1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 const char gfar_driver_version[] = "2.0";
107 
108 static int gfar_enet_open(struct net_device *dev);
109 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
114 				int alloc_cnt);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static noinline void gfar_update_link_state(struct gfar_private *priv);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct platform_device *ofdev);
124 static int gfar_remove(struct platform_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll_rx(struct napi_struct *napi, int budget);
130 static int gfar_poll_tx(struct napi_struct *napi, int budget);
131 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
132 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
139 static void gfar_halt_nodisable(struct gfar_private *priv);
140 static void gfar_clear_exact_match(struct net_device *dev);
141 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
142 				  const u8 *addr);
143 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
144 
145 MODULE_AUTHOR("Freescale Semiconductor, Inc");
146 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
147 MODULE_LICENSE("GPL");
148 
149 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
150 			    dma_addr_t buf)
151 {
152 	u32 lstatus;
153 
154 	bdp->bufPtr = cpu_to_be32(buf);
155 
156 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
157 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
158 		lstatus |= BD_LFLAG(RXBD_WRAP);
159 
160 	gfar_wmb();
161 
162 	bdp->lstatus = cpu_to_be32(lstatus);
163 }
164 
165 static void gfar_init_bds(struct net_device *ndev)
166 {
167 	struct gfar_private *priv = netdev_priv(ndev);
168 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
169 	struct gfar_priv_tx_q *tx_queue = NULL;
170 	struct gfar_priv_rx_q *rx_queue = NULL;
171 	struct txbd8 *txbdp;
172 	u32 __iomem *rfbptr;
173 	int i, j;
174 
175 	for (i = 0; i < priv->num_tx_queues; i++) {
176 		tx_queue = priv->tx_queue[i];
177 		/* Initialize some variables in our dev structure */
178 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
180 		tx_queue->cur_tx = tx_queue->tx_bd_base;
181 		tx_queue->skb_curtx = 0;
182 		tx_queue->skb_dirtytx = 0;
183 
184 		/* Initialize Transmit Descriptor Ring */
185 		txbdp = tx_queue->tx_bd_base;
186 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
187 			txbdp->lstatus = 0;
188 			txbdp->bufPtr = 0;
189 			txbdp++;
190 		}
191 
192 		/* Set the last descriptor in the ring to indicate wrap */
193 		txbdp--;
194 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
195 					    TXBD_WRAP);
196 	}
197 
198 	rfbptr = &regs->rfbptr0;
199 	for (i = 0; i < priv->num_rx_queues; i++) {
200 		rx_queue = priv->rx_queue[i];
201 
202 		rx_queue->next_to_clean = 0;
203 		rx_queue->next_to_use = 0;
204 		rx_queue->next_to_alloc = 0;
205 
206 		/* make sure next_to_clean != next_to_use after this
207 		 * by leaving at least 1 unused descriptor
208 		 */
209 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
210 
211 		rx_queue->rfbptr = rfbptr;
212 		rfbptr += 2;
213 	}
214 }
215 
216 static int gfar_alloc_skb_resources(struct net_device *ndev)
217 {
218 	void *vaddr;
219 	dma_addr_t addr;
220 	int i, j;
221 	struct gfar_private *priv = netdev_priv(ndev);
222 	struct device *dev = priv->dev;
223 	struct gfar_priv_tx_q *tx_queue = NULL;
224 	struct gfar_priv_rx_q *rx_queue = NULL;
225 
226 	priv->total_tx_ring_size = 0;
227 	for (i = 0; i < priv->num_tx_queues; i++)
228 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
229 
230 	priv->total_rx_ring_size = 0;
231 	for (i = 0; i < priv->num_rx_queues; i++)
232 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
233 
234 	/* Allocate memory for the buffer descriptors */
235 	vaddr = dma_alloc_coherent(dev,
236 				   (priv->total_tx_ring_size *
237 				    sizeof(struct txbd8)) +
238 				   (priv->total_rx_ring_size *
239 				    sizeof(struct rxbd8)),
240 				   &addr, GFP_KERNEL);
241 	if (!vaddr)
242 		return -ENOMEM;
243 
244 	for (i = 0; i < priv->num_tx_queues; i++) {
245 		tx_queue = priv->tx_queue[i];
246 		tx_queue->tx_bd_base = vaddr;
247 		tx_queue->tx_bd_dma_base = addr;
248 		tx_queue->dev = ndev;
249 		/* enet DMA only understands physical addresses */
250 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
251 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
252 	}
253 
254 	/* Start the rx descriptor ring where the tx ring leaves off */
255 	for (i = 0; i < priv->num_rx_queues; i++) {
256 		rx_queue = priv->rx_queue[i];
257 		rx_queue->rx_bd_base = vaddr;
258 		rx_queue->rx_bd_dma_base = addr;
259 		rx_queue->ndev = ndev;
260 		rx_queue->dev = dev;
261 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
262 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
263 	}
264 
265 	/* Setup the skbuff rings */
266 	for (i = 0; i < priv->num_tx_queues; i++) {
267 		tx_queue = priv->tx_queue[i];
268 		tx_queue->tx_skbuff =
269 			kmalloc_array(tx_queue->tx_ring_size,
270 				      sizeof(*tx_queue->tx_skbuff),
271 				      GFP_KERNEL);
272 		if (!tx_queue->tx_skbuff)
273 			goto cleanup;
274 
275 		for (j = 0; j < tx_queue->tx_ring_size; j++)
276 			tx_queue->tx_skbuff[j] = NULL;
277 	}
278 
279 	for (i = 0; i < priv->num_rx_queues; i++) {
280 		rx_queue = priv->rx_queue[i];
281 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
282 					    sizeof(*rx_queue->rx_buff),
283 					    GFP_KERNEL);
284 		if (!rx_queue->rx_buff)
285 			goto cleanup;
286 	}
287 
288 	gfar_init_bds(ndev);
289 
290 	return 0;
291 
292 cleanup:
293 	free_skb_resources(priv);
294 	return -ENOMEM;
295 }
296 
297 static void gfar_init_tx_rx_base(struct gfar_private *priv)
298 {
299 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
300 	u32 __iomem *baddr;
301 	int i;
302 
303 	baddr = &regs->tbase0;
304 	for (i = 0; i < priv->num_tx_queues; i++) {
305 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
306 		baddr += 2;
307 	}
308 
309 	baddr = &regs->rbase0;
310 	for (i = 0; i < priv->num_rx_queues; i++) {
311 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
312 		baddr += 2;
313 	}
314 }
315 
316 static void gfar_init_rqprm(struct gfar_private *priv)
317 {
318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 	u32 __iomem *baddr;
320 	int i;
321 
322 	baddr = &regs->rqprm0;
323 	for (i = 0; i < priv->num_rx_queues; i++) {
324 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
325 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
326 		baddr++;
327 	}
328 }
329 
330 static void gfar_rx_offload_en(struct gfar_private *priv)
331 {
332 	/* set this when rx hw offload (TOE) functions are being used */
333 	priv->uses_rxfcb = 0;
334 
335 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
336 		priv->uses_rxfcb = 1;
337 
338 	if (priv->hwts_rx_en || priv->rx_filer_enable)
339 		priv->uses_rxfcb = 1;
340 }
341 
342 static void gfar_mac_rx_config(struct gfar_private *priv)
343 {
344 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 	u32 rctrl = 0;
346 
347 	if (priv->rx_filer_enable) {
348 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
349 		/* Program the RIR0 reg with the required distribution */
350 		if (priv->poll_mode == GFAR_SQ_POLLING)
351 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
352 		else /* GFAR_MQ_POLLING */
353 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
354 	}
355 
356 	/* Restore PROMISC mode */
357 	if (priv->ndev->flags & IFF_PROMISC)
358 		rctrl |= RCTRL_PROM;
359 
360 	if (priv->ndev->features & NETIF_F_RXCSUM)
361 		rctrl |= RCTRL_CHECKSUMMING;
362 
363 	if (priv->extended_hash)
364 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
365 
366 	if (priv->padding) {
367 		rctrl &= ~RCTRL_PAL_MASK;
368 		rctrl |= RCTRL_PADDING(priv->padding);
369 	}
370 
371 	/* Enable HW time stamping if requested from user space */
372 	if (priv->hwts_rx_en)
373 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
374 
375 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
376 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
377 
378 	/* Clear the LFC bit */
379 	gfar_write(&regs->rctrl, rctrl);
380 	/* Init flow control threshold values */
381 	gfar_init_rqprm(priv);
382 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
383 	rctrl |= RCTRL_LFC;
384 
385 	/* Init rctrl based on our settings */
386 	gfar_write(&regs->rctrl, rctrl);
387 }
388 
389 static void gfar_mac_tx_config(struct gfar_private *priv)
390 {
391 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
392 	u32 tctrl = 0;
393 
394 	if (priv->ndev->features & NETIF_F_IP_CSUM)
395 		tctrl |= TCTRL_INIT_CSUM;
396 
397 	if (priv->prio_sched_en)
398 		tctrl |= TCTRL_TXSCHED_PRIO;
399 	else {
400 		tctrl |= TCTRL_TXSCHED_WRRS;
401 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
402 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
403 	}
404 
405 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
406 		tctrl |= TCTRL_VLINS;
407 
408 	gfar_write(&regs->tctrl, tctrl);
409 }
410 
411 static void gfar_configure_coalescing(struct gfar_private *priv,
412 			       unsigned long tx_mask, unsigned long rx_mask)
413 {
414 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
415 	u32 __iomem *baddr;
416 
417 	if (priv->mode == MQ_MG_MODE) {
418 		int i = 0;
419 
420 		baddr = &regs->txic0;
421 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
422 			gfar_write(baddr + i, 0);
423 			if (likely(priv->tx_queue[i]->txcoalescing))
424 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
425 		}
426 
427 		baddr = &regs->rxic0;
428 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
429 			gfar_write(baddr + i, 0);
430 			if (likely(priv->rx_queue[i]->rxcoalescing))
431 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
432 		}
433 	} else {
434 		/* Backward compatible case -- even if we enable
435 		 * multiple queues, there's only single reg to program
436 		 */
437 		gfar_write(&regs->txic, 0);
438 		if (likely(priv->tx_queue[0]->txcoalescing))
439 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
440 
441 		gfar_write(&regs->rxic, 0);
442 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
443 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
444 	}
445 }
446 
447 void gfar_configure_coalescing_all(struct gfar_private *priv)
448 {
449 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
450 }
451 
452 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
453 {
454 	struct gfar_private *priv = netdev_priv(dev);
455 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
456 	unsigned long tx_packets = 0, tx_bytes = 0;
457 	int i;
458 
459 	for (i = 0; i < priv->num_rx_queues; i++) {
460 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
461 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
462 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
463 	}
464 
465 	dev->stats.rx_packets = rx_packets;
466 	dev->stats.rx_bytes   = rx_bytes;
467 	dev->stats.rx_dropped = rx_dropped;
468 
469 	for (i = 0; i < priv->num_tx_queues; i++) {
470 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
471 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
472 	}
473 
474 	dev->stats.tx_bytes   = tx_bytes;
475 	dev->stats.tx_packets = tx_packets;
476 
477 	return &dev->stats;
478 }
479 
480 static int gfar_set_mac_addr(struct net_device *dev, void *p)
481 {
482 	eth_mac_addr(dev, p);
483 
484 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
485 
486 	return 0;
487 }
488 
489 static const struct net_device_ops gfar_netdev_ops = {
490 	.ndo_open = gfar_enet_open,
491 	.ndo_start_xmit = gfar_start_xmit,
492 	.ndo_stop = gfar_close,
493 	.ndo_change_mtu = gfar_change_mtu,
494 	.ndo_set_features = gfar_set_features,
495 	.ndo_set_rx_mode = gfar_set_multi,
496 	.ndo_tx_timeout = gfar_timeout,
497 	.ndo_do_ioctl = gfar_ioctl,
498 	.ndo_get_stats = gfar_get_stats,
499 	.ndo_change_carrier = fixed_phy_change_carrier,
500 	.ndo_set_mac_address = gfar_set_mac_addr,
501 	.ndo_validate_addr = eth_validate_addr,
502 #ifdef CONFIG_NET_POLL_CONTROLLER
503 	.ndo_poll_controller = gfar_netpoll,
504 #endif
505 };
506 
507 static void gfar_ints_disable(struct gfar_private *priv)
508 {
509 	int i;
510 	for (i = 0; i < priv->num_grps; i++) {
511 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
512 		/* Clear IEVENT */
513 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
514 
515 		/* Initialize IMASK */
516 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
517 	}
518 }
519 
520 static void gfar_ints_enable(struct gfar_private *priv)
521 {
522 	int i;
523 	for (i = 0; i < priv->num_grps; i++) {
524 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
525 		/* Unmask the interrupts we look for */
526 		gfar_write(&regs->imask, IMASK_DEFAULT);
527 	}
528 }
529 
530 static int gfar_alloc_tx_queues(struct gfar_private *priv)
531 {
532 	int i;
533 
534 	for (i = 0; i < priv->num_tx_queues; i++) {
535 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
536 					    GFP_KERNEL);
537 		if (!priv->tx_queue[i])
538 			return -ENOMEM;
539 
540 		priv->tx_queue[i]->tx_skbuff = NULL;
541 		priv->tx_queue[i]->qindex = i;
542 		priv->tx_queue[i]->dev = priv->ndev;
543 		spin_lock_init(&(priv->tx_queue[i]->txlock));
544 	}
545 	return 0;
546 }
547 
548 static int gfar_alloc_rx_queues(struct gfar_private *priv)
549 {
550 	int i;
551 
552 	for (i = 0; i < priv->num_rx_queues; i++) {
553 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
554 					    GFP_KERNEL);
555 		if (!priv->rx_queue[i])
556 			return -ENOMEM;
557 
558 		priv->rx_queue[i]->qindex = i;
559 		priv->rx_queue[i]->ndev = priv->ndev;
560 	}
561 	return 0;
562 }
563 
564 static void gfar_free_tx_queues(struct gfar_private *priv)
565 {
566 	int i;
567 
568 	for (i = 0; i < priv->num_tx_queues; i++)
569 		kfree(priv->tx_queue[i]);
570 }
571 
572 static void gfar_free_rx_queues(struct gfar_private *priv)
573 {
574 	int i;
575 
576 	for (i = 0; i < priv->num_rx_queues; i++)
577 		kfree(priv->rx_queue[i]);
578 }
579 
580 static void unmap_group_regs(struct gfar_private *priv)
581 {
582 	int i;
583 
584 	for (i = 0; i < MAXGROUPS; i++)
585 		if (priv->gfargrp[i].regs)
586 			iounmap(priv->gfargrp[i].regs);
587 }
588 
589 static void free_gfar_dev(struct gfar_private *priv)
590 {
591 	int i, j;
592 
593 	for (i = 0; i < priv->num_grps; i++)
594 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
595 			kfree(priv->gfargrp[i].irqinfo[j]);
596 			priv->gfargrp[i].irqinfo[j] = NULL;
597 		}
598 
599 	free_netdev(priv->ndev);
600 }
601 
602 static void disable_napi(struct gfar_private *priv)
603 {
604 	int i;
605 
606 	for (i = 0; i < priv->num_grps; i++) {
607 		napi_disable(&priv->gfargrp[i].napi_rx);
608 		napi_disable(&priv->gfargrp[i].napi_tx);
609 	}
610 }
611 
612 static void enable_napi(struct gfar_private *priv)
613 {
614 	int i;
615 
616 	for (i = 0; i < priv->num_grps; i++) {
617 		napi_enable(&priv->gfargrp[i].napi_rx);
618 		napi_enable(&priv->gfargrp[i].napi_tx);
619 	}
620 }
621 
622 static int gfar_parse_group(struct device_node *np,
623 			    struct gfar_private *priv, const char *model)
624 {
625 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
626 	int i;
627 
628 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
629 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
630 					  GFP_KERNEL);
631 		if (!grp->irqinfo[i])
632 			return -ENOMEM;
633 	}
634 
635 	grp->regs = of_iomap(np, 0);
636 	if (!grp->regs)
637 		return -ENOMEM;
638 
639 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
640 
641 	/* If we aren't the FEC we have multiple interrupts */
642 	if (model && strcasecmp(model, "FEC")) {
643 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
644 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
645 		if (!gfar_irq(grp, TX)->irq ||
646 		    !gfar_irq(grp, RX)->irq ||
647 		    !gfar_irq(grp, ER)->irq)
648 			return -EINVAL;
649 	}
650 
651 	grp->priv = priv;
652 	spin_lock_init(&grp->grplock);
653 	if (priv->mode == MQ_MG_MODE) {
654 		u32 rxq_mask, txq_mask;
655 		int ret;
656 
657 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
658 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
659 
660 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
661 		if (!ret) {
662 			grp->rx_bit_map = rxq_mask ?
