1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84 
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100 
101 #include "gianfar.h"
102 
103 #define TX_TIMEOUT      (5*HZ)
104 
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108 
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 			    dma_addr_t buf)
111 {
112 	u32 lstatus;
113 
114 	bdp->bufPtr = cpu_to_be32(buf);
115 
116 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 		lstatus |= BD_LFLAG(RXBD_WRAP);
119 
120 	gfar_wmb();
121 
122 	bdp->lstatus = cpu_to_be32(lstatus);
123 }
124 
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 	u32 __iomem *baddr;
129 	int i;
130 
131 	baddr = &regs->tbase0;
132 	for (i = 0; i < priv->num_tx_queues; i++) {
133 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 		baddr += 2;
135 	}
136 
137 	baddr = &regs->rbase0;
138 	for (i = 0; i < priv->num_rx_queues; i++) {
139 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 		baddr += 2;
141 	}
142 }
143 
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 	u32 __iomem *baddr;
148 	int i;
149 
150 	baddr = &regs->rqprm0;
151 	for (i = 0; i < priv->num_rx_queues; i++) {
152 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 		baddr++;
155 	}
156 }
157 
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 	/* set this when rx hw offload (TOE) functions are being used */
161 	priv->uses_rxfcb = 0;
162 
163 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 		priv->uses_rxfcb = 1;
165 
166 	if (priv->hwts_rx_en || priv->rx_filer_enable)
167 		priv->uses_rxfcb = 1;
168 }
169 
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	u32 rctrl = 0;
174 
175 	if (priv->rx_filer_enable) {
176 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 		/* Program the RIR0 reg with the required distribution */
178 		if (priv->poll_mode == GFAR_SQ_POLLING)
179 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
180 		else /* GFAR_MQ_POLLING */
181 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
182 	}
183 
184 	/* Restore PROMISC mode */
185 	if (priv->ndev->flags & IFF_PROMISC)
186 		rctrl |= RCTRL_PROM;
187 
188 	if (priv->ndev->features & NETIF_F_RXCSUM)
189 		rctrl |= RCTRL_CHECKSUMMING;
190 
191 	if (priv->extended_hash)
192 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
193 
194 	if (priv->padding) {
195 		rctrl &= ~RCTRL_PAL_MASK;
196 		rctrl |= RCTRL_PADDING(priv->padding);
197 	}
198 
199 	/* Enable HW time stamping if requested from user space */
200 	if (priv->hwts_rx_en)
201 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
202 
203 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
204 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
205 
206 	/* Clear the LFC bit */
207 	gfar_write(&regs->rctrl, rctrl);
208 	/* Init flow control threshold values */
209 	gfar_init_rqprm(priv);
210 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
211 	rctrl |= RCTRL_LFC;
212 
213 	/* Init rctrl based on our settings */
214 	gfar_write(&regs->rctrl, rctrl);
215 }
216 
217 static void gfar_mac_tx_config(struct gfar_private *priv)
218 {
219 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
220 	u32 tctrl = 0;
221 
222 	if (priv->ndev->features & NETIF_F_IP_CSUM)
223 		tctrl |= TCTRL_INIT_CSUM;
224 
225 	if (priv->prio_sched_en)
226 		tctrl |= TCTRL_TXSCHED_PRIO;
227 	else {
228 		tctrl |= TCTRL_TXSCHED_WRRS;
229 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
230 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
231 	}
232 
233 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
234 		tctrl |= TCTRL_VLINS;
235 
236 	gfar_write(&regs->tctrl, tctrl);
237 }
238 
239 static void gfar_configure_coalescing(struct gfar_private *priv,
240 			       unsigned long tx_mask, unsigned long rx_mask)
241 {
242 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
243 	u32 __iomem *baddr;
244 
245 	if (priv->mode == MQ_MG_MODE) {
246 		int i = 0;
247 
248 		baddr = &regs->txic0;
249 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
250 			gfar_write(baddr + i, 0);
251 			if (likely(priv->tx_queue[i]->txcoalescing))
252 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
253 		}
254 
255 		baddr = &regs->rxic0;
256 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
257 			gfar_write(baddr + i, 0);
258 			if (likely(priv->rx_queue[i]->rxcoalescing))
259 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
260 		}
261 	} else {
262 		/* Backward compatible case -- even if we enable
263 		 * multiple queues, there's only single reg to program
264 		 */
265 		gfar_write(&regs->txic, 0);
266 		if (likely(priv->tx_queue[0]->txcoalescing))
267 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
268 
269 		gfar_write(&regs->rxic, 0);
270 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
271 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
272 	}
273 }
274 
275 static void gfar_configure_coalescing_all(struct gfar_private *priv)
276 {
277 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
278 }
279 
280 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
281 {
282 	struct gfar_private *priv = netdev_priv(dev);
283 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
284 	unsigned long tx_packets = 0, tx_bytes = 0;
285 	int i;
286 
287 	for (i = 0; i < priv->num_rx_queues; i++) {
288 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
289 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
290 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
291 	}
292 
293 	dev->stats.rx_packets = rx_packets;
294 	dev->stats.rx_bytes   = rx_bytes;
295 	dev->stats.rx_dropped = rx_dropped;
296 
297 	for (i = 0; i < priv->num_tx_queues; i++) {
298 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
299 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
300 	}
301 
302 	dev->stats.tx_bytes   = tx_bytes;
303 	dev->stats.tx_packets = tx_packets;
304 
305 	return &dev->stats;
306 }
307 
308 /* Set the appropriate hash bit for the given addr */
309 /* The algorithm works like so:
310  * 1) Take the Destination Address (ie the multicast address), and
311  * do a CRC on it (little endian), and reverse the bits of the
312  * result.
313  * 2) Use the 8 most significant bits as a hash into a 256-entry
314  * table.  The table is controlled through 8 32-bit registers:
315  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
316  * gaddr7.  This means that the 3 most significant bits in the
317  * hash index which gaddr register to use, and the 5 other bits
318  * indicate which bit (assuming an IBM numbering scheme, which
319  * for PowerPC (tm) is usually the case) in the register holds
320  * the entry.
321  */
322 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
323 {
324 	u32 tempval;
325 	struct gfar_private *priv = netdev_priv(dev);
326 	u32 result = ether_crc(ETH_ALEN, addr);
327 	int width = priv->hash_width;
328 	u8 whichbit = (result >> (32 - width)) & 0x1f;
329 	u8 whichreg = result >> (32 - width + 5);
330 	u32 value = (1 << (31-whichbit));
331 
332 	tempval = gfar_read(priv->hash_regs[whichreg]);
333 	tempval |= value;
334 	gfar_write(priv->hash_regs[whichreg], tempval);
335 }
336 
337 /* There are multiple MAC Address register pairs on some controllers
338  * This function sets the numth pair to a given address
339  */
340 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
341 				  const u8 *addr)
342 {
343 	struct gfar_private *priv = netdev_priv(dev);
344 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 	u32 tempval;
346 	u32 __iomem *macptr = &regs->macstnaddr1;
347 
348 	macptr += num*2;
349 
350 	/* For a station address of 0x12345678ABCD in transmission
351 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
352 	 * MACnADDR2 is set to 0x34120000.
353 	 */
354 	tempval = (addr[5] << 24) | (addr[4] << 16) |
355 		  (addr[3] << 8)  |  addr[2];
356 
357 	gfar_write(macptr, tempval);
358 
359 	tempval = (addr[1] << 24) | (addr[0] << 16);
360 
361 	gfar_write(macptr+1, tempval);
362 }
363 
364 static int gfar_set_mac_addr(struct net_device *dev, void *p)
365 {
366 	int ret;
367 
368 	ret = eth_mac_addr(dev, p);
369 	if (ret)
370 		return ret;
371 
372 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
373 
374 	return 0;
375 }
376 
377 static void gfar_ints_disable(struct gfar_private *priv)
378 {
379 	int i;
380 	for (i = 0; i < priv->num_grps; i++) {
381 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
382 		/* Clear IEVENT */
383 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
384 
385 		/* Initialize IMASK */
386 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
387 	}
388 }
389 
390 static void gfar_ints_enable(struct gfar_private *priv)
391 {
392 	int i;
393 	for (i = 0; i < priv->num_grps; i++) {
394 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
395 		/* Unmask the interrupts we look for */
396 		gfar_write(&regs->imask, IMASK_DEFAULT);
397 	}
398 }
399 
400 static int gfar_alloc_tx_queues(struct gfar_private *priv)
401 {
402 	int i;
403 
404 	for (i = 0; i < priv->num_tx_queues; i++) {
405 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
406 					    GFP_KERNEL);
407 		if (!priv->tx_queue[i])
408 			return -ENOMEM;
409 
410 		priv->tx_queue[i]->tx_skbuff = NULL;
411 		priv->tx_queue[i]->qindex = i;
412 		priv->tx_queue[i]->dev = priv->ndev;
413 		spin_lock_init(&(priv->tx_queue[i]->txlock));
414 	}
415 	return 0;
416 }
417 
418 static int gfar_alloc_rx_queues(struct gfar_private *priv)
419 {
420 	int i;
421 
422 	for (i = 0; i < priv->num_rx_queues; i++) {
423 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
424 					    GFP_KERNEL);
425 		if (!priv->rx_queue[i])
426 			return -ENOMEM;
427 
428 		priv->rx_queue[i]->qindex = i;
429 		priv->rx_queue[i]->ndev = priv->ndev;
430 	}
431 	return 0;
432 }
433 
434 static void gfar_free_tx_queues(struct gfar_private *priv)
435 {
436 	int i;
437 
438 	for (i = 0; i < priv->num_tx_queues; i++)
439 		kfree(priv->tx_queue[i]);
440 }
441 
442 static void gfar_free_rx_queues(struct gfar_private *priv)
443 {
444 	int i;
445 
446 	for (i = 0; i < priv->num_rx_queues; i++)
447 		kfree(priv->rx_queue[i]);
448 }
449 
450 static void unmap_group_regs(struct gfar_private *priv)
451 {
452 	int i;
453 
454 	for (i = 0; i < MAXGROUPS; i++)
455 		if (priv->gfargrp[i].regs)
456 			iounmap(priv->gfargrp[i].regs);
457 }
458 
459 static void free_gfar_dev(struct gfar_private *priv)
460 {
461 	int i, j;
462 
463 	for (i = 0; i < priv->num_grps; i++)
464 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
465 			kfree(priv->gfargrp[i].irqinfo[j]);
466 			priv->gfargrp[i].irqinfo[j] = NULL;
467 		}
468 
469 	free_netdev(priv->ndev);
470 }
471 
472 static void disable_napi(struct gfar_private *priv)
473 {
474 	int i;
475 
476 	for (i = 0; i < priv->num_grps; i++) {
477 		napi_disable(&priv->gfargrp[i].napi_rx);
478 		napi_disable(&priv->gfargrp[i].napi_tx);
479 	}
480 }
481 
482 static void enable_napi(struct gfar_private *priv)
483 {
484 	int i;
485 
486 	for (i = 0; i < priv->num_grps; i++) {
487 		napi_enable(&priv->gfargrp[i].napi_rx);
488 		napi_enable(&priv->gfargrp[i].napi_tx);
489 	}
490 }
491 
492 static int gfar_parse_group(struct device_node *np,
493 			    struct gfar_private *priv, const char *model)
494 {
495 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
496 	int i;
497 
498 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
499 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
500 					  GFP_KERNEL);
501 		if (!grp->irqinfo[i])
502 			return -ENOMEM;
503 	}
504 
505 	grp->regs = of_iomap(np, 0);
506 	if (!grp->regs)
507 		return -ENOMEM;
508 
509 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
510 
511 	/* If we aren't the FEC we have multiple interrupts */
512 	if (model && strcasecmp(model, "FEC")) {
513 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
514 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
515 		if (!gfar_irq(grp, TX)->irq ||
516 		    !gfar_irq(grp, RX)->irq ||
517 		    !gfar_irq(grp, ER)->irq)
518 			return -EINVAL;
519 	}
520 
521 	grp->priv = priv;
522 	spin_lock_init(&grp->grplock);
523 	if (priv->mode == MQ_MG_MODE) {
524 		u32 rxq_mask, txq_mask;
525 		int ret;
526 
527 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
528 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
529 
530 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
531 		if (!ret) {
532 			grp->rx_bit_map = rxq_mask ?
