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 2015 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 2016 } 2017 2018 /* Enable Rx/Tx DMA */ 2019 tempval = gfar_read(®s->maccfg1); 2020 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 2021 gfar_write(®s->maccfg1, tempval); 2022 2023 gfar_ints_enable(priv); 2024 2025 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 2026 } 2027 2028 static void free_grp_irqs(struct gfar_priv_grp *grp) 2029 { 2030 free_irq(gfar_irq(grp, TX)->irq, grp); 2031 free_irq(gfar_irq(grp, RX)->irq, grp); 2032 free_irq(gfar_irq(grp, ER)->irq, grp); 2033 } 2034 2035 static int register_grp_irqs(struct gfar_priv_grp *grp) 2036 { 2037 struct gfar_private *priv = grp->priv; 2038 struct net_device *dev = priv->ndev; 2039 int err; 2040 2041 /* If the device has multiple interrupts, register for 2042 * them. Otherwise, only register for the one 2043 */ 2044 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2045 /* Install our interrupt handlers for Error, 2046 * Transmit, and Receive 2047 */ 2048 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2049 gfar_irq(grp, ER)->name, grp); 2050 if (err < 0) { 2051 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2052 gfar_irq(grp, ER)->irq); 2053 2054 goto err_irq_fail; 2055 } 2056 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2057 gfar_irq(grp, TX)->name, grp); 2058 if (err < 0) { 2059 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2060 gfar_irq(grp, TX)->irq); 2061 goto tx_irq_fail; 2062 } 2063 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2064 gfar_irq(grp, RX)->name, grp); 2065 if (err < 0) { 2066 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2067 gfar_irq(grp, RX)->irq); 2068 goto rx_irq_fail; 2069 } 2070 } else { 2071 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2072 gfar_irq(grp, TX)->name, grp); 2073 if (err < 0) { 2074 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2075 gfar_irq(grp, TX)->irq); 2076 goto err_irq_fail; 2077 } 2078 } 2079 2080 return 0; 2081 2082 rx_irq_fail: 2083 free_irq(gfar_irq(grp, TX)->irq, grp); 2084 tx_irq_fail: 2085 free_irq(gfar_irq(grp, ER)->irq, grp); 2086 err_irq_fail: 2087 return err; 2088 2089 } 2090 2091 static void gfar_free_irq(struct gfar_private *priv) 2092 { 2093 int i; 2094 2095 /* Free the IRQs */ 2096 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2097 for (i = 0; i < priv->num_grps; i++) 2098 free_grp_irqs(&priv->gfargrp[i]); 2099 } else { 2100 for (i = 0; i < priv->num_grps; i++) 2101 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2102 &priv->gfargrp[i]); 2103 } 2104 } 2105 2106 static int gfar_request_irq(struct gfar_private *priv) 2107 { 2108 int err, i, j; 2109 2110 for (i = 0; i < priv->num_grps; i++) { 2111 err = register_grp_irqs(&priv->gfargrp[i]); 2112 if (err) { 2113 for (j = 0; j < i; j++) 2114 free_grp_irqs(&priv->gfargrp[j]); 2115 return err; 2116 } 2117 } 2118 2119 return 0; 2120 } 2121 2122 /* Bring the controller up and running */ 2123 int startup_gfar(struct net_device *ndev) 2124 { 2125 struct gfar_private *priv = netdev_priv(ndev); 2126 int err; 2127 2128 gfar_mac_reset(priv); 2129 2130 err = gfar_alloc_skb_resources(ndev); 2131 if (err) 2132 return err; 2133 2134 gfar_init_tx_rx_base(priv); 2135 2136 smp_mb__before_atomic(); 2137 clear_bit(GFAR_DOWN, &priv->state); 2138 smp_mb__after_atomic(); 2139 2140 /* Start Rx/Tx DMA and enable the interrupts */ 2141 gfar_start(priv); 2142 2143 phy_start(priv->phydev); 2144 2145 enable_napi(priv); 2146 2147 netif_tx_wake_all_queues(ndev); 2148 2149 return 0; 2150 } 2151 2152 /* Called when something needs to use the ethernet device 2153 * Returns 0 for success. 2154 */ 2155 static int gfar_enet_open(struct net_device *dev) 2156 { 2157 struct gfar_private *priv = netdev_priv(dev); 2158 int err; 2159 2160 err = init_phy(dev); 2161 if (err) 2162 return err; 2163 2164 err = gfar_request_irq(priv); 2165 if (err) 2166 return err; 2167 2168 err = startup_gfar(dev); 2169 if (err) 2170 return err; 2171 2172 device_set_wakeup_enable(&dev->dev, priv->wol_en); 2173 2174 return err; 2175 } 2176 2177 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2178 { 2179 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2180 2181 memset(fcb, 0, GMAC_FCB_LEN); 2182 2183 return fcb; 2184 } 2185 2186 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2187 int fcb_length) 2188 { 2189 /* If we're here, it's a IP packet with a TCP or UDP 2190 * payload. We set it to checksum, using a pseudo-header 2191 * we provide 2192 */ 2193 u8 flags = TXFCB_DEFAULT; 2194 2195 /* Tell the controller what the protocol is 2196 * And provide the already calculated phcs 2197 */ 2198 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2199 flags |= TXFCB_UDP; 2200 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 2201 } else 2202 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 2203 2204 /* l3os is the distance between the start of the 2205 * frame (skb->data) and the start of the IP hdr. 2206 * l4os is the distance between the start of the 2207 * l3 hdr and the l4 hdr 2208 */ 2209 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 2210 fcb->l4os = skb_network_header_len(skb); 2211 2212 fcb->flags = flags; 2213 } 2214 2215 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2216 { 2217 fcb->flags |= TXFCB_VLN; 2218 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 2219 } 2220 2221 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2222 struct txbd8 *base, int ring_size) 2223 { 2224 struct txbd8 *new_bd = bdp + stride; 2225 2226 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2227 } 2228 2229 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2230 int ring_size) 2231 { 2232 return skip_txbd(bdp, 1, base, ring_size); 2233 } 2234 2235 /* eTSEC12: csum generation not supported for some fcb offsets */ 2236 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2237 unsigned long fcb_addr) 2238 { 2239 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2240 (fcb_addr % 0x20) > 0x18); 2241 } 2242 2243 /* eTSEC76: csum generation for frames larger than 2500 may 2244 * cause excess delays before start of transmission 2245 */ 2246 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2247 unsigned int len) 2248 { 2249 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2250 (len > 2500)); 2251 } 2252 2253 /* This is called by the kernel when a frame is ready for transmission. 