663 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
664 		}
665 
666 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
667 		if (!ret) {
668 			grp->tx_bit_map = txq_mask ?
669 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
670 		}
671 
672 		if (priv->poll_mode == GFAR_SQ_POLLING) {
673 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
674 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
675 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
676 		}
677 	} else {
678 		grp->rx_bit_map = 0xFF;
679 		grp->tx_bit_map = 0xFF;
680 	}
681 
682 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
683 	 * right to left, so we need to revert the 8 bits to get the q index
684 	 */
685 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
686 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
687 
688 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
689 	 * also assign queues to groups
690 	 */
691 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
692 		if (!grp->rx_queue)
693 			grp->rx_queue = priv->rx_queue[i];
694 		grp->num_rx_queues++;
695 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
696 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
697 		priv->rx_queue[i]->grp = grp;
698 	}
699 
700 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
701 		if (!grp->tx_queue)
702 			grp->tx_queue = priv->tx_queue[i];
703 		grp->num_tx_queues++;
704 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
705 		priv->tqueue |= (TQUEUE_EN0 >> i);
706 		priv->tx_queue[i]->grp = grp;
707 	}
708 
709 	priv->num_grps++;
710 
711 	return 0;
712 }
713 
714 static int gfar_of_group_count(struct device_node *np)
715 {
716 	struct device_node *child;
717 	int num = 0;
718 
719 	for_each_available_child_of_node(np, child)
720 		if (of_node_name_eq(child, "queue-group"))
721 			num++;
722 
723 	return num;
724 }
725 
726 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
727 {
728 	const char *model;
729 	const char *ctype;
730 	const void *mac_addr;
731 	int err = 0, i;
732 	struct net_device *dev = NULL;
733 	struct gfar_private *priv = NULL;
734 	struct device_node *np = ofdev->dev.of_node;
735 	struct device_node *child = NULL;
736 	u32 stash_len = 0;
737 	u32 stash_idx = 0;
738 	unsigned int num_tx_qs, num_rx_qs;
739 	unsigned short mode, poll_mode;
740 
741 	if (!np)
742 		return -ENODEV;
743 
744 	if (of_device_is_compatible(np, "fsl,etsec2")) {
745 		mode = MQ_MG_MODE;
746 		poll_mode = GFAR_SQ_POLLING;
747 	} else {
748 		mode = SQ_SG_MODE;
749 		poll_mode = GFAR_SQ_POLLING;
750 	}
751 
752 	if (mode == SQ_SG_MODE) {
753 		num_tx_qs = 1;
754 		num_rx_qs = 1;
755 	} else { /* MQ_MG_MODE */
756 		/* get the actual number of supported groups */
757 		unsigned int num_grps = gfar_of_group_count(np);
758 
759 		if (num_grps == 0 || num_grps > MAXGROUPS) {
760 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
761 				num_grps);
762 			pr_err("Cannot do alloc_etherdev, aborting\n");
763 			return -EINVAL;
764 		}
765 
766 		if (poll_mode == GFAR_SQ_POLLING) {
767 			num_tx_qs = num_grps; /* one txq per int group */
768 			num_rx_qs = num_grps; /* one rxq per int group */
769 		} else { /* GFAR_MQ_POLLING */
770 			u32 tx_queues, rx_queues;
771 			int ret;
772 
773 			/* parse the num of HW tx and rx queues */
774 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
775 						   &tx_queues);
776 			num_tx_qs = ret ? 1 : tx_queues;
777 
778 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
779 						   &rx_queues);
780 			num_rx_qs = ret ? 1 : rx_queues;
781 		}
782 	}
783 
784 	if (num_tx_qs > MAX_TX_QS) {
785 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
786 		       num_tx_qs, MAX_TX_QS);
787 		pr_err("Cannot do alloc_etherdev, aborting\n");
788 		return -EINVAL;
789 	}
790 
791 	if (num_rx_qs > MAX_RX_QS) {
792 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
793 		       num_rx_qs, MAX_RX_QS);
794 		pr_err("Cannot do alloc_etherdev, aborting\n");
795 		return -EINVAL;
796 	}
797 
798 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
799 	dev = *pdev;
800 	if (NULL == dev)
801 		return -ENOMEM;
802 
803 	priv = netdev_priv(dev);
804 	priv->ndev = dev;
805 
806 	priv->mode = mode;
807 	priv->poll_mode = poll_mode;
808 
809 	priv->num_tx_queues = num_tx_qs;
810 	netif_set_real_num_rx_queues(dev, num_rx_qs);
811 	priv->num_rx_queues = num_rx_qs;
812 
813 	err = gfar_alloc_tx_queues(priv);
814 	if (err)
815 		goto tx_alloc_failed;
816 
817 	err = gfar_alloc_rx_queues(priv);
818 	if (err)
819 		goto rx_alloc_failed;
820 
821 	err = of_property_read_string(np, "model", &model);
822 	if (err) {
823 		pr_err("Device model property missing, aborting\n");
824 		goto rx_alloc_failed;
825 	}
826 
827 	/* Init Rx queue filer rule set linked list */
828 	INIT_LIST_HEAD(&priv->rx_list.list);
829 	priv->rx_list.count = 0;
830 	mutex_init(&priv->rx_queue_access);
831 
832 	for (i = 0; i < MAXGROUPS; i++)
833 		priv->gfargrp[i].regs = NULL;
834 
835 	/* Parse and initialize group specific information */
836 	if (priv->mode == MQ_MG_MODE) {
837 		for_each_available_child_of_node(np, child) {
838 			if (!of_node_name_eq(child, "queue-group"))
839 				continue;
840 
841 			err = gfar_parse_group(child, priv, model);
842 			if (err)
843 				goto err_grp_init;
844 		}
845 	} else { /* SQ_SG_MODE */
846 		err = gfar_parse_group(np, priv, model);
847 		if (err)
848 			goto err_grp_init;
849 	}
850 
851 	if (of_property_read_bool(np, "bd-stash")) {
852 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
853 		priv->bd_stash_en = 1;
854 	}
855 
856 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
857 
858 	if (err == 0)
859 		priv->rx_stash_size = stash_len;
860 
861 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
862 
863 	if (err == 0)
864 		priv->rx_stash_index = stash_idx;
865 
866 	if (stash_len || stash_idx)
867 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
868 
869 	mac_addr = of_get_mac_address(np);
870 
871 	if (!IS_ERR(mac_addr))
872 		ether_addr_copy(dev->dev_addr, mac_addr);
873 
874 	if (model && !strcasecmp(model, "TSEC"))
875 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
876 				     FSL_GIANFAR_DEV_HAS_COALESCE |
877 				     FSL_GIANFAR_DEV_HAS_RMON |
878 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
879 
880 	if (model && !strcasecmp(model, "eTSEC"))
881 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
882 				     FSL_GIANFAR_DEV_HAS_COALESCE |
883 				     FSL_GIANFAR_DEV_HAS_RMON |
884 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
885 				     FSL_GIANFAR_DEV_HAS_CSUM |
886 				     FSL_GIANFAR_DEV_HAS_VLAN |
887 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
888 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
889 				     FSL_GIANFAR_DEV_HAS_TIMER |
890 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
891 
892 	err = of_property_read_string(np, "phy-connection-type", &ctype);
893 
894 	/* We only care about rgmii-id.  The rest are autodetected */
895 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
896 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
897 	else
898 		priv->interface = PHY_INTERFACE_MODE_MII;
899 
900 	if (of_find_property(np, "fsl,magic-packet", NULL))
901 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
902 
903 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
904 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
905 
906 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
907 
908 	/* In the case of a fixed PHY, the DT node associated
909 	 * to the PHY is the Ethernet MAC DT node.
910 	 */
911 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
912 		err = of_phy_register_fixed_link(np);
913 		if (err)
914 			goto err_grp_init;
915 
916 		priv->phy_node = of_node_get(np);
917 	}
918 
919 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
920 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
921 
922 	return 0;
923 
924 err_grp_init:
925 	unmap_group_regs(priv);
926 rx_alloc_failed:
927 	gfar_free_rx_queues(priv);
928 tx_alloc_failed:
929 	gfar_free_tx_queues(priv);
930 	free_gfar_dev(priv);
931 	return err;
932 }
933 
934 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
935 {
936 	struct hwtstamp_config config;
937 	struct gfar_private *priv = netdev_priv(netdev);
938 
939 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
940 		return -EFAULT;
941 
942 	/* reserved for future extensions */
943 	if (config.flags)
944 		return -EINVAL;
945 
946 	switch (config.tx_type) {
947 	case HWTSTAMP_TX_OFF:
948 		priv->hwts_tx_en = 0;
949 		break;
950 	case HWTSTAMP_TX_ON:
951 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
952 			return -ERANGE;
953 		priv->hwts_tx_en = 1;
954 		break;
955 	default:
956 		return -ERANGE;
957 	}
958 
959 	switch (config.rx_filter) {
960 	case HWTSTAMP_FILTER_NONE:
961 		if (priv->hwts_rx_en) {
962 			priv->hwts_rx_en = 0;
963 			reset_gfar(netdev);
964 		}
965 		break;
966 	default:
967 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
968 			return -ERANGE;
969 		if (!priv->hwts_rx_en) {
970 			priv->hwts_rx_en = 1;
971 			reset_gfar(netdev);
972 		}
973 		config.rx_filter = HWTSTAMP_FILTER_ALL;
974 		break;
975 	}
976 
977 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
978 		-EFAULT : 0;
979 }
980 
981 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
982 {
983 	struct hwtstamp_config config;
984 	struct gfar_private *priv = netdev_priv(netdev);
985 
986 	config.flags = 0;
987 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
988 	config.rx_filter = (priv->hwts_rx_en ?