533 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
534 		}
535 
536 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
537 		if (!ret) {
538 			grp->tx_bit_map = txq_mask ?
539 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
540 		}
541 
542 		if (priv->poll_mode == GFAR_SQ_POLLING) {
543 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
544 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
545 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
546 		}
547 	} else {
548 		grp->rx_bit_map = 0xFF;
549 		grp->tx_bit_map = 0xFF;
550 	}
551 
552 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
553 	 * right to left, so we need to revert the 8 bits to get the q index
554 	 */
555 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
556 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
557 
558 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
559 	 * also assign queues to groups
560 	 */
561 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
562 		if (!grp->rx_queue)
563 			grp->rx_queue = priv->rx_queue[i];
564 		grp->num_rx_queues++;
565 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
566 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
567 		priv->rx_queue[i]->grp = grp;
568 	}
569 
570 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
571 		if (!grp->tx_queue)
572 			grp->tx_queue = priv->tx_queue[i];
573 		grp->num_tx_queues++;
574 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
575 		priv->tqueue |= (TQUEUE_EN0 >> i);
576 		priv->tx_queue[i]->grp = grp;
577 	}
578 
579 	priv->num_grps++;
580 
581 	return 0;
582 }
583 
584 static int gfar_of_group_count(struct device_node *np)
585 {
586 	struct device_node *child;
587 	int num = 0;
588 
589 	for_each_available_child_of_node(np, child)
590 		if (of_node_name_eq(child, "queue-group"))
591 			num++;
592 
593 	return num;
594 }
595 
596 /* Reads the controller's registers to determine what interface
597  * connects it to the PHY.
598  */
599 static phy_interface_t gfar_get_interface(struct net_device *dev)
600 {
601 	struct gfar_private *priv = netdev_priv(dev);
602 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
603 	u32 ecntrl;
604 
605 	ecntrl = gfar_read(&regs->ecntrl);
606 
607 	if (ecntrl & ECNTRL_SGMII_MODE)
608 		return PHY_INTERFACE_MODE_SGMII;
609 
610 	if (ecntrl & ECNTRL_TBI_MODE) {
611 		if (ecntrl & ECNTRL_REDUCED_MODE)
612 			return PHY_INTERFACE_MODE_RTBI;
613 		else
614 			return PHY_INTERFACE_MODE_TBI;
615 	}
616 
617 	if (ecntrl & ECNTRL_REDUCED_MODE) {
618 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
619 			return PHY_INTERFACE_MODE_RMII;
620 		}
621 		else {
622 			phy_interface_t interface = priv->interface;
623 
624 			/* This isn't autodetected right now, so it must
625 			 * be set by the device tree or platform code.
626 			 */
627 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
628 				return PHY_INTERFACE_MODE_RGMII_ID;
629 
630 			return PHY_INTERFACE_MODE_RGMII;
631 		}
632 	}
633 
634 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
635 		return PHY_INTERFACE_MODE_GMII;
636 
637 	return PHY_INTERFACE_MODE_MII;
638 }
639 
640 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
641 {
642 	const char *model;
643 	const void *mac_addr;
644 	int err = 0, i;
645 	phy_interface_t interface;
646 	struct net_device *dev = NULL;
647 	struct gfar_private *priv = NULL;
648 	struct device_node *np = ofdev->dev.of_node;
649 	struct device_node *child = NULL;
650 	u32 stash_len = 0;
651 	u32 stash_idx = 0;
652 	unsigned int num_tx_qs, num_rx_qs;
653 	unsigned short mode, poll_mode;
654 
655 	if (!np)
656 		return -ENODEV;
657 
658 	if (of_device_is_compatible(np, "fsl,etsec2")) {
659 		mode = MQ_MG_MODE;
660 		poll_mode = GFAR_SQ_POLLING;
661 	} else {
662 		mode = SQ_SG_MODE;
663 		poll_mode = GFAR_SQ_POLLING;
664 	}
665 
666 	if (mode == SQ_SG_MODE) {
667 		num_tx_qs = 1;
668 		num_rx_qs = 1;
669 	} else { /* MQ_MG_MODE */
670 		/* get the actual number of supported groups */
671 		unsigned int num_grps = gfar_of_group_count(np);
672 
673 		if (num_grps == 0 || num_grps > MAXGROUPS) {
674 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
675 				num_grps);
676 			pr_err("Cannot do alloc_etherdev, aborting\n");
677 			return -EINVAL;
678 		}
679 
680 		if (poll_mode == GFAR_SQ_POLLING) {
681 			num_tx_qs = num_grps; /* one txq per int group */
682 			num_rx_qs = num_grps; /* one rxq per int group */
683 		} else { /* GFAR_MQ_POLLING */
684 			u32 tx_queues, rx_queues;
685 			int ret;
686 
687 			/* parse the num of HW tx and rx queues */
688 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
689 						   &tx_queues);
690 			num_tx_qs = ret ? 1 : tx_queues;
691 
692 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
693 						   &rx_queues);
694 			num_rx_qs = ret ? 1 : rx_queues;
695 		}
696 	}
697 
698 	if (num_tx_qs > MAX_TX_QS) {
699 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
700 		       num_tx_qs, MAX_TX_QS);
701 		pr_err("Cannot do alloc_etherdev, aborting\n");
702 		return -EINVAL;
703 	}
704 
705 	if (num_rx_qs > MAX_RX_QS) {
706 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
707 		       num_rx_qs, MAX_RX_QS);
708 		pr_err("Cannot do alloc_etherdev, aborting\n");
709 		return -EINVAL;
710 	}
711 
712 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
713 	dev = *pdev;
714 	if (NULL == dev)
715 		return -ENOMEM;
716 
717 	priv = netdev_priv(dev);
718 	priv->ndev = dev;
719 
720 	priv->mode = mode;
721 	priv->poll_mode = poll_mode;
722 
723 	priv->num_tx_queues = num_tx_qs;
724 	netif_set_real_num_rx_queues(dev, num_rx_qs);
725 	priv->num_rx_queues = num_rx_qs;
726 
727 	err = gfar_alloc_tx_queues(priv);
728 	if (err)
729 		goto tx_alloc_failed;
730 
731 	err = gfar_alloc_rx_queues(priv);
732 	if (err)
733 		goto rx_alloc_failed;
734 
735 	err = of_property_read_string(np, "model", &model);
736 	if (err) {
737 		pr_err("Device model property missing, aborting\n");
738 		goto rx_alloc_failed;
739 	}
740 
741 	/* Init Rx queue filer rule set linked list */
742 	INIT_LIST_HEAD(&priv->rx_list.list);
743 	priv->rx_list.count = 0;
744 	mutex_init(&priv->rx_queue_access);
745 
746 	for (i = 0; i < MAXGROUPS; i++)
747 		priv->gfargrp[i].regs = NULL;
748 
749 	/* Parse and initialize group specific information */
750 	if (priv->mode == MQ_MG_MODE) {
751 		for_each_available_child_of_node(np, child) {
752 			if (!of_node_name_eq(child, "queue-group"))
753 				continue;
754 
755 			err = gfar_parse_group(child, priv, model);
756 			if (err) {
757 				of_node_put(child);
758 				goto err_grp_init;
759 			}
760 		}
761 	} else { /* SQ_SG_MODE */
762 		err = gfar_parse_group(np, priv, model);
763 		if (err)
764 			goto err_grp_init;
765 	}
766 
767 	if (of_property_read_bool(np, "bd-stash")) {
768 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
769 		priv->bd_stash_en = 1;
770 	}
771 
772 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
773 
774 	if (err == 0)
775 		priv->rx_stash_size = stash_len;
776 
777 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
778 
779 	if (err == 0)
780 		priv->rx_stash_index = stash_idx;
781 
782 	if (stash_len || stash_idx)
783 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
784 
785 	mac_addr = of_get_mac_address(np);
786 
787 	if (!IS_ERR(mac_addr)) {
788 		ether_addr_copy(dev->dev_addr, mac_addr);
789 	} else {
790 		eth_hw_addr_random(dev);
791 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
792 	}
793 
794 	if (model && !strcasecmp(model, "TSEC"))
795 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
796 				     FSL_GIANFAR_DEV_HAS_COALESCE |
797 				     FSL_GIANFAR_DEV_HAS_RMON |
798 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
799 
800 	if (model && !strcasecmp(model, "eTSEC"))
801 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
802 				     FSL_GIANFAR_DEV_HAS_COALESCE |
803 				     FSL_GIANFAR_DEV_HAS_RMON |
804 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
805 				     FSL_GIANFAR_DEV_HAS_CSUM |
806 				     FSL_GIANFAR_DEV_HAS_VLAN |
807 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
808 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
809 				     FSL_GIANFAR_DEV_HAS_TIMER |
810 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
811 
812 	/* Use PHY connection type from the DT node if one is specified there.
813 	 * rgmii-id really needs to be specified. Other types can be
814 	 * detected by hardware
815 	 */
816 	err = of_get_phy_mode(np, &interface);
817 	if (!err)
818 		priv->interface = interface;
819 	else
820 		priv->interface = gfar_get_interface(dev);
821 
822 	if (of_find_property(np, "fsl,magic-packet", NULL))
823 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
824 
825 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
826 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
827 
828 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
829 
830 	/* In the case of a fixed PHY, the DT node associated
831 	 * to the PHY is the Ethernet MAC DT node.