2254 * It is pointed to by the dev->hard_start_xmit function pointer 2255 */ 2256 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2257 { 2258 struct gfar_private *priv = netdev_priv(dev); 2259 struct gfar_priv_tx_q *tx_queue = NULL; 2260 struct netdev_queue *txq; 2261 struct gfar __iomem *regs = NULL; 2262 struct txfcb *fcb = NULL; 2263 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2264 u32 lstatus; 2265 int i, rq = 0; 2266 int do_tstamp, do_csum, do_vlan; 2267 u32 bufaddr; 2268 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2269 2270 rq = skb->queue_mapping; 2271 tx_queue = priv->tx_queue[rq]; 2272 txq = netdev_get_tx_queue(dev, rq); 2273 base = tx_queue->tx_bd_base; 2274 regs = tx_queue->grp->regs; 2275 2276 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2277 do_vlan = skb_vlan_tag_present(skb); 2278 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2279 priv->hwts_tx_en; 2280 2281 if (do_csum || do_vlan) 2282 fcb_len = GMAC_FCB_LEN; 2283 2284 /* check if time stamp should be generated */ 2285 if (unlikely(do_tstamp)) 2286 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2287 2288 /* make space for additional header when fcb is needed */ 2289 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2290 struct sk_buff *skb_new; 2291 2292 skb_new = skb_realloc_headroom(skb, fcb_len); 2293 if (!skb_new) { 2294 dev->stats.tx_errors++; 2295 dev_kfree_skb_any(skb); 2296 return NETDEV_TX_OK; 2297 } 2298 2299 if (skb->sk) 2300 skb_set_owner_w(skb_new, skb->sk); 2301 dev_consume_skb_any(skb); 2302 skb = skb_new; 2303 } 2304 2305 /* total number of fragments in the SKB */ 2306 nr_frags = skb_shinfo(skb)->nr_frags; 2307 2308 /* calculate the required number of TxBDs for this skb */ 2309 if (unlikely(do_tstamp)) 2310 nr_txbds = nr_frags + 2; 2311 else 2312 nr_txbds = nr_frags + 1; 2313 2314 /* check if there is space to queue this packet */ 2315 if (nr_txbds > tx_queue->num_txbdfree) { 2316 /* no space, stop the queue */ 2317 netif_tx_stop_queue(txq); 2318 dev->stats.tx_fifo_errors++; 2319 return NETDEV_TX_BUSY; 2320 } 2321 2322 /* Update transmit stats */ 2323 bytes_sent = skb->len; 2324 tx_queue->stats.tx_bytes += bytes_sent; 2325 /* keep Tx bytes on wire for BQL accounting */ 2326 GFAR_CB(skb)->bytes_sent = bytes_sent; 2327 tx_queue->stats.tx_packets++; 2328 2329 txbdp = txbdp_start = tx_queue->cur_tx; 2330 lstatus = be32_to_cpu(txbdp->lstatus); 2331 2332 /* Time stamp insertion requires one additional TxBD */ 2333 if (unlikely(do_tstamp)) 2334 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2335 tx_queue->tx_ring_size); 2336 2337 if (nr_frags == 0) { 2338 if (unlikely(do_tstamp)) { 2339 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 2340 2341 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2342 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 2343 } else { 2344 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2345 } 2346 } else { 2347 /* Place the fragment addresses and lengths into the TxBDs */ 2348 for (i = 0; i < nr_frags; i++) { 2349 unsigned int frag_len; 2350 /* Point at the next BD, wrapping as needed */ 2351 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2352 2353 frag_len = skb_shinfo(skb)->frags[i].size; 2354 2355 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len | 2356 BD_LFLAG(TXBD_READY); 2357 2358 /* Handle the last BD specially */ 2359 if (i == nr_frags - 1) 2360 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2361 2362 bufaddr = skb_frag_dma_map(priv->dev, 2363 &skb_shinfo(skb)->frags[i], 2364 0, 2365 frag_len, 2366 DMA_TO_DEVICE); 2367 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2368 goto dma_map_err; 2369 2370 /* set the TxBD length and buffer pointer */ 2371 txbdp->bufPtr = cpu_to_be32(bufaddr); 2372 txbdp->lstatus = cpu_to_be32(lstatus); 2373 } 2374 2375 lstatus = be32_to_cpu(txbdp_start->lstatus); 2376 } 2377 2378 /* Add TxPAL between FCB and frame if required */ 2379 if (unlikely(do_tstamp)) { 2380 skb_push(skb, GMAC_TXPAL_LEN); 2381 memset(skb->data, 0, GMAC_TXPAL_LEN); 2382 } 2383 2384 /* Add TxFCB if required */ 2385 if (fcb_len) { 2386 fcb = gfar_add_fcb(skb); 2387 lstatus |= BD_LFLAG(TXBD_TOE); 2388 } 2389 2390 /* Set up checksumming */ 2391 if (do_csum) { 2392 gfar_tx_checksum(skb, fcb, fcb_len); 2393 2394 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2395 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2396 __skb_pull(skb, GMAC_FCB_LEN); 2397 skb_checksum_help(skb); 2398 if (do_vlan || do_tstamp) { 2399 /* put back a new fcb for vlan/tstamp TOE */ 2400 fcb = gfar_add_fcb(skb); 2401 } else { 2402 /* Tx TOE not used */ 2403 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2404 fcb = NULL; 2405 } 2406 } 2407 } 2408 2409 if (do_vlan) 2410 gfar_tx_vlan(skb, fcb); 2411 2412 /* Setup tx hardware time stamping if requested */ 2413 if (unlikely(do_tstamp)) { 2414 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2415 fcb->ptp = 1; 2416 } 2417 2418 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 2419 DMA_TO_DEVICE); 2420 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2421 goto dma_map_err; 2422 2423 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 2424 2425 /* If time stamping is requested one additional TxBD must be set up. The 2426 * first TxBD points to the FCB and must have a data length of 2427 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2428 * the full frame length. 