989 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
990 
991 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
992 		-EFAULT : 0;
993 }
994 
995 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
996 {
997 	struct phy_device *phydev = dev->phydev;
998 
999 	if (!netif_running(dev))
1000 		return -EINVAL;
1001 
1002 	if (cmd == SIOCSHWTSTAMP)
1003 		return gfar_hwtstamp_set(dev, rq);
1004 	if (cmd == SIOCGHWTSTAMP)
1005 		return gfar_hwtstamp_get(dev, rq);
1006 
1007 	if (!phydev)
1008 		return -ENODEV;
1009 
1010 	return phy_mii_ioctl(phydev, rq, cmd);
1011 }
1012 
1013 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1014 				   u32 class)
1015 {
1016 	u32 rqfpr = FPR_FILER_MASK;
1017 	u32 rqfcr = 0x0;
1018 
1019 	rqfar--;
1020 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1021 	priv->ftp_rqfpr[rqfar] = rqfpr;
1022 	priv->ftp_rqfcr[rqfar] = rqfcr;
1023 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1024 
1025 	rqfar--;
1026 	rqfcr = RQFCR_CMP_NOMATCH;
1027 	priv->ftp_rqfpr[rqfar] = rqfpr;
1028 	priv->ftp_rqfcr[rqfar] = rqfcr;
1029 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1030 
1031 	rqfar--;
1032 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1033 	rqfpr = class;
1034 	priv->ftp_rqfcr[rqfar] = rqfcr;
1035 	priv->ftp_rqfpr[rqfar] = rqfpr;
1036 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037 
1038 	rqfar--;
1039 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1040 	rqfpr = class;
1041 	priv->ftp_rqfcr[rqfar] = rqfcr;
1042 	priv->ftp_rqfpr[rqfar] = rqfpr;
1043 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044 
1045 	return rqfar;
1046 }
1047 
1048 static void gfar_init_filer_table(struct gfar_private *priv)
1049 {
1050 	int i = 0x0;
1051 	u32 rqfar = MAX_FILER_IDX;
1052 	u32 rqfcr = 0x0;
1053 	u32 rqfpr = FPR_FILER_MASK;
1054 
1055 	/* Default rule */
1056 	rqfcr = RQFCR_CMP_MATCH;
1057 	priv->ftp_rqfcr[rqfar] = rqfcr;
1058 	priv->ftp_rqfpr[rqfar] = rqfpr;
1059 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1060 
1061 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1062 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1063 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1064 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1067 
1068 	/* cur_filer_idx indicated the first non-masked rule */
1069 	priv->cur_filer_idx = rqfar;
1070 
1071 	/* Rest are masked rules */
1072 	rqfcr = RQFCR_CMP_NOMATCH;
1073 	for (i = 0; i < rqfar; i++) {
1074 		priv->ftp_rqfcr[i] = rqfcr;
1075 		priv->ftp_rqfpr[i] = rqfpr;
1076 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1077 	}
1078 }
1079 
1080 #ifdef CONFIG_PPC
1081 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1082 {
1083 	unsigned int pvr = mfspr(SPRN_PVR);
1084 	unsigned int svr = mfspr(SPRN_SVR);
1085 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1086 	unsigned int rev = svr & 0xffff;
1087 
1088 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1089 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1090 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1091 		priv->errata |= GFAR_ERRATA_74;
1092 
1093 	/* MPC8313 and MPC837x all rev */
1094 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1095 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 		priv->errata |= GFAR_ERRATA_76;
1097 
1098 	/* MPC8313 Rev < 2.0 */
1099 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1100 		priv->errata |= GFAR_ERRATA_12;
1101 }
1102 
1103 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1104 {
1105 	unsigned int svr = mfspr(SPRN_SVR);
1106 
1107 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1108 		priv->errata |= GFAR_ERRATA_12;
1109 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1110 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1111 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1112 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1113 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1114 }
1115 #endif
1116 
1117 static void gfar_detect_errata(struct gfar_private *priv)
1118 {
1119 	struct device *dev = &priv->ofdev->dev;
1120 
1121 	/* no plans to fix */
1122 	priv->errata |= GFAR_ERRATA_A002;
1123 
1124 #ifdef CONFIG_PPC
1125 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1126 		__gfar_detect_errata_85xx(priv);
1127 	else /* non-mpc85xx parts, i.e. e300 core based */
1128 		__gfar_detect_errata_83xx(priv);
1129 #endif
1130 
1131 	if (priv->errata)
1132 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1133 			 priv->errata);
1134 }
1135 
1136 void gfar_mac_reset(struct gfar_private *priv)
1137 {
1138 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1139 	u32 tempval;
1140 
1141 	/* Reset MAC layer */
1142 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1143 
1144 	/* We need to delay at least 3 TX clocks */
1145 	udelay(3);
1146 
1147 	/* the soft reset bit is not self-resetting, so we need to
1148 	 * clear it before resuming normal operation
1149 	 */
1150 	gfar_write(&regs->maccfg1, 0);
1151 
1152 	udelay(3);
1153 
1154 	gfar_rx_offload_en(priv);
1155 
1156 	/* Initialize the max receive frame/buffer lengths */
1157 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1158 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1159 
1160 	/* Initialize the Minimum Frame Length Register */
1161 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1162 
1163 	/* Initialize MACCFG2. */
1164 	tempval = MACCFG2_INIT_SETTINGS;
1165 
1166 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1167 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1168 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1169 	 */
1170 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1171 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1172 
1173 	gfar_write(&regs->maccfg2, tempval);
1174 
1175 	/* Clear mac addr hash registers */
1176 	gfar_write(&regs->igaddr0, 0);
1177 	gfar_write(&regs->igaddr1, 0);
1178 	gfar_write(&regs->igaddr2, 0);
1179 	gfar_write(&regs->igaddr3, 0);
1180 	gfar_write(&regs->igaddr4, 0);
1181 	gfar_write(&regs->igaddr5, 0);
1182 	gfar_write(&regs->igaddr6, 0);
1183 	gfar_write(&regs->igaddr7, 0);
1184 
1185 	gfar_write(&regs->gaddr0, 0);
1186 	gfar_write(&regs->gaddr1, 0);
1187 	gfar_write(&regs->gaddr2, 0);
1188 	gfar_write(&regs->gaddr3, 0);
1189 	gfar_write(&regs->gaddr4, 0);
1190 	gfar_write(&regs->gaddr5, 0);
1191 	gfar_write(&regs->gaddr6, 0);
1192 	gfar_write(&regs->gaddr7, 0);
1193 
1194 	if (priv->extended_hash)
1195 		gfar_clear_exact_match(priv->ndev);
1196 
1197 	gfar_mac_rx_config(priv);
1198 
1199 	gfar_mac_tx_config(priv);
1200 
1201 	gfar_set_mac_address(priv->ndev);
1202 
1203 	gfar_set_multi(priv->ndev);
1204 
1205 	/* clear ievent and imask before configuring coalescing */
1206 	gfar_ints_disable(priv);
1207 
1208 	/* Configure the coalescing support */
1209 	gfar_configure_coalescing_all(priv);
1210 }
1211 
1212 static void gfar_hw_init(struct gfar_private *priv)
1213 {
1214 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1215 	u32 attrs;
1216 
1217 	/* Stop the DMA engine now, in case it was running before
1218 	 * (The firmware could have used it, and left it running).
1219 	 */
1220 	gfar_halt(priv);
1221 
1222 	gfar_mac_reset(priv);
1223 
1224 	/* Zero out the rmon mib registers if it has them */
1225 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1226 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1227 
1228 		/* Mask off the CAM interrupts */
1229 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1230 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1231 	}
1232 
1233 	/* Initialize ECNTRL */
1234 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1235 
1236 	/* Set the extraction length and index */
1237 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1238 		ATTRELI_EI(priv->rx_stash_index);
1239 
1240 	gfar_write(&regs->attreli, attrs);
1241 
1242 	/* Start with defaults, and add stashing
1243 	 * depending on driver parameters
1244 	 */
1245 	attrs = ATTR_INIT_SETTINGS;
1246 
1247 	if (priv->bd_stash_en)
1248 		attrs |= ATTR_BDSTASH;
1249 
1250 	if (priv->rx_stash_size != 0)
1251 		attrs |= ATTR_BUFSTASH;
1252 
1253 	gfar_write(&regs->attr, attrs);
1254 
1255 	/* FIFO configs */
1256 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1257 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1258 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1259 
1260 	/* Program the interrupt steering regs, only for MG devices */
1261 	if (priv->num_grps > 1)
1262 		gfar_write_isrg(priv);
1263 }
1264 
1265 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1266 {
1267 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1268 
1269 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1270 		priv->extended_hash = 1;
1271 		priv->hash_width = 9;
1272 
1273 		priv->hash_regs[0] = &regs->igaddr0;
1274 		priv->hash_regs[1] = &regs->igaddr1;
1275 		priv->hash_regs[2] = &regs->igaddr2;
1276 		priv->hash_regs[3] = &regs->igaddr3;
1277 		priv->hash_regs[4] = &regs->igaddr4;
1278 		priv->hash_regs[5] = &regs->igaddr5;
1279 		priv->hash_regs[6] = &regs->igaddr6;
1280 		priv->hash_regs[7] = &regs->igaddr7;
1281 		priv->hash_regs[8] = &regs->gaddr0;
1282 		priv->hash_regs[9] = &regs->gaddr1;
1283 		priv->hash_regs[10] = &regs->gaddr2;
1284 		priv->hash_regs[11] = &regs->gaddr3;
1285 		priv->hash_regs[12] = &regs->gaddr4;
1286 		priv->hash_regs[13] = &regs->gaddr5;
1287 		priv->hash_regs[14] = &regs->gaddr6;
1288 		priv->hash_regs[15] = &regs->gaddr7;
1289 
1290 	} else {
1291 		priv->extended_hash = 0;
1292 		priv->hash_width = 8;
1293 
1294 		priv->hash_regs[0] = &regs->gaddr0;
1295 		priv->hash_regs[1] = &regs->gaddr1;
1296 		priv->hash_regs[2] = &regs->gaddr2;
1297 		priv->hash_regs[3] = &regs->gaddr3;
1298 		priv->hash_regs[4] = &regs->gaddr4;
1299 		priv->hash_regs[5] = &regs->gaddr5;
1300 		priv->hash_regs[6] = &regs->gaddr6;
1301 		priv->hash_regs[7] = &regs->gaddr7;
1302 	}
1303 }
1304 
1305 /* Set up the ethernet device structure, private data,
1306  * and anything else we need before we start
1307  */
1308 static int gfar_probe(struct platform_device *ofdev)
1309 {
1310 	struct device_node *np = ofdev->dev.of_node;
1311 	struct net_device *dev = NULL;
1312 	struct gfar_private *priv = NULL;
1313 	int err = 0, i;
1314 
1315 	err = gfar_of_init(ofdev, &dev);
1316 
1317 	if (err)
1318 		return err;
1319 
1320 	priv = netdev_priv(dev);
1321 	priv->ndev = dev;
1322 	priv->ofdev = ofdev;
1323 	priv->dev = &ofdev->dev;
1324 	SET_NETDEV_DEV(dev, &ofdev->dev);
1325 
1326 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1327 
1328 	platform_set_drvdata(ofdev, priv);
1329 
1330 	gfar_detect_errata(priv);
1331 
1332 	/* Set the dev->base_addr to the gfar reg region */
1333 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1334 
1335 	/* Fill in the dev structure */
1336 	dev->watchdog_timeo = TX_TIMEOUT;
1337 	/* MTU range: 50 - 9586 */
1338 	dev->mtu = 1500;
1339 	dev->min_mtu = 50;
1340 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1341 	dev->netdev_ops = &gfar_netdev_ops;
1342 	dev->ethtool_ops = &gfar_ethtool_ops;
1343 
1344 	/* Register for napi ...We are registering NAPI for each grp */
1345 	for (i = 0; i < priv->num_grps; i++) {
1346 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1347 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1348 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1349 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1350 				       gfar_poll_tx_sq, 2);
1351 		} else {
1352 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1354 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355 				       gfar_poll_tx, 2);
1356 		}
1357 	}
1358 
1359 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1360 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1361 				   NETIF_F_RXCSUM;
1362 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1363 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1364 	}
1365 
1366 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1367 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1368 				    NETIF_F_HW_VLAN_CTAG_RX;
1369 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1370 	}
1371 
1372 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1373 
1374 	gfar_init_addr_hash_table(priv);
1375 
1376 	/* Insert receive time stamps into padding alignment bytes, and
1377 	 * plus 2 bytes padding to ensure the cpu alignment.
1378 	 */
1379 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 		priv->padding = 8 + DEFAULT_PADDING;
1381 
1382 	if (dev->features & NETIF_F_IP_CSUM ||
1383 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 		dev->needed_headroom = GMAC_FCB_LEN;
1385 
1386 	/* Initializing some of the rx/tx queue level parameters */
1387 	for (i = 0; i < priv->num_tx_queues; i++) {
1388 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1392 	}
1393 
1394 	for (i = 0; i < priv->num_rx_queues; i++) {
1395 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1398 	}
1399 
1400 	/* Always enable rx filer if available */
1401 	priv->rx_filer_enable =
1402 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403 	/* Enable most messages by default */
1404 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405 	/* use pritority h/w tx queue scheduling for single queue devices */
1406 	if (priv->num_tx_queues == 1)
1407 		priv->prio_sched_en = 1;
1408 
1409 	set_bit(GFAR_DOWN, &priv->state);
1410 
1411 	gfar_hw_init(priv);
1412 
1413 	/* Carrier starts down, phylib will bring it up */
1414 	netif_carrier_off(dev);
1415 
1416 	err = register_netdev(dev);
1417 
1418 	if (err) {
1419 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420 		goto register_fail;
1421 	}
1422 
1423 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424 		priv->wol_supported |= GFAR_WOL_MAGIC;
1425 
1426 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427 	    priv->rx_filer_enable)
1428 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1429 
1430 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1431 
1432 	/* fill out IRQ number and name fields */
1433 	for (i = 0; i < priv->num_grps; i++) {
1434 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437 				dev->name, "_g", '0' + i, "_tx");
1438 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439 				dev->name, "_g", '0' + i, "_rx");
1440 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441 				dev->name, "_g", '0' + i, "_er");
1442 		} else
1443 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1444 	}
1445 
1446 	/* Initialize the filer table */
1447 	gfar_init_filer_table(priv);
1448 
1449 	/* Print out the device info */
1450 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1451 
1452 	/* Even more device info helps when determining which kernel
1453 	 * provided which set of benchmarks.