832 	 */
833 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
834 		err = of_phy_register_fixed_link(np);
835 		if (err)
836 			goto err_grp_init;
837 
838 		priv->phy_node = of_node_get(np);
839 	}
840 
841 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
842 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
843 
844 	return 0;
845 
846 err_grp_init:
847 	unmap_group_regs(priv);
848 rx_alloc_failed:
849 	gfar_free_rx_queues(priv);
850 tx_alloc_failed:
851 	gfar_free_tx_queues(priv);
852 	free_gfar_dev(priv);
853 	return err;
854 }
855 
856 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
857 				   u32 class)
858 {
859 	u32 rqfpr = FPR_FILER_MASK;
860 	u32 rqfcr = 0x0;
861 
862 	rqfar--;
863 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
864 	priv->ftp_rqfpr[rqfar] = rqfpr;
865 	priv->ftp_rqfcr[rqfar] = rqfcr;
866 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
867 
868 	rqfar--;
869 	rqfcr = RQFCR_CMP_NOMATCH;
870 	priv->ftp_rqfpr[rqfar] = rqfpr;
871 	priv->ftp_rqfcr[rqfar] = rqfcr;
872 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873 
874 	rqfar--;
875 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
876 	rqfpr = class;
877 	priv->ftp_rqfcr[rqfar] = rqfcr;
878 	priv->ftp_rqfpr[rqfar] = rqfpr;
879 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880 
881 	rqfar--;
882 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
883 	rqfpr = class;
884 	priv->ftp_rqfcr[rqfar] = rqfcr;
885 	priv->ftp_rqfpr[rqfar] = rqfpr;
886 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887 
888 	return rqfar;
889 }
890 
891 static void gfar_init_filer_table(struct gfar_private *priv)
892 {
893 	int i = 0x0;
894 	u32 rqfar = MAX_FILER_IDX;
895 	u32 rqfcr = 0x0;
896 	u32 rqfpr = FPR_FILER_MASK;
897 
898 	/* Default rule */
899 	rqfcr = RQFCR_CMP_MATCH;
900 	priv->ftp_rqfcr[rqfar] = rqfcr;
901 	priv->ftp_rqfpr[rqfar] = rqfpr;
902 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
903 
904 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
905 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
906 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
907 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
908 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
909 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
910 
911 	/* cur_filer_idx indicated the first non-masked rule */
912 	priv->cur_filer_idx = rqfar;
913 
914 	/* Rest are masked rules */
915 	rqfcr = RQFCR_CMP_NOMATCH;
916 	for (i = 0; i < rqfar; i++) {
917 		priv->ftp_rqfcr[i] = rqfcr;
918 		priv->ftp_rqfpr[i] = rqfpr;
919 		gfar_write_filer(priv, i, rqfcr, rqfpr);
920 	}
921 }
922 
923 #ifdef CONFIG_PPC
924 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
925 {
926 	unsigned int pvr = mfspr(SPRN_PVR);
927 	unsigned int svr = mfspr(SPRN_SVR);
928 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
929 	unsigned int rev = svr & 0xffff;
930 
931 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
932 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
933 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
934 		priv->errata |= GFAR_ERRATA_74;
935 
936 	/* MPC8313 and MPC837x all rev */
937 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
938 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
939 		priv->errata |= GFAR_ERRATA_76;
940 
941 	/* MPC8313 Rev < 2.0 */
942 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
943 		priv->errata |= GFAR_ERRATA_12;
944 }
945 
946 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
947 {
948 	unsigned int svr = mfspr(SPRN_SVR);
949 
950 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
951 		priv->errata |= GFAR_ERRATA_12;
952 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
953 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
954 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
955 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
956 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
957 }
958 #endif
959 
960 static void gfar_detect_errata(struct gfar_private *priv)
961 {
962 	struct device *dev = &priv->ofdev->dev;
963 
964 	/* no plans to fix */
965 	priv->errata |= GFAR_ERRATA_A002;
966 
967 #ifdef CONFIG_PPC
968 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
969 		__gfar_detect_errata_85xx(priv);
970 	else /* non-mpc85xx parts, i.e. e300 core based */
971 		__gfar_detect_errata_83xx(priv);
972 #endif
973 
974 	if (priv->errata)
975 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
976 			 priv->errata);
977 }
978 
979 static void gfar_init_addr_hash_table(struct gfar_private *priv)
980 {
981 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
982 
983 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
984 		priv->extended_hash = 1;
985 		priv->hash_width = 9;
986 
987 		priv->hash_regs[0] = &regs->igaddr0;
988 		priv->hash_regs[1] = &regs->igaddr1;
989 		priv->hash_regs[2] = &regs->igaddr2;
990 		priv->hash_regs[3] = &regs->igaddr3;
991 		priv->hash_regs[4] = &regs->igaddr4;
992 		priv->hash_regs[5] = &regs->igaddr5;
993 		priv->hash_regs[6] = &regs->igaddr6;
994 		priv->hash_regs[7] = &regs->igaddr7;
995 		priv->hash_regs[8] = &regs->gaddr0;
996 		priv->hash_regs[9] = &regs->gaddr1;
997 		priv->hash_regs[10] = &regs->gaddr2;
998 		priv->hash_regs[11] = &regs->gaddr3;
999 		priv->hash_regs[12] = &regs->gaddr4;
1000 		priv->hash_regs[13] = &regs->gaddr5;
1001 		priv->hash_regs[14] = &regs->gaddr6;
1002 		priv->hash_regs[15] = &regs->gaddr7;
1003 
1004 	} else {
1005 		priv->extended_hash = 0;
1006 		priv->hash_width = 8;
1007 
1008 		priv->hash_regs[0] = &regs->gaddr0;
1009 		priv->hash_regs[1] = &regs->gaddr1;
1010 		priv->hash_regs[2] = &regs->gaddr2;
1011 		priv->hash_regs[3] = &regs->gaddr3;
1012 		priv->hash_regs[4] = &regs->gaddr4;
1013 		priv->hash_regs[5] = &regs->gaddr5;
1014 		priv->hash_regs[6] = &regs->gaddr6;
1015 		priv->hash_regs[7] = &regs->gaddr7;
1016 	}
1017 }
1018 
1019 static int __gfar_is_rx_idle(struct gfar_private *priv)
1020 {
1021 	u32 res;
1022 
1023 	/* Normaly TSEC should not hang on GRS commands, so we should
1024 	 * actually wait for IEVENT_GRSC flag.
1025 	 */
1026 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1027 		return 0;
1028 
1029 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1030 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1031 	 * and the Rx can be safely reset.
1032 	 */
1033 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1034 	res &= 0x7f807f80;
1035 	if ((res & 0xffff) == (res >> 16))
1036 		return 1;
1037 
1038 	return 0;
1039 }
1040 
1041 /* Halt the receive and transmit queues */
1042 static void gfar_halt_nodisable(struct gfar_private *priv)
1043 {
1044 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1045 	u32 tempval;
1046 	unsigned int timeout;
1047 	int stopped;
1048 
1049 	gfar_ints_disable(priv);
1050 
1051 	if (gfar_is_dma_stopped(priv))
1052 		return;
1053 
1054 	/* Stop the DMA, and wait for it to stop */
1055 	tempval = gfar_read(&regs->dmactrl);
1056 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1057 	gfar_write(&regs->dmactrl, tempval);
1058 
1059 retry:
1060 	timeout = 1000;
1061 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1062 		cpu_relax();
1063 		timeout--;
1064 	}
1065 
1066 	if (!timeout)
1067 		stopped = gfar_is_dma_stopped(priv);
1068 
1069 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1070 	    !__gfar_is_rx_idle(priv))
1071 		goto retry;
1072 }
1073 
1074 /* Halt the receive and transmit queues */
1075 static void gfar_halt(struct gfar_private *priv)
1076 {
1077 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1078 	u32 tempval;
1079 
1080 	/* Dissable the Rx/Tx hw queues */
1081 	gfar_write(&regs->rqueue, 0);
1082 	gfar_write(&regs->tqueue, 0);
1083 
1084 	mdelay(10);
1085 
1086 	gfar_halt_nodisable(priv);
1087 
1088 	/* Disable Rx/Tx DMA */
1089 	tempval = gfar_read(&regs->maccfg1);
1090 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1091 	gfar_write(&regs->maccfg1, tempval);
1092 }
1093 
1094 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1095 {
1096 	struct txbd8 *txbdp;
1097 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1098 	int i, j;
1099 
1100 	txbdp = tx_queue->tx_bd_base;
1101 
1102 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1103 		if (!tx_queue->tx_skbuff[i])
1104 			continue;
1105 
1106 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1107 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1108 		txbdp->lstatus = 0;
1109 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1110 		     j++) {
1111 			txbdp++;
1112 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1113 				       be16_to_cpu(txbdp->length),
1114 				       DMA_TO_DEVICE);
1115 		}
1116 		txbdp++;
1117 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1118 		tx_queue->tx_skbuff[i] = NULL;
1119 	}
1120 	kfree(tx_queue->tx_skbuff);
1121 	tx_queue->tx_skbuff = NULL;
1122 }
1123 
1124 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1125 {
1126 	int i;
1127 
1128 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1129 
1130 	dev_kfree_skb(rx_queue->skb);
1131 
1132 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1133 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1134 
1135 		rxbdp->lstatus = 0;
1136 		rxbdp->bufPtr = 0;
1137 		rxbdp++;
1138 
1139 		if (!rxb->page)
1140 			continue;
1141 
1142 		dma_unmap_page(rx_queue->dev, rxb->dma,
1143 			       PAGE_SIZE, DMA_FROM_DEVICE);
1144 		__free_page(rxb->page);
1145 
1146 		rxb->page = NULL;
1147 	}
1148 
1149 	kfree(rx_queue->rx_buff);
1150 	rx_queue->rx_buff = NULL;
1151 }
1152 
1153 /* If there are any tx skbs or rx skbs still around, free them.
1154  * Then free tx_skbuff and rx_skbuff
1155  */
1156 static void free_skb_resources(struct gfar_private *priv)
1157 {
1158 	struct gfar_priv_tx_q *tx_queue = NULL;
1159 	struct gfar_priv_rx_q *rx_queue = NULL;
1160 	int i;
1161 
1162 	/* Go through all the buffer descriptors and free their data buffers */
1163 	for (i = 0; i < priv->num_tx_queues; i++) {
1164 		struct netdev_queue *txq;
1165 
1166 		tx_queue = priv->tx_queue[i];
1167 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1168 		if (tx_queue->tx_skbuff)
1169 			free_skb_tx_queue(tx_queue);
1170 		netdev_tx_reset_queue(txq);
1171 	}
1172 
1173 	for (i = 0; i < priv->num_rx_queues; i++) {
1174 		rx_queue = priv->rx_queue[i];
1175 		if (rx_queue->rx_buff)
1176 			free_skb_rx_queue(rx_queue);
1177 	}
1178 
1179 	dma_free_coherent(priv->dev,
1180 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1181 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1182 			  priv->tx_queue[0]->tx_bd_base,
1183 			  priv->tx_queue[0]->tx_bd_dma_base);
1184 }
1185 
1186 void stop_gfar(struct net_device *dev)
1187 {
1188 	struct gfar_private *priv = netdev_priv(dev);
1189 
1190 	netif_tx_stop_all_queues(dev);
1191 
1192 	smp_mb__before_atomic();
1193 	set_bit(GFAR_DOWN, &priv->state);
1194 	smp_mb__after_atomic();
1195 
1196 	disable_napi(priv);
1197 
1198 	/* disable ints and gracefully shut down Rx/Tx DMA */
1199 	gfar_halt(priv);
1200 
1201 	phy_stop(dev->phydev);
1202 
1203 	free_skb_resources(priv);
1204 }
1205 
1206 static void gfar_start(struct gfar_private *priv)
1207 {
1208 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1209 	u32 tempval;
1210 	int i = 0;
1211 
1212 	/* Enable Rx/Tx hw queues */
1213 	gfar_write(&regs->rqueue, priv->rqueue);
1214 	gfar_write(&regs->tqueue, priv->tqueue);
1215 
1216 	/* Initialize DMACTRL to have WWR and WOP */
1217 	tempval = gfar_read(&regs->dmactrl);
1218 	tempval |= DMACTRL_INIT_SETTINGS;
1219 	gfar_write(&regs->dmactrl, tempval);
1220 
1221 	/* Make sure we aren't stopped */
1222 	tempval = gfar_read(&regs->dmactrl);
1223 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1224 	gfar_write(&regs->dmactrl, tempval);
1225 
1226 	for (i = 0; i < priv->num_grps; i++) {
1227 		regs = priv->gfargrp[i].regs;
1228 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1229 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1230 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1231 	}
1232 
1233 	/* Enable Rx/Tx DMA */
1234 	tempval = gfar_read(&regs->maccfg1);
1235 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1236 	gfar_write(&regs->maccfg1, tempval);
1237 
1238 	gfar_ints_enable(priv);
1239 
1240 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1241 }
1242 
1243 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1244 {
1245 	struct page *page;
1246 	dma_addr_t addr;
1247 
1248 	page = dev_alloc_page();
1249 	if (unlikely(!page))
1250 		return false;
1251 
1252 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1253 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1254 		__free_page(page);
1255 