2429 */ 2430 if (unlikely(do_tstamp)) { 2431 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 2432 2433 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 2434 bufaddr += fcb_len; 2435 lstatus_ts |= BD_LFLAG(TXBD_READY) | 2436 (skb_headlen(skb) - fcb_len); 2437 2438 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 2439 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 2440 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2441 } else { 2442 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2443 } 2444 2445 netdev_tx_sent_queue(txq, bytes_sent); 2446 2447 gfar_wmb(); 2448 2449 txbdp_start->lstatus = cpu_to_be32(lstatus); 2450 2451 gfar_wmb(); /* force lstatus write before tx_skbuff */ 2452 2453 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2454 2455 /* Update the current skb pointer to the next entry we will use 2456 * (wrapping if necessary) 2457 */ 2458 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2459 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2460 2461 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2462 2463 /* We can work in parallel with gfar_clean_tx_ring(), except 2464 * when modifying num_txbdfree. Note that we didn't grab the lock 2465 * when we were reading the num_txbdfree and checking for available 2466 * space, that's because outside of this function it can only grow. 2467 */ 2468 spin_lock_bh(&tx_queue->txlock); 2469 /* reduce TxBD free count */ 2470 tx_queue->num_txbdfree -= (nr_txbds); 2471 spin_unlock_bh(&tx_queue->txlock); 2472 2473 /* If the next BD still needs to be cleaned up, then the bds 2474 * are full. We need to tell the kernel to stop sending us stuff. 2475 */ 2476 if (!tx_queue->num_txbdfree) { 2477 netif_tx_stop_queue(txq); 2478 2479 dev->stats.tx_fifo_errors++; 2480 } 2481 2482 /* Tell the DMA to go go go */ 2483 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2484 2485 return NETDEV_TX_OK; 2486 2487 dma_map_err: 2488 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2489 if (do_tstamp) 2490 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2491 for (i = 0; i < nr_frags; i++) { 2492 lstatus = be32_to_cpu(txbdp->lstatus); 2493 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2494 break; 2495 2496 lstatus &= ~BD_LFLAG(TXBD_READY); 2497 txbdp->lstatus = cpu_to_be32(lstatus); 2498 bufaddr = be32_to_cpu(txbdp->bufPtr); 2499 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2500 DMA_TO_DEVICE); 2501 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2502 } 2503 gfar_wmb(); 2504 dev_kfree_skb_any(skb); 2505 return NETDEV_TX_OK; 2506 } 2507 2508 /* Stops the kernel queue, and halts the controller */ 2509 static int gfar_close(struct net_device *dev) 2510 { 2511 struct gfar_private *priv = netdev_priv(dev); 2512 2513 cancel_work_sync(&priv->reset_task); 2514 stop_gfar(dev); 2515 2516 /* Disconnect from the PHY */ 2517 phy_disconnect(priv->phydev); 2518 priv->phydev = NULL; 2519 2520 gfar_free_irq(priv); 2521 2522 return 0; 2523 } 2524 2525 /* Changes the mac address if the controller is not running. */ 2526 static int gfar_set_mac_address(struct net_device *dev) 2527 { 2528 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2529 2530 return 0; 2531 } 2532 2533 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2534 { 2535 struct gfar_private *priv = netdev_priv(dev); 2536 int frame_size = new_mtu + ETH_HLEN; 2537 2538 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2539 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2540 return -EINVAL; 2541 } 2542 2543 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2544 cpu_relax(); 2545 2546 if (dev->flags & IFF_UP) 2547 stop_gfar(dev); 2548 2549 dev->mtu = new_mtu; 2550 2551 if (dev->flags & IFF_UP) 2552 startup_gfar(dev); 2553 2554 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2555 2556 return 0; 2557 } 2558 2559 void reset_gfar(struct net_device *ndev) 2560 { 2561 struct gfar_private *priv = netdev_priv(ndev); 2562 2563 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2564 cpu_relax(); 2565 2566 stop_gfar(ndev); 2567 startup_gfar(ndev); 2568 2569 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2570 } 2571 2572 /* gfar_reset_task gets scheduled when a packet has not been 2573 * transmitted after a set amount of time. 2574 * For now, assume that clearing out all the structures, and 2575 * starting over will fix the problem. 2576 */ 2577 static void gfar_reset_task(struct work_struct *work) 2578 { 2579 struct gfar_private *priv = container_of(work, struct gfar_private, 2580 reset_task); 2581 reset_gfar(priv->ndev); 2582 } 2583 2584 static void gfar_timeout(struct net_device *dev) 2585 { 2586 struct gfar_private *priv = netdev_priv(dev); 2587 2588 dev->stats.tx_errors++; 2589 schedule_work(&priv->reset_task); 2590 } 2591 2592 static void gfar_align_skb(struct sk_buff *skb) 2593 { 2594 /* We need the data buffer to be aligned properly. We will reserve 2595 * as many bytes as needed to align the data properly 2596 */ 2597 skb_reserve(skb, RXBUF_ALIGNMENT - 2598 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2599 } 2600 2601 /* Interrupt Handler for Transmit complete */ 2602 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2603 { 2604 struct net_device *dev = tx_queue->dev; 2605 struct netdev_queue *txq; 2606 struct gfar_private *priv = netdev_priv(dev); 2607 struct txbd8 *bdp, *next = NULL; 2608 struct txbd8 *lbdp = NULL; 2609 struct txbd8 *base = tx_queue->tx_bd_base; 2610 struct sk_buff *skb; 2611 int skb_dirtytx; 2612 int tx_ring_size = tx_queue->tx_ring_size; 2613 int frags = 0, nr_txbds = 0; 2614 int i; 2615 int howmany = 0; 2616 int tqi = tx_queue->qindex; 2617 unsigned int bytes_sent = 0; 2618 u32 lstatus; 2619 size_t buflen; 2620 2621 txq = netdev_get_tx_queue(dev, tqi); 2622 bdp = tx_queue->dirty_tx; 2623 skb_dirtytx = tx_queue->skb_dirtytx; 2624 2625 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2626 2627 frags = skb_shinfo(skb)->nr_frags; 2628 2629 /* When time stamping, one additional TxBD must be freed. 