1454 	 */
1455 	netdev_info(dev, "Running with NAPI enabled\n");
1456 	for (i = 0; i < priv->num_rx_queues; i++)
1457 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458 			    i, priv->rx_queue[i]->rx_ring_size);
1459 	for (i = 0; i < priv->num_tx_queues; i++)
1460 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461 			    i, priv->tx_queue[i]->tx_ring_size);
1462 
1463 	return 0;
1464 
1465 register_fail:
1466 	if (of_phy_is_fixed_link(np))
1467 		of_phy_deregister_fixed_link(np);
1468 	unmap_group_regs(priv);
1469 	gfar_free_rx_queues(priv);
1470 	gfar_free_tx_queues(priv);
1471 	of_node_put(priv->phy_node);
1472 	of_node_put(priv->tbi_node);
1473 	free_gfar_dev(priv);
1474 	return err;
1475 }
1476 
1477 static int gfar_remove(struct platform_device *ofdev)
1478 {
1479 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1480 	struct device_node *np = ofdev->dev.of_node;
1481 
1482 	of_node_put(priv->phy_node);
1483 	of_node_put(priv->tbi_node);
1484 
1485 	unregister_netdev(priv->ndev);
1486 
1487 	if (of_phy_is_fixed_link(np))
1488 		of_phy_deregister_fixed_link(np);
1489 
1490 	unmap_group_regs(priv);
1491 	gfar_free_rx_queues(priv);
1492 	gfar_free_tx_queues(priv);
1493 	free_gfar_dev(priv);
1494 
1495 	return 0;
1496 }
1497 
1498 #ifdef CONFIG_PM
1499 
1500 static void __gfar_filer_disable(struct gfar_private *priv)
1501 {
1502 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503 	u32 temp;
1504 
1505 	temp = gfar_read(&regs->rctrl);
1506 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1507 	gfar_write(&regs->rctrl, temp);
1508 }
1509 
1510 static void __gfar_filer_enable(struct gfar_private *priv)
1511 {
1512 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1513 	u32 temp;
1514 
1515 	temp = gfar_read(&regs->rctrl);
1516 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1517 	gfar_write(&regs->rctrl, temp);
1518 }
1519 
1520 /* Filer rules implementing wol capabilities */
1521 static void gfar_filer_config_wol(struct gfar_private *priv)
1522 {
1523 	unsigned int i;
1524 	u32 rqfcr;
1525 
1526 	__gfar_filer_disable(priv);
1527 
1528 	/* clear the filer table, reject any packet by default */
1529 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1530 	for (i = 0; i <= MAX_FILER_IDX; i++)
1531 		gfar_write_filer(priv, i, rqfcr, 0);
1532 
1533 	i = 0;
1534 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1535 		/* unicast packet, accept it */
1536 		struct net_device *ndev = priv->ndev;
1537 		/* get the default rx queue index */
1538 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1539 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1540 				    (ndev->dev_addr[1] << 8) |
1541 				     ndev->dev_addr[2];
1542 
1543 		rqfcr = (qindex << 10) | RQFCR_AND |
1544 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1545 
1546 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1547 
1548 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1549 				(ndev->dev_addr[4] << 8) |
1550 				 ndev->dev_addr[5];
1551 		rqfcr = (qindex << 10) | RQFCR_GPI |
1552 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1553 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554 	}
1555 
1556 	__gfar_filer_enable(priv);
1557 }
1558 
1559 static void gfar_filer_restore_table(struct gfar_private *priv)
1560 {
1561 	u32 rqfcr, rqfpr;
1562 	unsigned int i;
1563 
1564 	__gfar_filer_disable(priv);
1565 
1566 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1567 		rqfcr = priv->ftp_rqfcr[i];
1568 		rqfpr = priv->ftp_rqfpr[i];
1569 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1570 	}
1571 
1572 	__gfar_filer_enable(priv);
1573 }
1574 
1575 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1576 static void gfar_start_wol_filer(struct gfar_private *priv)
1577 {
1578 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1579 	u32 tempval;
1580 	int i = 0;
1581 
1582 	/* Enable Rx hw queues */
1583 	gfar_write(&regs->rqueue, priv->rqueue);
1584 
1585 	/* Initialize DMACTRL to have WWR and WOP */
1586 	tempval = gfar_read(&regs->dmactrl);
1587 	tempval |= DMACTRL_INIT_SETTINGS;
1588 	gfar_write(&regs->dmactrl, tempval);
1589 
1590 	/* Make sure we aren't stopped */
1591 	tempval = gfar_read(&regs->dmactrl);
1592 	tempval &= ~DMACTRL_GRS;
1593 	gfar_write(&regs->dmactrl, tempval);
1594 
1595 	for (i = 0; i < priv->num_grps; i++) {
1596 		regs = priv->gfargrp[i].regs;
1597 		/* Clear RHLT, so that the DMA starts polling now */
1598 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1599 		/* enable the Filer General Purpose Interrupt */
1600 		gfar_write(&regs->imask, IMASK_FGPI);
1601 	}
1602 
1603 	/* Enable Rx DMA */
1604 	tempval = gfar_read(&regs->maccfg1);
1605 	tempval |= MACCFG1_RX_EN;
1606 	gfar_write(&regs->maccfg1, tempval);
1607 }
1608 
1609 static int gfar_suspend(struct device *dev)
1610 {
1611 	struct gfar_private *priv = dev_get_drvdata(dev);
1612 	struct net_device *ndev = priv->ndev;
1613 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1614 	u32 tempval;
1615 	u16 wol = priv->wol_opts;
1616 
1617 	if (!netif_running(ndev))
1618 		return 0;
1619 
1620 	disable_napi(priv);
1621 	netif_tx_lock(ndev);
1622 	netif_device_detach(ndev);
1623 	netif_tx_unlock(ndev);
1624 
1625 	gfar_halt(priv);
1626 
1627 	if (wol & GFAR_WOL_MAGIC) {
1628 		/* Enable interrupt on Magic Packet */
1629 		gfar_write(&regs->imask, IMASK_MAG);
1630 
1631 		/* Enable Magic Packet mode */
1632 		tempval = gfar_read(&regs->maccfg2);
1633 		tempval |= MACCFG2_MPEN;
1634 		gfar_write(&regs->maccfg2, tempval);
1635 
1636 		/* re-enable the Rx block */
1637 		tempval = gfar_read(&regs->maccfg1);
1638 		tempval |= MACCFG1_RX_EN;
1639 		gfar_write(&regs->maccfg1, tempval);
1640 
1641 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1642 		gfar_filer_config_wol(priv);
1643 		gfar_start_wol_filer(priv);
1644 
1645 	} else {
1646 		phy_stop(ndev->phydev);
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 static int gfar_resume(struct device *dev)
1653 {
1654 	struct gfar_private *priv = dev_get_drvdata(dev);
1655 	struct net_device *ndev = priv->ndev;
1656 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1657 	u32 tempval;
1658 	u16 wol = priv->wol_opts;
1659 
1660 	if (!netif_running(ndev))
1661 		return 0;
1662 
1663 	if (wol & GFAR_WOL_MAGIC) {
1664 		/* Disable Magic Packet mode */
1665 		tempval = gfar_read(&regs->maccfg2);
1666 		tempval &= ~MACCFG2_MPEN;
1667 		gfar_write(&regs->maccfg2, tempval);
1668 
1669 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1670 		/* need to stop rx only, tx is already down */
1671 		gfar_halt(priv);
1672 		gfar_filer_restore_table(priv);
1673 
1674 	} else {
1675 		phy_start(ndev->phydev);
1676 	}
1677 
1678 	gfar_start(priv);
1679 
1680 	netif_device_attach(ndev);
1681 	enable_napi(priv);
1682 
1683 	return 0;
1684 }
1685 
1686 static int gfar_restore(struct device *dev)
1687 {
1688 	struct gfar_private *priv = dev_get_drvdata(dev);
1689 	struct net_device *ndev = priv->ndev;
1690 
1691 	if (!netif_running(ndev)) {
1692 		netif_device_attach(ndev);
1693 
1694 		return 0;
1695 	}
1696 
1697 	gfar_init_bds(ndev);
1698 
1699 	gfar_mac_reset(priv);
1700 
1701 	gfar_init_tx_rx_base(priv);
1702 
1703 	gfar_start(priv);
1704 
1705 	priv->oldlink = 0;
1706 	priv->oldspeed = 0;
1707 	priv->oldduplex = -1;
1708 
1709 	if (ndev->phydev)
1710 		phy_start(ndev->phydev);
1711 
1712 	netif_device_attach(ndev);
1713 	enable_napi(priv);
1714 
1715 	return 0;
1716 }
1717 
1718 static const struct dev_pm_ops gfar_pm_ops = {
1719 	.suspend = gfar_suspend,
1720 	.resume = gfar_resume,
1721 	.freeze = gfar_suspend,
1722 	.thaw = gfar_resume,
1723 	.restore = gfar_restore,
1724 };
1725 
1726 #define GFAR_PM_OPS (&gfar_pm_ops)
1727 
1728 #else
1729 
1730 #define GFAR_PM_OPS NULL
1731 
1732 #endif
1733 
1734 /* Reads the controller's registers to determine what interface
1735  * connects it to the PHY.
1736  */
1737 static phy_interface_t gfar_get_interface(struct net_device *dev)
1738 {
1739 	struct gfar_private *priv = netdev_priv(dev);
1740 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1741 	u32 ecntrl;
1742 
1743 	ecntrl = gfar_read(&regs->ecntrl);
1744 
1745 	if (ecntrl & ECNTRL_SGMII_MODE)
1746 		return PHY_INTERFACE_MODE_SGMII;
1747 
1748 	if (ecntrl & ECNTRL_TBI_MODE) {
1749 		if (ecntrl & ECNTRL_REDUCED_MODE)
1750 			return PHY_INTERFACE_MODE_RTBI;
1751 		else
1752 			return PHY_INTERFACE_MODE_TBI;
1753 	}
1754 
1755 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1756 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1757 			return PHY_INTERFACE_MODE_RMII;
1758 		}
1759 		else {
1760 			phy_interface_t interface = priv->interface;
1761 
1762 			/* This isn't autodetected right now, so it must
1763 			 * be set by the device tree or platform code.
1764 			 */
1765 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1766 				return PHY_INTERFACE_MODE_RGMII_ID;
1767 
1768 			return PHY_INTERFACE_MODE_RGMII;
1769 		}
1770 	}
1771 
1772 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1773 		return PHY_INTERFACE_MODE_GMII;
1774 
1775 	return PHY_INTERFACE_MODE_MII;
1776 }
1777 
1778 
1779 /* Initializes driver's PHY state, and attaches to the PHY.
1780  * Returns 0 on success.
1781  */
1782 static int init_phy(struct net_device *dev)
1783 {
1784 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1785 	struct gfar_private *priv = netdev_priv(dev);
1786 	phy_interface_t interface;
1787 	struct phy_device *phydev;
1788 	struct ethtool_eee edata;
1789 
1790 	linkmode_set_bit_array(phy_10_100_features_array,
1791 			       ARRAY_SIZE(phy_10_100_features_array),
1792 			       mask);
1793 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1794 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1795 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1796 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1797 
1798 	priv->oldlink = 0;
1799 	priv->oldspeed = 0;
1800 	priv->oldduplex = -1;
1801 
1802 	interface = gfar_get_interface(dev);
1803 
1804 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1805 				interface);
1806 	if (!phydev) {
1807 		dev_err(&dev->dev, "could not attach to PHY\n");
1808 		return -ENODEV;
1809 	}
1810 
1811 	if (interface == PHY_INTERFACE_MODE_SGMII)
1812 		gfar_configure_serdes(dev);
1813 
1814 	/* Remove any features not supported by the controller */
1815 	linkmode_and(phydev->supported, phydev->supported, mask);
1816 	linkmode_copy(phydev->advertising, phydev->supported);
1817 
1818 	/* Add support for flow control */
1819 	phy_support_asym_pause(phydev);
1820 
1821 	/* disable EEE autoneg, EEE not supported by eTSEC */
1822 	memset(&edata, 0, sizeof(struct ethtool_eee));
1823 	phy_ethtool_set_eee(phydev, &edata);
1824 
1825 	return 0;
1826 }
1827 
1828 /* Initialize TBI PHY interface for communicating with the
1829  * SERDES lynx PHY on the chip.  We communicate with this PHY
1830  * through the MDIO bus on each controller, treating it as a
1831  * "normal" PHY at the address found in the TBIPA register.  We assume
1832  * that the TBIPA register is valid.  Either the MDIO bus code will set
1833  * it to a value that doesn't conflict with other PHYs on the bus, or the
1834  * value doesn't matter, as there are no other PHYs on the bus.
1835  */
1836 static void gfar_configure_serdes(struct net_device *dev)
1837 {
1838 	struct gfar_private *priv = netdev_priv(dev);
1839 	struct phy_device *tbiphy;
1840 
1841 	if (!priv->tbi_node) {
1842 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1843 				    "device tree specify a tbi-handle\n");
1844 		return;
1845 	}
1846 
1847 	tbiphy = of_phy_find_device(priv->tbi_node);
1848 	if (!tbiphy) {
1849 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1850 		return;
1851 	}
1852 
1853 	/* If the link is already up, we must already be ok, and don't need to
1854 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1855 	 * everything for us?  Resetting it takes the link down and requires
1856 	 * several seconds for it to come back.
1857 	 */
1858 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1859 		put_device(&tbiphy->mdio.dev);
1860 		return;
1861 	}
1862 
1863 	/* Single clk mode, mii mode off(for serdes communication) */
1864 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1865 
1866 	phy_write(tbiphy, MII_ADVERTISE,
1867 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1868 		  ADVERTISE_1000XPSE_ASYM);
1869 
1870 	phy_write(tbiphy, MII_BMCR,
1871 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1872 		  BMCR_SPEED1000);
1873 
1874 	put_device(&tbiphy->mdio.dev);
1875 }
1876 
1877 static int __gfar_is_rx_idle(struct gfar_private *priv)
1878 {
1879 	u32 res;
1880 
1881 	/* Normaly TSEC should not hang on GRS commands, so we should
1882 	 * actually wait for IEVENT_GRSC flag.
1883 	 */
1884 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1885 		return 0;
1886 
1887 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1888 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1889 	 * and the Rx can be safely reset.
1890 	 */
1891 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1892 	res &= 0x7f807f80;
1893 	if ((res & 0xffff) == (res >> 16))
1894 		return 1;
1895 
1896 	return 0;
1897 }
1898 
1899 /* Halt the receive and transmit queues */
1900 static void gfar_halt_nodisable(struct gfar_private *priv)
1901 {
1902 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1903 	u32 tempval;
1904 	unsigned int timeout;
1905 	int stopped;
1906 
1907 	gfar_ints_disable(priv);
1908 
1909 	if (gfar_is_dma_stopped(priv))
1910 		return;
1911 
1912 	/* Stop the DMA, and wait for it to stop */
1913 	tempval = gfar_read(&regs->dmactrl);
1914 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1915 	gfar_write(&regs->dmactrl, tempval);
1916 
1917 retry:
1918 	timeout = 1000;
1919 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1920 		cpu_relax();
1921 		timeout--;
1922 	}
1923 
1924 	if (!timeout)
1925 		stopped = gfar_is_dma_stopped(priv);
1926 
1927 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1928 	    !__gfar_is_rx_idle(priv))
1929 		goto retry;
1930 }
1931 
1932 /* Halt the receive and transmit queues */
1933 void gfar_halt(struct gfar_private *priv)
1934 {
1935 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1936 	u32 tempval;
1937 
1938 	/* Dissable the Rx/Tx hw queues */
1939 	gfar_write(&regs->rqueue, 0);
1940 	gfar_write(&regs->tqueue, 0);
1941 
1942 	mdelay(10);
1943 
1944 	gfar_halt_nodisable(priv);
1945 
1946 	/* Disable Rx/Tx DMA */
1947 	tempval = gfar_read(&regs->maccfg1);
1948 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1949 	gfar_write(&regs->maccfg1, tempval);
1950 }
1951 
1952 void stop_gfar(struct net_device *dev)
1953 {
1954 	struct gfar_private *priv = netdev_priv(dev);
1955 
1956 	netif_tx_stop_all_queues(dev);
1957 
1958 	smp_mb__before_atomic();
1959 	set_bit(GFAR_DOWN, &priv->state);
1960 	smp_mb__after_atomic();
1961 
1962 	disable_napi(priv);
1963 
1964 	/* disable ints and gracefully shut down Rx/Tx DMA */
1965 	gfar_halt(priv);
1966 
1967 	phy_stop(dev->phydev);
1968 
1969 	free_skb_resources(priv);
1970 }
1971 
1972 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1973 {
1974 	struct txbd8 *txbdp;
1975 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1976 	int i, j;
1977 
1978 	txbdp = tx_queue->tx_bd_base;
1979 
1980 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1981 		if (!tx_queue->tx_skbuff[i])
1982 			continue;
1983 
1984 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1985 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1986 		txbdp->lstatus = 0;
1987 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1988 		     j++) {
1989 			txbdp++;
1990 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1991 				       be16_to_cpu(txbdp->length),
1992 				       DMA_TO_DEVICE);
1993 		}
1994 		txbdp++;
1995 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1996 		tx_queue->tx_skbuff[i] = NULL;
1997 	}
1998 	kfree(tx_queue->tx_skbuff);
1999 	tx_queue->tx_skbuff = NULL;
2000 }
2001 
2002 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2003 {
2004 	int i;
2005 
2006 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2007 
2008 	dev_kfree_skb(rx_queue->skb);
2009 
2010 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2011 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2012 
2013 		rxbdp->lstatus = 0;
2014 		rxbdp->bufPtr = 0;
2015 		rxbdp++;
2016 
2017 		if (!rxb->page)
2018 			continue;
2019 
2020 		dma_unmap_page(rx_queue->dev, rxb->dma,
2021 			       PAGE_SIZE, DMA_FROM_DEVICE);
2022 		__free_page(rxb->page);
2023 
2024 		rxb->page = NULL;
2025 	}
2026 
2027 	kfree(rx_queue->rx_buff);
2028 	rx_queue->rx_buff = NULL;
2029 }
2030 
2031 /* If there are any tx skbs or rx skbs still around, free them.