1256 		return false;
1257 	}
1258 
1259 	rxb->dma = addr;
1260 	rxb->page = page;
1261 	rxb->page_offset = 0;
1262 
1263 	return true;
1264 }
1265 
1266 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1267 {
1268 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1269 	struct gfar_extra_stats *estats = &priv->extra_stats;
1270 
1271 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1272 	atomic64_inc(&estats->rx_alloc_err);
1273 }
1274 
1275 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1276 				int alloc_cnt)
1277 {
1278 	struct rxbd8 *bdp;
1279 	struct gfar_rx_buff *rxb;
1280 	int i;
1281 
1282 	i = rx_queue->next_to_use;
1283 	bdp = &rx_queue->rx_bd_base[i];
1284 	rxb = &rx_queue->rx_buff[i];
1285 
1286 	while (alloc_cnt--) {
1287 		/* try reuse page */
1288 		if (unlikely(!rxb->page)) {
1289 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1290 				gfar_rx_alloc_err(rx_queue);
1291 				break;
1292 			}
1293 		}
1294 
1295 		/* Setup the new RxBD */
1296 		gfar_init_rxbdp(rx_queue, bdp,
1297 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1298 
1299 		/* Update to the next pointer */
1300 		bdp++;
1301 		rxb++;
1302 
1303 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1304 			i = 0;
1305 			bdp = rx_queue->rx_bd_base;
1306 			rxb = rx_queue->rx_buff;
1307 		}
1308 	}
1309 
1310 	rx_queue->next_to_use = i;
1311 	rx_queue->next_to_alloc = i;
1312 }
1313 
1314 static void gfar_init_bds(struct net_device *ndev)
1315 {
1316 	struct gfar_private *priv = netdev_priv(ndev);
1317 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1318 	struct gfar_priv_tx_q *tx_queue = NULL;
1319 	struct gfar_priv_rx_q *rx_queue = NULL;
1320 	struct txbd8 *txbdp;
1321 	u32 __iomem *rfbptr;
1322 	int i, j;
1323 
1324 	for (i = 0; i < priv->num_tx_queues; i++) {
1325 		tx_queue = priv->tx_queue[i];
1326 		/* Initialize some variables in our dev structure */
1327 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1328 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1329 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1330 		tx_queue->skb_curtx = 0;
1331 		tx_queue->skb_dirtytx = 0;
1332 
1333 		/* Initialize Transmit Descriptor Ring */
1334 		txbdp = tx_queue->tx_bd_base;
1335 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1336 			txbdp->lstatus = 0;
1337 			txbdp->bufPtr = 0;
1338 			txbdp++;
1339 		}
1340 
1341 		/* Set the last descriptor in the ring to indicate wrap */
1342 		txbdp--;
1343 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1344 					    TXBD_WRAP);
1345 	}
1346 
1347 	rfbptr = &regs->rfbptr0;
1348 	for (i = 0; i < priv->num_rx_queues; i++) {
1349 		rx_queue = priv->rx_queue[i];
1350 
1351 		rx_queue->next_to_clean = 0;
1352 		rx_queue->next_to_use = 0;
1353 		rx_queue->next_to_alloc = 0;
1354 
1355 		/* make sure next_to_clean != next_to_use after this
1356 		 * by leaving at least 1 unused descriptor
1357 		 */
1358 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1359 
1360 		rx_queue->rfbptr = rfbptr;
1361 		rfbptr += 2;
1362 	}
1363 }
1364 
1365 static int gfar_alloc_skb_resources(struct net_device *ndev)
1366 {
1367 	void *vaddr;
1368 	dma_addr_t addr;
1369 	int i, j;
1370 	struct gfar_private *priv = netdev_priv(ndev);
1371 	struct device *dev = priv->dev;
1372 	struct gfar_priv_tx_q *tx_queue = NULL;
1373 	struct gfar_priv_rx_q *rx_queue = NULL;
1374 
1375 	priv->total_tx_ring_size = 0;
1376 	for (i = 0; i < priv->num_tx_queues; i++)
1377 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1378 
1379 	priv->total_rx_ring_size = 0;
1380 	for (i = 0; i < priv->num_rx_queues; i++)
1381 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1382 
1383 	/* Allocate memory for the buffer descriptors */
1384 	vaddr = dma_alloc_coherent(dev,
1385 				   (priv->total_tx_ring_size *
1386 				    sizeof(struct txbd8)) +
1387 				   (priv->total_rx_ring_size *
1388 				    sizeof(struct rxbd8)),
1389 				   &addr, GFP_KERNEL);
1390 	if (!vaddr)
1391 		return -ENOMEM;
1392 
1393 	for (i = 0; i < priv->num_tx_queues; i++) {
1394 		tx_queue = priv->tx_queue[i];
1395 		tx_queue->tx_bd_base = vaddr;
1396 		tx_queue->tx_bd_dma_base = addr;
1397 		tx_queue->dev = ndev;
1398 		/* enet DMA only understands physical addresses */
1399 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1400 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1401 	}
1402 
1403 	/* Start the rx descriptor ring where the tx ring leaves off */
1404 	for (i = 0; i < priv->num_rx_queues; i++) {
1405 		rx_queue = priv->rx_queue[i];
1406 		rx_queue->rx_bd_base = vaddr;
1407 		rx_queue->rx_bd_dma_base = addr;
1408 		rx_queue->ndev = ndev;
1409 		rx_queue->dev = dev;
1410 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1411 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1412 	}
1413 
1414 	/* Setup the skbuff rings */
1415 	for (i = 0; i < priv->num_tx_queues; i++) {
1416 		tx_queue = priv->tx_queue[i];
1417 		tx_queue->tx_skbuff =
1418 			kmalloc_array(tx_queue->tx_ring_size,
1419 				      sizeof(*tx_queue->tx_skbuff),
1420 				      GFP_KERNEL);
1421 		if (!tx_queue->tx_skbuff)
1422 			goto cleanup;
1423 
1424 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1425 			tx_queue->tx_skbuff[j] = NULL;
1426 	}
1427 
1428 	for (i = 0; i < priv->num_rx_queues; i++) {
1429 		rx_queue = priv->rx_queue[i];
1430 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1431 					    sizeof(*rx_queue->rx_buff),
1432 					    GFP_KERNEL);
1433 		if (!rx_queue->rx_buff)
1434 			goto cleanup;
1435 	}
1436 
1437 	gfar_init_bds(ndev);
1438 
1439 	return 0;
1440 
1441 cleanup:
1442 	free_skb_resources(priv);
1443 	return -ENOMEM;
1444 }
1445 
1446 /* Bring the controller up and running */
1447 int startup_gfar(struct net_device *ndev)
1448 {
1449 	struct gfar_private *priv = netdev_priv(ndev);
1450 	int err;
1451 
1452 	gfar_mac_reset(priv);
1453 
1454 	err = gfar_alloc_skb_resources(ndev);
1455 	if (err)
1456 		return err;
1457 
1458 	gfar_init_tx_rx_base(priv);
1459 
1460 	smp_mb__before_atomic();
1461 	clear_bit(GFAR_DOWN, &priv->state);
1462 	smp_mb__after_atomic();
1463 
1464 	/* Start Rx/Tx DMA and enable the interrupts */
1465 	gfar_start(priv);
1466 
1467 	/* force link state update after mac reset */
1468 	priv->oldlink = 0;
1469 	priv->oldspeed = 0;
1470 	priv->oldduplex = -1;
1471 
1472 	phy_start(ndev->phydev);
1473 
1474 	enable_napi(priv);
1475 
1476 	netif_tx_wake_all_queues(ndev);
1477 
1478 	return 0;
1479 }
1480 
1481 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1482 {
1483 	struct net_device *ndev = priv->ndev;
1484 	struct phy_device *phydev = ndev->phydev;
1485 	u32 val = 0;
1486 
1487 	if (!phydev->duplex)
1488 		return val;
1489 
1490 	if (!priv->pause_aneg_en) {
1491 		if (priv->tx_pause_en)
1492 			val |= MACCFG1_TX_FLOW;
1493 		if (priv->rx_pause_en)
1494 			val |= MACCFG1_RX_FLOW;
1495 	} else {
1496 		u16 lcl_adv, rmt_adv;
1497 		u8 flowctrl;
1498 		/* get link partner capabilities */
1499 		rmt_adv = 0;
1500 		if (phydev->pause)
1501 			rmt_adv = LPA_PAUSE_CAP;
1502 		if (phydev->asym_pause)
1503 			rmt_adv |= LPA_PAUSE_ASYM;
1504 
1505 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1506 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1507 		if (flowctrl & FLOW_CTRL_TX)
1508 			val |= MACCFG1_TX_FLOW;
1509 		if (flowctrl & FLOW_CTRL_RX)
1510 			val |= MACCFG1_RX_FLOW;
1511 	}
1512 
1513 	return val;
1514 }
1515 
1516 static noinline void gfar_update_link_state(struct gfar_private *priv)
1517 {
1518 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1519 	struct net_device *ndev = priv->ndev;
1520 	struct phy_device *phydev = ndev->phydev;
1521 	struct gfar_priv_rx_q *rx_queue = NULL;
1522 	int i;
1523 
1524 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1525 		return;
1526 
1527 	if (phydev->link) {
1528 		u32 tempval1 = gfar_read(&regs->maccfg1);
1529 		u32 tempval = gfar_read(&regs->maccfg2);
1530 		u32 ecntrl = gfar_read(&regs->ecntrl);
1531 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1532 
1533 		if (phydev->duplex != priv->oldduplex) {
1534 			if (!(phydev->duplex))
1535 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1536 			else
1537 				tempval |= MACCFG2_FULL_DUPLEX;
1538 
1539 			priv->oldduplex = phydev->duplex;
1540 		}
1541 
1542 		if (phydev->speed != priv->oldspeed) {
1543 			switch (phydev->speed) {
1544 			case 1000:
1545 				tempval =
1546 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1547 
1548 				ecntrl &= ~(ECNTRL_R100);
1549 				break;
1550 			case 100:
1551 			case 10:
1552 				tempval =
1553 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1554 
1555 				/* Reduced mode distinguishes
1556 				 * between 10 and 100
1557 				 */
1558 				if (phydev->speed == SPEED_100)
1559 					ecntrl |= ECNTRL_R100;
1560 				else
1561 					ecntrl &= ~(ECNTRL_R100);
1562 				break;
1563 			default:
1564 				netif_warn(priv, link, priv->ndev,
1565 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1566 					   phydev->speed);
1567 				break;
1568 			}
1569 
1570 			priv->oldspeed = phydev->speed;
1571 		}
1572 
1573 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1574 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1575 
1576 		/* Turn last free buffer recording on */
1577 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1578 			for (i = 0; i < priv->num_rx_queues; i++) {
1579 				u32 bdp_dma;
1580 
1581 				rx_queue = priv->rx_queue[i];
1582 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1583 				gfar_write(rx_queue->rfbptr, bdp_dma);
1584 			}
1585 
1586 			priv->tx_actual_en = 1;
1587 		}
1588 
1589 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1590 			priv->tx_actual_en = 0;
1591 
1592 		gfar_write(&regs->maccfg1, tempval1);
1593 		gfar_write(&regs->maccfg2, tempval);
1594 		gfar_write(&regs->ecntrl, ecntrl);
1595 
1596 		if (!priv->oldlink)
1597 			priv->oldlink = 1;
1598 
1599 	} else if (priv->oldlink) {
1600 		priv->oldlink = 0;
1601 		priv->oldspeed = 0;
1602 		priv->oldduplex = -1;
1603 	}
1604 
1605 	if (netif_msg_link(priv))
1606 		phy_print_status(phydev);
1607 }
1608 
1609 /* Called every time the controller might need to be made
1610  * aware of new link state.  The PHY code conveys this
1611  * information through variables in the phydev structure, and this
1612  * function converts those variables into the appropriate
1613  * register values, and can bring down the device if needed.
1614  */
1615 static void adjust_link(struct net_device *dev)
1616 {
1617 	struct gfar_private *priv = netdev_priv(dev);
1618 	struct phy_device *phydev = dev->phydev;
1619 
1620 	if (unlikely(phydev->link != priv->oldlink ||
1621 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1622 				       phydev->speed != priv->oldspeed))))
1623 		gfar_update_link_state(priv);
1624 }
1625 
1626 /* Initialize TBI PHY interface for communicating with the
1627  * SERDES lynx PHY on the chip.  We communicate with this PHY
1628  * through the MDIO bus on each controller, treating it as a
1629  * "normal" PHY at the address found in the TBIPA register.  We assume
1630  * that the TBIPA register is valid.  Either the MDIO bus code will set
1631  * it to a value that doesn't conflict with other PHYs on the bus, or the
1632  * value doesn't matter, as there are no other PHYs on the bus.
1633  */
1634 static void gfar_configure_serdes(struct net_device *dev)
1635 {
1636 	struct gfar_private *priv = netdev_priv(dev);
1637 	struct phy_device *tbiphy;
1638 
1639 	if (!priv->tbi_node) {
1640 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1641 				    "device tree specify a tbi-handle\n");
1642 		return;
1643 	}
1644 
1645 	tbiphy = of_phy_find_device(priv->tbi_node);
1646 	if (!tbiphy) {
1647 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1648 		return;
1649 	}
1650 
1651 	/* If the link is already up, we must already be ok, and don't need to
1652 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1653 	 * everything for us?  Resetting it takes the link down and requires
1654 	 * several seconds for it to come back.
1655 	 */
1656 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1657 		put_device(&tbiphy->mdio.dev);
1658 		return;
1659 	}
1660 
1661 	/* Single clk mode, mii mode off(for serdes communication) */
1662 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1663 
1664 	phy_write(tbiphy, MII_ADVERTISE,
1665 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1666 		  ADVERTISE_1000XPSE_ASYM);
1667 
1668 	phy_write(tbiphy, MII_BMCR,
1669 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1670 		  BMCR_SPEED1000);
1671 
1672 	put_device(&tbiphy->mdio.dev);
1673 }
1674 
1675 /* Initializes driver's PHY state, and attaches to the PHY.
1676  * Returns 0 on success.
