1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/kernel.h> 63 #include <linux/string.h> 64 #include <linux/errno.h> 65 #include <linux/unistd.h> 66 #include <linux/slab.h> 67 #include <linux/interrupt.h> 68 #include <linux/delay.h> 69 #include <linux/netdevice.h> 70 #include <linux/etherdevice.h> 71 #include <linux/skbuff.h> 72 #include <linux/if_vlan.h> 73 #include <linux/spinlock.h> 74 #include <linux/mm.h> 75 #include <linux/of_address.h> 76 #include <linux/of_irq.h> 77 #include <linux/of_mdio.h> 78 #include <linux/of_platform.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/in.h> 83 #include <linux/net_tstamp.h> 84 85 #include <asm/io.h> 86 #ifdef CONFIG_PPC 87 #include <asm/reg.h> 88 #include <asm/mpc85xx.h> 89 #endif 90 #include <asm/irq.h> 91 #include <linux/uaccess.h> 92 #include <linux/module.h> 93 #include <linux/dma-mapping.h> 94 #include <linux/crc32.h> 95 #include <linux/mii.h> 96 #include <linux/phy.h> 97 #include <linux/phy_fixed.h> 98 #include <linux/of.h> 99 #include <linux/of_net.h> 100 101 #include "gianfar.h" 102 103 #define TX_TIMEOUT (5*HZ) 104 105 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 106 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 107 MODULE_LICENSE("GPL"); 108 109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 110 dma_addr_t buf) 111 { 112 u32 lstatus; 113 114 bdp->bufPtr = cpu_to_be32(buf); 115 116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 118 lstatus |= BD_LFLAG(RXBD_WRAP); 119 120 gfar_wmb(); 121 122 bdp->lstatus = cpu_to_be32(lstatus); 123 } 124 125 static void gfar_init_tx_rx_base(struct gfar_private *priv) 126 { 127 struct gfar __iomem *regs = priv->gfargrp[0].regs; 128 u32 __iomem *baddr; 129 int i; 130 131 baddr = ®s->tbase0; 132 for (i = 0; i < priv->num_tx_queues; i++) { 133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 134 baddr += 2; 135 } 136 137 baddr = ®s->rbase0; 138 for (i = 0; i < priv->num_rx_queues; i++) { 139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 140 baddr += 2; 141 } 142 } 143 144 static void gfar_init_rqprm(struct gfar_private *priv) 145 { 146 struct gfar __iomem *regs = priv->gfargrp[0].regs; 147 u32 __iomem *baddr; 148 int i; 149 150 baddr = ®s->rqprm0; 151 for (i = 0; i < priv->num_rx_queues; i++) { 152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 154 baddr++; 155 } 156 } 157 158 static void gfar_rx_offload_en(struct gfar_private *priv) 159 { 160 /* set this when rx hw offload (TOE) functions are being used */ 161 priv->uses_rxfcb = 0; 162 163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 164 priv->uses_rxfcb = 1; 165 166 if (priv->hwts_rx_en || priv->rx_filer_enable) 167 priv->uses_rxfcb = 1; 168 } 169 170 static void gfar_mac_rx_config(struct gfar_private *priv) 171 { 172 struct gfar __iomem *regs = priv->gfargrp[0].regs; 173 u32 rctrl = 0; 174 175 if (priv->rx_filer_enable) { 176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 177 /* Program the RIR0 reg with the required distribution */ 178 if (priv->poll_mode == GFAR_SQ_POLLING) 179 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 180 else /* GFAR_MQ_POLLING */ 181 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 182 } 183 184 /* Restore PROMISC mode */ 185 if (priv->ndev->flags & IFF_PROMISC) 186 rctrl |= RCTRL_PROM; 187 188 if (priv->ndev->features & NETIF_F_RXCSUM) 189 rctrl |= RCTRL_CHECKSUMMING; 190 191 if (priv->extended_hash) 192 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 193 194 if (priv->padding) { 195 rctrl &= ~RCTRL_PAL_MASK; 196 rctrl |= RCTRL_PADDING(priv->padding); 197 } 198 199 /* Enable HW time stamping if requested from user space */ 200 if (priv->hwts_rx_en) 201 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 202 203 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 204 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 205 206 /* Clear the LFC bit */ 207 gfar_write(®s->rctrl, rctrl); 208 /* Init flow control threshold values */ 209 gfar_init_rqprm(priv); 210 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 211 rctrl |= RCTRL_LFC; 212 213 /* Init rctrl based on our settings */ 214 gfar_write(®s->rctrl, rctrl); 215 } 216 217 static void gfar_mac_tx_config(struct gfar_private *priv) 218 { 219 struct gfar __iomem *regs = priv->gfargrp[0].regs; 220 u32 tctrl = 0; 221 222 if (priv->ndev->features & NETIF_F_IP_CSUM) 223 tctrl |= TCTRL_INIT_CSUM; 224 225 if (priv->prio_sched_en) 226 tctrl |= TCTRL_TXSCHED_PRIO; 227 else { 228 tctrl |= TCTRL_TXSCHED_WRRS; 229 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 230 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 231 } 232 233 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 234 tctrl |= TCTRL_VLINS; 235 236 gfar_write(®s->tctrl, tctrl); 237 } 238 239 static void gfar_configure_coalescing(struct gfar_private *priv, 240 unsigned long tx_mask, unsigned long rx_mask) 241 { 242 struct gfar __iomem *regs = priv->gfargrp[0].regs; 243 u32 __iomem *baddr; 244 245 if (priv->mode == MQ_MG_MODE) { 246 int i = 0; 247 248 baddr = ®s->txic0; 249 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 250 gfar_write(baddr + i, 0); 251 if (likely(priv->tx_queue[i]->txcoalescing)) 252 gfar_write(baddr + i, priv->tx_queue[i]->txic); 253 } 254 255 baddr = ®s->rxic0; 256 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 257 gfar_write(baddr + i, 0); 258 if (likely(priv->rx_queue[i]->rxcoalescing)) 259 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 260 } 261 } else { 262 /* Backward compatible case -- even if we enable 263 * multiple queues, there's only single reg to program 264 */ 265 gfar_write(®s->txic, 0); 266 if (likely(priv->tx_queue[0]->txcoalescing)) 267 gfar_write(®s->txic, priv->tx_queue[0]->txic); 268 269 gfar_write(®s->rxic, 0); 270 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 271 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 272 } 273 } 274 275 static void gfar_configure_coalescing_all(struct gfar_private *priv) 276 { 277 gfar_configure_coalescing(priv, 0xFF, 0xFF); 278 } 279 280 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 281 { 282 struct gfar_private *priv = netdev_priv(dev); 283 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 284 unsigned long tx_packets = 0, tx_bytes = 0; 285 int i; 286 287 for (i = 0; i < priv->num_rx_queues; i++) { 288 rx_packets += priv->rx_queue[i]->stats.rx_packets; 289 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 290 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 291 } 292 293 dev->stats.rx_packets = rx_packets; 294 dev->stats.rx_bytes = rx_bytes; 295 dev->stats.rx_dropped = rx_dropped; 296 297 for (i = 0; i < priv->num_tx_queues; i++) { 298 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 299 tx_packets += priv->tx_queue[i]->stats.tx_packets; 300 } 301 302 dev->stats.tx_bytes = tx_bytes; 303 dev->stats.tx_packets = tx_packets; 304 305 return &dev->stats; 306 } 307 308 /* Set the appropriate hash bit for the given addr */ 309 /* The algorithm works like so: 310 * 1) Take the Destination Address (ie the multicast address), and 311 * do a CRC on it (little endian), and reverse the bits of the 312 * result. 313 * 2) Use the 8 most significant bits as a hash into a 256-entry 314 * table. The table is controlled through 8 32-bit registers: 315 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 316 * gaddr7. This means that the 3 most significant bits in the 317 * hash index which gaddr register to use, and the 5 other bits 318 * indicate which bit (assuming an IBM numbering scheme, which 319 * for PowerPC (tm) is usually the case) in the register holds 320 * the entry. 321 */ 322 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 323 { 324 u32 tempval; 325 struct gfar_private *priv = netdev_priv(dev); 326 u32 result = ether_crc(ETH_ALEN, addr); 327 int width = priv->hash_width; 328 u8 whichbit = (result >> (32 - width)) & 0x1f; 329 u8 whichreg = result >> (32 - width + 5); 330 u32 value = (1 << (31-whichbit)); 331 332 tempval = gfar_read(priv->hash_regs[whichreg]); 333 tempval |= value; 334 gfar_write(priv->hash_regs[whichreg], tempval); 335 } 336 337 /* There are multiple MAC Address register pairs on some controllers 338 * This function sets the numth pair to a given address 339 */ 340 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 341 const u8 *addr) 342 { 343 struct gfar_private *priv = netdev_priv(dev); 344 struct gfar __iomem *regs = priv->gfargrp[0].regs; 345 u32 tempval; 346 u32 __iomem *macptr = ®s->macstnaddr1; 347 348 macptr += num*2; 349 350 /* For a station address of 0x12345678ABCD in transmission 351 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 352 * MACnADDR2 is set to 0x34120000. 353 */ 354 tempval = (addr[5] << 24) | (addr[4] << 16) | 355 (addr[3] << 8) | addr[2]; 356 357 gfar_write(macptr, tempval); 358 359 tempval = (addr[1] << 24) | (addr[0] << 16); 360 361 gfar_write(macptr+1, tempval); 362 } 363 364 static int gfar_set_mac_addr(struct net_device *dev, void *p) 365 { 366 int ret; 367 368 ret = eth_mac_addr(dev, p); 369 if (ret) 370 return ret; 371 372 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 373 374 return 0; 375 } 376 377 static void gfar_ints_disable(struct gfar_private *priv) 378 { 379 int i; 380 for (i = 0; i < priv->num_grps; i++) { 381 struct gfar __iomem *regs = priv->gfargrp[i].regs; 382 /* Clear IEVENT */ 383 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 384 385 /* Initialize IMASK */ 386 gfar_write(®s->imask, IMASK_INIT_CLEAR); 387 } 388 } 389 390 static void gfar_ints_enable(struct gfar_private *priv) 391 { 392 int i; 393 for (i = 0; i < priv->num_grps; i++) { 394 struct gfar __iomem *regs = priv->gfargrp[i].regs; 395 /* Unmask the interrupts we look for */ 396 gfar_write(®s->imask, IMASK_DEFAULT); 397 } 398 } 399 400 static int gfar_alloc_tx_queues(struct gfar_private *priv) 401 { 402 int i; 403 404 for (i = 0; i < priv->num_tx_queues; i++) { 405 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 406 GFP_KERNEL); 407 if (!priv->tx_queue[i]) 408 return -ENOMEM; 409 410 priv->tx_queue[i]->tx_skbuff = NULL; 411 priv->tx_queue[i]->qindex = i; 412 priv->tx_queue[i]->dev = priv->ndev; 413 spin_lock_init(&(priv->tx_queue[i]->txlock)); 414 } 415 return 0; 416 } 417 418 static int gfar_alloc_rx_queues(struct gfar_private *priv) 419 { 420 int i; 421 422 for (i = 0; i < priv->num_rx_queues; i++) { 423 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 424 GFP_KERNEL); 425 if (!priv->rx_queue[i]) 426 return -ENOMEM; 427 428 priv->rx_queue[i]->qindex = i; 429 priv->rx_queue[i]->ndev = priv->ndev; 430 } 431 return 0; 432 } 433 434 static void gfar_free_tx_queues(struct gfar_private *priv) 435 { 436 int i; 437 438 for (i = 0; i < priv->num_tx_queues; i++) 439 kfree(priv->tx_queue[i]); 440 } 441 442 static void gfar_free_rx_queues(struct gfar_private *priv) 443 { 444 int i; 445 446 for (i = 0; i < priv->num_rx_queues; i++) 447 kfree(priv->rx_queue[i]); 448 } 449 450 static void unmap_group_regs(struct gfar_private *priv) 451 { 452 int i; 453 454 for (i = 0; i < MAXGROUPS; i++) 455 if (priv->gfargrp[i].regs) 456 iounmap(priv->gfargrp[i].regs); 457 } 458 459 static void free_gfar_dev(struct gfar_private *priv) 460 { 461 int i, j; 462 463 for (i = 0; i < priv->num_grps; i++) 464 for (j = 0; j < GFAR_NUM_IRQS; j++) { 465 kfree(priv->gfargrp[i].irqinfo[j]); 466 priv->gfargrp[i].irqinfo[j] = NULL; 467 } 468 469 free_netdev(priv->ndev); 470 } 471 472 static void disable_napi(struct gfar_private *priv) 473 { 474 int i; 475 476 for (i = 0; i < priv->num_grps; i++) { 477 napi_disable(&priv->gfargrp[i].napi_rx); 478 napi_disable(&priv->gfargrp[i].napi_tx); 479 } 480 } 481 482 static void enable_napi(struct gfar_private *priv) 483 { 484 int i; 485 486 for (i = 0; i < priv->num_grps; i++) { 487 napi_enable(&priv->gfargrp[i].napi_rx); 488 napi_enable(&priv->gfargrp[i].napi_tx); 489 } 490 } 491 492 static int gfar_parse_group(struct device_node *np, 493 struct gfar_private *priv, const char *model) 494 { 495 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 496 int i; 497 498 for (i = 0; i < GFAR_NUM_IRQS; i++) { 499 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 500 GFP_KERNEL); 501 if (!grp->irqinfo[i]) 502 return -ENOMEM; 503 } 504 505 grp->regs = of_iomap(np, 0); 506 if (!grp->regs) 507 return -ENOMEM; 508 509 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 510 511 /* If we aren't the FEC we have multiple interrupts */ 512 if (model && strcasecmp(model, "FEC")) { 513 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 514 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 515 if (!gfar_irq(grp, TX)->irq || 516 !gfar_irq(grp, RX)->irq || 517 !gfar_irq(grp, ER)->irq) 518 return -EINVAL; 519 } 520 521 grp->priv = priv; 522 spin_lock_init(&grp->grplock); 523 if (priv->mode == MQ_MG_MODE) { 524 u32 rxq_mask, txq_mask; 525 int ret; 526 527 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 528 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 529 530 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 531 if (!ret) { 532 grp->rx_bit_map = rxq_mask ? 533 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 534 } 535 536 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 537 if (!ret) { 538 grp->tx_bit_map = txq_mask ? 