2630 * Also, we need to dma_unmap_single() the TxPAL. 2631 */ 2632 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2633 nr_txbds = frags + 2; 2634 else 2635 nr_txbds = frags + 1; 2636 2637 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2638 2639 lstatus = be32_to_cpu(lbdp->lstatus); 2640 2641 /* Only clean completed frames */ 2642 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2643 (lstatus & BD_LENGTH_MASK)) 2644 break; 2645 2646 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2647 next = next_txbd(bdp, base, tx_ring_size); 2648 buflen = be16_to_cpu(next->length) + 2649 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2650 } else 2651 buflen = be16_to_cpu(bdp->length); 2652 2653 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2654 buflen, DMA_TO_DEVICE); 2655 2656 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2657 struct skb_shared_hwtstamps shhwtstamps; 2658 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2659 2660 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2661 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2662 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2663 skb_tstamp_tx(skb, &shhwtstamps); 2664 gfar_clear_txbd_status(bdp); 2665 bdp = next; 2666 } 2667 2668 gfar_clear_txbd_status(bdp); 2669 bdp = next_txbd(bdp, base, tx_ring_size); 2670 2671 for (i = 0; i < frags; i++) { 2672 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2673 be16_to_cpu(bdp->length), 2674 DMA_TO_DEVICE); 2675 gfar_clear_txbd_status(bdp); 2676 bdp = next_txbd(bdp, base, tx_ring_size); 2677 } 2678 2679 bytes_sent += GFAR_CB(skb)->bytes_sent; 2680 2681 dev_kfree_skb_any(skb); 2682 2683 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2684 2685 skb_dirtytx = (skb_dirtytx + 1) & 2686 TX_RING_MOD_MASK(tx_ring_size); 2687 2688 howmany++; 2689 spin_lock(&tx_queue->txlock); 2690 tx_queue->num_txbdfree += nr_txbds; 2691 spin_unlock(&tx_queue->txlock); 2692 } 2693 2694 /* If we freed a buffer, we can restart transmission, if necessary */ 2695 if (tx_queue->num_txbdfree && 2696 netif_tx_queue_stopped(txq) && 2697 !(test_bit(GFAR_DOWN, &priv->state))) 2698 netif_wake_subqueue(priv->ndev, tqi); 2699 2700 /* Update dirty indicators */ 2701 tx_queue->skb_dirtytx = skb_dirtytx; 2702 tx_queue->dirty_tx = bdp; 2703 2704 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2705 } 2706 2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev) 2708 { 2709 struct gfar_private *priv = netdev_priv(dev); 2710 struct sk_buff *skb; 2711 2712 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2713 if (!skb) 2714 return NULL; 2715 2716 gfar_align_skb(skb); 2717 2718 return skb; 2719 } 2720 2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr) 2722 { 2723 struct gfar_private *priv = netdev_priv(dev); 2724 struct sk_buff *skb; 2725 dma_addr_t addr; 2726 2727 skb = gfar_alloc_skb(dev); 2728 if (!skb) 2729 return NULL; 2730 2731 addr = dma_map_single(priv->dev, skb->data, 2732 priv->rx_buffer_size, DMA_FROM_DEVICE); 2733 if (unlikely(dma_mapping_error(priv->dev, addr))) { 2734 dev_kfree_skb_any(skb); 2735 return NULL; 2736 } 2737 2738 *bufaddr = addr; 2739 return skb; 2740 } 2741 2742 static inline void count_errors(unsigned short status, struct net_device *dev) 2743 { 2744 struct gfar_private *priv = netdev_priv(dev); 2745 struct net_device_stats *stats = &dev->stats; 2746 struct gfar_extra_stats *estats = &priv->extra_stats; 2747 2748 /* If the packet was truncated, none of the other errors matter */ 2749 if (status & RXBD_TRUNCATED) { 2750 stats->rx_length_errors++; 2751 2752 atomic64_inc(&estats->rx_trunc); 2753 2754 return; 2755 } 2756 /* Count the errors, if there were any */ 2757 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2758 stats->rx_length_errors++; 2759 2760 if (status & RXBD_LARGE) 2761 atomic64_inc(&estats->rx_large); 2762 else 2763 atomic64_inc(&estats->rx_short); 2764 } 2765 if (status & RXBD_NONOCTET) { 2766 stats->rx_frame_errors++; 2767 atomic64_inc(&estats->rx_nonoctet); 2768 } 2769 if (status & RXBD_CRCERR) { 2770 atomic64_inc(&estats->rx_crcerr); 2771 stats->rx_crc_errors++; 2772 } 2773 if (status & RXBD_OVERRUN) { 2774 atomic64_inc(&estats->rx_overrun); 2775 stats->rx_crc_errors++; 2776 } 2777 } 2778 2779 irqreturn_t gfar_receive(int irq, void *grp_id) 2780 { 2781 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2782 unsigned long flags; 2783 u32 imask; 2784 2785 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2786 spin_lock_irqsave(&grp->grplock, flags); 2787 imask = gfar_read(&grp->regs->imask); 2788 imask &= IMASK_RX_DISABLED; 2789 gfar_write(&grp->regs->imask, imask); 2790 spin_unlock_irqrestore(&grp->grplock, flags); 2791 __napi_schedule(&grp->napi_rx); 2792 } else { 2793 /* Clear IEVENT, so interrupts aren't called again 2794 * because of the packets that have already arrived. 2795 */ 2796 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2797 } 2798 2799 return IRQ_HANDLED; 2800 } 2801 2802 /* Interrupt Handler for Transmit complete */ 2803 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2804 { 2805 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2806 unsigned long flags; 2807 u32 imask; 2808 2809 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2810 spin_lock_irqsave(&grp->grplock, flags); 2811 imask = gfar_read(&grp->regs->imask); 2812 imask &= IMASK_TX_DISABLED; 2813 gfar_write(&grp->regs->imask, imask); 2814 spin_unlock_irqrestore(&grp->grplock, flags); 2815 __napi_schedule(&grp->napi_tx); 2816 } else { 2817 /* Clear IEVENT, so interrupts aren't called again 2818 * because of the packets that have already arrived. 