1677  */
1678 static int init_phy(struct net_device *dev)
1679 {
1680 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1681 	struct gfar_private *priv = netdev_priv(dev);
1682 	phy_interface_t interface = priv->interface;
1683 	struct phy_device *phydev;
1684 	struct ethtool_eee edata;
1685 
1686 	linkmode_set_bit_array(phy_10_100_features_array,
1687 			       ARRAY_SIZE(phy_10_100_features_array),
1688 			       mask);
1689 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1690 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1691 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1692 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1693 
1694 	priv->oldlink = 0;
1695 	priv->oldspeed = 0;
1696 	priv->oldduplex = -1;
1697 
1698 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1699 				interface);
1700 	if (!phydev) {
1701 		dev_err(&dev->dev, "could not attach to PHY\n");
1702 		return -ENODEV;
1703 	}
1704 
1705 	if (interface == PHY_INTERFACE_MODE_SGMII)
1706 		gfar_configure_serdes(dev);
1707 
1708 	/* Remove any features not supported by the controller */
1709 	linkmode_and(phydev->supported, phydev->supported, mask);
1710 	linkmode_copy(phydev->advertising, phydev->supported);
1711 
1712 	/* Add support for flow control */
1713 	phy_support_asym_pause(phydev);
1714 
1715 	/* disable EEE autoneg, EEE not supported by eTSEC */
1716 	memset(&edata, 0, sizeof(struct ethtool_eee));
1717 	phy_ethtool_set_eee(phydev, &edata);
1718 
1719 	return 0;
1720 }
1721 
1722 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1723 {
1724 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1725 
1726 	memset(fcb, 0, GMAC_FCB_LEN);
1727 
1728 	return fcb;
1729 }
1730 
1731 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1732 				    int fcb_length)
1733 {
1734 	/* If we're here, it's a IP packet with a TCP or UDP
1735 	 * payload.  We set it to checksum, using a pseudo-header
1736 	 * we provide
1737 	 */
1738 	u8 flags = TXFCB_DEFAULT;
1739 
1740 	/* Tell the controller what the protocol is
1741 	 * And provide the already calculated phcs
1742 	 */
1743 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1744 		flags |= TXFCB_UDP;
1745 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1746 	} else
1747 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1748 
1749 	/* l3os is the distance between the start of the
1750 	 * frame (skb->data) and the start of the IP hdr.
1751 	 * l4os is the distance between the start of the
1752 	 * l3 hdr and the l4 hdr
1753 	 */
1754 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1755 	fcb->l4os = skb_network_header_len(skb);
1756 
1757 	fcb->flags = flags;
1758 }
1759 
1760 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1761 {
1762 	fcb->flags |= TXFCB_VLN;
1763 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1764 }
1765 
1766 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1767 				      struct txbd8 *base, int ring_size)
1768 {
1769 	struct txbd8 *new_bd = bdp + stride;
1770 
1771 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1772 }
1773 
1774 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1775 				      int ring_size)
1776 {
1777 	return skip_txbd(bdp, 1, base, ring_size);
1778 }
1779 
1780 /* eTSEC12: csum generation not supported for some fcb offsets */
1781 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1782 				       unsigned long fcb_addr)
1783 {
1784 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1785 	       (fcb_addr % 0x20) > 0x18);
1786 }
1787 
1788 /* eTSEC76: csum generation for frames larger than 2500 may
1789  * cause excess delays before start of transmission
1790  */
1791 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1792 				       unsigned int len)
1793 {
1794 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1795 	       (len > 2500));
1796 }
1797 
1798 /* This is called by the kernel when a frame is ready for transmission.
1799  * It is pointed to by the dev->hard_start_xmit function pointer
1800  */
1801 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1802 {
1803 	struct gfar_private *priv = netdev_priv(dev);
1804 	struct gfar_priv_tx_q *tx_queue = NULL;
1805 	struct netdev_queue *txq;
1806 	struct gfar __iomem *regs = NULL;
1807 	struct txfcb *fcb = NULL;
1808 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1809 	u32 lstatus;
1810 	skb_frag_t *frag;
1811 	int i, rq = 0;
1812 	int do_tstamp, do_csum, do_vlan;
1813 	u32 bufaddr;
1814 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1815 
1816 	rq = skb->queue_mapping;
1817 	tx_queue = priv->tx_queue[rq];
1818 	txq = netdev_get_tx_queue(dev, rq);
1819 	base = tx_queue->tx_bd_base;
1820 	regs = tx_queue->grp->regs;
1821 
1822 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1823 	do_vlan = skb_vlan_tag_present(skb);
1824 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1825 		    priv->hwts_tx_en;
1826 
1827 	if (do_csum || do_vlan)
1828 		fcb_len = GMAC_FCB_LEN;
1829 
1830 	/* check if time stamp should be generated */
1831 	if (unlikely(do_tstamp))
1832 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1833 
1834 	/* make space for additional header when fcb is needed */
1835 	if (fcb_len) {
1836 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1837 			dev->stats.tx_errors++;
1838 			dev_kfree_skb_any(skb);
1839 			return NETDEV_TX_OK;
1840 		}
1841 	}
1842 
1843 	/* total number of fragments in the SKB */
1844 	nr_frags = skb_shinfo(skb)->nr_frags;
1845 
1846 	/* calculate the required number of TxBDs for this skb */
1847 	if (unlikely(do_tstamp))
1848 		nr_txbds = nr_frags + 2;
1849 	else
1850 		nr_txbds = nr_frags + 1;
1851 
1852 	/* check if there is space to queue this packet */
1853 	if (nr_txbds > tx_queue->num_txbdfree) {
1854 		/* no space, stop the queue */
1855 		netif_tx_stop_queue(txq);
1856 		dev->stats.tx_fifo_errors++;
1857 		return NETDEV_TX_BUSY;
1858 	}
1859 
1860 	/* Update transmit stats */
1861 	bytes_sent = skb->len;
1862 	tx_queue->stats.tx_bytes += bytes_sent;
1863 	/* keep Tx bytes on wire for BQL accounting */
1864 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1865 	tx_queue->stats.tx_packets++;
1866 
1867 	txbdp = txbdp_start = tx_queue->cur_tx;
1868 	lstatus = be32_to_cpu(txbdp->lstatus);
1869 
1870 	/* Add TxPAL between FCB and frame if required */
1871 	if (unlikely(do_tstamp)) {
1872 		skb_push(skb, GMAC_TXPAL_LEN);
1873 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1874 	}
1875 
1876 	/* Add TxFCB if required */
1877 	if (fcb_len) {
1878 		fcb = gfar_add_fcb(skb);
1879 		lstatus |= BD_LFLAG(TXBD_TOE);
1880 	}
1881 
1882 	/* Set up checksumming */
1883 	if (do_csum) {
1884 		gfar_tx_checksum(skb, fcb, fcb_len);
1885 
1886 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1887 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1888 			__skb_pull(skb, GMAC_FCB_LEN);
1889 			skb_checksum_help(skb);
1890 			if (do_vlan || do_tstamp) {
1891 				/* put back a new fcb for vlan/tstamp TOE */
1892 				fcb = gfar_add_fcb(skb);
1893 			} else {
1894 				/* Tx TOE not used */
1895 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1896 				fcb = NULL;
1897 			}
1898 		}
1899 	}
1900 
1901 	if (do_vlan)
1902 		gfar_tx_vlan(skb, fcb);
1903 
1904 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1905 				 DMA_TO_DEVICE);
1906 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1907 		goto dma_map_err;
1908 
1909 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1910 
1911 	/* Time stamp insertion requires one additional TxBD */
1912 	if (unlikely(do_tstamp))
1913 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1914 						 tx_queue->tx_ring_size);
1915 
1916 	if (likely(!nr_frags)) {
1917 		if (likely(!do_tstamp))
1918 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1919 	} else {
1920 		u32 lstatus_start = lstatus;
1921 
1922 		/* Place the fragment addresses and lengths into the TxBDs */
1923 		frag = &skb_shinfo(skb)->frags[0];
1924 		for (i = 0; i < nr_frags; i++, frag++) {
1925 			unsigned int size;
1926 
1927 			/* Point at the next BD, wrapping as needed */
1928 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1929 
1930 			size = skb_frag_size(frag);
1931 
1932 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1933 				  BD_LFLAG(TXBD_READY);
1934 
1935 			/* Handle the last BD specially */
1936 			if (i == nr_frags - 1)
1937 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1938 
1939 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1940 						   size, DMA_TO_DEVICE);
1941 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1942 				goto dma_map_err;
1943 
1944 			/* set the TxBD length and buffer pointer */
1945 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1946 			txbdp->lstatus = cpu_to_be32(lstatus);
1947 		}
1948 
1949 		lstatus = lstatus_start;
1950 	}
1951 
1952 	/* If time stamping is requested one additional TxBD must be set up. The
1953 	 * first TxBD points to the FCB and must have a data length of
1954 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1955 	 * the full frame length.
1956 	 */
1957 	if (unlikely(do_tstamp)) {
1958 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1959 
1960 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1961 		bufaddr += fcb_len;
1962 
1963 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1964 			      (skb_headlen(skb) - fcb_len);
1965 		if (!nr_frags)
1966 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1967 
1968 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1969 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1970 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1971 
1972 		/* Setup tx hardware time stamping */
1973 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1974 		fcb->ptp = 1;
1975 	} else {
1976 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1977 	}
1978 
1979 	netdev_tx_sent_queue(txq, bytes_sent);
1980 
1981 	gfar_wmb();
1982 
1983 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1984 
1985 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1986 
1987 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1988 
1989 	/* Update the current skb pointer to the next entry we will use
1990 	 * (wrapping if necessary)
1991 	 */
1992 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1993 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1994 
1995 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 
1997 	/* We can work in parallel with gfar_clean_tx_ring(), except
1998 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1999 	 * when we were reading the num_txbdfree and checking for available
2000 	 * space, that's because outside of this function it can only grow.
2001 	 */
2002 	spin_lock_bh(&tx_queue->txlock);
2003 	/* reduce TxBD free count */
2004 	tx_queue->num_txbdfree -= (nr_txbds);
2005 	spin_unlock_bh(&tx_queue->txlock);
2006 
2007 	/* If the next BD still needs to be cleaned up, then the bds
2008 	 * are full.  We need to tell the kernel to stop sending us stuff.
2009 	 */
2010 	if (!tx_queue->num_txbdfree) {
2011 		netif_tx_stop_queue(txq);
2012 
2013 		dev->stats.tx_fifo_errors++;
2014 	}
2015 
2016 	/* Tell the DMA to go go go */
2017 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2018 
2019 	return NETDEV_TX_OK;
2020 
2021 dma_map_err:
2022 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2023 	if (do_tstamp)
2024 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2025 	for (i = 0; i < nr_frags; i++) {
2026 		lstatus = be32_to_cpu(txbdp->lstatus);
2027 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2028 			break;
2029 
2030 		lstatus &= ~BD_LFLAG(TXBD_READY);
2031 		txbdp->lstatus = cpu_to_be32(lstatus);
2032 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2033 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2034 			       DMA_TO_DEVICE);
2035 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2036 	}
2037 	gfar_wmb();
2038 	dev_kfree_skb_any(skb);
2039 	return NETDEV_TX_OK;
2040 }
2041 
2042 /* Changes the mac address if the controller is not running. */
2043 static int gfar_set_mac_address(struct net_device *dev)
2044 {
2045 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2046 
2047 	return 0;
2048 }
2049 
2050 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2051 {
2052 	struct gfar_private *priv = netdev_priv(dev);
2053 
2054 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2055 		cpu_relax();
2056 
2057 	if (dev->flags & IFF_UP)
2058 		stop_gfar(dev);
2059 
2060 	dev->mtu = new_mtu;
2061 
2062 	if (dev->flags & IFF_UP)
2063 		startup_gfar(dev);
2064 
2065 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2066 
2067 	return 0;
2068 }
2069 
2070 static void reset_gfar(struct net_device *ndev)
2071 {
2072 	struct gfar_private *priv = netdev_priv(ndev);
2073 
2074 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2075 		cpu_relax();
2076 
2077 	stop_gfar(ndev);
2078 	startup_gfar(ndev);
2079 
2080 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2081 }
2082 
2083 /* gfar_reset_task gets scheduled when a packet has not been
2084  * transmitted after a set amount of time.
2085  * For now, assume that clearing out all the structures, and
2086  * starting over will fix the problem.