539 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 540 } 541 542 if (priv->poll_mode == GFAR_SQ_POLLING) { 543 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 544 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 545 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 546 } 547 } else { 548 grp->rx_bit_map = 0xFF; 549 grp->tx_bit_map = 0xFF; 550 } 551 552 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 553 * right to left, so we need to revert the 8 bits to get the q index 554 */ 555 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 556 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 557 558 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 559 * also assign queues to groups 560 */ 561 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 562 if (!grp->rx_queue) 563 grp->rx_queue = priv->rx_queue[i]; 564 grp->num_rx_queues++; 565 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 566 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 567 priv->rx_queue[i]->grp = grp; 568 } 569 570 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 571 if (!grp->tx_queue) 572 grp->tx_queue = priv->tx_queue[i]; 573 grp->num_tx_queues++; 574 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 575 priv->tqueue |= (TQUEUE_EN0 >> i); 576 priv->tx_queue[i]->grp = grp; 577 } 578 579 priv->num_grps++; 580 581 return 0; 582 } 583 584 static int gfar_of_group_count(struct device_node *np) 585 { 586 struct device_node *child; 587 int num = 0; 588 589 for_each_available_child_of_node(np, child) 590 if (of_node_name_eq(child, "queue-group")) 591 num++; 592 593 return num; 594 } 595 596 /* Reads the controller's registers to determine what interface 597 * connects it to the PHY. 598 */ 599 static phy_interface_t gfar_get_interface(struct net_device *dev) 600 { 601 struct gfar_private *priv = netdev_priv(dev); 602 struct gfar __iomem *regs = priv->gfargrp[0].regs; 603 u32 ecntrl; 604 605 ecntrl = gfar_read(®s->ecntrl); 606 607 if (ecntrl & ECNTRL_SGMII_MODE) 608 return PHY_INTERFACE_MODE_SGMII; 609 610 if (ecntrl & ECNTRL_TBI_MODE) { 611 if (ecntrl & ECNTRL_REDUCED_MODE) 612 return PHY_INTERFACE_MODE_RTBI; 613 else 614 return PHY_INTERFACE_MODE_TBI; 615 } 616 617 if (ecntrl & ECNTRL_REDUCED_MODE) { 618 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 619 return PHY_INTERFACE_MODE_RMII; 620 } 621 else { 622 phy_interface_t interface = priv->interface; 623 624 /* This isn't autodetected right now, so it must 625 * be set by the device tree or platform code. 626 */ 627 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 628 return PHY_INTERFACE_MODE_RGMII_ID; 629 630 return PHY_INTERFACE_MODE_RGMII; 631 } 632 } 633 634 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 635 return PHY_INTERFACE_MODE_GMII; 636 637 return PHY_INTERFACE_MODE_MII; 638 } 639 640 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 641 { 642 const char *model; 643 const void *mac_addr; 644 int err = 0, i; 645 phy_interface_t interface; 646 struct net_device *dev = NULL; 647 struct gfar_private *priv = NULL; 648 struct device_node *np = ofdev->dev.of_node; 649 struct device_node *child = NULL; 650 u32 stash_len = 0; 651 u32 stash_idx = 0; 652 unsigned int num_tx_qs, num_rx_qs; 653 unsigned short mode, poll_mode; 654 655 if (!np) 656 return -ENODEV; 657 658 if (of_device_is_compatible(np, "fsl,etsec2")) { 659 mode = MQ_MG_MODE; 660 poll_mode = GFAR_SQ_POLLING; 661 } else { 662 mode = SQ_SG_MODE; 663 poll_mode = GFAR_SQ_POLLING; 664 } 665 666 if (mode == SQ_SG_MODE) { 667 num_tx_qs = 1; 668 num_rx_qs = 1; 669 } else { /* MQ_MG_MODE */ 670 /* get the actual number of supported groups */ 671 unsigned int num_grps = gfar_of_group_count(np); 672 673 if (num_grps == 0 || num_grps > MAXGROUPS) { 674 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 675 num_grps); 676 pr_err("Cannot do alloc_etherdev, aborting\n"); 677 return -EINVAL; 678 } 679 680 if (poll_mode == GFAR_SQ_POLLING) { 681 num_tx_qs = num_grps; /* one txq per int group */ 682 num_rx_qs = num_grps; /* one rxq per int group */ 683 } else { /* GFAR_MQ_POLLING */ 684 u32 tx_queues, rx_queues; 685 int ret; 686 687 /* parse the num of HW tx and rx queues */ 688 ret = of_property_read_u32(np, "fsl,num_tx_queues", 689 &tx_queues); 690 num_tx_qs = ret ? 1 : tx_queues; 691 692 ret = of_property_read_u32(np, "fsl,num_rx_queues", 693 &rx_queues); 694 num_rx_qs = ret ? 1 : rx_queues; 695 } 696 } 697 698 if (num_tx_qs > MAX_TX_QS) { 699 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 700 num_tx_qs, MAX_TX_QS); 701 pr_err("Cannot do alloc_etherdev, aborting\n"); 702 return -EINVAL; 703 } 704 705 if (num_rx_qs > MAX_RX_QS) { 706 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 707 num_rx_qs, MAX_RX_QS); 708 pr_err("Cannot do alloc_etherdev, aborting\n"); 709 return -EINVAL; 710 } 711 712 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 713 dev = *pdev; 714 if (NULL == dev) 715 return -ENOMEM; 716 717 priv = netdev_priv(dev); 718 priv->ndev = dev; 719 720 priv->mode = mode; 721 priv->poll_mode = poll_mode; 722 723 priv->num_tx_queues = num_tx_qs; 724 netif_set_real_num_rx_queues(dev, num_rx_qs); 725 priv->num_rx_queues = num_rx_qs; 726 727 err = gfar_alloc_tx_queues(priv); 728 if (err) 729 goto tx_alloc_failed; 730 731 err = gfar_alloc_rx_queues(priv); 732 if (err) 733 goto rx_alloc_failed; 734 735 err = of_property_read_string(np, "model", &model); 736 if (err) { 737 pr_err("Device model property missing, aborting\n"); 738 goto rx_alloc_failed; 739 } 740 741 /* Init Rx queue filer rule set linked list */ 742 INIT_LIST_HEAD(&priv->rx_list.list); 743 priv->rx_list.count = 0; 744 mutex_init(&priv->rx_queue_access); 745 746 for (i = 0; i < MAXGROUPS; i++) 747 priv->gfargrp[i].regs = NULL; 748 749 /* Parse and initialize group specific information */ 750 if (priv->mode == MQ_MG_MODE) { 751 for_each_available_child_of_node(np, child) { 752 if (!of_node_name_eq(child, "queue-group")) 753 continue; 754 755 err = gfar_parse_group(child, priv, model); 756 if (err) { 757 of_node_put(child); 758 goto err_grp_init; 759 } 760 } 761 } else { /* SQ_SG_MODE */ 762 err = gfar_parse_group(np, priv, model); 763 if (err) 764 goto err_grp_init; 765 } 766 767 if (of_property_read_bool(np, "bd-stash")) { 768 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 769 priv->bd_stash_en = 1; 770 } 771 772 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 773 774 if (err == 0) 775 priv->rx_stash_size = stash_len; 776 777 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 778 779 if (err == 0) 780 priv->rx_stash_index = stash_idx; 781 782 if (stash_len || stash_idx) 783 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 784 785 mac_addr = of_get_mac_address(np); 786 787 if (!IS_ERR(mac_addr)) { 788 ether_addr_copy(dev->dev_addr, mac_addr); 789 } else { 790 eth_hw_addr_random(dev); 791 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 792 } 793 794 if (model && !strcasecmp(model, "TSEC")) 795 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 796 FSL_GIANFAR_DEV_HAS_COALESCE | 797 FSL_GIANFAR_DEV_HAS_RMON | 798 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 799 800 if (model && !strcasecmp(model, "eTSEC")) 801 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 802 FSL_GIANFAR_DEV_HAS_COALESCE | 803 FSL_GIANFAR_DEV_HAS_RMON | 804 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 805 FSL_GIANFAR_DEV_HAS_CSUM | 806 FSL_GIANFAR_DEV_HAS_VLAN | 807 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 808 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 809 FSL_GIANFAR_DEV_HAS_TIMER | 810 FSL_GIANFAR_DEV_HAS_RX_FILER; 811 812 /* Use PHY connection type from the DT node if one is specified there. 813 * rgmii-id really needs to be specified. Other types can be 814 * detected by hardware 815 */ 816 err = of_get_phy_mode(np, &interface); 817 if (!err) 818 priv->interface = interface; 819 else 820 priv->interface = gfar_get_interface(dev); 821 822 if (of_find_property(np, "fsl,magic-packet", NULL)) 823 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 824 825 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 826 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 827 828 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 829 830 /* In the case of a fixed PHY, the DT node associated 831 * to the PHY is the Ethernet MAC DT node. 832 */ 833 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 834 err = of_phy_register_fixed_link(np); 835 if (err) 836 goto err_grp_init; 837 838 priv->phy_node = of_node_get(np); 839 } 840 841 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 842 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 843 844 return 0; 845 846 err_grp_init: 847 unmap_group_regs(priv); 848 rx_alloc_failed: 849 gfar_free_rx_queues(priv); 850 tx_alloc_failed: 851 gfar_free_tx_queues(priv); 852 free_gfar_dev(priv); 853 return err; 854 } 855 856 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 857 u32 class) 858 { 859 u32 rqfpr = FPR_FILER_MASK; 860 u32 rqfcr = 0x0; 861 862 rqfar--; 863 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 864 priv->ftp_rqfpr[rqfar] = rqfpr; 865 priv->ftp_rqfcr[rqfar] = rqfcr; 866 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 867 868 rqfar--; 869 rqfcr = RQFCR_CMP_NOMATCH; 870 priv->ftp_rqfpr[rqfar] = rqfpr; 871 priv->ftp_rqfcr[rqfar] = rqfcr; 872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 873 874 rqfar--; 875 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 876 rqfpr = class; 877 priv->ftp_rqfcr[rqfar] = rqfcr; 878 priv->ftp_rqfpr[rqfar] = rqfpr; 879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 880 881 rqfar--; 882 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 883 rqfpr = class; 884 priv->ftp_rqfcr[rqfar] = rqfcr; 885 priv->ftp_rqfpr[rqfar] = rqfpr; 886 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 887 888 return rqfar; 889 } 890 891 static void gfar_init_filer_table(struct gfar_private *priv) 892 { 893 int i = 0x0; 894 u32 rqfar = MAX_FILER_IDX; 895 u32 rqfcr = 0x0; 896 u32 rqfpr = FPR_FILER_MASK; 897 898 /* Default rule */ 899 rqfcr = RQFCR_CMP_MATCH; 900 priv->ftp_rqfcr[rqfar] = rqfcr; 901 priv->ftp_rqfpr[rqfar] = rqfpr; 902 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 903 904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 906 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 907 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 908 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 909 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 910 911 /* cur_filer_idx indicated the first non-masked rule */ 912 priv->cur_filer_idx = rqfar; 913 914 /* Rest are masked rules */ 915 rqfcr = RQFCR_CMP_NOMATCH; 916 for (i = 0; i < rqfar; i++) { 917 priv->ftp_rqfcr[i] = rqfcr; 918 priv->ftp_rqfpr[i] = rqfpr; 919 gfar_write_filer(priv, i, rqfcr, rqfpr); 920 } 921 } 922 923 #ifdef CONFIG_PPC 924 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 925 { 926 unsigned int pvr = mfspr(SPRN_PVR); 927 unsigned int svr = mfspr(SPRN_SVR); 928 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 929 unsigned int rev = svr & 0xffff; 930 931 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 932 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 933 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 934 priv->errata |= GFAR_ERRATA_74; 935 936 /* MPC8313 and MPC837x all rev */ 937 if ((pvr == 0x80850010 && mod == 0x80b0) || 938 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 939 priv->errata |= GFAR_ERRATA_76; 940 941 /* MPC8313 Rev < 2.0 */ 942 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 943 priv->errata |= GFAR_ERRATA_12; 944 } 945 946 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 947 { 948 unsigned int svr = mfspr(SPRN_SVR); 949 950 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 951 priv->errata |= GFAR_ERRATA_12; 952 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 953 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 954 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 955 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 956 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 957 } 958 #endif 959 960 static void gfar_detect_errata(struct gfar_private *priv) 961 { 962 struct device *dev = &priv->ofdev->dev; 963 964 /* no plans to fix */ 965 priv->errata |= GFAR_ERRATA_A002; 966 967 #ifdef CONFIG_PPC 968 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 969 __gfar_detect_errata_85xx(priv); 970 else /* non-mpc85xx parts, i.e. e300 core based */ 971 __gfar_detect_errata_83xx(priv); 972 #endif 973 974 if (priv->errata) 975 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 976 priv->errata); 977 } 978 979 static void gfar_init_addr_hash_table(struct gfar_private *priv) 980 { 981 struct gfar __iomem *regs = priv->gfargrp[0].regs; 982 983 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 984 priv->extended_hash = 1; 985 priv->hash_width = 9; 986 987 priv->hash_regs[0] = ®s->igaddr0; 988 priv->hash_regs[1] = ®s->igaddr1; 989 priv->hash_regs[2] = ®s->igaddr2; 990 priv->hash_regs[3] = ®s->igaddr3; 991 priv->hash_regs[4] = ®s->igaddr4; 992 priv->hash_regs[5] = ®s->igaddr5; 993 priv->hash_regs[6] = ®s->igaddr6; 994 priv->hash_regs[7] = ®s->igaddr7; 995 priv->hash_regs[8] = ®s->gaddr0; 996 priv->hash_regs[9] = ®s->gaddr1; 997 priv->hash_regs[10] = ®s->gaddr2; 998 priv->hash_regs[11] = ®s->gaddr3; 999 priv->hash_regs[12] = ®s->gaddr4; 1000 priv->hash_regs[13] = ®s->gaddr5; 1001 priv->hash_regs[14] = ®s->gaddr6; 1002 priv->hash_regs[15] = ®s->gaddr7; 1003 1004 } else { 1005 priv->extended_hash = 0; 1006 priv->hash_width = 8; 1007 1008 priv->hash_regs[0] = ®s->gaddr0; 1009 priv->hash_regs[1] = ®s->gaddr1; 1010 priv->hash_regs[2] = ®s->gaddr2; 1011 priv->hash_regs[3] = ®s->gaddr3; 1012 priv->hash_regs[4] = ®s->gaddr4; 1013 priv->hash_regs[5] = ®s->gaddr5; 1014 priv->hash_regs[6] = ®s->gaddr6; 1015 priv->hash_regs[7] = ®s->gaddr7; 1016 } 1017 } 1018 1019 static int __gfar_is_rx_idle(struct gfar_private *priv) 1020 { 1021 u32 res; 1022 1023 /* Normaly TSEC should not hang on GRS commands, so we should 1024 * actually wait for IEVENT_GRSC flag. 1025 */ 1026 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1027 return 0; 1028 1029 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1030 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1031 * and the Rx can be safely reset. 