2032  * Then free tx_skbuff and rx_skbuff
2033  */
2034 static void free_skb_resources(struct gfar_private *priv)
2035 {
2036 	struct gfar_priv_tx_q *tx_queue = NULL;
2037 	struct gfar_priv_rx_q *rx_queue = NULL;
2038 	int i;
2039 
2040 	/* Go through all the buffer descriptors and free their data buffers */
2041 	for (i = 0; i < priv->num_tx_queues; i++) {
2042 		struct netdev_queue *txq;
2043 
2044 		tx_queue = priv->tx_queue[i];
2045 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2046 		if (tx_queue->tx_skbuff)
2047 			free_skb_tx_queue(tx_queue);
2048 		netdev_tx_reset_queue(txq);
2049 	}
2050 
2051 	for (i = 0; i < priv->num_rx_queues; i++) {
2052 		rx_queue = priv->rx_queue[i];
2053 		if (rx_queue->rx_buff)
2054 			free_skb_rx_queue(rx_queue);
2055 	}
2056 
2057 	dma_free_coherent(priv->dev,
2058 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2059 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2060 			  priv->tx_queue[0]->tx_bd_base,
2061 			  priv->tx_queue[0]->tx_bd_dma_base);
2062 }
2063 
2064 void gfar_start(struct gfar_private *priv)
2065 {
2066 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2067 	u32 tempval;
2068 	int i = 0;
2069 
2070 	/* Enable Rx/Tx hw queues */
2071 	gfar_write(&regs->rqueue, priv->rqueue);
2072 	gfar_write(&regs->tqueue, priv->tqueue);
2073 
2074 	/* Initialize DMACTRL to have WWR and WOP */
2075 	tempval = gfar_read(&regs->dmactrl);
2076 	tempval |= DMACTRL_INIT_SETTINGS;
2077 	gfar_write(&regs->dmactrl, tempval);
2078 
2079 	/* Make sure we aren't stopped */
2080 	tempval = gfar_read(&regs->dmactrl);
2081 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2082 	gfar_write(&regs->dmactrl, tempval);
2083 
2084 	for (i = 0; i < priv->num_grps; i++) {
2085 		regs = priv->gfargrp[i].regs;
2086 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2087 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2088 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2089 	}
2090 
2091 	/* Enable Rx/Tx DMA */
2092 	tempval = gfar_read(&regs->maccfg1);
2093 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2094 	gfar_write(&regs->maccfg1, tempval);
2095 
2096 	gfar_ints_enable(priv);
2097 
2098 	netif_trans_update(priv->ndev); /* prevent tx timeout */
2099 }
2100 
2101 static void free_grp_irqs(struct gfar_priv_grp *grp)
2102 {
2103 	free_irq(gfar_irq(grp, TX)->irq, grp);
2104 	free_irq(gfar_irq(grp, RX)->irq, grp);
2105 	free_irq(gfar_irq(grp, ER)->irq, grp);
2106 }
2107 
2108 static int register_grp_irqs(struct gfar_priv_grp *grp)
2109 {
2110 	struct gfar_private *priv = grp->priv;
2111 	struct net_device *dev = priv->ndev;
2112 	int err;
2113 
2114 	/* If the device has multiple interrupts, register for
2115 	 * them.  Otherwise, only register for the one
2116 	 */
2117 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2118 		/* Install our interrupt handlers for Error,
2119 		 * Transmit, and Receive
2120 		 */
2121 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2122 				  gfar_irq(grp, ER)->name, grp);
2123 		if (err < 0) {
2124 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125 				  gfar_irq(grp, ER)->irq);
2126 
2127 			goto err_irq_fail;
2128 		}
2129 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2130 
2131 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2132 				  gfar_irq(grp, TX)->name, grp);
2133 		if (err < 0) {
2134 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135 				  gfar_irq(grp, TX)->irq);
2136 			goto tx_irq_fail;
2137 		}
2138 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2139 				  gfar_irq(grp, RX)->name, grp);
2140 		if (err < 0) {
2141 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142 				  gfar_irq(grp, RX)->irq);
2143 			goto rx_irq_fail;
2144 		}
2145 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2146 
2147 	} else {
2148 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2149 				  gfar_irq(grp, TX)->name, grp);
2150 		if (err < 0) {
2151 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2152 				  gfar_irq(grp, TX)->irq);
2153 			goto err_irq_fail;
2154 		}
2155 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2156 	}
2157 
2158 	return 0;
2159 
2160 rx_irq_fail:
2161 	free_irq(gfar_irq(grp, TX)->irq, grp);
2162 tx_irq_fail:
2163 	free_irq(gfar_irq(grp, ER)->irq, grp);
2164 err_irq_fail:
2165 	return err;
2166 
2167 }
2168 
2169 static void gfar_free_irq(struct gfar_private *priv)
2170 {
2171 	int i;
2172 
2173 	/* Free the IRQs */
2174 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2175 		for (i = 0; i < priv->num_grps; i++)
2176 			free_grp_irqs(&priv->gfargrp[i]);
2177 	} else {
2178 		for (i = 0; i < priv->num_grps; i++)
2179 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2180 				 &priv->gfargrp[i]);
2181 	}
2182 }
2183 
2184 static int gfar_request_irq(struct gfar_private *priv)
2185 {
2186 	int err, i, j;
2187 
2188 	for (i = 0; i < priv->num_grps; i++) {
2189 		err = register_grp_irqs(&priv->gfargrp[i]);
2190 		if (err) {
2191 			for (j = 0; j < i; j++)
2192 				free_grp_irqs(&priv->gfargrp[j]);
2193 			return err;
2194 		}
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 /* Bring the controller up and running */
2201 int startup_gfar(struct net_device *ndev)
2202 {
2203 	struct gfar_private *priv = netdev_priv(ndev);
2204 	int err;
2205 
2206 	gfar_mac_reset(priv);
2207 
2208 	err = gfar_alloc_skb_resources(ndev);
2209 	if (err)
2210 		return err;
2211 
2212 	gfar_init_tx_rx_base(priv);
2213 
2214 	smp_mb__before_atomic();
2215 	clear_bit(GFAR_DOWN, &priv->state);
2216 	smp_mb__after_atomic();
2217 
2218 	/* Start Rx/Tx DMA and enable the interrupts */
2219 	gfar_start(priv);
2220 
2221 	/* force link state update after mac reset */
2222 	priv->oldlink = 0;
2223 	priv->oldspeed = 0;
2224 	priv->oldduplex = -1;
2225 
2226 	phy_start(ndev->phydev);
2227 
2228 	enable_napi(priv);
2229 
2230 	netif_tx_wake_all_queues(ndev);
2231 
2232 	return 0;
2233 }
2234 
2235 /* Called when something needs to use the ethernet device
2236  * Returns 0 for success.
2237  */
2238 static int gfar_enet_open(struct net_device *dev)
2239 {
2240 	struct gfar_private *priv = netdev_priv(dev);
2241 	int err;
2242 
2243 	err = init_phy(dev);
2244 	if (err)
2245 		return err;
2246 
2247 	err = gfar_request_irq(priv);
2248 	if (err)
2249 		return err;
2250 
2251 	err = startup_gfar(dev);
2252 	if (err)
2253 		return err;
2254 
2255 	return err;
2256 }
2257 
2258 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2259 {
2260 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2261 
2262 	memset(fcb, 0, GMAC_FCB_LEN);
2263 
2264 	return fcb;
2265 }
2266 
2267 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2268 				    int fcb_length)
2269 {
2270 	/* If we're here, it's a IP packet with a TCP or UDP
2271 	 * payload.  We set it to checksum, using a pseudo-header
2272 	 * we provide
2273 	 */
2274 	u8 flags = TXFCB_DEFAULT;
2275 
2276 	/* Tell the controller what the protocol is
2277 	 * And provide the already calculated phcs
2278 	 */
2279 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2280 		flags |= TXFCB_UDP;
2281 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2282 	} else
2283 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2284 
2285 	/* l3os is the distance between the start of the
2286 	 * frame (skb->data) and the start of the IP hdr.
2287 	 * l4os is the distance between the start of the
2288 	 * l3 hdr and the l4 hdr
2289 	 */
2290 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2291 	fcb->l4os = skb_network_header_len(skb);
2292 
2293 	fcb->flags = flags;
2294 }
2295 
2296 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2297 {
2298 	fcb->flags |= TXFCB_VLN;
2299 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2300 }
2301 
2302 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2303 				      struct txbd8 *base, int ring_size)
2304 {
2305 	struct txbd8 *new_bd = bdp + stride;
2306 
2307 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2308 }
2309 
2310 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2311 				      int ring_size)
2312 {
2313 	return skip_txbd(bdp, 1, base, ring_size);
2314 }
2315 
2316 /* eTSEC12: csum generation not supported for some fcb offsets */
2317 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2318 				       unsigned long fcb_addr)
2319 {
2320 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2321 	       (fcb_addr % 0x20) > 0x18);
2322 }
2323 
2324 /* eTSEC76: csum generation for frames larger than 2500 may
2325  * cause excess delays before start of transmission
2326  */
2327 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2328 				       unsigned int len)
2329 {
2330 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2331 	       (len > 2500));
2332 }
2333 
2334 /* This is called by the kernel when a frame is ready for transmission.
2335  * It is pointed to by the dev->hard_start_xmit function pointer
2336  */
2337 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2338 {
2339 	struct gfar_private *priv = netdev_priv(dev);
2340 	struct gfar_priv_tx_q *tx_queue = NULL;
2341 	struct netdev_queue *txq;
2342 	struct gfar __iomem *regs = NULL;
2343 	struct txfcb *fcb = NULL;
2344 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2345 	u32 lstatus;
2346 	skb_frag_t *frag;
2347 	int i, rq = 0;
2348 	int do_tstamp, do_csum, do_vlan;
2349 	u32 bufaddr;
2350 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2351 
2352 	rq = skb->queue_mapping;
2353 	tx_queue = priv->tx_queue[rq];
2354 	txq = netdev_get_tx_queue(dev, rq);
2355 	base = tx_queue->tx_bd_base;
2356 	regs = tx_queue->grp->regs;
2357 
2358 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2359 	do_vlan = skb_vlan_tag_present(skb);
2360 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2361 		    priv->hwts_tx_en;
2362 
2363 	if (do_csum || do_vlan)
2364 		fcb_len = GMAC_FCB_LEN;
2365 
2366 	/* check if time stamp should be generated */
2367 	if (unlikely(do_tstamp))
2368 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2369 
2370 	/* make space for additional header when fcb is needed */
2371 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2372 		struct sk_buff *skb_new;
2373 
2374 		skb_new = skb_realloc_headroom(skb, fcb_len);
2375 		if (!skb_new) {
2376 			dev->stats.tx_errors++;
2377 			dev_kfree_skb_any(skb);
2378 			return NETDEV_TX_OK;
2379 		}
2380 
2381 		if (skb->sk)
2382 			skb_set_owner_w(skb_new, skb->sk);
2383 		dev_consume_skb_any(skb);
2384 		skb = skb_new;
2385 	}
2386 
2387 	/* total number of fragments in the SKB */
2388 	nr_frags = skb_shinfo(skb)->nr_frags;
2389 
2390 	/* calculate the required number of TxBDs for this skb */
2391 	if (unlikely(do_tstamp))
2392 		nr_txbds = nr_frags + 2;
2393 	else
2394 		nr_txbds = nr_frags + 1;
2395 
2396 	/* check if there is space to queue this packet */
2397 	if (nr_txbds > tx_queue->num_txbdfree) {
2398 		/* no space, stop the queue */
2399 		netif_tx_stop_queue(txq);
2400 		dev->stats.tx_fifo_errors++;
2401 		return NETDEV_TX_BUSY;
2402 	}
2403 
2404 	/* Update transmit stats */
2405 	bytes_sent = skb->len;
2406 	tx_queue->stats.tx_bytes += bytes_sent;
2407 	/* keep Tx bytes on wire for BQL accounting */
2408 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2409 	tx_queue->stats.tx_packets++;
2410 
2411 	txbdp = txbdp_start = tx_queue->cur_tx;
2412 	lstatus = be32_to_cpu(txbdp->lstatus);
2413 
2414 	/* Add TxPAL between FCB and frame if required */
2415 	if (unlikely(do_tstamp)) {
2416 		skb_push(skb, GMAC_TXPAL_LEN);
2417 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2418 	}
2419 
2420 	/* Add TxFCB if required */
2421 	if (fcb_len) {
2422 		fcb = gfar_add_fcb(skb);
2423 		lstatus |= BD_LFLAG(TXBD_TOE);
2424 	}
2425 
2426 	/* Set up checksumming */
2427 	if (do_csum) {
2428 		gfar_tx_checksum(skb, fcb, fcb_len);
2429 
2430 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2431 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2432 			__skb_pull(skb, GMAC_FCB_LEN);
2433 			skb_checksum_help(skb);
2434 			if (do_vlan || do_tstamp) {
2435 				/* put back a new fcb for vlan/tstamp TOE */
2436 				fcb = gfar_add_fcb(skb);
2437 			} else {
2438 				/* Tx TOE not used */
2439 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2440 				fcb = NULL;
2441 			}
2442 		}
2443 	}
2444 
2445 	if (do_vlan)
2446 		gfar_tx_vlan(skb, fcb);
2447 
2448 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2449 				 DMA_TO_DEVICE);
2450 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2451 		goto dma_map_err;
2452 
2453 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2454 
2455 	/* Time stamp insertion requires one additional TxBD */
2456 	if (unlikely(do_tstamp))
2457 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2458 						 tx_queue->tx_ring_size);
2459 
2460 	if (likely(!nr_frags)) {
2461 		if (likely(!do_tstamp))
2462 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2463 	} else {
2464 		u32 lstatus_start = lstatus;
2465 
2466 		/* Place the fragment addresses and lengths into the TxBDs */
2467 		frag = &skb_shinfo(skb)->frags[0];
2468 		for (i = 0; i < nr_frags; i++, frag++) {
2469 			unsigned int size;
2470 
2471 			/* Point at the next BD, wrapping as needed */
2472 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2473 
2474 			size = skb_frag_size(frag);
2475 
2476 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2477 				  BD_LFLAG(TXBD_READY);
2478 
2479 			/* Handle the last BD specially */
2480 			if (i == nr_frags - 1)
2481 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2482 
2483 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2484 						   size, DMA_TO_DEVICE);
2485 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2486 				goto dma_map_err;
2487 
2488 			/* set the TxBD length and buffer pointer */
2489 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2490 			txbdp->lstatus = cpu_to_be32(lstatus);
2491 		}
2492 
2493 		lstatus = lstatus_start;
2494 	}
2495 
2496 	/* If time stamping is requested one additional TxBD must be set up. The
2497 	 * first TxBD points to the FCB and must have a data length of
2498 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2499 	 * the full frame length.