2087  */
2088 static void gfar_reset_task(struct work_struct *work)
2089 {
2090 	struct gfar_private *priv = container_of(work, struct gfar_private,
2091 						 reset_task);
2092 	reset_gfar(priv->ndev);
2093 }
2094 
2095 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2096 {
2097 	struct gfar_private *priv = netdev_priv(dev);
2098 
2099 	dev->stats.tx_errors++;
2100 	schedule_work(&priv->reset_task);
2101 }
2102 
2103 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2104 {
2105 	struct hwtstamp_config config;
2106 	struct gfar_private *priv = netdev_priv(netdev);
2107 
2108 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2109 		return -EFAULT;
2110 
2111 	/* reserved for future extensions */
2112 	if (config.flags)
2113 		return -EINVAL;
2114 
2115 	switch (config.tx_type) {
2116 	case HWTSTAMP_TX_OFF:
2117 		priv->hwts_tx_en = 0;
2118 		break;
2119 	case HWTSTAMP_TX_ON:
2120 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2121 			return -ERANGE;
2122 		priv->hwts_tx_en = 1;
2123 		break;
2124 	default:
2125 		return -ERANGE;
2126 	}
2127 
2128 	switch (config.rx_filter) {
2129 	case HWTSTAMP_FILTER_NONE:
2130 		if (priv->hwts_rx_en) {
2131 			priv->hwts_rx_en = 0;
2132 			reset_gfar(netdev);
2133 		}
2134 		break;
2135 	default:
2136 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2137 			return -ERANGE;
2138 		if (!priv->hwts_rx_en) {
2139 			priv->hwts_rx_en = 1;
2140 			reset_gfar(netdev);
2141 		}
2142 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2143 		break;
2144 	}
2145 
2146 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2147 		-EFAULT : 0;
2148 }
2149 
2150 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2151 {
2152 	struct hwtstamp_config config;
2153 	struct gfar_private *priv = netdev_priv(netdev);
2154 
2155 	config.flags = 0;
2156 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2157 	config.rx_filter = (priv->hwts_rx_en ?
2158 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2159 
2160 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2161 		-EFAULT : 0;
2162 }
2163 
2164 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2165 {
2166 	struct phy_device *phydev = dev->phydev;
2167 
2168 	if (!netif_running(dev))
2169 		return -EINVAL;
2170 
2171 	if (cmd == SIOCSHWTSTAMP)
2172 		return gfar_hwtstamp_set(dev, rq);
2173 	if (cmd == SIOCGHWTSTAMP)
2174 		return gfar_hwtstamp_get(dev, rq);
2175 
2176 	if (!phydev)
2177 		return -ENODEV;
2178 
2179 	return phy_mii_ioctl(phydev, rq, cmd);
2180 }
2181 
2182 /* Interrupt Handler for Transmit complete */
2183 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2184 {
2185 	struct net_device *dev = tx_queue->dev;
2186 	struct netdev_queue *txq;
2187 	struct gfar_private *priv = netdev_priv(dev);
2188 	struct txbd8 *bdp, *next = NULL;
2189 	struct txbd8 *lbdp = NULL;
2190 	struct txbd8 *base = tx_queue->tx_bd_base;
2191 	struct sk_buff *skb;
2192 	int skb_dirtytx;
2193 	int tx_ring_size = tx_queue->tx_ring_size;
2194 	int frags = 0, nr_txbds = 0;
2195 	int i;
2196 	int howmany = 0;
2197 	int tqi = tx_queue->qindex;
2198 	unsigned int bytes_sent = 0;
2199 	u32 lstatus;
2200 	size_t buflen;
2201 
2202 	txq = netdev_get_tx_queue(dev, tqi);
2203 	bdp = tx_queue->dirty_tx;
2204 	skb_dirtytx = tx_queue->skb_dirtytx;
2205 
2206 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2207 		bool do_tstamp;
2208 
2209 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2210 			    priv->hwts_tx_en;
2211 
2212 		frags = skb_shinfo(skb)->nr_frags;
2213 
2214 		/* When time stamping, one additional TxBD must be freed.
2215 		 * Also, we need to dma_unmap_single() the TxPAL.
2216 		 */
2217 		if (unlikely(do_tstamp))
2218 			nr_txbds = frags + 2;
2219 		else
2220 			nr_txbds = frags + 1;
2221 
2222 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2223 
2224 		lstatus = be32_to_cpu(lbdp->lstatus);
2225 
2226 		/* Only clean completed frames */
2227 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2228 		    (lstatus & BD_LENGTH_MASK))
2229 			break;
2230 
2231 		if (unlikely(do_tstamp)) {
2232 			next = next_txbd(bdp, base, tx_ring_size);
2233 			buflen = be16_to_cpu(next->length) +
2234 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2235 		} else
2236 			buflen = be16_to_cpu(bdp->length);
2237 
2238 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2239 				 buflen, DMA_TO_DEVICE);
2240 
2241 		if (unlikely(do_tstamp)) {
2242 			struct skb_shared_hwtstamps shhwtstamps;
2243 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2244 					  ~0x7UL);
2245 
2246 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2247 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2248 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2249 			skb_tstamp_tx(skb, &shhwtstamps);
2250 			gfar_clear_txbd_status(bdp);
2251 			bdp = next;
2252 		}
2253 
2254 		gfar_clear_txbd_status(bdp);
2255 		bdp = next_txbd(bdp, base, tx_ring_size);
2256 
2257 		for (i = 0; i < frags; i++) {
2258 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2259 				       be16_to_cpu(bdp->length),
2260 				       DMA_TO_DEVICE);
2261 			gfar_clear_txbd_status(bdp);
2262 			bdp = next_txbd(bdp, base, tx_ring_size);
2263 		}
2264 
2265 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2266 
2267 		dev_kfree_skb_any(skb);
2268 
2269 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2270 
2271 		skb_dirtytx = (skb_dirtytx + 1) &
2272 			      TX_RING_MOD_MASK(tx_ring_size);
2273 
2274 		howmany++;
2275 		spin_lock(&tx_queue->txlock);
2276 		tx_queue->num_txbdfree += nr_txbds;
2277 		spin_unlock(&tx_queue->txlock);
2278 	}
2279 
2280 	/* If we freed a buffer, we can restart transmission, if necessary */
2281 	if (tx_queue->num_txbdfree &&
2282 	    netif_tx_queue_stopped(txq) &&
2283 	    !(test_bit(GFAR_DOWN, &priv->state)))
2284 		netif_wake_subqueue(priv->ndev, tqi);
2285 
2286 	/* Update dirty indicators */
2287 	tx_queue->skb_dirtytx = skb_dirtytx;
2288 	tx_queue->dirty_tx = bdp;
2289 
2290 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2291 }
2292 
2293 static void count_errors(u32 lstatus, struct net_device *ndev)
2294 {
2295 	struct gfar_private *priv = netdev_priv(ndev);
2296 	struct net_device_stats *stats = &ndev->stats;
2297 	struct gfar_extra_stats *estats = &priv->extra_stats;
2298 
2299 	/* If the packet was truncated, none of the other errors matter */
2300 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2301 		stats->rx_length_errors++;
2302 
2303 		atomic64_inc(&estats->rx_trunc);
2304 
2305 		return;
2306 	}
2307 	/* Count the errors, if there were any */
2308 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2309 		stats->rx_length_errors++;
2310 
2311 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2312 			atomic64_inc(&estats->rx_large);
2313 		else
2314 			atomic64_inc(&estats->rx_short);
2315 	}
2316 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2317 		stats->rx_frame_errors++;
2318 		atomic64_inc(&estats->rx_nonoctet);
2319 	}
2320 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2321 		atomic64_inc(&estats->rx_crcerr);
2322 		stats->rx_crc_errors++;
2323 	}
2324 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2325 		atomic64_inc(&estats->rx_overrun);
2326 		stats->rx_over_errors++;
2327 	}
2328 }
2329 
2330 static irqreturn_t gfar_receive(int irq, void *grp_id)
2331 {
2332 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2333 	unsigned long flags;
2334 	u32 imask, ievent;
2335 
2336 	ievent = gfar_read(&grp->regs->ievent);
2337 
2338 	if (unlikely(ievent & IEVENT_FGPI)) {
2339 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2340 		return IRQ_HANDLED;
2341 	}
2342 
2343 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2344 		spin_lock_irqsave(&grp->grplock, flags);
2345 		imask = gfar_read(&grp->regs->imask);
2346 		imask &= IMASK_RX_DISABLED;
2347 		gfar_write(&grp->regs->imask, imask);
2348 		spin_unlock_irqrestore(&grp->grplock, flags);
2349 		__napi_schedule(&grp->napi_rx);
2350 	} else {
2351 		/* Clear IEVENT, so interrupts aren't called again
2352 		 * because of the packets that have already arrived.
2353 		 */
2354 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2355 	}
2356 
2357 	return IRQ_HANDLED;
2358 }
2359 
2360 /* Interrupt Handler for Transmit complete */
2361 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2362 {
2363 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2364 	unsigned long flags;
2365 	u32 imask;
2366 
2367 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2368 		spin_lock_irqsave(&grp->grplock, flags);
2369 		imask = gfar_read(&grp->regs->imask);
2370 		imask &= IMASK_TX_DISABLED;
2371 		gfar_write(&grp->regs->imask, imask);
2372 		spin_unlock_irqrestore(&grp->grplock, flags);
2373 		__napi_schedule(&grp->napi_tx);
2374 	} else {
2375 		/* Clear IEVENT, so interrupts aren't called again
2376 		 * because of the packets that have already arrived.
2377 		 */
2378 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2379 	}
2380 
2381 	return IRQ_HANDLED;
2382 }
2383 
2384 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2385 			     struct sk_buff *skb, bool first)
2386 {
2387 	int size = lstatus & BD_LENGTH_MASK;
2388 	struct page *page = rxb->page;
2389 
2390 	if (likely(first)) {
2391 		skb_put(skb, size);
2392 	} else {
2393 		/* the last fragments' length contains the full frame length */
2394 		if (lstatus & BD_LFLAG(RXBD_LAST))
2395 			size -= skb->len;
2396 
2397 		WARN(size < 0, "gianfar: rx fragment size underflow");
2398 		if (size < 0)
2399 			return false;
2400 
2401 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2402 				rxb->page_offset + RXBUF_ALIGNMENT,
2403 				size, GFAR_RXB_TRUESIZE);
2404 	}
2405 
2406 	/* try reuse page */
2407 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2408 		return false;
2409 
2410 	/* change offset to the other half */
2411 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2412 
2413 	page_ref_inc(page);
2414 
2415 	return true;
2416 }
2417 
2418 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2419 			       struct gfar_rx_buff *old_rxb)
2420 {
2421 	struct gfar_rx_buff *new_rxb;
2422 	u16 nta = rxq->next_to_alloc;
2423 
2424 	new_rxb = &rxq->rx_buff[nta];
2425 
2426 	/* find next buf that can reuse a page */
2427 	nta++;
2428 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2429 
2430 	/* copy page reference */
2431 	*new_rxb = *old_rxb;
2432 
2433 	/* sync for use by the device */
2434 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2435 					 old_rxb->page_offset,
2436 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2437 }
2438 
2439 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2440 					    u32 lstatus, struct sk_buff *skb)
2441 {
2442 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2443 	struct page *page = rxb->page;
2444 	bool first = false;
2445 
2446 	if (likely(!skb)) {
2447 		void *buff_addr = page_address(page) + rxb->page_offset;
2448 
2449 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2450 		if (unlikely(!skb)) {
2451 			gfar_rx_alloc_err(rx_queue);
2452 			return NULL;
2453 		}
2454 		skb_reserve(skb, RXBUF_ALIGNMENT);
2455 		first = true;
2456 	}
2457 
2458 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2459 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2460 
2461 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2462 		/* reuse the free half of the page */
2463 		gfar_reuse_rx_page(rx_queue, rxb);
2464 	} else {
2465 		/* page cannot be reused, unmap it */
2466 		dma_unmap_page(rx_queue->dev, rxb->dma,
2467 			       PAGE_SIZE, DMA_FROM_DEVICE);
2468 	}
2469 
2470 	/* clear rxb content */
2471 	rxb->page = NULL;
2472 
2473 	return skb;
2474 }
2475 
2476 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2477 {
2478 	/* If valid headers were found, and valid sums
2479 	 * were verified, then we tell the kernel that no
2480 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2481 	 */
2482 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2483 	    (RXFCB_CIP | RXFCB_CTU))
2484 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2485 	else
2486 		skb_checksum_none_assert(skb);
2487 }
2488 
2489 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2490 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2491 {
2492 	struct gfar_private *priv = netdev_priv(ndev);
2493 	struct rxfcb *fcb = NULL;
2494 
2495 	/* fcb is at the beginning if exists */
2496 	fcb = (struct rxfcb *)skb->data;
2497 
2498 	/* Remove the FCB from the skb
2499 	 * Remove the padded bytes, if there are any
2500 	 */
2501 	if (priv->uses_rxfcb)
2502 		skb_pull(skb, GMAC_FCB_LEN);
2503 
2504 	/* Get receive timestamp from the skb */
2505 	if (priv->hwts_rx_en) {
2506 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2507 		u64 *ns = (u64 *) skb->data;
2508 
2509 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2510 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2511 	}
2512 
2513 	if (priv->padding)
2514 		skb_pull(skb, priv->padding);
2515 
2516 	/* Trim off the FCS */
2517 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2518 
2519 	if (ndev->features & NETIF_F_RXCSUM)
2520 		gfar_rx_checksum(skb, fcb);
2521 
2522 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2523 	 * Even if vlan rx accel is disabled, on some chips
2524 	 * RXFCB_VLN is pseudo randomly set.