2819 */ 2820 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2821 } 2822 2823 return IRQ_HANDLED; 2824 } 2825 2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2827 { 2828 /* If valid headers were found, and valid sums 2829 * were verified, then we tell the kernel that no 2830 * checksumming is necessary. Otherwise, it is [FIXME] 2831 */ 2832 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2833 (RXFCB_CIP | RXFCB_CTU)) 2834 skb->ip_summed = CHECKSUM_UNNECESSARY; 2835 else 2836 skb_checksum_none_assert(skb); 2837 } 2838 2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2841 int amount_pull, struct napi_struct *napi) 2842 { 2843 struct gfar_private *priv = netdev_priv(dev); 2844 struct rxfcb *fcb = NULL; 2845 2846 /* fcb is at the beginning if exists */ 2847 fcb = (struct rxfcb *)skb->data; 2848 2849 /* Remove the FCB from the skb 2850 * Remove the padded bytes, if there are any 2851 */ 2852 if (amount_pull) { 2853 skb_record_rx_queue(skb, fcb->rq); 2854 skb_pull(skb, amount_pull); 2855 } 2856 2857 /* Get receive timestamp from the skb */ 2858 if (priv->hwts_rx_en) { 2859 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2860 u64 *ns = (u64 *) skb->data; 2861 2862 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2863 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2864 } 2865 2866 if (priv->padding) 2867 skb_pull(skb, priv->padding); 2868 2869 if (dev->features & NETIF_F_RXCSUM) 2870 gfar_rx_checksum(skb, fcb); 2871 2872 /* Tell the skb what kind of packet this is */ 2873 skb->protocol = eth_type_trans(skb, dev); 2874 2875 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2876 * Even if vlan rx accel is disabled, on some chips 2877 * RXFCB_VLN is pseudo randomly set. 2878 */ 2879 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2880 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2881 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2882 be16_to_cpu(fcb->vlctl)); 2883 2884 /* Send the packet up the stack */ 2885 napi_gro_receive(napi, skb); 2886 2887 } 2888 2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2890 * until the budget/quota has been reached. Returns the number 2891 * of frames handled 2892 */ 2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2894 { 2895 struct net_device *dev = rx_queue->dev; 2896 struct rxbd8 *bdp, *base; 2897 struct sk_buff *skb; 2898 int pkt_len; 2899 int amount_pull; 2900 int howmany = 0; 2901 struct gfar_private *priv = netdev_priv(dev); 2902 2903 /* Get the first full descriptor */ 2904 bdp = rx_queue->cur_rx; 2905 base = rx_queue->rx_bd_base; 2906 2907 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0; 2908 2909 while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) { 2910 struct sk_buff *newskb; 2911 dma_addr_t bufaddr; 2912 2913 rmb(); 2914 2915 /* Add another skb for the future */ 2916 newskb = gfar_new_skb(dev, &bufaddr); 2917 2918 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2919 2920 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2921 priv->rx_buffer_size, DMA_FROM_DEVICE); 2922 2923 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) && 2924 be16_to_cpu(bdp->length) > priv->rx_buffer_size)) 2925 bdp->status = cpu_to_be16(RXBD_LARGE); 2926 2927 /* We drop the frame if we failed to allocate a new buffer */ 2928 if (unlikely(!newskb || 2929 !(be16_to_cpu(bdp->status) & RXBD_LAST) || 2930 be16_to_cpu(bdp->status) & RXBD_ERR)) { 2931 count_errors(be16_to_cpu(bdp->status), dev); 2932 2933 if (unlikely(!newskb)) { 2934 newskb = skb; 2935 bufaddr = be32_to_cpu(bdp->bufPtr); 2936 } else if (skb) 2937 dev_kfree_skb(skb); 2938 } else { 2939 /* Increment the number of packets */ 2940 rx_queue->stats.rx_packets++; 2941 howmany++; 2942 2943 if (likely(skb)) { 2944 pkt_len = be16_to_cpu(bdp->length) - 2945 ETH_FCS_LEN; 2946 /* Remove the FCS from the packet length */ 2947 skb_put(skb, pkt_len); 2948 rx_queue->stats.rx_bytes += pkt_len; 2949 skb_record_rx_queue(skb, rx_queue->qindex); 2950 gfar_process_frame(dev, skb, amount_pull, 2951 &rx_queue->grp->napi_rx); 2952 2953 } else { 2954 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2955 rx_queue->stats.rx_dropped++; 2956 atomic64_inc(&priv->extra_stats.rx_skbmissing); 2957 } 2958 2959 } 2960 2961 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2962 2963 /* Setup the new bdp */ 2964 gfar_init_rxbdp(rx_queue, bdp, bufaddr); 2965 2966 /* Update Last Free RxBD pointer for LFC */ 2967 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en)) 2968 gfar_write(rx_queue->rfbptr, (u32)bdp); 2969 2970 /* Update to the next pointer */ 2971 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2972 2973 /* update to point at the next skb */ 2974 rx_queue->skb_currx = (rx_queue->skb_currx + 1) & 2975 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2976 } 2977 2978 /* Update the current rxbd pointer to be the next one */ 2979 rx_queue->cur_rx = bdp; 2980 2981 return howmany; 2982 } 2983 2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2985 { 2986 struct gfar_priv_grp *gfargrp = 2987 container_of(napi, struct gfar_priv_grp, napi_rx); 2988 struct gfar __iomem *regs = gfargrp->regs; 2989 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2990 int work_done = 0; 2991 2992 /* Clear IEVENT, so interrupts aren't called again 2993 * because of the packets that have already arrived 2994 */ 2995 gfar_write(®s->ievent, IEVENT_RX_MASK); 2996 2997 work_done = gfar_clean_rx_ring(rx_queue, budget); 2998 2999 if (work_done < budget) { 3000 u32 imask; 3001 napi_complete(napi); 3002 /* Clear the halt bit in RSTAT */ 3003 gfar_write(®s->rstat, gfargrp->rstat); 3004 3005 spin_lock_irq(&gfargrp->grplock); 3006 imask = gfar_read(®s->imask); 3007 imask |= IMASK_RX_DEFAULT; 3008 gfar_write(®s->imask, imask); 3009 spin_unlock_irq(&gfargrp->grplock); 3010 } 3011 3012 return work_done; 3013 } 3014 3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 3016 { 3017 struct gfar_priv_grp *gfargrp = 3018 container_of(napi, struct