2500 	 */
2501 	if (unlikely(do_tstamp)) {
2502 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2503 
2504 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2505 		bufaddr += fcb_len;
2506 
2507 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2508 			      (skb_headlen(skb) - fcb_len);
2509 		if (!nr_frags)
2510 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2511 
2512 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2513 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2514 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2515 
2516 		/* Setup tx hardware time stamping */
2517 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2518 		fcb->ptp = 1;
2519 	} else {
2520 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2521 	}
2522 
2523 	netdev_tx_sent_queue(txq, bytes_sent);
2524 
2525 	gfar_wmb();
2526 
2527 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2528 
2529 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2530 
2531 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2532 
2533 	/* Update the current skb pointer to the next entry we will use
2534 	 * (wrapping if necessary)
2535 	 */
2536 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2537 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2538 
2539 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2540 
2541 	/* We can work in parallel with gfar_clean_tx_ring(), except
2542 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2543 	 * when we were reading the num_txbdfree and checking for available
2544 	 * space, that's because outside of this function it can only grow.
2545 	 */
2546 	spin_lock_bh(&tx_queue->txlock);
2547 	/* reduce TxBD free count */
2548 	tx_queue->num_txbdfree -= (nr_txbds);
2549 	spin_unlock_bh(&tx_queue->txlock);
2550 
2551 	/* If the next BD still needs to be cleaned up, then the bds
2552 	 * are full.  We need to tell the kernel to stop sending us stuff.
2553 	 */
2554 	if (!tx_queue->num_txbdfree) {
2555 		netif_tx_stop_queue(txq);
2556 
2557 		dev->stats.tx_fifo_errors++;
2558 	}
2559 
2560 	/* Tell the DMA to go go go */
2561 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2562 
2563 	return NETDEV_TX_OK;
2564 
2565 dma_map_err:
2566 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2567 	if (do_tstamp)
2568 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2569 	for (i = 0; i < nr_frags; i++) {
2570 		lstatus = be32_to_cpu(txbdp->lstatus);
2571 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2572 			break;
2573 
2574 		lstatus &= ~BD_LFLAG(TXBD_READY);
2575 		txbdp->lstatus = cpu_to_be32(lstatus);
2576 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2577 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2578 			       DMA_TO_DEVICE);
2579 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2580 	}
2581 	gfar_wmb();
2582 	dev_kfree_skb_any(skb);
2583 	return NETDEV_TX_OK;
2584 }
2585 
2586 /* Stops the kernel queue, and halts the controller */
2587 static int gfar_close(struct net_device *dev)
2588 {
2589 	struct gfar_private *priv = netdev_priv(dev);
2590 
2591 	cancel_work_sync(&priv->reset_task);
2592 	stop_gfar(dev);
2593 
2594 	/* Disconnect from the PHY */
2595 	phy_disconnect(dev->phydev);
2596 
2597 	gfar_free_irq(priv);
2598 
2599 	return 0;
2600 }
2601 
2602 /* Changes the mac address if the controller is not running. */
2603 static int gfar_set_mac_address(struct net_device *dev)
2604 {
2605 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2606 
2607 	return 0;
2608 }
2609 
2610 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2611 {
2612 	struct gfar_private *priv = netdev_priv(dev);
2613 
2614 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2615 		cpu_relax();
2616 
2617 	if (dev->flags & IFF_UP)
2618 		stop_gfar(dev);
2619 
2620 	dev->mtu = new_mtu;
2621 
2622 	if (dev->flags & IFF_UP)
2623 		startup_gfar(dev);
2624 
2625 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2626 
2627 	return 0;
2628 }
2629 
2630 void reset_gfar(struct net_device *ndev)
2631 {
2632 	struct gfar_private *priv = netdev_priv(ndev);
2633 
2634 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2635 		cpu_relax();
2636 
2637 	stop_gfar(ndev);
2638 	startup_gfar(ndev);
2639 
2640 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2641 }
2642 
2643 /* gfar_reset_task gets scheduled when a packet has not been
2644  * transmitted after a set amount of time.
2645  * For now, assume that clearing out all the structures, and
2646  * starting over will fix the problem.
2647  */
2648 static void gfar_reset_task(struct work_struct *work)
2649 {
2650 	struct gfar_private *priv = container_of(work, struct gfar_private,
2651 						 reset_task);
2652 	reset_gfar(priv->ndev);
2653 }
2654 
2655 static void gfar_timeout(struct net_device *dev)
2656 {
2657 	struct gfar_private *priv = netdev_priv(dev);
2658 
2659 	dev->stats.tx_errors++;
2660 	schedule_work(&priv->reset_task);
2661 }
2662 
2663 /* Interrupt Handler for Transmit complete */
2664 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2665 {
2666 	struct net_device *dev = tx_queue->dev;
2667 	struct netdev_queue *txq;
2668 	struct gfar_private *priv = netdev_priv(dev);
2669 	struct txbd8 *bdp, *next = NULL;
2670 	struct txbd8 *lbdp = NULL;
2671 	struct txbd8 *base = tx_queue->tx_bd_base;
2672 	struct sk_buff *skb;
2673 	int skb_dirtytx;
2674 	int tx_ring_size = tx_queue->tx_ring_size;
2675 	int frags = 0, nr_txbds = 0;
2676 	int i;
2677 	int howmany = 0;
2678 	int tqi = tx_queue->qindex;
2679 	unsigned int bytes_sent = 0;
2680 	u32 lstatus;
2681 	size_t buflen;
2682 
2683 	txq = netdev_get_tx_queue(dev, tqi);
2684 	bdp = tx_queue->dirty_tx;
2685 	skb_dirtytx = tx_queue->skb_dirtytx;
2686 
2687 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2688 
2689 		frags = skb_shinfo(skb)->nr_frags;
2690 
2691 		/* When time stamping, one additional TxBD must be freed.
2692 		 * Also, we need to dma_unmap_single() the TxPAL.
2693 		 */
2694 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2695 			nr_txbds = frags + 2;
2696 		else
2697 			nr_txbds = frags + 1;
2698 
2699 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2700 
2701 		lstatus = be32_to_cpu(lbdp->lstatus);
2702 
2703 		/* Only clean completed frames */
2704 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2705 		    (lstatus & BD_LENGTH_MASK))
2706 			break;
2707 
2708 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2709 			next = next_txbd(bdp, base, tx_ring_size);
2710 			buflen = be16_to_cpu(next->length) +
2711 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2712 		} else
2713 			buflen = be16_to_cpu(bdp->length);
2714 
2715 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2716 				 buflen, DMA_TO_DEVICE);
2717 
2718 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2719 			struct skb_shared_hwtstamps shhwtstamps;
2720 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2721 					  ~0x7UL);
2722 
2723 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2724 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2725 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2726 			skb_tstamp_tx(skb, &shhwtstamps);
2727 			gfar_clear_txbd_status(bdp);
2728 			bdp = next;
2729 		}
2730 
2731 		gfar_clear_txbd_status(bdp);
2732 		bdp = next_txbd(bdp, base, tx_ring_size);
2733 
2734 		for (i = 0; i < frags; i++) {
2735 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2736 				       be16_to_cpu(bdp->length),
2737 				       DMA_TO_DEVICE);
2738 			gfar_clear_txbd_status(bdp);
2739 			bdp = next_txbd(bdp, base, tx_ring_size);
2740 		}
2741 
2742 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2743 
2744 		dev_kfree_skb_any(skb);
2745 
2746 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2747 
2748 		skb_dirtytx = (skb_dirtytx + 1) &
2749 			      TX_RING_MOD_MASK(tx_ring_size);
2750 
2751 		howmany++;
2752 		spin_lock(&tx_queue->txlock);
2753 		tx_queue->num_txbdfree += nr_txbds;
2754 		spin_unlock(&tx_queue->txlock);
2755 	}
2756 
2757 	/* If we freed a buffer, we can restart transmission, if necessary */
2758 	if (tx_queue->num_txbdfree &&
2759 	    netif_tx_queue_stopped(txq) &&
2760 	    !(test_bit(GFAR_DOWN, &priv->state)))
2761 		netif_wake_subqueue(priv->ndev, tqi);
2762 
2763 	/* Update dirty indicators */
2764 	tx_queue->skb_dirtytx = skb_dirtytx;
2765 	tx_queue->dirty_tx = bdp;
2766 
2767 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2768 }
2769 
2770 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2771 {
2772 	struct page *page;
2773 	dma_addr_t addr;
2774 
2775 	page = dev_alloc_page();
2776 	if (unlikely(!page))
2777 		return false;
2778 
2779 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2780 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2781 		__free_page(page);
2782 
2783 		return false;
2784 	}
2785 
2786 	rxb->dma = addr;
2787 	rxb->page = page;
2788 	rxb->page_offset = 0;
2789 
2790 	return true;
2791 }
2792 
2793 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2794 {
2795 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2796 	struct gfar_extra_stats *estats = &priv->extra_stats;
2797 
2798 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2799 	atomic64_inc(&estats->rx_alloc_err);
2800 }
2801 
2802 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2803 				int alloc_cnt)
2804 {
2805 	struct rxbd8 *bdp;
2806 	struct gfar_rx_buff *rxb;
2807 	int i;
2808 
2809 	i = rx_queue->next_to_use;
2810 	bdp = &rx_queue->rx_bd_base[i];
2811 	rxb = &rx_queue->rx_buff[i];
2812 
2813 	while (alloc_cnt--) {
2814 		/* try reuse page */
2815 		if (unlikely(!rxb->page)) {
2816 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2817 				gfar_rx_alloc_err(rx_queue);
2818 				break;
2819 			}
2820 		}
2821 
2822 		/* Setup the new RxBD */
2823 		gfar_init_rxbdp(rx_queue, bdp,
2824 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2825 
2826 		/* Update to the next pointer */
2827 		bdp++;
2828 		rxb++;
2829 
2830 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2831 			i = 0;
2832 			bdp = rx_queue->rx_bd_base;
2833 			rxb = rx_queue->rx_buff;
2834 		}
2835 	}
2836 
2837 	rx_queue->next_to_use = i;
2838 	rx_queue->next_to_alloc = i;
2839 }
2840 
2841 static void count_errors(u32 lstatus, struct net_device *ndev)
2842 {
2843 	struct gfar_private *priv = netdev_priv(ndev);
2844 	struct net_device_stats *stats = &ndev->stats;
2845 	struct gfar_extra_stats *estats = &priv->extra_stats;
2846 
2847 	/* If the packet was truncated, none of the other errors matter */
2848 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2849 		stats->rx_length_errors++;
2850 
2851 		atomic64_inc(&estats->rx_trunc);
2852 
2853 		return;
2854 	}
2855 	/* Count the errors, if there were any */
2856 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2857 		stats->rx_length_errors++;
2858 
2859 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2860 			atomic64_inc(&estats->rx_large);
2861 		else
2862 			atomic64_inc(&estats->rx_short);
2863 	}
2864 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2865 		stats->rx_frame_errors++;
2866 		atomic64_inc(&estats->rx_nonoctet);
2867 	}
2868 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2869 		atomic64_inc(&estats->rx_crcerr);
2870 		stats->rx_crc_errors++;
2871 	}
2872 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2873 		atomic64_inc(&estats->rx_overrun);
2874 		stats->rx_over_errors++;
2875 	}
2876 }
2877 
2878 irqreturn_t gfar_receive(int irq, void *grp_id)
2879 {
2880 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2881 	unsigned long flags;
2882 	u32 imask, ievent;
2883 
2884 	ievent = gfar_read(&grp->regs->ievent);
2885 
2886 	if (unlikely(ievent & IEVENT_FGPI)) {
2887 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2888 		return IRQ_HANDLED;
2889 	}
2890 
2891 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2892 		spin_lock_irqsave(&grp->grplock, flags);
2893 		imask = gfar_read(&grp->regs->imask);
2894 		imask &= IMASK_RX_DISABLED;
2895 		gfar_write(&grp->regs->imask, imask);
2896 		spin_unlock_irqrestore(&grp->grplock, flags);
2897 		__napi_schedule(&grp->napi_rx);
2898 	} else {
2899 		/* Clear IEVENT, so interrupts aren't called again
2900 		 * because of the packets that have already arrived.
2901 		 */
2902 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2903 	}
2904 
2905 	return IRQ_HANDLED;
2906 }
2907 
2908 /* Interrupt Handler for Transmit complete */
2909 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2910 {
2911 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2912 	unsigned long flags;
2913 	u32 imask;
2914 
2915 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2916 		spin_lock_irqsave(&grp->grplock, flags);
2917 		imask = gfar_read(&grp->regs->imask);
2918 		imask &= IMASK_TX_DISABLED;
2919 		gfar_write(&grp->regs->imask, imask);
2920 		spin_unlock_irqrestore(&grp->grplock, flags);
2921 		__napi_schedule(&grp->napi_tx);
2922 	} else {
2923 		/* Clear IEVENT, so interrupts aren't called again
2924 		 * because of the packets that have already arrived.