2525 	 */
2526 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2527 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2528 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2529 				       be16_to_cpu(fcb->vlctl));
2530 }
2531 
2532 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2533  * until the budget/quota has been reached. Returns the number
2534  * of frames handled
2535  */
2536 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2537 			      int rx_work_limit)
2538 {
2539 	struct net_device *ndev = rx_queue->ndev;
2540 	struct gfar_private *priv = netdev_priv(ndev);
2541 	struct rxbd8 *bdp;
2542 	int i, howmany = 0;
2543 	struct sk_buff *skb = rx_queue->skb;
2544 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2545 	unsigned int total_bytes = 0, total_pkts = 0;
2546 
2547 	/* Get the first full descriptor */
2548 	i = rx_queue->next_to_clean;
2549 
2550 	while (rx_work_limit--) {
2551 		u32 lstatus;
2552 
2553 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2554 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2555 			cleaned_cnt = 0;
2556 		}
2557 
2558 		bdp = &rx_queue->rx_bd_base[i];
2559 		lstatus = be32_to_cpu(bdp->lstatus);
2560 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2561 			break;
2562 
2563 		/* lost RXBD_LAST descriptor due to overrun */
2564 		if (skb &&
2565 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2566 			/* discard faulty buffer */
2567 			dev_kfree_skb(skb);
2568 			skb = NULL;
2569 			rx_queue->stats.rx_dropped++;
2570 
2571 			/* can continue normally */
2572 		}
2573 
2574 		/* order rx buffer descriptor reads */
2575 		rmb();
2576 
2577 		/* fetch next to clean buffer from the ring */
2578 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2579 		if (unlikely(!skb))
2580 			break;
2581 
2582 		cleaned_cnt++;
2583 		howmany++;
2584 
2585 		if (unlikely(++i == rx_queue->rx_ring_size))
2586 			i = 0;
2587 
2588 		rx_queue->next_to_clean = i;
2589 
2590 		/* fetch next buffer if not the last in frame */
2591 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2592 			continue;
2593 
2594 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2595 			count_errors(lstatus, ndev);
2596 
2597 			/* discard faulty buffer */
2598 			dev_kfree_skb(skb);
2599 			skb = NULL;
2600 			rx_queue->stats.rx_dropped++;
2601 			continue;
2602 		}
2603 
2604 		gfar_process_frame(ndev, skb);
2605 
2606 		/* Increment the number of packets */
2607 		total_pkts++;
2608 		total_bytes += skb->len;
2609 
2610 		skb_record_rx_queue(skb, rx_queue->qindex);
2611 
2612 		skb->protocol = eth_type_trans(skb, ndev);
2613 
2614 		/* Send the packet up the stack */
2615 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2616 
2617 		skb = NULL;
2618 	}
2619 
2620 	/* Store incomplete frames for completion */
2621 	rx_queue->skb = skb;
2622 
2623 	rx_queue->stats.rx_packets += total_pkts;
2624 	rx_queue->stats.rx_bytes += total_bytes;
2625 
2626 	if (cleaned_cnt)
2627 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2628 
2629 	/* Update Last Free RxBD pointer for LFC */
2630 	if (unlikely(priv->tx_actual_en)) {
2631 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2632 
2633 		gfar_write(rx_queue->rfbptr, bdp_dma);
2634 	}
2635 
2636 	return howmany;
2637 }
2638 
2639 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2640 {
2641 	struct gfar_priv_grp *gfargrp =
2642 		container_of(napi, struct gfar_priv_grp, napi_rx);
2643 	struct gfar __iomem *regs = gfargrp->regs;
2644 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2645 	int work_done = 0;
2646 
2647 	/* Clear IEVENT, so interrupts aren't called again
2648 	 * because of the packets that have already arrived
2649 	 */
2650 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2651 
2652 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2653 
2654 	if (work_done < budget) {
2655 		u32 imask;
2656 		napi_complete_done(napi, work_done);
2657 		/* Clear the halt bit in RSTAT */
2658 		gfar_write(&regs->rstat, gfargrp->rstat);
2659 
2660 		spin_lock_irq(&gfargrp->grplock);
2661 		imask = gfar_read(&regs->imask);
2662 		imask |= IMASK_RX_DEFAULT;
2663 		gfar_write(&regs->imask, imask);
2664 		spin_unlock_irq(&gfargrp->grplock);
2665 	}
2666 
2667 	return work_done;
2668 }
2669 
2670 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2671 {
2672 	struct gfar_priv_grp *gfargrp =
2673 		container_of(napi, struct gfar_priv_grp, napi_tx);
2674 	struct gfar __iomem *regs = gfargrp->regs;
2675 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2676 	u32 imask;
2677 
2678 	/* Clear IEVENT, so interrupts aren't called again
2679 	 * because of the packets that have already arrived
2680 	 */
2681 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2682 
2683 	/* run Tx cleanup to completion */
2684 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2685 		gfar_clean_tx_ring(tx_queue);
2686 
2687 	napi_complete(napi);
2688 
2689 	spin_lock_irq(&gfargrp->grplock);
2690 	imask = gfar_read(&regs->imask);
2691 	imask |= IMASK_TX_DEFAULT;
2692 	gfar_write(&regs->imask, imask);
2693 	spin_unlock_irq(&gfargrp->grplock);
2694 
2695 	return 0;
2696 }
2697 
2698 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2699 {
2700 	struct gfar_priv_grp *gfargrp =
2701 		container_of(napi, struct gfar_priv_grp, napi_rx);
2702 	struct gfar_private *priv = gfargrp->priv;
2703 	struct gfar __iomem *regs = gfargrp->regs;
2704 	struct gfar_priv_rx_q *rx_queue = NULL;
2705 	int work_done = 0, work_done_per_q = 0;
2706 	int i, budget_per_q = 0;
2707 	unsigned long rstat_rxf;
2708 	int num_act_queues;
2709 
2710 	/* Clear IEVENT, so interrupts aren't called again
2711 	 * because of the packets that have already arrived
2712 	 */
2713 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2714 
2715 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2716 
2717 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2718 	if (num_act_queues)
2719 		budget_per_q = budget/num_act_queues;
2720 
2721 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2722 		/* skip queue if not active */
2723 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2724 			continue;
2725 
2726 		rx_queue = priv->rx_queue[i];
2727 		work_done_per_q =
2728 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2729 		work_done += work_done_per_q;
2730 
2731 		/* finished processing this queue */
2732 		if (work_done_per_q < budget_per_q) {
2733 			/* clear active queue hw indication */
2734 			gfar_write(&regs->rstat,
2735 				   RSTAT_CLEAR_RXF0 >> i);
2736 			num_act_queues--;
2737 
2738 			if (!num_act_queues)
2739 				break;
2740 		}
2741 	}
2742 
2743 	if (!num_act_queues) {
2744 		u32 imask;
2745 		napi_complete_done(napi, work_done);
2746 
2747 		/* Clear the halt bit in RSTAT */
2748 		gfar_write(&regs->rstat, gfargrp->rstat);
2749 
2750 		spin_lock_irq(&gfargrp->grplock);
2751 		imask = gfar_read(&regs->imask);
2752 		imask |= IMASK_RX_DEFAULT;
2753 		gfar_write(&regs->imask, imask);
2754 		spin_unlock_irq(&gfargrp->grplock);
2755 	}
2756 
2757 	return work_done;
2758 }
2759 
2760 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2761 {
2762 	struct gfar_priv_grp *gfargrp =
2763 		container_of(napi, struct gfar_priv_grp, napi_tx);
2764 	struct gfar_private *priv = gfargrp->priv;
2765 	struct gfar __iomem *regs = gfargrp->regs;
2766 	struct gfar_priv_tx_q *tx_queue = NULL;
2767 	int has_tx_work = 0;
2768 	int i;
2769 
2770 	/* Clear IEVENT, so interrupts aren't called again
2771 	 * because of the packets that have already arrived
2772 	 */
2773 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2774 
2775 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2776 		tx_queue = priv->tx_queue[i];
2777 		/* run Tx cleanup to completion */
2778 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2779 			gfar_clean_tx_ring(tx_queue);
2780 			has_tx_work = 1;
2781 		}
2782 	}
2783 
2784 	if (!has_tx_work) {
2785 		u32 imask;
2786 		napi_complete(napi);
2787 
2788 		spin_lock_irq(&gfargrp->grplock);
2789 		imask = gfar_read(&regs->imask);
2790 		imask |= IMASK_TX_DEFAULT;
2791 		gfar_write(&regs->imask, imask);
2792 		spin_unlock_irq(&gfargrp->grplock);
2793 	}
2794 
2795 	return 0;
2796 }
2797 
2798 /* GFAR error interrupt handler */
2799 static irqreturn_t gfar_error(int irq, void *grp_id)
2800 {
2801 	struct gfar_priv_grp *gfargrp = grp_id;
2802 	struct gfar __iomem *regs = gfargrp->regs;
2803 	struct gfar_private *priv= gfargrp->priv;
2804 	struct net_device *dev = priv->ndev;
2805 
2806 	/* Save ievent for future reference */
2807 	u32 events = gfar_read(&regs->ievent);
2808 
2809 	/* Clear IEVENT */
2810 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2811 
2812 	/* Magic Packet is not an error. */
2813 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2814 	    (events & IEVENT_MAG))
2815 		events &= ~IEVENT_MAG;
2816 
2817 	/* Hmm... */
2818 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2819 		netdev_dbg(dev,
2820 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2821 			   events, gfar_read(&regs->imask));
2822 
2823 	/* Update the error counters */
2824 	if (events & IEVENT_TXE) {
2825 		dev->stats.tx_errors++;
2826 
2827 		if (events & IEVENT_LC)
2828 			dev->stats.tx_window_errors++;
2829 		if (events & IEVENT_CRL)
2830 			dev->stats.tx_aborted_errors++;
2831 		if (events & IEVENT_XFUN) {
2832 			netif_dbg(priv, tx_err, dev,
2833 				  "TX FIFO underrun, packet dropped\n");
2834 			dev->stats.tx_dropped++;
2835 			atomic64_inc(&priv->extra_stats.tx_underrun);
2836 
2837 			schedule_work(&priv->reset_task);
2838 		}
2839 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2840 	}
2841 	if (events & IEVENT_BSY) {
2842 		dev->stats.rx_over_errors++;
2843 		atomic64_inc(&priv->extra_stats.rx_bsy);
2844 
2845 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2846 			  gfar_read(&regs->rstat));
2847 	}
2848 	if (events & IEVENT_BABR) {
2849 		dev->stats.rx_errors++;
2850 		atomic64_inc(&priv->extra_stats.rx_babr);
2851 
2852 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2853 	}
2854 	if (events & IEVENT_EBERR) {
2855 		atomic64_inc(&priv->extra_stats.eberr);
2856 		netif_dbg(priv, rx_err, dev, "bus error\n");
2857 	}
2858 	if (events & IEVENT_RXC)
2859 		netif_dbg(priv, rx_status, dev, "control frame\n");
2860 
2861 	if (events & IEVENT_BABT) {
2862 		atomic64_inc(&priv->extra_stats.tx_babt);
2863 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2864 	}
2865 	return IRQ_HANDLED;
2866 }
2867 
2868 /* The interrupt handler for devices with one interrupt */
2869 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2870 {
2871 	struct gfar_priv_grp *gfargrp = grp_id;
2872 
2873 	/* Save ievent for future reference */
2874 	u32 events = gfar_read(&gfargrp->regs->ievent);
2875 
2876 	/* Check for reception */
2877 	if (events & IEVENT_RX_MASK)
2878 		gfar_receive(irq, grp_id);
2879 
2880 	/* Check for transmit completion */
2881 	if (events & IEVENT_TX_MASK)
2882 		gfar_transmit(irq, grp_id);
2883 
2884 	/* Check for errors */
2885 	if (events & IEVENT_ERR_MASK)
2886 		gfar_error(irq, grp_id);
2887 
2888 	return IRQ_HANDLED;
2889 }
2890 
2891 #ifdef CONFIG_NET_POLL_CONTROLLER
2892 /* Polling 'interrupt' - used by things like netconsole to send skbs
2893  * without having to re-enable interrupts. It's not called while
2894  * the interrupt routine is executing.