gfar_priv_grp, napi_tx); 3019 struct gfar __iomem *regs = gfargrp->regs; 3020 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 3021 u32 imask; 3022 3023 /* Clear IEVENT, so interrupts aren't called again 3024 * because of the packets that have already arrived 3025 */ 3026 gfar_write(®s->ievent, IEVENT_TX_MASK); 3027 3028 /* run Tx cleanup to completion */ 3029 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 3030 gfar_clean_tx_ring(tx_queue); 3031 3032 napi_complete(napi); 3033 3034 spin_lock_irq(&gfargrp->grplock); 3035 imask = gfar_read(®s->imask); 3036 imask |= IMASK_TX_DEFAULT; 3037 gfar_write(®s->imask, imask); 3038 spin_unlock_irq(&gfargrp->grplock); 3039 3040 return 0; 3041 } 3042 3043 static int gfar_poll_rx(struct napi_struct *napi, int budget) 3044 { 3045 struct gfar_priv_grp *gfargrp = 3046 container_of(napi, struct gfar_priv_grp, napi_rx); 3047 struct gfar_private *priv = gfargrp->priv; 3048 struct gfar __iomem *regs = gfargrp->regs; 3049 struct gfar_priv_rx_q *rx_queue = NULL; 3050 int work_done = 0, work_done_per_q = 0; 3051 int i, budget_per_q = 0; 3052 unsigned long rstat_rxf; 3053 int num_act_queues; 3054 3055 /* Clear IEVENT, so interrupts aren't called again 3056 * because of the packets that have already arrived 3057 */ 3058 gfar_write(®s->ievent, IEVENT_RX_MASK); 3059 3060 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 3061 3062 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 3063 if (num_act_queues) 3064 budget_per_q = budget/num_act_queues; 3065 3066 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 3067 /* skip queue if not active */ 3068 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 3069 continue; 3070 3071 rx_queue = priv->rx_queue[i]; 3072 work_done_per_q = 3073 gfar_clean_rx_ring(rx_queue, budget_per_q); 3074 work_done += work_done_per_q; 3075 3076 /* finished processing this queue */ 3077 if (work_done_per_q < budget_per_q) { 3078 /* clear active queue hw indication */ 3079 gfar_write(®s->rstat, 3080 RSTAT_CLEAR_RXF0 >> i); 3081 num_act_queues--; 3082 3083 if (!num_act_queues) 3084 break; 3085 } 3086 } 3087 3088 if (!num_act_queues) { 3089 u32 imask; 3090 napi_complete(napi); 3091 3092 /* Clear the halt bit in RSTAT */ 3093 gfar_write(®s->rstat, gfargrp->rstat); 3094 3095 spin_lock_irq(&gfargrp->grplock); 3096 imask = gfar_read(®s->imask); 3097 imask |= IMASK_RX_DEFAULT; 3098 gfar_write(®s->imask, imask); 3099 spin_unlock_irq(&gfargrp->grplock); 3100 } 3101 3102 return work_done; 3103 } 3104 3105 static int gfar_poll_tx(struct napi_struct *napi, int budget) 3106 { 3107 struct gfar_priv_grp *gfargrp = 3108 container_of(napi, struct gfar_priv_grp, napi_tx); 3109 struct gfar_private *priv = gfargrp->priv; 3110 struct gfar __iomem *regs = gfargrp->regs; 3111 struct gfar_priv_tx_q *tx_queue = NULL; 3112 int has_tx_work = 0; 3113 int i; 3114 3115 /* Clear IEVENT, so interrupts aren't called again 3116 * because of the packets that have already arrived 3117 */ 3118 gfar_write(®s->ievent, IEVENT_TX_MASK); 3119 3120 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 3121 tx_queue = priv->tx_queue[i]; 3122 /* run Tx cleanup to completion */ 3123 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 3124 gfar_clean_tx_ring(tx_queue); 3125 has_tx_work = 1; 3126 } 3127 } 3128 3129 if (!has_tx_work) { 3130 u32 imask; 3131 napi_complete(napi); 3132 3133 spin_lock_irq(&gfargrp->grplock); 3134 imask = gfar_read(®s->imask); 3135 imask |= IMASK_TX_DEFAULT; 3136 gfar_write(®s->imask, imask); 3137 spin_unlock_irq(&gfargrp->grplock); 3138 } 3139 3140 return 0; 3141 } 3142 3143 3144 #ifdef CONFIG_NET_POLL_CONTROLLER 3145 /* Polling 'interrupt' - used by things like netconsole to send skbs 3146 * without having to re-enable interrupts. It's not called while 3147 * the interrupt routine is executing. 3148 */ 3149 static void gfar_netpoll(struct net_device *dev) 3150 { 3151 struct gfar_private *priv = netdev_priv(dev); 3152 int i; 3153 3154 /* If the device has multiple interrupts, run tx/rx */ 3155 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3156 for (i = 0; i < priv->num_grps; i++) { 3157 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3158 3159 disable_irq(gfar_irq(grp, TX)->irq); 3160 disable_irq(gfar_irq(grp, RX)->irq); 3161 disable_irq(gfar_irq(grp, ER)->irq); 3162 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3163 enable_irq(gfar_irq(grp, ER)->irq); 3164 enable_irq(gfar_irq(grp, RX)->irq); 3165 enable_irq(gfar_irq(grp, TX)->irq); 3166 } 3167 } else { 3168 for (i = 0; i < priv->num_grps; i++) { 3169 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3170 3171 disable_irq(gfar_irq(grp, TX)->irq); 3172 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3173 enable_irq(gfar_irq(grp, TX)->irq); 3174 } 3175 } 3176 } 3177 #endif 3178 3179 /* The interrupt handler for devices with one interrupt */ 3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3181 { 3182 struct gfar_priv_grp *gfargrp = grp_id; 3183 3184 /* Save ievent for future reference */ 3185 u32 events = gfar_read(&gfargrp->regs->ievent); 3186 3187 /* Check for reception */ 3188 if (events & IEVENT_RX_MASK) 3189 gfar_receive(irq, grp_id); 3190 3191 /* Check for transmit completion */ 3192 if (events & IEVENT_TX_MASK) 3193 gfar_transmit(irq, grp_id); 3194 3195 /* Check for errors */ 3196 if (events & IEVENT_ERR_MASK) 3197 gfar_error(irq, grp_id); 3198 3199 return IRQ_HANDLED; 3200 } 3201 3202 /* Called every time the controller might need to be made 3203 * aware of new link state. The PHY code conveys this 3204 * information through variables in the phydev structure, and this 3205 * function converts those variables into the appropriate 3206 * register values, and can bring down the device if needed. 