2925 		 */
2926 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2927 	}
2928 
2929 	return IRQ_HANDLED;
2930 }
2931 
2932 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2933 			     struct sk_buff *skb, bool first)
2934 {
2935 	int size = lstatus & BD_LENGTH_MASK;
2936 	struct page *page = rxb->page;
2937 
2938 	if (likely(first)) {
2939 		skb_put(skb, size);
2940 	} else {
2941 		/* the last fragments' length contains the full frame length */
2942 		if (lstatus & BD_LFLAG(RXBD_LAST))
2943 			size -= skb->len;
2944 
2945 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2946 				rxb->page_offset + RXBUF_ALIGNMENT,
2947 				size, GFAR_RXB_TRUESIZE);
2948 	}
2949 
2950 	/* try reuse page */
2951 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2952 		return false;
2953 
2954 	/* change offset to the other half */
2955 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2956 
2957 	page_ref_inc(page);
2958 
2959 	return true;
2960 }
2961 
2962 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2963 			       struct gfar_rx_buff *old_rxb)
2964 {
2965 	struct gfar_rx_buff *new_rxb;
2966 	u16 nta = rxq->next_to_alloc;
2967 
2968 	new_rxb = &rxq->rx_buff[nta];
2969 
2970 	/* find next buf that can reuse a page */
2971 	nta++;
2972 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2973 
2974 	/* copy page reference */
2975 	*new_rxb = *old_rxb;
2976 
2977 	/* sync for use by the device */
2978 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2979 					 old_rxb->page_offset,
2980 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2981 }
2982 
2983 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2984 					    u32 lstatus, struct sk_buff *skb)
2985 {
2986 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2987 	struct page *page = rxb->page;
2988 	bool first = false;
2989 
2990 	if (likely(!skb)) {
2991 		void *buff_addr = page_address(page) + rxb->page_offset;
2992 
2993 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2994 		if (unlikely(!skb)) {
2995 			gfar_rx_alloc_err(rx_queue);
2996 			return NULL;
2997 		}
2998 		skb_reserve(skb, RXBUF_ALIGNMENT);
2999 		first = true;
3000 	}
3001 
3002 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3003 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3004 
3005 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3006 		/* reuse the free half of the page */
3007 		gfar_reuse_rx_page(rx_queue, rxb);
3008 	} else {
3009 		/* page cannot be reused, unmap it */
3010 		dma_unmap_page(rx_queue->dev, rxb->dma,
3011 			       PAGE_SIZE, DMA_FROM_DEVICE);
3012 	}
3013 
3014 	/* clear rxb content */
3015 	rxb->page = NULL;
3016 
3017 	return skb;
3018 }
3019 
3020 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3021 {
3022 	/* If valid headers were found, and valid sums
3023 	 * were verified, then we tell the kernel that no
3024 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3025 	 */
3026 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3027 	    (RXFCB_CIP | RXFCB_CTU))
3028 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3029 	else
3030 		skb_checksum_none_assert(skb);
3031 }
3032 
3033 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3034 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3035 {
3036 	struct gfar_private *priv = netdev_priv(ndev);
3037 	struct rxfcb *fcb = NULL;
3038 
3039 	/* fcb is at the beginning if exists */
3040 	fcb = (struct rxfcb *)skb->data;
3041 
3042 	/* Remove the FCB from the skb
3043 	 * Remove the padded bytes, if there are any
3044 	 */
3045 	if (priv->uses_rxfcb)
3046 		skb_pull(skb, GMAC_FCB_LEN);
3047 
3048 	/* Get receive timestamp from the skb */
3049 	if (priv->hwts_rx_en) {
3050 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3051 		u64 *ns = (u64 *) skb->data;
3052 
3053 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3054 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3055 	}
3056 
3057 	if (priv->padding)
3058 		skb_pull(skb, priv->padding);
3059 
3060 	/* Trim off the FCS */
3061 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
3062 
3063 	if (ndev->features & NETIF_F_RXCSUM)
3064 		gfar_rx_checksum(skb, fcb);
3065 
3066 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3067 	 * Even if vlan rx accel is disabled, on some chips
3068 	 * RXFCB_VLN is pseudo randomly set.
3069 	 */
3070 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3071 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3072 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3073 				       be16_to_cpu(fcb->vlctl));
3074 }
3075 
3076 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3077  * until the budget/quota has been reached. Returns the number
3078  * of frames handled
3079  */
3080 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3081 {
3082 	struct net_device *ndev = rx_queue->ndev;
3083 	struct gfar_private *priv = netdev_priv(ndev);
3084 	struct rxbd8 *bdp;
3085 	int i, howmany = 0;
3086 	struct sk_buff *skb = rx_queue->skb;
3087 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3088 	unsigned int total_bytes = 0, total_pkts = 0;
3089 
3090 	/* Get the first full descriptor */
3091 	i = rx_queue->next_to_clean;
3092 
3093 	while (rx_work_limit--) {
3094 		u32 lstatus;
3095 
3096 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3097 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3098 			cleaned_cnt = 0;
3099 		}
3100 
3101 		bdp = &rx_queue->rx_bd_base[i];
3102 		lstatus = be32_to_cpu(bdp->lstatus);
3103 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3104 			break;
3105 
3106 		/* order rx buffer descriptor reads */
3107 		rmb();
3108 
3109 		/* fetch next to clean buffer from the ring */
3110 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3111 		if (unlikely(!skb))
3112 			break;
3113 
3114 		cleaned_cnt++;
3115 		howmany++;
3116 
3117 		if (unlikely(++i == rx_queue->rx_ring_size))
3118 			i = 0;
3119 
3120 		rx_queue->next_to_clean = i;
3121 
3122 		/* fetch next buffer if not the last in frame */
3123 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3124 			continue;
3125 
3126 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3127 			count_errors(lstatus, ndev);
3128 
3129 			/* discard faulty buffer */
3130 			dev_kfree_skb(skb);
3131 			skb = NULL;
3132 			rx_queue->stats.rx_dropped++;
3133 			continue;
3134 		}
3135 
3136 		gfar_process_frame(ndev, skb);
3137 
3138 		/* Increment the number of packets */
3139 		total_pkts++;
3140 		total_bytes += skb->len;
3141 
3142 		skb_record_rx_queue(skb, rx_queue->qindex);
3143 
3144 		skb->protocol = eth_type_trans(skb, ndev);
3145 
3146 		/* Send the packet up the stack */
3147 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3148 
3149 		skb = NULL;
3150 	}
3151 
3152 	/* Store incomplete frames for completion */
3153 	rx_queue->skb = skb;
3154 
3155 	rx_queue->stats.rx_packets += total_pkts;
3156 	rx_queue->stats.rx_bytes += total_bytes;
3157 
3158 	if (cleaned_cnt)
3159 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3160 
3161 	/* Update Last Free RxBD pointer for LFC */
3162 	if (unlikely(priv->tx_actual_en)) {
3163 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3164 
3165 		gfar_write(rx_queue->rfbptr, bdp_dma);
3166 	}
3167 
3168 	return howmany;
3169 }
3170 
3171 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3172 {
3173 	struct gfar_priv_grp *gfargrp =
3174 		container_of(napi, struct gfar_priv_grp, napi_rx);
3175 	struct gfar __iomem *regs = gfargrp->regs;
3176 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3177 	int work_done = 0;
3178 
3179 	/* Clear IEVENT, so interrupts aren't called again
3180 	 * because of the packets that have already arrived
3181 	 */
3182 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3183 
3184 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3185 
3186 	if (work_done < budget) {
3187 		u32 imask;
3188 		napi_complete_done(napi, work_done);
3189 		/* Clear the halt bit in RSTAT */
3190 		gfar_write(&regs->rstat, gfargrp->rstat);
3191 
3192 		spin_lock_irq(&gfargrp->grplock);
3193 		imask = gfar_read(&regs->imask);
3194 		imask |= IMASK_RX_DEFAULT;
3195 		gfar_write(&regs->imask, imask);
3196 		spin_unlock_irq(&gfargrp->grplock);
3197 	}
3198 
3199 	return work_done;
3200 }
3201 
3202 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3203 {
3204 	struct gfar_priv_grp *gfargrp =
3205 		container_of(napi, struct gfar_priv_grp, napi_tx);
3206 	struct gfar __iomem *regs = gfargrp->regs;
3207 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3208 	u32 imask;
3209 
3210 	/* Clear IEVENT, so interrupts aren't called again
3211 	 * because of the packets that have already arrived
3212 	 */
3213 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3214 
3215 	/* run Tx cleanup to completion */
3216 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3217 		gfar_clean_tx_ring(tx_queue);
3218 
3219 	napi_complete(napi);
3220 
3221 	spin_lock_irq(&gfargrp->grplock);
3222 	imask = gfar_read(&regs->imask);
3223 	imask |= IMASK_TX_DEFAULT;
3224 	gfar_write(&regs->imask, imask);
3225 	spin_unlock_irq(&gfargrp->grplock);
3226 
3227 	return 0;
3228 }
3229 
3230 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3231 {
3232 	struct gfar_priv_grp *gfargrp =
3233 		container_of(napi, struct gfar_priv_grp, napi_rx);
3234 	struct gfar_private *priv = gfargrp->priv;
3235 	struct gfar __iomem *regs = gfargrp->regs;
3236 	struct gfar_priv_rx_q *rx_queue = NULL;
3237 	int work_done = 0, work_done_per_q = 0;
3238 	int i, budget_per_q = 0;
3239 	unsigned long rstat_rxf;
3240 	int num_act_queues;
3241 
3242 	/* Clear IEVENT, so interrupts aren't called again
3243 	 * because of the packets that have already arrived
3244 	 */
3245 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3246 
3247 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3248 
3249 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3250 	if (num_act_queues)
3251 		budget_per_q = budget/num_act_queues;
3252 
3253 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3254 		/* skip queue if not active */
3255 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3256 			continue;
3257 
3258 		rx_queue = priv->rx_queue[i];
3259 		work_done_per_q =
3260 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3261 		work_done += work_done_per_q;
3262 
3263 		/* finished processing this queue */
3264 		if (work_done_per_q < budget_per_q) {
3265 			/* clear active queue hw indication */
3266 			gfar_write(&regs->rstat,
3267 				   RSTAT_CLEAR_RXF0 >> i);
3268 			num_act_queues--;
3269 
3270 			if (!num_act_queues)
3271 				break;
3272 		}
3273 	}
3274 
3275 	if (!num_act_queues) {
3276 		u32 imask;
3277 		napi_complete_done(napi, work_done);
3278 
3279 		/* Clear the halt bit in RSTAT */
3280 		gfar_write(&regs->rstat, gfargrp->rstat);
3281 
3282 		spin_lock_irq(&gfargrp->grplock);
3283 		imask = gfar_read(&regs->imask);
3284 		imask |= IMASK_RX_DEFAULT;
3285 		gfar_write(&regs->imask, imask);
3286 		spin_unlock_irq(&gfargrp->grplock);
3287 	}
3288 
3289 	return work_done;
3290 }
3291 
3292 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3293 {
3294 	struct gfar_priv_grp *gfargrp =
3295 		container_of(napi, struct gfar_priv_grp, napi_tx);
3296 	struct gfar_private *priv = gfargrp->priv;
3297 	struct gfar __iomem *regs = gfargrp->regs;
3298 	struct gfar_priv_tx_q *tx_queue = NULL;
3299 	int has_tx_work = 0;
3300 	int i;
3301 
3302 	/* Clear IEVENT, so interrupts aren't called again
3303 	 * because of the packets that have already arrived
3304 	 */
3305 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3306 
3307 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3308 		tx_queue = priv->tx_queue[i];
3309 		/* run Tx cleanup to completion */
3310 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3311 			gfar_clean_tx_ring(tx_queue);
3312 			has_tx_work = 1;
3313 		}
3314 	}
3315 
3316 	if (!has_tx_work) {
3317 		u32 imask;
3318 		napi_complete(napi);
3319 
3320 		spin_lock_irq(&gfargrp->grplock);
3321 		imask = gfar_read(&regs->imask);
3322 		imask |= IMASK_TX_DEFAULT;
3323 		gfar_write(&regs->imask, imask);
3324 		spin_unlock_irq(&gfargrp->grplock);
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 
3331 #ifdef CONFIG_NET_POLL_CONTROLLER
3332 /* Polling 'interrupt' - used by things like netconsole to send skbs
3333  * without having to re-enable interrupts. It's not called while
3334  * the interrupt routine is executing.
3335  */
3336 static void gfar_netpoll(struct net_device *dev)
3337 {
3338 	struct gfar_private *priv = netdev_priv(dev);
3339 	int i;
3340 
3341 	/* If the device has multiple interrupts, run tx/rx */
3342 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3343 		for (i = 0; i < priv->num_grps; i++) {
3344 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3345 
3346 			disable_irq(gfar_irq(grp, TX)->irq);
3347 			disable_irq(gfar_irq(grp, RX)->irq);
3348 			disable_irq(gfar_irq(grp, ER)->irq);
3349 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3350 			enable_irq(gfar_irq(grp, ER)->irq);
3351 			enable_irq(gfar_irq(grp, RX)->irq);
3352 			enable_irq(gfar_irq(grp, TX)->irq);
3353 		}
3354 	} else {
3355 		for (i = 0; i < priv->num_grps; i++) {
3356 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3357 
3358 			disable_irq(gfar_irq(grp, TX)->irq);
3359 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3360 			enable_irq(gfar_irq(grp, TX)->irq);
3361 		}
3362 	}
3363 }
3364 #endif
3365 
3366 /* The interrupt handler for devices with one interrupt */
3367 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3368 {
3369 	struct gfar_priv_grp *gfargrp = grp_id;
3370 
3371 	/* Save ievent for future reference */
3372 	u32 events = gfar_read(&gfargrp->regs->ievent);
3373 
3374 	/* Check for reception */
3375 	if (events & IEVENT_RX_MASK)
3376 		gfar_receive(irq, grp_id);
3377 
3378 	/* Check for transmit completion */
3379 	if (events & IEVENT_TX_MASK)
3380 		gfar_transmit(irq, grp_id);
3381 
3382 	/* Check for errors */
3383 	if (events & IEVENT_ERR_MASK)
3384 		gfar_error(irq, grp_id);
3385 
3386 	return IRQ_HANDLED;
3387 }
3388 
3389 /* Called every time the controller might need to be made
3390  * aware of new link state.  The PHY code conveys this
3391  * information through variables in the phydev structure, and this
3392  * function converts those variables into the appropriate
3393  * register values, and can bring down the device if needed.