1032 */ 1033 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1034 res &= 0x7f807f80; 1035 if ((res & 0xffff) == (res >> 16)) 1036 return 1; 1037 1038 return 0; 1039 } 1040 1041 /* Halt the receive and transmit queues */ 1042 static void gfar_halt_nodisable(struct gfar_private *priv) 1043 { 1044 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1045 u32 tempval; 1046 unsigned int timeout; 1047 int stopped; 1048 1049 gfar_ints_disable(priv); 1050 1051 if (gfar_is_dma_stopped(priv)) 1052 return; 1053 1054 /* Stop the DMA, and wait for it to stop */ 1055 tempval = gfar_read(®s->dmactrl); 1056 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1057 gfar_write(®s->dmactrl, tempval); 1058 1059 retry: 1060 timeout = 1000; 1061 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1062 cpu_relax(); 1063 timeout--; 1064 } 1065 1066 if (!timeout) 1067 stopped = gfar_is_dma_stopped(priv); 1068 1069 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1070 !__gfar_is_rx_idle(priv)) 1071 goto retry; 1072 } 1073 1074 /* Halt the receive and transmit queues */ 1075 static void gfar_halt(struct gfar_private *priv) 1076 { 1077 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1078 u32 tempval; 1079 1080 /* Dissable the Rx/Tx hw queues */ 1081 gfar_write(®s->rqueue, 0); 1082 gfar_write(®s->tqueue, 0); 1083 1084 mdelay(10); 1085 1086 gfar_halt_nodisable(priv); 1087 1088 /* Disable Rx/Tx DMA */ 1089 tempval = gfar_read(®s->maccfg1); 1090 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1091 gfar_write(®s->maccfg1, tempval); 1092 } 1093 1094 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1095 { 1096 struct txbd8 *txbdp; 1097 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1098 int i, j; 1099 1100 txbdp = tx_queue->tx_bd_base; 1101 1102 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1103 if (!tx_queue->tx_skbuff[i]) 1104 continue; 1105 1106 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1107 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1108 txbdp->lstatus = 0; 1109 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1110 j++) { 1111 txbdp++; 1112 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1113 be16_to_cpu(txbdp->length), 1114 DMA_TO_DEVICE); 1115 } 1116 txbdp++; 1117 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1118 tx_queue->tx_skbuff[i] = NULL; 1119 } 1120 kfree(tx_queue->tx_skbuff); 1121 tx_queue->tx_skbuff = NULL; 1122 } 1123 1124 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1125 { 1126 int i; 1127 1128 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1129 1130 dev_kfree_skb(rx_queue->skb); 1131 1132 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1133 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1134 1135 rxbdp->lstatus = 0; 1136 rxbdp->bufPtr = 0; 1137 rxbdp++; 1138 1139 if (!rxb->page) 1140 continue; 1141 1142 dma_unmap_page(rx_queue->dev, rxb->dma, 1143 PAGE_SIZE, DMA_FROM_DEVICE); 1144 __free_page(rxb->page); 1145 1146 rxb->page = NULL; 1147 } 1148 1149 kfree(rx_queue->rx_buff); 1150 rx_queue->rx_buff = NULL; 1151 } 1152 1153 /* If there are any tx skbs or rx skbs still around, free them. 1154 * Then free tx_skbuff and rx_skbuff 1155 */ 1156 static void free_skb_resources(struct gfar_private *priv) 1157 { 1158 struct gfar_priv_tx_q *tx_queue = NULL; 1159 struct gfar_priv_rx_q *rx_queue = NULL; 1160 int i; 1161 1162 /* Go through all the buffer descriptors and free their data buffers */ 1163 for (i = 0; i < priv->num_tx_queues; i++) { 1164 struct netdev_queue *txq; 1165 1166 tx_queue = priv->tx_queue[i]; 1167 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1168 if (tx_queue->tx_skbuff) 1169 free_skb_tx_queue(tx_queue); 1170 netdev_tx_reset_queue(txq); 1171 } 1172 1173 for (i = 0; i < priv->num_rx_queues; i++) { 1174 rx_queue = priv->rx_queue[i]; 1175 if (rx_queue->rx_buff) 1176 free_skb_rx_queue(rx_queue); 1177 } 1178 1179 dma_free_coherent(priv->dev, 1180 sizeof(struct txbd8) * priv->total_tx_ring_size + 1181 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1182 priv->tx_queue[0]->tx_bd_base, 1183 priv->tx_queue[0]->tx_bd_dma_base); 1184 } 1185 1186 void stop_gfar(struct net_device *dev) 1187 { 1188 struct gfar_private *priv = netdev_priv(dev); 1189 1190 netif_tx_stop_all_queues(dev); 1191 1192 smp_mb__before_atomic(); 1193 set_bit(GFAR_DOWN, &priv->state); 1194 smp_mb__after_atomic(); 1195 1196 disable_napi(priv); 1197 1198 /* disable ints and gracefully shut down Rx/Tx DMA */ 1199 gfar_halt(priv); 1200 1201 phy_stop(dev->phydev); 1202 1203 free_skb_resources(priv); 1204 } 1205 1206 static void gfar_start(struct gfar_private *priv) 1207 { 1208 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1209 u32 tempval; 1210 int i = 0; 1211 1212 /* Enable Rx/Tx hw queues */ 1213 gfar_write(®s->rqueue, priv->rqueue); 1214 gfar_write(®s->tqueue, priv->tqueue); 1215 1216 /* Initialize DMACTRL to have WWR and WOP */ 1217 tempval = gfar_read(®s->dmactrl); 1218 tempval |= DMACTRL_INIT_SETTINGS; 1219 gfar_write(®s->dmactrl, tempval); 1220 1221 /* Make sure we aren't stopped */ 1222 tempval = gfar_read(®s->dmactrl); 1223 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1224 gfar_write(®s->dmactrl, tempval); 1225 1226 for (i = 0; i < priv->num_grps; i++) { 1227 regs = priv->gfargrp[i].regs; 1228 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1229 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1230 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1231 } 1232 1233 /* Enable Rx/Tx DMA */ 1234 tempval = gfar_read(®s->maccfg1); 1235 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1236 gfar_write(®s->maccfg1, tempval); 1237 1238 gfar_ints_enable(priv); 1239 1240 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1241 } 1242 1243 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1244 { 1245 struct page *page; 1246 dma_addr_t addr; 1247 1248 page = dev_alloc_page(); 1249 if (unlikely(!page)) 1250 return false; 1251 1252 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1253 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1254 __free_page(page); 1255 1256 return false; 1257 } 1258 1259 rxb->dma = addr; 1260 rxb->page = page; 1261 rxb->page_offset = 0; 1262 1263 return true; 1264 } 1265 1266 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1267 { 1268 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1269 struct gfar_extra_stats *estats = &priv->extra_stats; 1270 1271 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1272 atomic64_inc(&estats->rx_alloc_err); 1273 } 1274 1275 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1276 int alloc_cnt) 1277 { 1278 struct rxbd8 *bdp; 1279 struct gfar_rx_buff *rxb; 1280 int i; 1281 1282 i = rx_queue->next_to_use; 1283 bdp = &rx_queue->rx_bd_base[i]; 1284 rxb = &rx_queue->rx_buff[i]; 1285 1286 while (alloc_cnt--) { 1287 /* try reuse page */ 1288 if (unlikely(!rxb->page)) { 1289 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1290 gfar_rx_alloc_err(rx_queue); 1291 break; 1292 } 1293 } 1294 1295 /* Setup the new RxBD */ 1296 gfar_init_rxbdp(rx_queue, bdp, 1297 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1298 1299 /* Update to the next pointer */ 1300 bdp++; 1301 rxb++; 1302 1303 if (unlikely(++i == rx_queue->rx_ring_size)) { 1304 i = 0; 1305 bdp = rx_queue->rx_bd_base; 1306 rxb = rx_queue->rx_buff; 1307 } 1308 } 1309 1310 rx_queue->next_to_use = i; 1311 rx_queue->next_to_alloc = i; 1312 } 1313 1314 static void gfar_init_bds(struct net_device *ndev) 1315 { 1316 struct gfar_private *priv = netdev_priv(ndev); 1317 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1318 struct gfar_priv_tx_q *tx_queue = NULL; 1319 struct gfar_priv_rx_q *rx_queue = NULL; 1320 struct txbd8 *txbdp; 1321 u32 __iomem *rfbptr; 1322 int i, j; 1323 1324 for (i = 0; i < priv->num_tx_queues; i++) { 1325 tx_queue = priv->tx_queue[i]; 1326 /* Initialize some variables in our dev structure */ 1327 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1328 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1329 tx_queue->cur_tx = tx_queue->tx_bd_base; 1330 tx_queue->skb_curtx = 0; 1331 tx_queue->skb_dirtytx = 0; 1332 1333 /* Initialize Transmit Descriptor Ring */ 1334 txbdp = tx_queue->tx_bd_base; 1335 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1336 txbdp->lstatus = 0; 1337 txbdp->bufPtr = 0; 1338 txbdp++; 1339 } 1340 1341 /* Set the last descriptor in the ring to indicate wrap */ 1342 txbdp--; 1343 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1344 TXBD_WRAP); 1345 } 1346 1347 rfbptr = ®s->rfbptr0; 1348 for (i = 0; i < priv->num_rx_queues; i++) { 1349 rx_queue = priv->rx_queue[i]; 1350 1351 rx_queue->next_to_clean = 0; 1352 rx_queue->next_to_use = 0; 1353 rx_queue->next_to_alloc = 0; 1354 1355 /* make sure next_to_clean != next_to_use after this 1356 * by leaving at least 1 unused descriptor 1357 */ 1358 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1359 1360 rx_queue->rfbptr = rfbptr; 1361 rfbptr += 2; 1362 } 1363 } 1364 1365 static int gfar_alloc_skb_resources(struct net_device *ndev) 1366 { 1367 void *vaddr; 1368 dma_addr_t addr; 1369 int i, j; 1370 struct gfar_private *priv = netdev_priv(ndev); 1371 struct device *dev = priv->dev; 1372 struct gfar_priv_tx_q *tx_queue = NULL; 1373 struct gfar_priv_rx_q *rx_queue = NULL; 1374 1375 priv->total_tx_ring_size = 0; 1376 for (i = 0; i < priv->num_tx_queues; i++) 1377 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1378 1379 priv->total_rx_ring_size = 0; 1380 for (i = 0; i < priv->num_rx_queues; i++) 1381 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1382 1383 /* Allocate memory for the buffer descriptors */ 1384 vaddr = dma_alloc_coherent(dev, 1385 (priv->total_tx_ring_size * 1386 sizeof(struct txbd8)) + 1387 (priv->total_rx_ring_size * 1388 sizeof(struct rxbd8)), 1389 &addr, GFP_KERNEL); 1390 if (!vaddr) 1391 return -ENOMEM; 1392 1393 for (i = 0; i < priv->num_tx_queues; i++) { 1394 tx_queue = priv->tx_queue[i]; 1395 tx_queue->tx_bd_base = vaddr; 1396 tx_queue->tx_bd_dma_base = addr; 1397 tx_queue->dev = ndev; 1398 /* enet DMA only understands physical addresses */ 1399 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1400 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1401 } 1402 1403 /* Start the rx descriptor ring where the tx ring leaves off */ 1404 for (i = 0; i < priv->num_rx_queues; i++) { 1405 rx_queue = priv->rx_queue[i]; 1406 rx_queue->rx_bd_base = vaddr; 1407 rx_queue->rx_bd_dma_base = addr; 1408 rx_queue->ndev = ndev; 1409 rx_queue->dev = dev; 1410 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1411 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1412 } 1413 1414 /* Setup the skbuff rings */ 1415 for (i = 0; i < priv->num_tx_queues; i++) { 1416 tx_queue = priv->tx_queue[i]; 1417 tx_queue->tx_skbuff = 1418 kmalloc_array(tx_queue->tx_ring_size, 1419 sizeof(*tx_queue->tx_skbuff), 1420 GFP_KERNEL); 1421 if (!tx_queue->tx_skbuff) 1422 goto cleanup; 1423 1424 for (j = 0; j < tx_queue->tx_ring_size; j++) 1425 tx_queue->tx_skbuff[j] = NULL; 1426 } 1427 1428 for (i = 0; i < priv->num_rx_queues; i++) { 1429 rx_queue = priv->rx_queue[i]; 1430 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1431 sizeof(*rx_queue->rx_buff), 1432 GFP_KERNEL); 1433 if (!rx_queue->rx_buff) 1434 goto cleanup; 1435 } 1436 1437 gfar_init_bds(ndev); 1438 1439 return 0; 1440 1441 cleanup: 1442 free_skb_resources(priv); 1443 return -ENOMEM; 1444 } 1445 1446 /* Bring the controller up and running */ 1447 int startup_gfar(struct net_device *ndev) 1448 { 1449 struct gfar_private *priv = netdev_priv(ndev); 1450 int err; 1451 1452 gfar_mac_reset(priv); 1453 1454 err = gfar_alloc_skb_resources(ndev); 1455 if (err) 1456 return err; 1457 1458 gfar_init_tx_rx_base(priv); 1459 1460 smp_mb__before_atomic(); 1461 clear_bit(GFAR_DOWN, &priv->state); 1462 smp_mb__after_atomic(); 1463 1464 /* Start Rx/Tx DMA and enable the interrupts */ 1465 gfar_start(priv); 1466 1467 /* force link state update after mac reset */ 1468 priv->oldlink = 0; 1469 priv->oldspeed = 0; 1470 priv->oldduplex = -1; 1471 1472 phy_start(ndev->phydev); 1473 1474 enable_napi(priv); 1475 1476 netif_tx_wake_all_queues(ndev); 1477 1478 return 0; 1479 } 1480 1481 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1482 { 1483 struct net_device *ndev = priv->ndev; 1484 struct phy_device *phydev = ndev->phydev; 1485 u32 val = 0; 1486 1487 if (!phydev->duplex) 1488 return val; 1489 1490 if (!priv->pause_aneg_en) { 1491 if (priv->tx_pause_en) 1492 val |= MACCFG1_TX_FLOW; 1493 if (priv->rx_pause_en) 1494 val |= MACCFG1_RX_FLOW; 1495 } else { 1496 u16 lcl_adv, rmt_adv; 1497 u8 flowctrl; 1498 /* get link partner capabilities */ 1499 rmt_adv = 0; 1500 if (phydev->pause) 1501 rmt_adv = LPA_PAUSE_CAP; 1502 if (phydev->asym_pause) 1503 rmt_adv |= LPA_PAUSE_ASYM; 1504 1505 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1506 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1507 if (flowctrl & FLOW_CTRL_TX) 1508 val |= MACCFG1_TX_FLOW; 1509 if (flowctrl & FLOW_CTRL_RX) 1510 val |= MACCFG1_RX_FLOW; 1511 } 1512 1513 return val; 1514 } 1515 1516 static noinline void gfar_update_link_state(struct gfar_private *priv) 1517 { 1518 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1519 struct net_device *ndev = priv->ndev; 1520 struct phy_device *phydev = ndev->phydev; 1521 struct gfar_priv_rx_q *rx_queue = NULL; 1522 int i; 1523 1524 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1525 return; 1526 1527 if (phydev->link) { 1528 u32 tempval1 = gfar_read(®s->maccfg1); 1529 u32 tempval = gfar_read(®s->maccfg2); 1530 u32 ecntrl = gfar_read(®s->ecntrl); 1531 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1532 1533 if (phydev->duplex != priv->oldduplex) { 1534 if (!