3207 */ 3208 static void adjust_link(struct net_device *dev) 3209 { 3210 struct gfar_private *priv = netdev_priv(dev); 3211 struct phy_device *phydev = priv->phydev; 3212 3213 if (unlikely(phydev->link != priv->oldlink || 3214 (phydev->link && (phydev->duplex != priv->oldduplex || 3215 phydev->speed != priv->oldspeed)))) 3216 gfar_update_link_state(priv); 3217 } 3218 3219 /* Update the hash table based on the current list of multicast 3220 * addresses we subscribe to. Also, change the promiscuity of 3221 * the device based on the flags (this function is called 3222 * whenever dev->flags is changed 3223 */ 3224 static void gfar_set_multi(struct net_device *dev) 3225 { 3226 struct netdev_hw_addr *ha; 3227 struct gfar_private *priv = netdev_priv(dev); 3228 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3229 u32 tempval; 3230 3231 if (dev->flags & IFF_PROMISC) { 3232 /* Set RCTRL to PROM */ 3233 tempval = gfar_read(®s->rctrl); 3234 tempval |= RCTRL_PROM; 3235 gfar_write(®s->rctrl, tempval); 3236 } else { 3237 /* Set RCTRL to not PROM */ 3238 tempval = gfar_read(®s->rctrl); 3239 tempval &= ~(RCTRL_PROM); 3240 gfar_write(®s->rctrl, tempval); 3241 } 3242 3243 if (dev->flags & IFF_ALLMULTI) { 3244 /* Set the hash to rx all multicast frames */ 3245 gfar_write(®s->igaddr0, 0xffffffff); 3246 gfar_write(®s->igaddr1, 0xffffffff); 3247 gfar_write(®s->igaddr2, 0xffffffff); 3248 gfar_write(®s->igaddr3, 0xffffffff); 3249 gfar_write(®s->igaddr4, 0xffffffff); 3250 gfar_write(®s->igaddr5, 0xffffffff); 3251 gfar_write(®s->igaddr6, 0xffffffff); 3252 gfar_write(®s->igaddr7, 0xffffffff); 3253 gfar_write(®s->gaddr0, 0xffffffff); 3254 gfar_write(®s->gaddr1, 0xffffffff); 3255 gfar_write(®s->gaddr2, 0xffffffff); 3256 gfar_write(®s->gaddr3, 0xffffffff); 3257 gfar_write(®s->gaddr4, 0xffffffff); 3258 gfar_write(®s->gaddr5, 0xffffffff); 3259 gfar_write(®s->gaddr6, 0xffffffff); 3260 gfar_write(®s->gaddr7, 0xffffffff); 3261 } else { 3262 int em_num; 3263 int idx; 3264 3265 /* zero out the hash */ 3266 gfar_write(®s->igaddr0, 0x0); 3267 gfar_write(®s->igaddr1, 0x0); 3268 gfar_write(®s->igaddr2, 0x0); 3269 gfar_write(®s->igaddr3, 0x0); 3270 gfar_write(®s->igaddr4, 0x0); 3271 gfar_write(®s->igaddr5, 0x0); 3272 gfar_write(®s->igaddr6, 0x0); 3273 gfar_write(®s->igaddr7, 0x0); 3274 gfar_write(®s->gaddr0, 0x0); 3275 gfar_write(®s->gaddr1, 0x0); 3276 gfar_write(®s->gaddr2, 0x0); 3277 gfar_write(®s->gaddr3, 0x0); 3278 gfar_write(®s->gaddr4, 0x0); 3279 gfar_write(®s->gaddr5, 0x0); 3280 gfar_write(®s->gaddr6, 0x0); 3281 gfar_write(®s->gaddr7, 0x0); 3282 3283 /* If we have extended hash tables, we need to 3284 * clear the exact match registers to prepare for 3285 * setting them 3286 */ 3287 if (priv->extended_hash) { 3288 em_num = GFAR_EM_NUM + 1; 3289 gfar_clear_exact_match(dev); 3290 idx = 1; 3291 } else { 3292 idx = 0; 3293 em_num = 0; 3294 } 3295 3296 if (netdev_mc_empty(dev)) 3297 return; 3298 3299 /* Parse the list, and set the appropriate bits */ 3300 netdev_for_each_mc_addr(ha, dev) { 3301 if (idx < em_num) { 3302 gfar_set_mac_for_addr(dev, idx, ha->addr); 3303 idx++; 3304 } else 3305 gfar_set_hash_for_addr(dev, ha->addr); 3306 } 3307 } 3308 } 3309 3310 3311 /* Clears each of the exact match registers to zero, so they 3312 * don't interfere with normal reception 3313 */ 3314 static void gfar_clear_exact_match(struct net_device *dev) 3315 { 3316 int idx; 3317 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3318 3319 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3320 gfar_set_mac_for_addr(dev, idx, zero_arr); 3321 } 3322 3323 /* Set the appropriate hash bit for the given addr */ 3324 /* The algorithm works like so: 3325 * 1) Take the Destination Address (ie the multicast address), and 3326 * do a CRC on it (little endian), and reverse the bits of the 3327 * result. 3328 * 2) Use the 8 most significant bits as a hash into a 256-entry 3329 * table. The table is controlled through 8 32-bit registers: 3330 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3331 * gaddr7. This means that the 3 most significant bits in the 3332 * hash index which gaddr register to use, and the 5 other bits 3333 * indicate which bit (assuming an IBM numbering scheme, which 3334 * for PowerPC (tm) is usually the case) in the register holds 3335 * the entry. 3336 */ 3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3338 { 3339 u32 tempval; 3340 struct gfar_private *priv = netdev_priv(dev); 3341 u32 result = ether_crc(ETH_ALEN, addr); 3342 int width = priv->hash_width; 3343 u8 whichbit = (result >> (32 - width)) & 0x1f; 3344 u8 whichreg = result >> (32 - width + 5); 3345 u32 value = (1 << (31-whichbit)); 3346 3347 tempval = gfar_read(priv->hash_regs[whichreg]); 3348 tempval |= value; 3349 gfar_write(priv->hash_regs[whichreg], tempval); 3350 } 3351 3352 3353 /* There are multiple MAC Address register pairs on some controllers 3354 * This function sets the numth pair to a given address 3355 */ 3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3357 const u8 *addr) 3358 { 3359 struct gfar_private *priv = netdev_priv(dev); 3360 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3361 u32 tempval; 3362 u32 __iomem *macptr = ®s->macstnaddr1; 3363 3364 macptr += num*2; 3365 3366 /* For a station address of 0x12345678ABCD in transmission 3367 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 3368 * MACnADDR2 is set to 0x34120000. 