3394  */
3395 static void adjust_link(struct net_device *dev)
3396 {
3397 	struct gfar_private *priv = netdev_priv(dev);
3398 	struct phy_device *phydev = dev->phydev;
3399 
3400 	if (unlikely(phydev->link != priv->oldlink ||
3401 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3402 				       phydev->speed != priv->oldspeed))))
3403 		gfar_update_link_state(priv);
3404 }
3405 
3406 /* Update the hash table based on the current list of multicast
3407  * addresses we subscribe to.  Also, change the promiscuity of
3408  * the device based on the flags (this function is called
3409  * whenever dev->flags is changed
3410  */
3411 static void gfar_set_multi(struct net_device *dev)
3412 {
3413 	struct netdev_hw_addr *ha;
3414 	struct gfar_private *priv = netdev_priv(dev);
3415 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3416 	u32 tempval;
3417 
3418 	if (dev->flags & IFF_PROMISC) {
3419 		/* Set RCTRL to PROM */
3420 		tempval = gfar_read(&regs->rctrl);
3421 		tempval |= RCTRL_PROM;
3422 		gfar_write(&regs->rctrl, tempval);
3423 	} else {
3424 		/* Set RCTRL to not PROM */
3425 		tempval = gfar_read(&regs->rctrl);
3426 		tempval &= ~(RCTRL_PROM);
3427 		gfar_write(&regs->rctrl, tempval);
3428 	}
3429 
3430 	if (dev->flags & IFF_ALLMULTI) {
3431 		/* Set the hash to rx all multicast frames */
3432 		gfar_write(&regs->igaddr0, 0xffffffff);
3433 		gfar_write(&regs->igaddr1, 0xffffffff);
3434 		gfar_write(&regs->igaddr2, 0xffffffff);
3435 		gfar_write(&regs->igaddr3, 0xffffffff);
3436 		gfar_write(&regs->igaddr4, 0xffffffff);
3437 		gfar_write(&regs->igaddr5, 0xffffffff);
3438 		gfar_write(&regs->igaddr6, 0xffffffff);
3439 		gfar_write(&regs->igaddr7, 0xffffffff);
3440 		gfar_write(&regs->gaddr0, 0xffffffff);
3441 		gfar_write(&regs->gaddr1, 0xffffffff);
3442 		gfar_write(&regs->gaddr2, 0xffffffff);
3443 		gfar_write(&regs->gaddr3, 0xffffffff);
3444 		gfar_write(&regs->gaddr4, 0xffffffff);
3445 		gfar_write(&regs->gaddr5, 0xffffffff);
3446 		gfar_write(&regs->gaddr6, 0xffffffff);
3447 		gfar_write(&regs->gaddr7, 0xffffffff);
3448 	} else {
3449 		int em_num;
3450 		int idx;
3451 
3452 		/* zero out the hash */
3453 		gfar_write(&regs->igaddr0, 0x0);
3454 		gfar_write(&regs->igaddr1, 0x0);
3455 		gfar_write(&regs->igaddr2, 0x0);
3456 		gfar_write(&regs->igaddr3, 0x0);
3457 		gfar_write(&regs->igaddr4, 0x0);
3458 		gfar_write(&regs->igaddr5, 0x0);
3459 		gfar_write(&regs->igaddr6, 0x0);
3460 		gfar_write(&regs->igaddr7, 0x0);
3461 		gfar_write(&regs->gaddr0, 0x0);
3462 		gfar_write(&regs->gaddr1, 0x0);
3463 		gfar_write(&regs->gaddr2, 0x0);
3464 		gfar_write(&regs->gaddr3, 0x0);
3465 		gfar_write(&regs->gaddr4, 0x0);
3466 		gfar_write(&regs->gaddr5, 0x0);
3467 		gfar_write(&regs->gaddr6, 0x0);
3468 		gfar_write(&regs->gaddr7, 0x0);
3469 
3470 		/* If we have extended hash tables, we need to
3471 		 * clear the exact match registers to prepare for
3472 		 * setting them
3473 		 */
3474 		if (priv->extended_hash) {
3475 			em_num = GFAR_EM_NUM + 1;
3476 			gfar_clear_exact_match(dev);
3477 			idx = 1;
3478 		} else {
3479 			idx = 0;
3480 			em_num = 0;
3481 		}
3482 
3483 		if (netdev_mc_empty(dev))
3484 			return;
3485 
3486 		/* Parse the list, and set the appropriate bits */
3487 		netdev_for_each_mc_addr(ha, dev) {
3488 			if (idx < em_num) {
3489 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3490 				idx++;
3491 			} else
3492 				gfar_set_hash_for_addr(dev, ha->addr);
3493 		}
3494 	}
3495 }
3496 
3497 
3498 /* Clears each of the exact match registers to zero, so they
3499  * don't interfere with normal reception
3500  */
3501 static void gfar_clear_exact_match(struct net_device *dev)
3502 {
3503 	int idx;
3504 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3505 
3506 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3507 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3508 }
3509 
3510 /* Set the appropriate hash bit for the given addr */
3511 /* The algorithm works like so:
3512  * 1) Take the Destination Address (ie the multicast address), and
3513  * do a CRC on it (little endian), and reverse the bits of the
3514  * result.
3515  * 2) Use the 8 most significant bits as a hash into a 256-entry
3516  * table.  The table is controlled through 8 32-bit registers:
3517  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3518  * gaddr7.  This means that the 3 most significant bits in the
3519  * hash index which gaddr register to use, and the 5 other bits
3520  * indicate which bit (assuming an IBM numbering scheme, which
3521  * for PowerPC (tm) is usually the case) in the register holds
3522  * the entry.
3523  */
3524 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3525 {
3526 	u32 tempval;
3527 	struct gfar_private *priv = netdev_priv(dev);
3528 	u32 result = ether_crc(ETH_ALEN, addr);
3529 	int width = priv->hash_width;
3530 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3531 	u8 whichreg = result >> (32 - width + 5);
3532 	u32 value = (1 << (31-whichbit));
3533 
3534 	tempval = gfar_read(priv->hash_regs[whichreg]);
3535 	tempval |= value;
3536 	gfar_write(priv->hash_regs[whichreg], tempval);
3537 }
3538 
3539 
3540 /* There are multiple MAC Address register pairs on some controllers
3541  * This function sets the numth pair to a given address
3542  */
3543 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3544 				  const u8 *addr)
3545 {
3546 	struct gfar_private *priv = netdev_priv(dev);
3547 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3548 	u32 tempval;
3549 	u32 __iomem *macptr = &regs->macstnaddr1;
3550 
3551 	macptr += num*2;
3552 
3553 	/* For a station address of 0x12345678ABCD in transmission
3554 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3555 	 * MACnADDR2 is set to 0x34120000.
3556 	 */
3557 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3558 		  (addr[3] << 8)  |  addr[2];
3559 
3560 	gfar_write(macptr, tempval);
3561 
3562 	tempval = (addr[1] << 24) | (addr[0] << 16);
3563 
3564 	gfar_write(macptr+1, tempval);
3565 }
3566 
3567 /* GFAR error interrupt handler */
3568 static irqreturn_t gfar_error(int irq, void *grp_id)
3569 {
3570 	struct gfar_priv_grp *gfargrp = grp_id;
3571 	struct gfar __iomem *regs = gfargrp->regs;
3572 	struct gfar_private *priv= gfargrp->priv;
3573 	struct net_device *dev = priv->ndev;
3574 
3575 	/* Save ievent for future reference */
3576 	u32 events = gfar_read(&regs->ievent);
3577 
3578 	/* Clear IEVENT */
3579 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3580 
3581 	/* Magic Packet is not an error. */
3582 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3583 	    (events & IEVENT_MAG))
3584 		events &= ~IEVENT_MAG;
3585 
3586 	/* Hmm... */
3587 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3588 		netdev_dbg(dev,
3589 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3590 			   events, gfar_read(&regs->imask));
3591 
3592 	/* Update the error counters */
3593 	if (events & IEVENT_TXE) {
3594 		dev->stats.tx_errors++;
3595 
3596 		if (events & IEVENT_LC)
3597 			dev->stats.tx_window_errors++;
3598 		if (events & IEVENT_CRL)
3599 			dev->stats.tx_aborted_errors++;
3600 		if (events & IEVENT_XFUN) {
3601 			netif_dbg(priv, tx_err, dev,
3602 				  "TX FIFO underrun, packet dropped\n");
3603 			dev->stats.tx_dropped++;
3604 			atomic64_inc(&priv->extra_stats.tx_underrun);
3605 
3606 			schedule_work(&priv->reset_task);
3607 		}
3608 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3609 	}
3610 	if (events & IEVENT_BSY) {
3611 		dev->stats.rx_over_errors++;
3612 		atomic64_inc(&priv->extra_stats.rx_bsy);
3613 
3614 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3615 			  gfar_read(&regs->rstat));
3616 	}
3617 	if (events & IEVENT_BABR) {
3618 		dev->stats.rx_errors++;
3619 		atomic64_inc(&priv->extra_stats.rx_babr);
3620 
3621 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3622 	}
3623 	if (events & IEVENT_EBERR) {
3624 		atomic64_inc(&priv->extra_stats.eberr);
3625 		netif_dbg(priv, rx_err, dev, "bus error\n");
3626 	}
3627 	if (events & IEVENT_RXC)
3628 		netif_dbg(priv, rx_status, dev, "control frame\n");
3629 
3630 	if (events & IEVENT_BABT) {
3631 		atomic64_inc(&priv->extra_stats.tx_babt);
3632 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3633 	}
3634 	return IRQ_HANDLED;
3635 }
3636 
3637 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3638 {
3639 	struct net_device *ndev = priv->ndev;
3640 	struct phy_device *phydev = ndev->phydev;
3641 	u32 val = 0;
3642 
3643 	if (!phydev->duplex)
3644 		return val;
3645 
3646 	if (!priv->pause_aneg_en) {
3647 		if (priv->tx_pause_en)
3648 			val |= MACCFG1_TX_FLOW;
3649 		if (priv->rx_pause_en)
3650 			val |= MACCFG1_RX_FLOW;
3651 	} else {
3652 		u16 lcl_adv, rmt_adv;
3653 		u8 flowctrl;
3654 		/* get link partner capabilities */
3655 		rmt_adv = 0;
3656 		if (phydev->pause)
3657 			rmt_adv = LPA_PAUSE_CAP;
3658 		if (phydev->asym_pause)
3659 			rmt_adv |= LPA_PAUSE_ASYM;
3660 
3661 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3662 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3663 		if (flowctrl & FLOW_CTRL_TX)
3664 			val |= MACCFG1_TX_FLOW;
3665 		if (flowctrl & FLOW_CTRL_RX)
3666 			val |= MACCFG1_RX_FLOW;
3667 	}
3668 
3669 	return val;
3670 }
3671 
3672 static noinline void gfar_update_link_state(struct gfar_private *priv)
3673 {
3674 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3675 	struct net_device *ndev = priv->ndev;
3676 	struct phy_device *phydev = ndev->phydev;
3677 	struct gfar_priv_rx_q *rx_queue = NULL;
3678 	int i;
3679 
3680 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3681 		return;
3682 
3683 	if (phydev->link) {
3684 		u32 tempval1 = gfar_read(&regs->maccfg1);
3685 		u32 tempval = gfar_read(&regs->maccfg2);
3686 		u32 ecntrl = gfar_read(&regs->ecntrl);
3687 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3688 
3689 		if (phydev->duplex != priv->oldduplex) {
3690 			if (!(phydev->duplex))
3691 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3692 			else
3693 				tempval |= MACCFG2_FULL_DUPLEX;
3694 
3695 			priv->oldduplex = phydev->duplex;
3696 		}
3697 
3698 		if (phydev->speed != priv->oldspeed) {
3699 			switch (phydev->speed) {
3700 			case 1000:
3701 				tempval =
3702 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3703 
3704 				ecntrl &= ~(ECNTRL_R100);
3705 				break;
3706 			case 100:
3707 			case 10:
3708 				tempval =
3709 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3710 
3711 				/* Reduced mode distinguishes
3712 				 * between 10 and 100
3713 				 */
3714 				if (phydev->speed == SPEED_100)
3715 					ecntrl |= ECNTRL_R100;
3716 				else
3717 					ecntrl &= ~(ECNTRL_R100);
3718 				break;
3719 			default:
3720 				netif_warn(priv, link, priv->ndev,
3721 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3722 					   phydev->speed);
3723 				break;
3724 			}
3725 
3726 			priv->oldspeed = phydev->speed;
3727 		}
3728 
3729 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3730 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3731 
3732 		/* Turn last free buffer recording on */
3733 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3734 			for (i = 0; i < priv->num_rx_queues; i++) {
3735 				u32 bdp_dma;
3736 
3737 				rx_queue = priv->rx_queue[i];
3738 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3739 				gfar_write(rx_queue->rfbptr, bdp_dma);
3740 			}
3741 
3742 			priv->tx_actual_en = 1;
3743 		}
3744 
3745 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3746 			priv->tx_actual_en = 0;
3747 
3748 		gfar_write(&regs->maccfg1, tempval1);
3749 		gfar_write(&regs->maccfg2, tempval);
3750 		gfar_write(&regs->ecntrl, ecntrl);
3751 
3752 		if (!priv->oldlink)
3753 			priv->oldlink = 1;
3754 
3755 	} else if (priv->oldlink) {
3756 		priv->oldlink = 0;
3757 		priv->oldspeed = 0;
3758 		priv->oldduplex = -1;
3759 	}
3760 
3761 	if (netif_msg_link(priv))
3762 		phy_print_status(phydev);
3763 }
3764 
3765 static const struct of_device_id gfar_match[] =
3766 {
3767 	{
3768 		.type = "network",
3769 		.compatible = "gianfar",
3770 	},
3771 	{
3772 		.compatible = "fsl,etsec2",
3773 	},
3774 	{},
3775 };
3776 MODULE_DEVICE_TABLE(of, gfar_match);
3777 
3778 /* Structure for a device driver */
3779 static struct platform_driver gfar_driver = {
3780 	.driver = {
3781 		.name = "fsl-gianfar",
3782 		.pm = GFAR_PM_OPS,
3783 		.of_match_table = gfar_match,
3784 	},
3785 	.probe = gfar_probe,
3786 	.remove = gfar_remove,
3787 };
3788 
3789 module_platform_driver(gfar_driver);
3790