(phydev->duplex)) 1535 tempval &= ~(MACCFG2_FULL_DUPLEX); 1536 else 1537 tempval |= MACCFG2_FULL_DUPLEX; 1538 1539 priv->oldduplex = phydev->duplex; 1540 } 1541 1542 if (phydev->speed != priv->oldspeed) { 1543 switch (phydev->speed) { 1544 case 1000: 1545 tempval = 1546 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1547 1548 ecntrl &= ~(ECNTRL_R100); 1549 break; 1550 case 100: 1551 case 10: 1552 tempval = 1553 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1554 1555 /* Reduced mode distinguishes 1556 * between 10 and 100 1557 */ 1558 if (phydev->speed == SPEED_100) 1559 ecntrl |= ECNTRL_R100; 1560 else 1561 ecntrl &= ~(ECNTRL_R100); 1562 break; 1563 default: 1564 netif_warn(priv, link, priv->ndev, 1565 "Ack! Speed (%d) is not 10/100/1000!\n", 1566 phydev->speed); 1567 break; 1568 } 1569 1570 priv->oldspeed = phydev->speed; 1571 } 1572 1573 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1574 tempval1 |= gfar_get_flowctrl_cfg(priv); 1575 1576 /* Turn last free buffer recording on */ 1577 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1578 for (i = 0; i < priv->num_rx_queues; i++) { 1579 u32 bdp_dma; 1580 1581 rx_queue = priv->rx_queue[i]; 1582 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1583 gfar_write(rx_queue->rfbptr, bdp_dma); 1584 } 1585 1586 priv->tx_actual_en = 1; 1587 } 1588 1589 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1590 priv->tx_actual_en = 0; 1591 1592 gfar_write(®s->maccfg1, tempval1); 1593 gfar_write(®s->maccfg2, tempval); 1594 gfar_write(®s->ecntrl, ecntrl); 1595 1596 if (!priv->oldlink) 1597 priv->oldlink = 1; 1598 1599 } else if (priv->oldlink) { 1600 priv->oldlink = 0; 1601 priv->oldspeed = 0; 1602 priv->oldduplex = -1; 1603 } 1604 1605 if (netif_msg_link(priv)) 1606 phy_print_status(phydev); 1607 } 1608 1609 /* Called every time the controller might need to be made 1610 * aware of new link state. The PHY code conveys this 1611 * information through variables in the phydev structure, and this 1612 * function converts those variables into the appropriate 1613 * register values, and can bring down the device if needed. 1614 */ 1615 static void adjust_link(struct net_device *dev) 1616 { 1617 struct gfar_private *priv = netdev_priv(dev); 1618 struct phy_device *phydev = dev->phydev; 1619 1620 if (unlikely(phydev->link != priv->oldlink || 1621 (phydev->link && (phydev->duplex != priv->oldduplex || 1622 phydev->speed != priv->oldspeed)))) 1623 gfar_update_link_state(priv); 1624 } 1625 1626 /* Initialize TBI PHY interface for communicating with the 1627 * SERDES lynx PHY on the chip. We communicate with this PHY 1628 * through the MDIO bus on each controller, treating it as a 1629 * "normal" PHY at the address found in the TBIPA register. We assume 1630 * that the TBIPA register is valid. Either the MDIO bus code will set 1631 * it to a value that doesn't conflict with other PHYs on the bus, or the 1632 * value doesn't matter, as there are no other PHYs on the bus. 1633 */ 1634 static void gfar_configure_serdes(struct net_device *dev) 1635 { 1636 struct gfar_private *priv = netdev_priv(dev); 1637 struct phy_device *tbiphy; 1638 1639 if (!priv->tbi_node) { 1640 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1641 "device tree specify a tbi-handle\n"); 1642 return; 1643 } 1644 1645 tbiphy = of_phy_find_device(priv->tbi_node); 1646 if (!tbiphy) { 1647 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1648 return; 1649 } 1650 1651 /* If the link is already up, we must already be ok, and don't need to 1652 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1653 * everything for us? Resetting it takes the link down and requires 1654 * several seconds for it to come back. 1655 */ 1656 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1657 put_device(&tbiphy->mdio.dev); 1658 return; 1659 } 1660 1661 /* Single clk mode, mii mode off(for serdes communication) */ 1662 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1663 1664 phy_write(tbiphy, MII_ADVERTISE, 1665 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1666 ADVERTISE_1000XPSE_ASYM); 1667 1668 phy_write(tbiphy, MII_BMCR, 1669 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1670 BMCR_SPEED1000); 1671 1672 put_device(&tbiphy->mdio.dev); 1673 } 1674 1675 /* Initializes driver's PHY state, and attaches to the PHY. 1676 * Returns 0 on success. 1677 */ 1678 static int init_phy(struct net_device *dev) 1679 { 1680 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1681 struct gfar_private *priv = netdev_priv(dev); 1682 phy_interface_t interface = priv->interface; 1683 struct phy_device *phydev; 1684 struct ethtool_eee edata; 1685 1686 linkmode_set_bit_array(phy_10_100_features_array, 1687 ARRAY_SIZE(phy_10_100_features_array), 1688 mask); 1689 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1690 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1691 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1692 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1693 1694 priv->oldlink = 0; 1695 priv->oldspeed = 0; 1696 priv->oldduplex = -1; 1697 1698 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1699 interface); 1700 if (!phydev) { 1701 dev_err(&dev->dev, "could not attach to PHY\n"); 1702 return -ENODEV; 1703 } 1704 1705 if (interface == PHY_INTERFACE_MODE_SGMII) 1706 gfar_configure_serdes(dev); 1707 1708 /* Remove any features not supported by the controller */ 1709 linkmode_and(phydev->supported, phydev->supported, mask); 1710 linkmode_copy(phydev->advertising, phydev->supported); 1711 1712 /* Add support for flow control */ 1713 phy_support_asym_pause(phydev); 1714 1715 /* disable EEE autoneg, EEE not supported by eTSEC */ 1716 memset(&edata, 0, sizeof(struct ethtool_eee)); 1717 phy_ethtool_set_eee(phydev, &edata); 1718 1719 return 0; 1720 } 1721 1722 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1723 { 1724 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1725 1726 memset(fcb, 0, GMAC_FCB_LEN); 1727 1728 return fcb; 1729 } 1730 1731 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1732 int fcb_length) 1733 { 1734 /* If we're here, it's a IP packet with a TCP or UDP 1735 * payload. We set it to checksum, using a pseudo-header 1736 * we provide 1737 */ 1738 u8 flags = TXFCB_DEFAULT; 1739 1740 /* Tell the controller what the protocol is 1741 * And provide the already calculated phcs 1742 */ 1743 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1744 flags |= TXFCB_UDP; 1745 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1746 } else 1747 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1748 1749 /* l3os is the distance between the start of the 1750 * frame (skb->data) and the start of the IP hdr. 1751 * l4os is the distance between the start of the 1752 * l3 hdr and the l4 hdr 1753 */ 1754 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1755 fcb->l4os = skb_network_header_len(skb); 1756 1757 fcb->flags = flags; 1758 } 1759 1760 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1761 { 1762 fcb->flags |= TXFCB_VLN; 1763 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1764 } 1765 1766 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1767 struct txbd8 *base, int ring_size) 1768 { 1769 struct txbd8 *new_bd = bdp + stride; 1770 1771 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1772 } 1773 1774 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1775 int ring_size) 1776 { 1777 return skip_txbd(bdp, 1, base, ring_size); 1778 } 1779 1780 /* eTSEC12: csum generation not supported for some fcb offsets */ 1781 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1782 unsigned long fcb_addr) 1783 { 1784 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1785 (fcb_addr % 0x20) > 0x18); 1786 } 1787 1788 /* eTSEC76: csum generation for frames larger than 2500 may 1789 * cause excess delays before start of transmission 1790 */ 1791 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1792 unsigned int len) 1793 { 1794 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1795 (len > 2500)); 1796 } 1797 1798 /* This is called by the kernel when a frame is ready for transmission. 1799 * It is pointed to by the dev->hard_start_xmit function pointer 1800 */ 1801 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1802 { 1803 struct gfar_private *priv = netdev_priv(dev); 1804 struct gfar_priv_tx_q *tx_queue = NULL; 1805 struct netdev_queue *txq; 1806 struct gfar __iomem *regs = NULL; 1807 struct txfcb *fcb = NULL; 1808 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1809 u32 lstatus; 1810 skb_frag_t *frag; 1811 int i, rq = 0; 1812 int do_tstamp, do_csum, do_vlan; 1813 u32 bufaddr; 1814 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1815 1816 rq = skb->queue_mapping; 1817 tx_queue = priv->tx_queue[rq]; 1818 txq = netdev_get_tx_queue(dev, rq); 1819 base = tx_queue->tx_bd_base; 1820 regs = tx_queue->grp->regs; 1821 1822 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1823 do_vlan = skb_vlan_tag_present(skb); 1824 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1825 priv->hwts_tx_en; 1826 1827 if (do_csum || do_vlan) 1828 fcb_len = GMAC_FCB_LEN; 1829 1830 /* check if time stamp should be generated */ 1831 if (unlikely(do_tstamp)) 1832 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1833 1834 /* make space for additional header when fcb is needed */ 1835 if (fcb_len) { 1836 if (unlikely(skb_cow_head(skb, fcb_len))) { 1837 dev->stats.tx_errors++; 1838 dev_kfree_skb_any(skb); 1839 return NETDEV_TX_OK; 1840 } 1841 } 1842 1843 /* total number of fragments in the SKB */ 1844 nr_frags = skb_shinfo(skb)->nr_frags; 1845 1846 /* calculate the required number of TxBDs for this skb */ 1847 if (unlikely(do_tstamp)) 1848 nr_txbds = nr_frags + 2; 1849 else 1850 nr_txbds = nr_frags + 1; 1851 1852 /* check if there is space to queue this packet */ 1853 if (nr_txbds > tx_queue->num_txbdfree) { 1854 /* no space, stop the queue */ 1855 netif_tx_stop_queue(txq); 1856 dev->stats.tx_fifo_errors++; 1857 return NETDEV_TX_BUSY; 1858 } 1859 1860 /* Update transmit stats */ 1861 bytes_sent = skb->len; 1862 tx_queue->stats.tx_bytes += bytes_sent; 1863 /* keep Tx bytes on wire for BQL accounting */ 1864 GFAR_CB(skb)->bytes_sent = bytes_sent; 1865 tx_queue->stats.tx_packets++; 1866 1867 txbdp = txbdp_start = tx_queue->cur_tx; 1868 lstatus = be32_to_cpu(txbdp->lstatus); 1869 1870 /* Add TxPAL between FCB and frame if required */ 1871 if (unlikely(do_tstamp)) { 1872 skb_push(skb, GMAC_TXPAL_LEN); 1873 memset(skb->data, 0, GMAC_TXPAL_LEN); 1874 } 1875 1876 /* Add TxFCB if required */ 1877 if (fcb_len) { 1878 fcb = gfar_add_fcb(skb); 1879 lstatus |= BD_LFLAG(TXBD_TOE); 1880 } 1881 1882 /* Set up checksumming */ 1883 if (do_csum) { 1884 gfar_tx_checksum(skb, fcb, fcb_len); 1885 1886 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1887 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1888 __skb_pull(skb, GMAC_FCB_LEN); 1889 skb_checksum_help(skb); 1890 if (do_vlan || do_tstamp) { 1891 /* put back a new fcb for vlan/tstamp TOE */ 1892 fcb = gfar_add_fcb(skb); 1893 } else { 1894 /* Tx TOE not used */ 1895 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1896 fcb = NULL; 1897 } 1898 } 1899 } 1900 1901 if (do_vlan) 1902 gfar_tx_vlan(skb, fcb); 1903 1904 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1905 DMA_TO_DEVICE); 1906 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1907 goto dma_map_err; 1908 1909 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1910 1911 /* Time stamp insertion requires one additional TxBD */ 1912 if (unlikely(do_tstamp)) 1913 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1914 tx_queue->tx_ring_size); 1915 1916 if (likely(!nr_frags)) { 1917 if (likely(!do_tstamp)) 1918 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1919 } else { 1920 u32 lstatus_start = lstatus; 1921 1922 /* Place the fragment addresses and lengths into the TxBDs */ 1923 frag = &skb_shinfo(skb)->frags[0]; 1924 for (i = 0; i < nr_frags; i++, frag++) { 1925 unsigned int size; 1926 1927 /* Point at the next BD, wrapping as needed */ 1928 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1929 1930 size = skb_frag_size(frag); 1931 1932 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1933 BD_LFLAG(TXBD_READY); 1934 1935 /* Handle the last BD specially */ 1936 if (i == nr_frags - 1) 1937 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1938 1939 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1940 size, DMA_TO_DEVICE); 1941 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1942 goto dma_map_err; 1943 1944 /* set the TxBD length and buffer pointer */ 1945 txbdp->bufPtr = cpu_to_be32(bufaddr); 1946 txbdp->lstatus = cpu_to_be32(lstatus); 1947 } 1948 1949 lstatus = lstatus_start; 1950 } 1951 1952 /* If time stamping is requested one additional TxBD must be set up. The 1953 * first TxBD points to the FCB and must have a data length of 1954 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1955 * the full frame length. 