3369 */ 3370 tempval = (addr[5] << 24) | (addr[4] << 16) | 3371 (addr[3] << 8) | addr[2]; 3372 3373 gfar_write(macptr, tempval); 3374 3375 tempval = (addr[1] << 24) | (addr[0] << 16); 3376 3377 gfar_write(macptr+1, tempval); 3378 } 3379 3380 /* GFAR error interrupt handler */ 3381 static irqreturn_t gfar_error(int irq, void *grp_id) 3382 { 3383 struct gfar_priv_grp *gfargrp = grp_id; 3384 struct gfar __iomem *regs = gfargrp->regs; 3385 struct gfar_private *priv= gfargrp->priv; 3386 struct net_device *dev = priv->ndev; 3387 3388 /* Save ievent for future reference */ 3389 u32 events = gfar_read(®s->ievent); 3390 3391 /* Clear IEVENT */ 3392 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3393 3394 /* Magic Packet is not an error. */ 3395 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3396 (events & IEVENT_MAG)) 3397 events &= ~IEVENT_MAG; 3398 3399 /* Hmm... */ 3400 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3401 netdev_dbg(dev, 3402 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3403 events, gfar_read(®s->imask)); 3404 3405 /* Update the error counters */ 3406 if (events & IEVENT_TXE) { 3407 dev->stats.tx_errors++; 3408 3409 if (events & IEVENT_LC) 3410 dev->stats.tx_window_errors++; 3411 if (events & IEVENT_CRL) 3412 dev->stats.tx_aborted_errors++; 3413 if (events & IEVENT_XFUN) { 3414 netif_dbg(priv, tx_err, dev, 3415 "TX FIFO underrun, packet dropped\n"); 3416 dev->stats.tx_dropped++; 3417 atomic64_inc(&priv->extra_stats.tx_underrun); 3418 3419 schedule_work(&priv->reset_task); 3420 } 3421 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3422 } 3423 if (events & IEVENT_BSY) { 3424 dev->stats.rx_errors++; 3425 atomic64_inc(&priv->extra_stats.rx_bsy); 3426 3427 gfar_receive(irq, grp_id); 3428 3429 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3430 gfar_read(®s->rstat)); 3431 } 3432 if (events & IEVENT_BABR) { 3433 dev->stats.rx_errors++; 3434 atomic64_inc(&priv->extra_stats.rx_babr); 3435 3436 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3437 } 3438 if (events & IEVENT_EBERR) { 3439 atomic64_inc(&priv->extra_stats.eberr); 3440 netif_dbg(priv, rx_err, dev, "bus error\n"); 3441 } 3442 if (events & IEVENT_RXC) 3443 netif_dbg(priv, rx_status, dev, "control frame\n"); 3444 3445 if (events & IEVENT_BABT) { 3446 atomic64_inc(&priv->extra_stats.tx_babt); 3447 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3448 } 3449 return IRQ_HANDLED; 3450 } 3451 3452 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3453 { 3454 struct phy_device *phydev = priv->phydev; 3455 u32 val = 0; 3456 3457 if (!phydev->duplex) 3458 return val; 3459 3460 if (!priv->pause_aneg_en) { 3461 if (priv->tx_pause_en) 3462 val |= MACCFG1_TX_FLOW; 3463 if (priv->rx_pause_en) 3464 val |= MACCFG1_RX_FLOW; 3465 } else { 3466 u16 lcl_adv, rmt_adv; 3467 u8 flowctrl; 3468 /* get link partner capabilities */ 3469 rmt_adv = 0; 3470 if (phydev->pause) 3471 rmt_adv = LPA_PAUSE_CAP; 3472 if (phydev->asym_pause) 3473 rmt_adv |= LPA_PAUSE_ASYM; 3474 3475 lcl_adv = 0; 3476 if (phydev->advertising & ADVERTISED_Pause) 3477 lcl_adv |= ADVERTISE_PAUSE_CAP; 3478 if (phydev->advertising & ADVERTISED_Asym_Pause) 3479 lcl_adv |= ADVERTISE_PAUSE_ASYM; 3480 3481 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3482 if (flowctrl & FLOW_CTRL_TX) 3483 val |= MACCFG1_TX_FLOW; 3484 if (flowctrl & FLOW_CTRL_RX) 3485 val |= MACCFG1_RX_FLOW; 3486 } 3487 3488 return val; 3489 } 3490 3491 static noinline void gfar_update_link_state(struct gfar_private *priv) 3492 { 3493 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3494 struct phy_device *phydev = priv->phydev; 3495 struct gfar_priv_rx_q *rx_queue = NULL; 3496 int i; 3497 struct rxbd8 *bdp; 3498 3499 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 3500 return; 3501 3502 if (phydev->link) { 3503 u32 tempval1 = gfar_read(®s->maccfg1); 3504 u32 tempval = gfar_read(®s->maccfg2); 3505 u32 ecntrl = gfar_read(®s->ecntrl); 3506 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW); 3507 3508 if (phydev->duplex != priv->oldduplex) { 3509 if (!(phydev->duplex)) 3510 tempval &= ~(MACCFG2_FULL_DUPLEX); 3511 else 3512 tempval |= MACCFG2_FULL_DUPLEX; 3513 3514 priv->oldduplex = phydev->duplex; 3515 } 3516 3517 if (phydev->speed != priv->oldspeed) { 3518 switch (phydev->speed) { 3519 case 1000: 3520 tempval = 3521 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3522 3523 ecntrl &= ~(ECNTRL_R100); 3524 break; 3525 case 100: 3526 case 10: 3527 tempval = 3528 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3529 3530 /* Reduced mode distinguishes 3531 * between 10 and 100 3532 */ 3533 if (phydev->speed == SPEED_100) 3534 ecntrl |= ECNTRL_R100; 3535 else 3536 ecntrl &= ~(ECNTRL_R100); 3537 break; 3538 default: 3539 netif_warn(priv, link, priv->ndev, 3540 "Ack! Speed (%d) is not 10/100/1000!\n", 3541 phydev->speed); 3542 break; 3543 } 3544 3545 priv->oldspeed = phydev->speed; 3546 } 3547 3548 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3549 tempval1 |= gfar_get_flowctrl_cfg(priv); 3550 3551 /* Turn last free buffer recording on */ 3552 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 3553 for (i = 0; i < priv->num_rx_queues; i++) { 3554 rx_queue = priv->rx_queue[i]; 3555 bdp = rx_queue->cur_rx; 3556 /* skip to previous bd */ 3557 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1, 3558 rx_queue->rx_bd_base, 3559 rx_queue->rx_ring_size); 3560 3561 if (rx_queue->rfbptr) 3562 gfar_write(rx_queue->rfbptr, (u32)bdp); 3563 } 3564 3565 priv->tx_actual_en = 1; 3566 } 3567 3568 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 3569 priv->tx_actual_en = 0; 3570 3571 gfar_write(®s->maccfg1, tempval1); 3572 gfar_write(®s->maccfg2, tempval); 3573 gfar_write(®s->ecntrl, ecntrl); 3574 3575 if (!priv->oldlink) 3576 priv->oldlink = 1; 3577 3578 } else if (priv->oldlink) { 3579 priv->oldlink = 0; 3580 priv->oldspeed = 0; 3581 priv->oldduplex = -1; 3582 } 3583 3584 if (netif_msg_link(priv)) 3585 phy_print_status(phydev); 3586 } 3587 3588 static const struct of_device_id gfar_match[] = 3589 { 3590 { 3591 .type = "network", 3592 .compatible = "gianfar", 3593 }, 3594 { 3595 .compatible = "fsl,etsec2", 3596 }, 3597 {}, 3598 }; 3599 MODULE_DEVICE_TABLE(of, gfar_match); 3600 3601 /* Structure for a device driver */ 3602 static struct platform_driver gfar_driver = { 3603 .driver = { 3604 .name = "fsl-gianfar", 3605 .pm = GFAR_PM_OPS, 3606 .of_match_table = gfar_match, 3607 }, 3608 .probe = gfar_probe, 3609 .remove = gfar_remove, 3610 }; 3611 3612 module_platform_driver(gfar_driver); 3613