1956 */ 1957 if (unlikely(do_tstamp)) { 1958 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1959 1960 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1961 bufaddr += fcb_len; 1962 1963 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1964 (skb_headlen(skb) - fcb_len); 1965 if (!nr_frags) 1966 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1967 1968 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1969 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1970 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1971 1972 /* Setup tx hardware time stamping */ 1973 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1974 fcb->ptp = 1; 1975 } else { 1976 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1977 } 1978 1979 netdev_tx_sent_queue(txq, bytes_sent); 1980 1981 gfar_wmb(); 1982 1983 txbdp_start->lstatus = cpu_to_be32(lstatus); 1984 1985 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1986 1987 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1988 1989 /* Update the current skb pointer to the next entry we will use 1990 * (wrapping if necessary) 1991 */ 1992 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1993 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1994 1995 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1996 1997 /* We can work in parallel with gfar_clean_tx_ring(), except 1998 * when modifying num_txbdfree. Note that we didn't grab the lock 1999 * when we were reading the num_txbdfree and checking for available 2000 * space, that's because outside of this function it can only grow. 2001 */ 2002 spin_lock_bh(&tx_queue->txlock); 2003 /* reduce TxBD free count */ 2004 tx_queue->num_txbdfree -= (nr_txbds); 2005 spin_unlock_bh(&tx_queue->txlock); 2006 2007 /* If the next BD still needs to be cleaned up, then the bds 2008 * are full. We need to tell the kernel to stop sending us stuff. 2009 */ 2010 if (!tx_queue->num_txbdfree) { 2011 netif_tx_stop_queue(txq); 2012 2013 dev->stats.tx_fifo_errors++; 2014 } 2015 2016 /* Tell the DMA to go go go */ 2017 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2018 2019 return NETDEV_TX_OK; 2020 2021 dma_map_err: 2022 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2023 if (do_tstamp) 2024 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2025 for (i = 0; i < nr_frags; i++) { 2026 lstatus = be32_to_cpu(txbdp->lstatus); 2027 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2028 break; 2029 2030 lstatus &= ~BD_LFLAG(TXBD_READY); 2031 txbdp->lstatus = cpu_to_be32(lstatus); 2032 bufaddr = be32_to_cpu(txbdp->bufPtr); 2033 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2034 DMA_TO_DEVICE); 2035 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2036 } 2037 gfar_wmb(); 2038 dev_kfree_skb_any(skb); 2039 return NETDEV_TX_OK; 2040 } 2041 2042 /* Changes the mac address if the controller is not running. */ 2043 static int gfar_set_mac_address(struct net_device *dev) 2044 { 2045 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2046 2047 return 0; 2048 } 2049 2050 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2051 { 2052 struct gfar_private *priv = netdev_priv(dev); 2053 2054 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2055 cpu_relax(); 2056 2057 if (dev->flags & IFF_UP) 2058 stop_gfar(dev); 2059 2060 dev->mtu = new_mtu; 2061 2062 if (dev->flags & IFF_UP) 2063 startup_gfar(dev); 2064 2065 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2066 2067 return 0; 2068 } 2069 2070 static void reset_gfar(struct net_device *ndev) 2071 { 2072 struct gfar_private *priv = netdev_priv(ndev); 2073 2074 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2075 cpu_relax(); 2076 2077 stop_gfar(ndev); 2078 startup_gfar(ndev); 2079 2080 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2081 } 2082 2083 /* gfar_reset_task gets scheduled when a packet has not been 2084 * transmitted after a set amount of time. 2085 * For now, assume that clearing out all the structures, and 2086 * starting over will fix the problem. 2087 */ 2088 static void gfar_reset_task(struct work_struct *work) 2089 { 2090 struct gfar_private *priv = container_of(work, struct gfar_private, 2091 reset_task); 2092 reset_gfar(priv->ndev); 2093 } 2094 2095 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2096 { 2097 struct gfar_private *priv = netdev_priv(dev); 2098 2099 dev->stats.tx_errors++; 2100 schedule_work(&priv->reset_task); 2101 } 2102 2103 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2104 { 2105 struct hwtstamp_config config; 2106 struct gfar_private *priv = netdev_priv(netdev); 2107 2108 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2109 return -EFAULT; 2110 2111 /* reserved for future extensions */ 2112 if (config.flags) 2113 return -EINVAL; 2114 2115 switch (config.tx_type) { 2116 case HWTSTAMP_TX_OFF: 2117 priv->hwts_tx_en = 0; 2118 break; 2119 case HWTSTAMP_TX_ON: 2120 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2121 return -ERANGE; 2122 priv->hwts_tx_en = 1; 2123 break; 2124 default: 2125 return -ERANGE; 2126 } 2127 2128 switch (config.rx_filter) { 2129 case HWTSTAMP_FILTER_NONE: 2130 if (priv->hwts_rx_en) { 2131 priv->hwts_rx_en = 0; 2132 reset_gfar(netdev); 2133 } 2134 break; 2135 default: 2136 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2137 return -ERANGE; 2138 if (!priv->hwts_rx_en) { 2139 priv->hwts_rx_en = 1; 2140 reset_gfar(netdev); 2141 } 2142 config.rx_filter = HWTSTAMP_FILTER_ALL; 2143 break; 2144 } 2145 2146 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2147 -EFAULT : 0; 2148 } 2149 2150 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2151 { 2152 struct hwtstamp_config config; 2153 struct gfar_private *priv = netdev_priv(netdev); 2154 2155 config.flags = 0; 2156 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2157 config.rx_filter = (priv->hwts_rx_en ? 2158 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2159 2160 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2161 -EFAULT : 0; 2162 } 2163 2164 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2165 { 2166 struct phy_device *phydev = dev->phydev; 2167 2168 if (!netif_running(dev)) 2169 return -EINVAL; 2170 2171 if (cmd == SIOCSHWTSTAMP) 2172 return gfar_hwtstamp_set(dev, rq); 2173 if (cmd == SIOCGHWTSTAMP) 2174 return gfar_hwtstamp_get(dev, rq); 2175 2176 if (!phydev) 2177 return -ENODEV; 2178 2179 return phy_mii_ioctl(phydev, rq, cmd); 2180 } 2181 2182 /* Interrupt Handler for Transmit complete */ 2183 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2184 { 2185 struct net_device *dev = tx_queue->dev; 2186 struct netdev_queue *txq; 2187 struct gfar_private *priv = netdev_priv(dev); 2188 struct txbd8 *bdp, *next = NULL; 2189 struct txbd8 *lbdp = NULL; 2190 struct txbd8 *base = tx_queue->tx_bd_base; 2191 struct sk_buff *skb; 2192 int skb_dirtytx; 2193 int tx_ring_size = tx_queue->tx_ring_size; 2194 int frags = 0, nr_txbds = 0; 2195 int i; 2196 int howmany = 0; 2197 int tqi = tx_queue->qindex; 2198 unsigned int bytes_sent = 0; 2199 u32 lstatus; 2200 size_t buflen; 2201 2202 txq = netdev_get_tx_queue(dev, tqi); 2203 bdp = tx_queue->dirty_tx; 2204 skb_dirtytx = tx_queue->skb_dirtytx; 2205 2206 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2207 bool do_tstamp; 2208 2209 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2210 priv->hwts_tx_en; 2211 2212 frags = skb_shinfo(skb)->nr_frags; 2213 2214 /* When time stamping, one additional TxBD must be freed. 2215 * Also, we need to dma_unmap_single() the TxPAL. 2216 */ 2217 if (unlikely(do_tstamp)) 2218 nr_txbds = frags + 2; 2219 else 2220 nr_txbds = frags + 1; 2221 2222 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2223 2224 lstatus = be32_to_cpu(lbdp->lstatus); 2225 2226 /* Only clean completed frames */ 2227 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2228 (lstatus & BD_LENGTH_MASK)) 2229 break; 2230 2231 if (unlikely(do_tstamp)) { 2232 next = next_txbd(bdp, base, tx_ring_size); 2233 buflen = be16_to_cpu(next->length) + 2234 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2235 } else 2236 buflen = be16_to_cpu(bdp->length); 2237 2238 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2239 buflen, DMA_TO_DEVICE); 2240 2241 if (unlikely(do_tstamp)) { 2242 struct skb_shared_hwtstamps shhwtstamps; 2243 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2244 ~0x7UL); 2245 2246 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2247 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2248 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2249 skb_tstamp_tx(skb, &shhwtstamps); 2250 gfar_clear_txbd_status(bdp); 2251 bdp = next; 2252 } 2253 2254 gfar_clear_txbd_status(bdp); 2255 bdp = next_txbd(bdp, base, tx_ring_size); 2256 2257 for (i = 0; i < frags; i++) { 2258 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2259 be16_to_cpu(bdp->length), 2260 DMA_TO_DEVICE); 2261 gfar_clear_txbd_status(bdp); 2262 bdp = next_txbd(bdp, base, tx_ring_size); 2263 } 2264 2265 bytes_sent += GFAR_CB(skb)->bytes_sent; 2266 2267 dev_kfree_skb_any(skb); 2268 2269 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2270 2271 skb_dirtytx = (skb_dirtytx + 1) & 2272 TX_RING_MOD_MASK(tx_ring_size); 2273 2274 howmany++; 2275 spin_lock(&tx_queue->txlock); 2276 tx_queue->num_txbdfree += nr_txbds; 2277 spin_unlock(&tx_queue->txlock); 2278 } 2279 2280 /* If we freed a buffer, we can restart transmission, if necessary */ 2281 if (tx_queue->num_txbdfree && 2282 netif_tx_queue_stopped(txq) && 2283 !(test_bit(GFAR_DOWN, &priv->state))) 2284 netif_wake_subqueue(priv->ndev, tqi); 2285 2286 /* Update dirty indicators */ 2287 tx_queue->skb_dirtytx = skb_dirtytx; 2288 tx_queue->dirty_tx = bdp; 2289 2290 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2291 } 2292 2293 static void count_errors(u32 lstatus, struct net_device *ndev) 2294 { 2295 struct gfar_private *priv = netdev_priv(ndev); 2296 struct net_device_stats *stats = &ndev->stats; 2297 struct gfar_extra_stats *estats = &priv->extra_stats; 2298 2299 /* If the packet was truncated, none of the other errors matter */ 2300 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2301 stats->rx_length_errors++; 2302 2303 atomic64_inc(&estats->rx_trunc); 2304 2305 return; 2306 } 2307 /* Count the errors, if there were any */ 2308 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2309 stats->rx_length_errors++; 2310 2311 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2312 atomic64_inc(&estats->rx_large); 2313 else 2314 atomic64_inc(&estats->rx_short); 2315 } 2316 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2317 stats->rx_frame_errors++; 2318 atomic64_inc(&estats->rx_nonoctet); 2319 } 2320 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2321 atomic64_inc(&estats->rx_crcerr); 2322 stats->rx_crc_errors++; 2323 } 2324 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2325 atomic64_inc(&estats->rx_overrun); 2326 stats->rx_over_errors++; 2327 } 2328 } 2329 2330 static irqreturn_t gfar_receive(int irq, void *grp_id) 2331 { 2332 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2333 unsigned long flags; 2334 u32 imask, ievent; 2335 2336 ievent = gfar_read(&grp->regs->ievent); 2337 2338 if (unlikely(ievent & IEVENT_FGPI)) { 2339 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2340 return IRQ_HANDLED; 2341 } 2342 2343 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2344 spin_lock_irqsave(&grp->grplock, flags); 2345 imask = gfar_read(&grp->regs->imask); 2346 imask &= IMASK_RX_DISABLED; 2347 gfar_write(&grp->regs->imask, imask); 2348 spin_unlock_irqrestore(&grp->grplock, flags); 2349 __napi_schedule(&grp->napi_rx); 2350 } else { 2351 /* Clear IEVENT, so interrupts aren't called again 2352 * because of the packets that have already arrived. 2353 */ 2354 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2355 } 2356 2357 return IRQ_HANDLED; 2358 } 2359 2360 /* Interrupt Handler for Transmit complete */ 2361 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2362 { 2363 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2364 unsigned long flags; 2365 u32 imask; 2366 2367 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2368 spin_lock_irqsave(&grp->grplock, flags); 2369 imask = gfar_read(&grp->regs->imask); 2370 imask &= IMASK_TX_DISABLED; 2371 gfar_write(&grp->regs->imask, imask); 2372 spin_unlock_irqrestore(&grp->grplock, flags); 2373 __napi_schedule(&grp->napi_tx); 2374 } else { 2375 /* Clear IEVENT, so interrupts aren't called again 2376 * because of the packets that have already arrived. 2377 */ 2378 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2379 } 2380 2381 return IRQ_HANDLED; 2382 } 2383 2384 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2385 struct sk_buff *skb, bool first) 2386 { 2387 int size = lstatus & BD_LENGTH_MASK; 2388 struct page *page = rxb->page; 2389 2390 if (likely(first)) { 2391 skb_put(skb, size); 2392 } else { 2393 /* the last fragments' length contains the full frame length */ 2394 if (lstatus & BD_LFLAG(RXBD_LAST)) 2395 size -= skb->len; 2396 2397 WARN(size < 0, "gianfar: rx fragment size underflow"); 2398 if (size < 0) 2399 return false; 2400 2401 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2402 rxb->page_offset + RXBUF_ALIGNMENT, 2403 size, GFAR_RXB_TRUESIZE); 2404 } 2405 2406 /* try reuse page */ 2407 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2408 return false; 2409 2410 /* change offset to the other half */ 2411 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2412 2413 page_ref_inc(page); 2414 2415 return true; 2416 } 2417 2418 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2419 struct gfar_rx_buff *old_rxb) 2420 { 2421 struct gfar_rx_buff *new_rxb; 2422 u16 nta = rxq->next_to_alloc; 2423 2424 new_rxb = &rxq->rx_buff[nta]; 2425 2426 /* find next buf that can reuse a page */ 2427 nta++; 2428 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2429 2430 /* copy page reference */ 2431 *new_rxb = *old_rxb; 2432 2433 /* sync for use by the device */ 2434 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2435 old_rxb->page_offset, 2436 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2437 } 2438 2439 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2440 u32 lstatus, struct sk_buff *skb) 2441 { 2442 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2443 struct page *page = rxb->page; 2444 bool first = false; 2445 2446 if (likely(!skb)) { 2447 void *buff_addr = page_address(page) + rxb->page_offset; 2448 2449 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2450 if (unlikely(!skb)) { 2451 gfar_rx_alloc_err(rx_queue); 2452 return NULL; 2453 } 2454 skb_reserve(skb, RXBUF_ALIGNMENT); 2455 first = true; 2456 } 2457 2458 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2459 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2460 2461 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2462 /* reuse the free half of the page */ 2463 gfar_reuse_rx_page(rx_queue, rxb); 2464 } else { 2465 /* page cannot be reused, unmap it */ 2466 dma_unmap_page(rx_queue->dev, rxb->dma, 2467 PAGE_SIZE, DMA_FROM_DEVICE); 2468 } 2469 2470 /* clear rxb content */ 2471 rxb->page = NULL; 2472 2473 return skb; 2474 } 2475 2476 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2477 { 2478 /* If valid headers were found, and valid sums 2479 * were verified, then we tell the kernel that no 2480 * checksumming is necessary. Otherwise, it is [FIXME] 2481 */ 2482 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2483 (RXFCB_CIP | RXFCB_CTU)) 2484 skb->ip_summed = CHECKSUM_UNNECESSARY; 2485 else 2486 skb_checksum_none_assert(skb); 2487 } 2488 2489 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2490 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2491 { 2492 struct gfar_private *priv = netdev_priv(ndev); 2493 struct rxfcb *fcb = NULL; 2494 2495 /* fcb is at the beginning if exists */ 2496 fcb = (struct rxfcb *)skb->data; 2497 2498 /* Remove the FCB from the skb 2499 * Remove the padded bytes, if there are any 2500 */ 2501 if (priv->uses_rxfcb) 2502 skb_pull(skb, GMAC_FCB_LEN); 2503 2504 /* Get receive timestamp from the skb */ 2505 if (priv->hwts_rx_en) { 2506 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2507 u64 *ns = (u64 *) skb->data; 2508 2509 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2510 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2511 } 2512 2513 if (priv->padding) 2514 skb_pull(skb, priv->padding); 2515 2516 /* Trim off the FCS */ 2517 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2518 2519 if (ndev->features & NETIF_F_RXCSUM) 2520 gfar_rx_checksum(skb, fcb); 2521 2522 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2523 * Even if vlan rx accel is disabled, on some chips 2524 * RXFCB_VLN is pseudo randomly set. 2525 */ 2526 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2527 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2528 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2529 be16_to_cpu(fcb->vlctl)); 2530 } 2531 2532 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2533 * until the budget/quota has been reached. Returns the number 2534 * of frames handled 2535 */ 2536 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2537 int rx_work_limit) 2538 { 2539 struct net_device *ndev = rx_queue->ndev; 2540 struct gfar_private *priv = netdev_priv(ndev); 2541 struct rxbd8 *bdp; 2542 int i, howmany = 0; 2543 struct sk_buff *skb = rx_queue->skb; 2544 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2545 unsigned int total_bytes = 0, total_pkts = 0; 2546 2547 /* Get the first full descriptor */ 2548 i = rx_queue->next_to_clean; 2549 2550 while (rx_work_limit--) { 2551 u32 lstatus; 2552 2553 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2554 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2555 cleaned_cnt = 0; 2556 } 2557 2558 bdp = &rx_queue->rx_bd_base[i]; 2559 lstatus = be32_to_cpu(bdp->lstatus); 2560 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2561 break; 2562 2563 /* lost RXBD_LAST descriptor due to overrun */ 2564 if (skb && 2565 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2566 /* discard faulty buffer */ 2567 dev_kfree_skb(skb); 2568 skb = NULL; 2569 rx_queue->stats.rx_dropped++; 2570 2571 /* can continue normally */ 2572 } 2573 2574 /* order rx buffer descriptor reads */ 2575 rmb(); 2576 2577 /* fetch next to clean buffer from the ring */ 2578 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2579 if (unlikely(!skb)) 2580 break; 2581 2582 cleaned_cnt++; 2583 howmany++; 2584 2585 if (unlikely(++i == rx_queue->rx_ring_size)) 2586 i = 0; 2587 2588 rx_queue->next_to_clean = i; 2589 2590 /* fetch next buffer if not the last in frame */ 2591 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2592 continue; 2593 2594 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2595 count_errors(lstatus, ndev); 2596 2597 /* discard faulty buffer */ 2598 dev_kfree_skb(skb); 2599 skb = NULL; 2600 rx_queue->stats.rx_dropped++; 2601 continue; 2602 } 2603 2604 gfar_process_frame(ndev, skb); 2605 2606 /* Increment the number of packets */ 2607 total_pkts++; 2608 total_bytes += skb->len; 2609 2610 skb_record_rx_queue(skb, rx_queue->qindex); 2611 2612 skb->protocol = eth_type_trans(skb, ndev); 2613 2614 /* Send the packet up the stack */ 2615 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2616 2617 skb = NULL; 2618 } 2619 2620 /* Store incomplete frames for completion */ 2621 rx_queue->skb = skb; 2622 2623 rx_queue->stats.rx_packets += total_pkts; 2624 rx_queue->stats.rx_bytes += total_bytes; 2625 2626 if (cleaned_cnt) 2627 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2628 2629 /* Update Last Free RxBD pointer for LFC */ 2630 if (unlikely(priv->tx_actual_en)) { 2631 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2632 2633 gfar_write(rx_queue->rfbptr, bdp_dma); 2634 } 2635 2636 return howmany; 2637 } 2638 2639 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2640 { 2641 struct gfar_priv_grp *gfargrp = 2642 container_of(napi, struct gfar_priv_grp, napi_rx); 2643 struct gfar __iomem *regs = gfargrp->regs; 2644 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2645 int work_done = 0; 2646 2647 /* Clear IEVENT, so interrupts aren't called again 2648 * because of the packets that have already arrived 2649 */ 2650 gfar_write(®s->ievent, IEVENT_RX_MASK); 2651 2652 work_done = gfar_clean_rx_ring(rx_queue, budget); 2653 2654 if (work_done < budget) { 2655 u32 imask; 2656 napi_complete_done(napi, work_done); 2657 /* Clear the halt bit in RSTAT */ 2658 gfar_write(®s->rstat, gfargrp->rstat); 2659 2660 spin_lock_irq(&gfargrp->grplock); 2661 imask = gfar_read(®s->imask); 2662 imask |= IMASK_RX_DEFAULT; 2663 gfar_write(®s->imask, imask); 2664 spin_unlock_irq(&gfargrp->grplock); 2665 } 2666 2667 return work_done; 2668 } 2669 2670 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2671 { 2672 struct gfar_priv_grp *gfargrp = 2673 container_of(napi, struct gfar_priv_grp, napi_tx); 2674 struct gfar __iomem *regs = gfargrp->regs; 2675 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2676 u32 imask; 2677 2678 /* Clear IEVENT, so interrupts aren't called again 2679 * because of the packets that have already arrived 2680 */ 2681 gfar_write(®s->ievent, IEVENT_TX_MASK); 2682 2683 /* run Tx cleanup to completion */ 2684 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2685 gfar_clean_tx_ring(tx_queue); 2686 2687 napi_complete(napi); 2688 2689 spin_lock_irq(&gfargrp->grplock); 2690 imask = gfar_read(®s->imask); 2691 imask |= IMASK_TX_DEFAULT; 2692 gfar_write(®s->imask, imask); 2693 spin_unlock_irq(&gfargrp->grplock); 2694 2695 return 0; 2696 } 2697 2698 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2699 { 2700 struct gfar_priv_grp *gfargrp = 2701 container_of(napi, struct gfar_priv_grp, napi_rx); 2702 struct gfar_private *priv = gfargrp->priv; 2703 struct gfar __iomem *regs = gfargrp->regs; 2704 struct gfar_priv_rx_q *rx_queue = NULL; 2705 int work_done = 0, work_done_per_q = 0; 2706 int i, budget_per_q = 0; 2707 unsigned long rstat_rxf; 2708 int num_act_queues; 2709 2710 /* Clear IEVENT, so interrupts aren't called again 2711 * because of the packets that have already arrived 2712 */ 2713 gfar_write(®s->ievent, IEVENT_RX_MASK); 2714 2715 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2716 2717 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2718 if (num_act_queues) 2719 budget_per_q = budget/num_act_queues; 2720 2721 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2722 /* skip queue if not active */ 2723 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2724 continue; 2725 2726 rx_queue = priv->rx_queue[i]; 2727 work_done_per_q = 2728 gfar_clean_rx_ring(rx_queue, budget_per_q); 2729 work_done += work_done_per_q; 2730 2731 /* finished processing this queue */ 2732 if (work_done_per_q < budget_per_q) { 2733 /* clear active queue hw indication */ 2734 gfar_write(®s->rstat, 2735 RSTAT_CLEAR_RXF0 >> i); 2736 num_act_queues--; 2737 2738 if (!num_act_queues) 2739 break; 2740 } 2741 } 2742 2743 if (!num_act_queues) { 2744 u32 imask; 2745 napi_complete_done(napi, work_done); 2746 2747 /* Clear the halt bit in RSTAT */ 2748 gfar_write(®s->rstat, gfargrp->rstat); 2749 2750 spin_lock_irq(&gfargrp->grplock); 2751 imask = gfar_read(®s->imask); 2752 imask |= IMASK_RX_DEFAULT; 2753 gfar_write(®s->imask, imask); 2754 spin_unlock_irq(&gfargrp->grplock); 2755 } 2756 2757 return work_done; 2758 } 2759 2760 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2761 { 2762 struct gfar_priv_grp *gfargrp = 2763 container_of(napi, struct gfar_priv_grp, napi_tx); 2764 struct gfar_private *priv = gfargrp->priv; 2765 struct gfar __iomem *regs = gfargrp->regs; 2766 struct gfar_priv_tx_q *tx_queue = NULL; 2767 int has_tx_work = 0; 2768 int i; 2769 2770 /* Clear IEVENT, so interrupts aren't called again 2771 * because of the packets that have already arrived 2772 */ 2773 gfar_write(®s->ievent, IEVENT_TX_MASK); 2774 2775 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2776 tx_queue = priv->tx_queue[i]; 2777 /* run Tx cleanup to completion */ 2778 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2779 gfar_clean_tx_ring(tx_queue); 2780 has_tx_work = 1; 2781 } 2782 } 2783 2784 if (!has_tx_work) { 2785 u32 imask; 2786 napi_complete(napi); 2787 2788 spin_lock_irq(&gfargrp->grplock); 2789 imask = gfar_read(®s->imask); 2790 imask |= IMASK_TX_DEFAULT; 2791 gfar_write(®s->imask, imask); 2792 spin_unlock_irq(&gfargrp->grplock); 2793 } 2794 2795 return 0; 2796 } 2797 2798 /* GFAR error interrupt handler */ 2799 static irqreturn_t gfar_error(int irq, void *grp_id) 2800 { 2801 struct gfar_priv_grp *gfargrp = grp_id; 2802 struct gfar __iomem *regs = gfargrp->regs; 2803 struct gfar_private *priv= gfargrp->priv; 2804 struct net_device *dev = priv->ndev; 2805 2806 /* Save ievent for future reference */ 2807 u32 events = gfar_read(®s->ievent); 2808 2809 /* Clear IEVENT */ 2810 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2811 2812 /* Magic Packet is not an error. */ 2813 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2814 (events & IEVENT_MAG)) 2815 events &= ~IEVENT_MAG; 2816 2817 /* Hmm... */ 2818 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2819 netdev_dbg(dev, 2820 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2821 events, gfar_read(®s->imask)); 2822 2823 /* Update the error counters */ 2824 if (events & IEVENT_TXE) { 2825 dev->stats.tx_errors++; 2826 2827 if (events & IEVENT_LC) 2828 dev->stats.tx_window_errors++; 2829 if (events & IEVENT_CRL) 2830 dev->stats.tx_aborted_errors++; 2831 if (events & IEVENT_XFUN) { 2832 netif_dbg(priv, tx_err, dev, 2833 "TX FIFO underrun, packet dropped\n"); 2834 dev->stats.tx_dropped++; 2835 atomic64_inc(&priv->extra_stats.tx_underrun); 2836 2837 schedule_work(&priv->reset_task); 2838 } 2839 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2840 } 2841 if (events & IEVENT_BSY) { 2842 dev->stats.rx_over_errors++; 2843 atomic64_inc(&priv->extra_stats.rx_bsy); 2844 2845 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2846 gfar_read(®s->rstat)); 2847 } 2848 if (events & IEVENT_BABR) { 2849 dev->stats.rx_errors++; 2850 atomic64_inc(&priv->extra_stats.rx_babr); 2851 2852 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2853 } 2854 if (events & IEVENT_EBERR) { 2855 atomic64_inc(&priv->extra_stats.eberr); 2856 netif_dbg(priv, rx_err, dev, "bus error\n"); 2857 } 2858 if (events & IEVENT_RXC) 2859 netif_dbg(priv, rx_status, dev, "control frame\n"); 2860 2861 if (events & IEVENT_BABT) { 2862 atomic64_inc(&priv->extra_stats.tx_babt); 2863 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2864 } 2865 return IRQ_HANDLED; 2866 } 2867 2868 /* The interrupt handler for devices with one interrupt */ 2869 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2870 { 2871 struct gfar_priv_grp *gfargrp = grp_id; 2872 2873 /* Save ievent for future reference */ 2874 u32 events = gfar_read(&gfargrp->regs->ievent); 2875 2876 /* Check for reception */ 2877 if (events & IEVENT_RX_MASK) 2878 gfar_receive(irq, grp_id); 2879 2880 /* Check for transmit completion */ 2881 if (events & IEVENT_TX_MASK) 2882 gfar_transmit(irq, grp_id); 2883 2884 /* Check for errors */ 2885 if (events & IEVENT_ERR_MASK) 2886 gfar_error(irq, grp_id); 2887 2888 return IRQ_HANDLED; 2889 } 2890 2891 #ifdef CONFIG_NET_POLL_CONTROLLER 2892 /* Polling 'interrupt' - used by things like netconsole to send skbs 2893 * without having to re-enable interrupts. It's not called while 2894 * the interrupt routine is executing. 2895 */ 2896 static void gfar_netpoll(struct net_device *dev) 2897 { 2898 struct gfar_private *priv = netdev_priv(dev); 2899 int i; 2900 2901 /* If the device has multiple interrupts, run tx/rx */ 2902 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2903 for (i = 0; i < priv->num_grps; i++) { 2904 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2905 2906 disable_irq(gfar_irq(grp, TX)->irq); 2907 disable_irq(gfar_irq(grp, RX)->irq); 2908 disable_irq(gfar_irq(grp, ER)->irq); 2909 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2910 enable_irq(gfar_irq(grp, ER)->irq); 2911 enable_irq(gfar_irq(grp, RX)->irq); 2912 enable_irq(gfar_irq(grp, TX)->irq); 2913 } 2914 } else { 2915 for (i = 0; i < priv->num_grps; i++) { 2916 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2917 2918 disable_irq(gfar_irq(grp, TX)->irq); 2919 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2920 enable_irq(gfar_irq(grp, TX)->irq); 2921 } 2922 } 2923 } 2924 #endif 2925 2926 static void free_grp_irqs(struct gfar_priv_grp *grp) 2927 { 2928 free_irq(gfar_irq(grp, TX)->irq, grp); 2929 free_irq(gfar_irq(grp, RX)->irq, grp); 2930 free_irq(gfar_irq(grp, ER)->irq, grp); 2931 } 2932 2933 static int register_grp_irqs(struct gfar_priv_grp *grp) 2934 { 2935 struct gfar_private *priv = grp->priv; 2936 struct net_device *dev = priv->ndev; 2937 int err; 2938 2939 /* If the device has multiple interrupts, register for 2940 * them. Otherwise, only register for the one 2941 */ 2942 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2943 /* Install our interrupt handlers for Error, 2944 * Transmit, and Receive 2945 */ 2946 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2947 gfar_irq(grp, ER)->name, grp); 2948 if (err < 0) { 2949 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2950 gfar_irq(grp, ER)->irq); 2951 2952 goto err_irq_fail; 2953 } 2954 enable_irq_wake(gfar_irq(grp, ER)->irq); 2955 2956 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2957 gfar_irq(grp, TX)->name, grp); 2958 if (err < 0) { 2959 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2960 gfar_irq(grp, TX)->irq); 2961 goto tx_irq_fail; 2962 } 2963 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2964 gfar_irq(grp, RX)->name, grp); 2965 if (err < 0) { 2966 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2967 gfar_irq(grp, RX)->irq); 2968 goto rx_irq_fail; 2969 } 2970 enable_irq_wake(gfar_irq(grp, RX)->irq); 2971 2972 } else { 2973 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2974 gfar_irq(grp, TX)->name, grp); 2975 if (err < 0) { 2976 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2977 gfar_irq(grp, TX)->irq); 2978 goto err_irq_fail; 2979 } 2980 enable_irq_wake(gfar_irq(grp, TX)->irq); 2981 } 2982 2983 return 0; 2984 2985 rx_irq_fail: 2986 free_irq(gfar_irq(grp, TX)->irq, grp); 2987 tx_irq_fail: 2988 free_irq(gfar_irq(grp, ER)->irq, grp); 2989 err_irq_fail: 2990 return err; 2991 2992 } 2993 2994 static void gfar_free_irq(struct gfar_private *priv) 2995 { 2996 int i; 2997 2998 /* Free the IRQs */ 2999 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3000 for (i = 0; i < priv->num_grps; i++) 3001 free_grp_irqs(&priv->gfargrp[i]); 3002 } else { 3003 for (i = 0; i < priv->num_grps; i++) 3004 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 3005 &priv->gfargrp[i]); 3006 } 3007 } 3008 3009 static int gfar_request_irq(struct gfar_private *priv) 3010 { 3011 int err, i, j; 3012 3013 for (i = 0; i < priv->num_grps; i++) { 3014 err = register_grp_irqs(&priv->gfargrp[i]); 3015 if (err) { 3016 for (j = 0; j < i; j++) 3017 free_grp_irqs(&priv->gfargrp[j]); 3018 return err; 3019 } 3020 } 3021 3022 return 0; 3023 } 3024 3025 /* Called when something needs to use the ethernet device 3026 * Returns 0 for success. 3027 */ 3028 static int gfar_enet_open(struct net_device *dev) 3029 { 3030 struct gfar_private *priv = netdev_priv(dev); 3031 int err; 3032 3033 err = init_phy(dev); 3034 if (err) 3035 return err; 3036 3037 err = gfar_request_irq(priv); 3038 if (err) 3039 return err; 3040 3041 err = startup_gfar(dev); 3042 if (err) 3043 return err; 3044 3045 return err; 3046 } 3047 3048 /* Stops the kernel queue, and halts the controller */ 3049 static int gfar_close(struct net_device *dev) 3050 { 3051 struct gfar_private *priv = netdev_priv(dev); 3052 3053 cancel_work_sync(&priv->reset_task); 3054 stop_gfar(dev); 3055 3056 /* Disconnect from the PHY */ 3057 phy_disconnect(dev->phydev); 3058 3059 gfar_free_irq(priv); 3060 3061 return 0; 3062 } 3063 3064 /* Clears each of the exact match registers to zero, so they 3065 * don't interfere with normal reception 3066 */ 3067 static void gfar_clear_exact_match(struct net_device *dev) 3068 { 3069 int idx; 3070 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3071 3072 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3073 gfar_set_mac_for_addr(dev, idx, zero_arr); 3074 } 3075 3076 /* Update the hash table based on the current list of multicast 3077 * addresses we subscribe to. Also, change the promiscuity of 3078 * the device based on the flags (this function is called 3079 * whenever dev->flags is changed 3080 */ 3081 static void gfar_set_multi(struct net_device *dev) 3082 { 3083 struct netdev_hw_addr *ha; 3084 struct gfar_private *priv = netdev_priv(dev); 3085 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3086 u32 tempval; 3087 3088 if (dev->flags & IFF_PROMISC) { 3089 /* Set RCTRL to PROM */ 3090 tempval = gfar_read(®s->rctrl); 3091 tempval |= RCTRL_PROM; 3092 gfar_write(®s->rctrl, tempval); 3093 } else { 3094 /* Set RCTRL to not PROM */ 3095 tempval = gfar_read(®s->rctrl); 3096 tempval &= ~(RCTRL_PROM); 3097 gfar_write(®s->rctrl, tempval); 3098 } 3099 3100 if (dev->flags & IFF_ALLMULTI) { 3101 /* Set the hash to rx all multicast frames */ 3102 gfar_write(®s->igaddr0, 0xffffffff); 3103 gfar_write(®s->igaddr1, 0xffffffff); 3104 gfar_write(®s->igaddr2, 0xffffffff); 3105 gfar_write(®s->igaddr3, 0xffffffff); 3106 gfar_write(®s->igaddr4, 0xffffffff); 3107 gfar_write(®s->igaddr5, 0xffffffff); 3108 gfar_write(®s->igaddr6, 0xffffffff); 3109 gfar_write(®s->igaddr7, 0xffffffff); 3110 gfar_write(®s->gaddr0, 0xffffffff); 3111 gfar_write(®s->gaddr1, 0xffffffff); 3112 gfar_write(®s->gaddr2, 0xffffffff); 3113 gfar_write(®s->gaddr3, 0xffffffff); 3114 gfar_write(®s->gaddr4, 0xffffffff); 3115 gfar_write(®s->gaddr5, 0xffffffff); 3116 gfar_write(®s->gaddr6, 0xffffffff); 3117 gfar_write(®s->gaddr7, 0xffffffff); 3118 } else { 3119 int em_num; 3120 int idx; 3121 3122 /* zero out the hash */ 3123 gfar_write(®s->igaddr0, 0x0); 3124 gfar_write(®s->igaddr1, 0x0); 3125 gfar_write(®s->igaddr2, 0x0); 3126 gfar_write(®s->igaddr3, 0x0); 3127 gfar_write(®s->igaddr4, 0x0); 3128 gfar_write(®s->igaddr5, 0x0); 3129 gfar_write(®s->igaddr6, 0x0); 3130 gfar_write(®s->igaddr7, 0x0); 3131 gfar_write(®s->gaddr0, 0x0); 3132 gfar_write(®s->gaddr1, 0x0); 3133 gfar_write(®s->gaddr2, 0x0); 3134 gfar_write(®s->gaddr3, 0x0); 3135 gfar_write(®s->gaddr4, 0x0); 3136 gfar_write(®s->gaddr5, 0x0); 3137 gfar_write(®s->gaddr6, 0x0); 3138 gfar_write(®s->gaddr7, 0x0); 3139 3140 /* If we have extended hash tables, we need to 3141 * clear the exact match registers to prepare for 3142 * setting them 3143 */ 3144 if (priv->extended_hash) { 3145 em_num = GFAR_EM_NUM + 1; 3146 gfar_clear_exact_match(dev); 3147 idx = 1; 3148 } else { 3149 idx = 0; 3150 em_num = 0; 3151 } 3152 3153 if (netdev_mc_empty(dev)) 3154 return; 3155 3156 /* Parse the list, and set the appropriate bits */ 3157 netdev_for_each_mc_addr(ha, dev) { 3158 if (idx < em_num) { 3159 gfar_set_mac_for_addr(dev, idx, ha->addr); 3160 idx++; 3161 } else 3162 gfar_set_hash_for_addr(dev, ha->addr); 3163 } 3164 } 3165 } 3166 3167 void gfar_mac_reset(struct gfar_private *priv) 3168 { 3169 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3170 u32 tempval; 3171 3172 /* Reset MAC layer */ 3173 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3174 3175 /* We need to delay at least 3 TX clocks */ 3176 udelay(3); 3177 3178 /* the soft reset bit is not self-resetting, so we need to 3179 * clear it before resuming normal operation 3180 */ 3181 gfar_write(®s->maccfg1, 0); 3182 3183 udelay(3); 3184 3185 gfar_rx_offload_en(priv); 3186 3187 /* Initialize the max receive frame/buffer lengths */ 3188 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3189 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3190 3191 /* Initialize the Minimum Frame Length Register */ 3192 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3193 3194 /* Initialize MACCFG2. */ 3195 tempval = MACCFG2_INIT_SETTINGS; 3196 3197 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3198 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3199 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3200 */ 3201 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3202 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3203 3204 gfar_write(®s->maccfg2, tempval); 3205 3206 /* Clear mac addr hash registers */ 3207 gfar_write(®s->igaddr0, 0); 3208 gfar_write(®s->igaddr1, 0); 3209 gfar_write(®s->igaddr2, 0); 3210 gfar_write(®s->igaddr3, 0); 3211 gfar_write(®s->igaddr4, 0); 3212 gfar_write(®s->igaddr5, 0); 3213 gfar_write(®s->igaddr6, 0); 3214 gfar_write(®s->igaddr7, 0); 3215 3216 gfar_write(®s->gaddr0, 0); 3217 gfar_write(®s->gaddr1, 0); 3218 gfar_write(®s->gaddr2, 0); 3219 gfar_write(®s->gaddr3, 0); 3220 gfar_write(®s->gaddr4, 0); 3221 gfar_write(®s->gaddr5, 0); 3222 gfar_write(®s->gaddr6, 0); 3223 gfar_write(®s->gaddr7, 0); 3224 3225 if (priv->extended_hash) 3226 gfar_clear_exact_match(priv->ndev); 3227 3228 gfar_mac_rx_config(priv); 3229 3230 gfar_mac_tx_config(priv); 3231 3232 gfar_set_mac_address(priv->ndev); 3233 3234 gfar_set_multi(priv->ndev); 3235 3236 /* clear ievent and imask before configuring coalescing */ 3237 gfar_ints_disable(priv); 3238 3239 /* Configure the coalescing support */ 3240 gfar_configure_coalescing_all(priv); 3241 } 3242 3243 static void gfar_hw_init(struct gfar_private *priv) 3244 { 3245 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3246 u32 attrs; 3247 3248 /* Stop the DMA engine now, in case it was running before 3249 * (The firmware could have used it, and left it running). 3250 */ 3251 gfar_halt(priv); 3252 3253 gfar_mac_reset(priv); 3254 3255 /* Zero out the rmon mib registers if it has them */ 3256 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3257 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3258 3259 /* Mask off the CAM interrupts */ 3260 gfar_write(®s->rmon.cam1, 0xffffffff); 3261 gfar_write(®s->rmon.cam2, 0xffffffff); 3262 } 3263 3264 /* Initialize ECNTRL */ 3265 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3266 3267 /* Set the extraction length and index */ 3268 attrs = ATTRELI_EL(priv->rx_stash_size) | 3269 ATTRELI_EI(priv->rx_stash_index); 3270 3271 gfar_write(®s->attreli, attrs); 3272 3273 /* Start with defaults, and add stashing 3274 * depending on driver parameters 3275 */ 3276 attrs = ATTR_INIT_SETTINGS; 3277 3278 if (priv->bd_stash_en) 3279 attrs |= ATTR_BDSTASH; 3280 3281 if (priv->rx_stash_size != 0) 3282 attrs |= ATTR_BUFSTASH; 3283 3284 gfar_write(®s->attr, attrs); 3285 3286 /* FIFO configs */ 3287 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3288 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3289 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3290 3291 /* Program the interrupt steering regs, only for MG devices */ 3292 if (priv->num_grps > 1) 3293 gfar_write_isrg(priv); 3294 } 3295 3296 static const struct net_device_ops gfar_netdev_ops = { 3297 .ndo_open = gfar_enet_open, 3298 .ndo_start_xmit = gfar_start_xmit, 3299 .ndo_stop = gfar_close, 3300 .ndo_change_mtu = gfar_change_mtu, 3301 .ndo_set_features = gfar_set_features, 3302 .ndo_set_rx_mode = gfar_set_multi, 3303 .ndo_tx_timeout = gfar_timeout, 3304 .ndo_do_ioctl = gfar_ioctl, 3305 .ndo_get_stats = gfar_get_stats, 3306 .ndo_change_carrier = fixed_phy_change_carrier, 3307 .ndo_set_mac_address = gfar_set_mac_addr, 3308 .ndo_validate_addr = eth_validate_addr, 3309 #ifdef CONFIG_NET_POLL_CONTROLLER 3310 .ndo_poll_controller = gfar_netpoll, 3311 #endif 3312 }; 3313 3314 /* Set up the ethernet device structure, private data, 3315 * and anything else we need before we start 3316 */ 3317 static int gfar_probe(struct platform_device *ofdev) 3318 { 3319 struct device_node *np = ofdev->dev.of_node; 3320 struct net_device *dev = NULL; 3321 struct gfar_private *priv = NULL; 3322 int err = 0, i; 3323 3324 err = gfar_of_init(ofdev, &dev); 3325 3326 if (err) 3327 return err; 3328 3329 priv = netdev_priv(dev); 3330 priv->ndev = dev; 3331 priv->ofdev = ofdev; 3332 priv->dev = &ofdev->dev; 3333 SET_NETDEV_DEV(dev, &ofdev->dev); 3334 3335 INIT_WORK(&priv->reset_task, gfar_reset_task); 3336 3337 platform_set_drvdata(ofdev, priv); 3338 3339 gfar_detect_errata(priv); 3340 3341 /* Set the dev->base_addr to the gfar reg region */ 3342 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3343 3344 /* Fill in the dev structure */ 3345 dev->watchdog_timeo = TX_TIMEOUT; 3346 /* MTU range: 50 - 9586 */ 3347 dev->mtu = 1500; 3348 dev->min_mtu = 50; 3349 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3350 dev->netdev_ops = &gfar_netdev_ops; 3351 dev->ethtool_ops = &gfar_ethtool_ops; 3352 3353 /* Register for napi ...We are registering NAPI for each grp */ 3354 for (i = 0; i < priv->num_grps; i++) { 3355 if (priv->poll_mode == GFAR_SQ_POLLING) { 3356 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3357 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3358 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3359 gfar_poll_tx_sq, 2); 3360 } else { 3361 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3362 gfar_poll_rx, GFAR_DEV_WEIGHT); 3363 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3364 gfar_poll_tx, 2); 3365 } 3366 } 3367 3368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3369 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3370 NETIF_F_RXCSUM; 3371 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3372 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3373 } 3374 3375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3376 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3377 NETIF_F_HW_VLAN_CTAG_RX; 3378 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3379 } 3380 3381 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3382 3383 gfar_init_addr_hash_table(priv); 3384 3385 /* Insert receive time stamps into padding alignment bytes, and 3386 * plus 2 bytes padding to ensure the cpu alignment. 3387 */ 3388 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3389 priv->padding = 8 + DEFAULT_PADDING; 3390 3391 if (dev->features & NETIF_F_IP_CSUM || 3392 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3393 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3394 3395 /* Initializing some of the rx/tx queue level parameters */ 3396 for (i = 0; i < priv->num_tx_queues; i++) { 3397 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3398 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3399 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3400 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3401 } 3402 3403 for (i = 0; i < priv->num_rx_queues; i++) { 3404 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3405 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3406 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3407 } 3408 3409 /* Always enable rx filer if available */ 3410 priv->rx_filer_enable = 3411 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3412 /* Enable most messages by default */ 3413 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3414 /* use pritority h/w tx queue scheduling for single queue devices */ 3415 if (priv->num_tx_queues == 1) 3416 priv->prio_sched_en = 1; 3417 3418 set_bit(GFAR_DOWN, &priv->state); 3419 3420 gfar_hw_init(priv); 3421 3422 /* Carrier starts down, phylib will bring it up */ 3423 netif_carrier_off(dev); 3424 3425 err = register_netdev(dev); 3426 3427 if (err) { 3428 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3429 goto register_fail; 3430 } 3431 3432 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3433 priv->wol_supported |= GFAR_WOL_MAGIC; 3434 3435 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3436 priv->rx_filer_enable) 3437 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3438 3439 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3440 3441 /* fill out IRQ number and name fields */ 3442 for (i = 0; i < priv->num_grps; i++) { 3443 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3444 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3445 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3446 dev->name, "_g", '0' + i, "_tx"); 3447 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3448 dev->name, "_g", '0' + i, "_rx"); 3449 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3450 dev->name, "_g", '0' + i, "_er"); 3451 } else 3452 strcpy(gfar_irq(grp, TX)->name, dev->name); 3453 } 3454 3455 /* Initialize the filer table */ 3456 gfar_init_filer_table(priv); 3457 3458 /* Print out the device info */ 3459 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3460 3461 /* Even more device info helps when determining which kernel 3462 * provided which set of benchmarks. 3463 */ 3464 netdev_info(dev, "Running with NAPI enabled\n"); 3465 for (i = 0; i < priv->num_rx_queues; i++) 3466 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3467 i, priv->rx_queue[i]->rx_ring_size); 3468 for (i = 0; i < priv->num_tx_queues; i++) 3469 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3470 i, priv->tx_queue[i]->tx_ring_size); 3471 3472 return 0; 3473 3474 register_fail: 3475 if (of_phy_is_fixed_link(np)) 3476 of_phy_deregister_fixed_link(np); 3477 unmap_group_regs(priv); 3478 gfar_free_rx_queues(priv); 3479 gfar_free_tx_queues(priv); 3480 of_node_put(priv->phy_node); 3481 of_node_put(priv->tbi_node); 3482 free_gfar_dev(priv); 3483 return err; 3484 } 3485 3486 static int gfar_remove(struct platform_device *ofdev) 3487 { 3488 struct gfar_private *priv = platform_get_drvdata(ofdev); 3489 struct device_node *np = ofdev->dev.of_node; 3490 3491 of_node_put(priv->phy_node); 3492 of_node_put(priv->tbi_node); 3493 3494 unregister_netdev(priv->ndev); 3495 3496 if (of_phy_is_fixed_link(np)) 3497 of_phy_deregister_fixed_link(np); 3498 3499 unmap_group_regs(priv); 3500 gfar_free_rx_queues(priv); 3501 gfar_free_tx_queues(priv); 3502 free_gfar_dev(priv); 3503 3504 return 0; 3505 } 3506 3507 #ifdef CONFIG_PM 3508 3509 static void __gfar_filer_disable(struct gfar_private *priv) 3510 { 3511 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3512 u32 temp; 3513 3514 temp = gfar_read(®s->rctrl); 3515 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3516 gfar_write(®s->rctrl, temp); 3517 } 3518 3519 static void __gfar_filer_enable(struct gfar_private *priv) 3520 { 3521 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3522 u32 temp; 3523 3524 temp = gfar_read(®s->rctrl); 3525 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3526 gfar_write(®s->rctrl, temp); 3527 } 3528 3529 /* Filer rules implementing wol capabilities */ 3530 static void gfar_filer_config_wol(struct gfar_private *priv) 3531 { 3532 unsigned int i; 3533 u32 rqfcr; 3534 3535 __gfar_filer_disable(priv); 3536 3537 /* clear the filer table, reject any packet by default */ 3538 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3539 for (i = 0; i <= MAX_FILER_IDX; i++) 3540 gfar_write_filer(priv, i, rqfcr, 0); 3541 3542 i = 0; 3543 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3544 /* unicast packet, accept it */ 3545 struct net_device *ndev = priv->ndev; 3546 /* get the default rx queue index */ 3547 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3548 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3549 (ndev->dev_addr[1] << 8) | 3550 ndev->dev_addr[2]; 3551 3552 rqfcr = (qindex << 10) | RQFCR_AND | 3553 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3554 3555 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3556 3557 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3558 (ndev->dev_addr[4] << 8) | 3559 ndev->dev_addr[5]; 3560 rqfcr = (qindex << 10) | RQFCR_GPI | 3561 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3562 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3563 } 3564 3565 __gfar_filer_enable(priv); 3566 } 3567 3568 static void gfar_filer_restore_table(struct gfar_private *priv) 3569 { 3570 u32 rqfcr, rqfpr; 3571 unsigned int i; 3572 3573 __gfar_filer_disable(priv); 3574 3575 for (i = 0; i <= MAX_FILER_IDX; i++) { 3576 rqfcr = priv->ftp_rqfcr[i]; 3577 rqfpr = priv->ftp_rqfpr[i]; 3578 gfar_write_filer(priv, i, rqfcr, rqfpr); 3579 } 3580 3581 __gfar_filer_enable(priv); 3582 } 3583 3584 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3585 static void gfar_start_wol_filer(struct gfar_private *priv) 3586 { 3587 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3588 u32 tempval; 3589 int i = 0; 3590 3591 /* Enable Rx hw queues */ 3592 gfar_write(®s->rqueue, priv->rqueue); 3593 3594 /* Initialize DMACTRL to have WWR and WOP */ 3595 tempval = gfar_read(®s->dmactrl); 3596 tempval |= DMACTRL_INIT_SETTINGS; 3597 gfar_write(®s->dmactrl, tempval); 3598 3599 /* Make sure we aren't stopped */ 3600 tempval = gfar_read(®s->dmactrl); 3601 tempval &= ~DMACTRL_GRS; 3602 gfar_write(®s->dmactrl, tempval); 3603 3604 for (i = 0; i < priv->num_grps; i++) { 3605 regs = priv->gfargrp[i].regs; 3606 /* Clear RHLT, so that the DMA starts polling now */ 3607 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3608 /* enable the Filer General Purpose Interrupt */ 3609 gfar_write(®s->imask, IMASK_FGPI); 3610 } 3611 3612 /* Enable Rx DMA */ 3613 tempval = gfar_read(®s->maccfg1); 3614 tempval |= MACCFG1_RX_EN; 3615 gfar_write(®s->maccfg1, tempval); 3616 } 3617 3618 static int gfar_suspend(struct device *dev) 3619 { 3620 struct gfar_private *priv = dev_get_drvdata(dev); 3621 struct net_device *ndev = priv->ndev; 3622 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3623 u32 tempval; 3624 u16 wol = priv->wol_opts; 3625 3626 if (!netif_running(ndev)) 3627 return 0; 3628 3629 disable_napi(priv); 3630 netif_tx_lock(ndev); 3631 netif_device_detach(ndev); 3632 netif_tx_unlock(ndev); 3633 3634 gfar_halt(priv); 3635 3636 if (wol & GFAR_WOL_MAGIC) { 3637 /* Enable interrupt on Magic Packet */ 3638 gfar_write(®s->imask, IMASK_MAG); 3639 3640 /* Enable Magic Packet mode */ 3641 tempval = gfar_read(®s->maccfg2); 3642 tempval |= MACCFG2_MPEN; 3643 gfar_write(®s->maccfg2, tempval); 3644 3645 /* re-enable the Rx block */ 3646 tempval = gfar_read(®s->maccfg1); 3647 tempval |= MACCFG1_RX_EN; 3648 gfar_write(®s->maccfg1, tempval); 3649 3650 } else if (wol & GFAR_WOL_FILER_UCAST) { 3651 gfar_filer_config_wol(priv); 3652 gfar_start_wol_filer(priv); 3653 3654 } else { 3655 phy_stop(ndev->phydev); 3656 } 3657 3658 return 0; 3659 } 3660 3661 static int gfar_resume(struct device *dev) 3662 { 3663 struct gfar_private *priv = dev_get_drvdata(dev); 3664 struct net_device *ndev = priv->ndev; 3665 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3666 u32 tempval; 3667 u16 wol = priv->wol_opts; 3668 3669 if (!netif_running(ndev)) 3670 return 0; 3671 3672 if (wol & GFAR_WOL_MAGIC) { 3673 /* Disable Magic Packet mode */ 3674 tempval = gfar_read(®s->maccfg2); 3675 tempval &= ~MACCFG2_MPEN; 3676 gfar_write(®s->maccfg2, tempval); 3677 3678 } else if (wol & GFAR_WOL_FILER_UCAST) { 3679 /* need to stop rx only, tx is already down */ 3680 gfar_halt(priv); 3681 gfar_filer_restore_table(priv); 3682 3683 } else { 3684 phy_start(ndev->phydev); 3685 } 3686 3687 gfar_start(priv); 3688 3689 netif_device_attach(ndev); 3690 enable_napi(priv); 3691 3692 return 0; 3693 } 3694 3695 static int gfar_restore(struct device *dev) 3696 { 3697 struct gfar_private *priv = dev_get_drvdata(dev); 3698 struct net_device *ndev = priv->ndev; 3699 3700 if (!netif_running(ndev)) { 3701 netif_device_attach(ndev); 3702 3703 return 0; 3704 } 3705 3706 gfar_init_bds(ndev); 3707 3708 gfar_mac_reset(priv); 3709 3710 gfar_init_tx_rx_base(priv); 3711 3712 gfar_start(priv); 3713 3714 priv->oldlink = 0; 3715 priv->oldspeed = 0; 3716 priv->oldduplex = -1; 3717 3718 if (ndev->phydev) 3719 phy_start(ndev->phydev); 3720 3721 netif_device_attach(ndev); 3722 enable_napi(priv); 3723 3724 return 0; 3725 } 3726 3727 static const struct dev_pm_ops gfar_pm_ops = { 3728 .suspend = gfar_suspend, 3729 .resume = gfar_resume, 3730 .freeze = gfar_suspend, 3731 .thaw = gfar_resume, 3732 .restore = gfar_restore, 3733 }; 3734 3735 #define GFAR_PM_OPS (&gfar_pm_ops) 3736 3737 #else 3738 3739 #define GFAR_PM_OPS NULL 3740 3741 #endif 3742 3743 static const struct of_device_id gfar_match[] = 3744 { 3745 { 3746 .type = "network", 3747 .compatible = "gianfar", 3748 }, 3749 { 3750 .compatible = "fsl,etsec2", 3751 }, 3752 {}, 3753 }; 3754 MODULE_DEVICE_TABLE(of, gfar_match); 3755 3756 /* Structure for a device driver */ 3757 static struct platform_driver gfar_driver = { 3758 .driver = { 3759 .name = "fsl-gianfar", 3760 .pm = GFAR_PM_OPS, 3761 .of_match_table = gfar_match, 3762 }, 3763 .probe = gfar_probe, 3764 .remove = gfar_remove, 3765 }; 3766 3767 module_platform_driver(gfar_driver); 3768