2895  */
2896 static void gfar_netpoll(struct net_device *dev)
2897 {
2898 	struct gfar_private *priv = netdev_priv(dev);
2899 	int i;
2900 
2901 	/* If the device has multiple interrupts, run tx/rx */
2902 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2903 		for (i = 0; i < priv->num_grps; i++) {
2904 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2905 
2906 			disable_irq(gfar_irq(grp, TX)->irq);
2907 			disable_irq(gfar_irq(grp, RX)->irq);
2908 			disable_irq(gfar_irq(grp, ER)->irq);
2909 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2910 			enable_irq(gfar_irq(grp, ER)->irq);
2911 			enable_irq(gfar_irq(grp, RX)->irq);
2912 			enable_irq(gfar_irq(grp, TX)->irq);
2913 		}
2914 	} else {
2915 		for (i = 0; i < priv->num_grps; i++) {
2916 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2917 
2918 			disable_irq(gfar_irq(grp, TX)->irq);
2919 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2920 			enable_irq(gfar_irq(grp, TX)->irq);
2921 		}
2922 	}
2923 }
2924 #endif
2925 
2926 static void free_grp_irqs(struct gfar_priv_grp *grp)
2927 {
2928 	free_irq(gfar_irq(grp, TX)->irq, grp);
2929 	free_irq(gfar_irq(grp, RX)->irq, grp);
2930 	free_irq(gfar_irq(grp, ER)->irq, grp);
2931 }
2932 
2933 static int register_grp_irqs(struct gfar_priv_grp *grp)
2934 {
2935 	struct gfar_private *priv = grp->priv;
2936 	struct net_device *dev = priv->ndev;
2937 	int err;
2938 
2939 	/* If the device has multiple interrupts, register for
2940 	 * them.  Otherwise, only register for the one
2941 	 */
2942 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2943 		/* Install our interrupt handlers for Error,
2944 		 * Transmit, and Receive
2945 		 */
2946 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2947 				  gfar_irq(grp, ER)->name, grp);
2948 		if (err < 0) {
2949 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2950 				  gfar_irq(grp, ER)->irq);
2951 
2952 			goto err_irq_fail;
2953 		}
2954 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2955 
2956 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2957 				  gfar_irq(grp, TX)->name, grp);
2958 		if (err < 0) {
2959 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2960 				  gfar_irq(grp, TX)->irq);
2961 			goto tx_irq_fail;
2962 		}
2963 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2964 				  gfar_irq(grp, RX)->name, grp);
2965 		if (err < 0) {
2966 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2967 				  gfar_irq(grp, RX)->irq);
2968 			goto rx_irq_fail;
2969 		}
2970 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2971 
2972 	} else {
2973 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2974 				  gfar_irq(grp, TX)->name, grp);
2975 		if (err < 0) {
2976 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2977 				  gfar_irq(grp, TX)->irq);
2978 			goto err_irq_fail;
2979 		}
2980 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2981 	}
2982 
2983 	return 0;
2984 
2985 rx_irq_fail:
2986 	free_irq(gfar_irq(grp, TX)->irq, grp);
2987 tx_irq_fail:
2988 	free_irq(gfar_irq(grp, ER)->irq, grp);
2989 err_irq_fail:
2990 	return err;
2991 
2992 }
2993 
2994 static void gfar_free_irq(struct gfar_private *priv)
2995 {
2996 	int i;
2997 
2998 	/* Free the IRQs */
2999 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3000 		for (i = 0; i < priv->num_grps; i++)
3001 			free_grp_irqs(&priv->gfargrp[i]);
3002 	} else {
3003 		for (i = 0; i < priv->num_grps; i++)
3004 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
3005 				 &priv->gfargrp[i]);
3006 	}
3007 }
3008 
3009 static int gfar_request_irq(struct gfar_private *priv)
3010 {
3011 	int err, i, j;
3012 
3013 	for (i = 0; i < priv->num_grps; i++) {
3014 		err = register_grp_irqs(&priv->gfargrp[i]);
3015 		if (err) {
3016 			for (j = 0; j < i; j++)
3017 				free_grp_irqs(&priv->gfargrp[j]);
3018 			return err;
3019 		}
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 /* Called when something needs to use the ethernet device
3026  * Returns 0 for success.
3027  */
3028 static int gfar_enet_open(struct net_device *dev)
3029 {
3030 	struct gfar_private *priv = netdev_priv(dev);
3031 	int err;
3032 
3033 	err = init_phy(dev);
3034 	if (err)
3035 		return err;
3036 
3037 	err = gfar_request_irq(priv);
3038 	if (err)
3039 		return err;
3040 
3041 	err = startup_gfar(dev);
3042 	if (err)
3043 		return err;
3044 
3045 	return err;
3046 }
3047 
3048 /* Stops the kernel queue, and halts the controller */
3049 static int gfar_close(struct net_device *dev)
3050 {
3051 	struct gfar_private *priv = netdev_priv(dev);
3052 
3053 	cancel_work_sync(&priv->reset_task);
3054 	stop_gfar(dev);
3055 
3056 	/* Disconnect from the PHY */
3057 	phy_disconnect(dev->phydev);
3058 
3059 	gfar_free_irq(priv);
3060 
3061 	return 0;
3062 }
3063 
3064 /* Clears each of the exact match registers to zero, so they
3065  * don't interfere with normal reception
3066  */
3067 static void gfar_clear_exact_match(struct net_device *dev)
3068 {
3069 	int idx;
3070 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3071 
3072 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3073 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3074 }
3075 
3076 /* Update the hash table based on the current list of multicast
3077  * addresses we subscribe to.  Also, change the promiscuity of
3078  * the device based on the flags (this function is called
3079  * whenever dev->flags is changed
3080  */
3081 static void gfar_set_multi(struct net_device *dev)
3082 {
3083 	struct netdev_hw_addr *ha;
3084 	struct gfar_private *priv = netdev_priv(dev);
3085 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3086 	u32 tempval;
3087 
3088 	if (dev->flags & IFF_PROMISC) {
3089 		/* Set RCTRL to PROM */
3090 		tempval = gfar_read(&regs->rctrl);
3091 		tempval |= RCTRL_PROM;
3092 		gfar_write(&regs->rctrl, tempval);
3093 	} else {
3094 		/* Set RCTRL to not PROM */
3095 		tempval = gfar_read(&regs->rctrl);
3096 		tempval &= ~(RCTRL_PROM);
3097 		gfar_write(&regs->rctrl, tempval);
3098 	}
3099 
3100 	if (dev->flags & IFF_ALLMULTI) {
3101 		/* Set the hash to rx all multicast frames */
3102 		gfar_write(&regs->igaddr0, 0xffffffff);
3103 		gfar_write(&regs->igaddr1, 0xffffffff);
3104 		gfar_write(&regs->igaddr2, 0xffffffff);
3105 		gfar_write(&regs->igaddr3, 0xffffffff);
3106 		gfar_write(&regs->igaddr4, 0xffffffff);
3107 		gfar_write(&regs->igaddr5, 0xffffffff);
3108 		gfar_write(&regs->igaddr6, 0xffffffff);
3109 		gfar_write(&regs->igaddr7, 0xffffffff);
3110 		gfar_write(&regs->gaddr0, 0xffffffff);
3111 		gfar_write(&regs->gaddr1, 0xffffffff);
3112 		gfar_write(&regs->gaddr2, 0xffffffff);
3113 		gfar_write(&regs->gaddr3, 0xffffffff);
3114 		gfar_write(&regs->gaddr4, 0xffffffff);
3115 		gfar_write(&regs->gaddr5, 0xffffffff);
3116 		gfar_write(&regs->gaddr6, 0xffffffff);
3117 		gfar_write(&regs->gaddr7, 0xffffffff);
3118 	} else {
3119 		int em_num;
3120 		int idx;
3121 
3122 		/* zero out the hash */
3123 		gfar_write(&regs->igaddr0, 0x0);
3124 		gfar_write(&regs->igaddr1, 0x0);
3125 		gfar_write(&regs->igaddr2, 0x0);
3126 		gfar_write(&regs->igaddr3, 0x0);
3127 		gfar_write(&regs->igaddr4, 0x0);
3128 		gfar_write(&regs->igaddr5, 0x0);
3129 		gfar_write(&regs->igaddr6, 0x0);
3130 		gfar_write(&regs->igaddr7, 0x0);
3131 		gfar_write(&regs->gaddr0, 0x0);
3132 		gfar_write(&regs->gaddr1, 0x0);
3133 		gfar_write(&regs->gaddr2, 0x0);
3134 		gfar_write(&regs->gaddr3, 0x0);
3135 		gfar_write(&regs->gaddr4, 0x0);
3136 		gfar_write(&regs->gaddr5, 0x0);
3137 		gfar_write(&regs->gaddr6, 0x0);
3138 		gfar_write(&regs->gaddr7, 0x0);
3139 
3140 		/* If we have extended hash tables, we need to
3141 		 * clear the exact match registers to prepare for
3142 		 * setting them
3143 		 */
3144 		if (priv->extended_hash) {
3145 			em_num = GFAR_EM_NUM + 1;
3146 			gfar_clear_exact_match(dev);
3147 			idx = 1;
3148 		} else {
3149 			idx = 0;
3150 			em_num = 0;
3151 		}
3152 
3153 		if (netdev_mc_empty(dev))
3154 			return;
3155 
3156 		/* Parse the list, and set the appropriate bits */
3157 		netdev_for_each_mc_addr(ha, dev) {
3158 			if (idx < em_num) {
3159 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3160 				idx++;
3161 			} else
3162 				gfar_set_hash_for_addr(dev, ha->addr);
3163 		}
3164 	}
3165 }
3166 
3167 void gfar_mac_reset(struct gfar_private *priv)
3168 {
3169 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3170 	u32 tempval;
3171 
3172 	/* Reset MAC layer */
3173 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3174 
3175 	/* We need to delay at least 3 TX clocks */
3176 	udelay(3);
3177 
3178 	/* the soft reset bit is not self-resetting, so we need to
3179 	 * clear it before resuming normal operation
3180 	 */
3181 	gfar_write(&regs->maccfg1, 0);
3182 
3183 	udelay(3);
3184 
3185 	gfar_rx_offload_en(priv);
3186 
3187 	/* Initialize the max receive frame/buffer lengths */
3188 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3189 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3190 
3191 	/* Initialize the Minimum Frame Length Register */
3192 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3193 
3194 	/* Initialize MACCFG2. */
3195 	tempval = MACCFG2_INIT_SETTINGS;
3196 
3197 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3198 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3199 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3200 	 */
3201 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3202 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3203 
3204 	gfar_write(&regs->maccfg2, tempval);
3205 
3206 	/* Clear mac addr hash registers */
3207 	gfar_write(&regs->igaddr0, 0);
3208 	gfar_write(&regs->igaddr1, 0);
3209 	gfar_write(&regs->igaddr2, 0);
3210 	gfar_write(&regs->igaddr3, 0);
3211 	gfar_write(&regs->igaddr4, 0);
3212 	gfar_write(&regs->igaddr5, 0);
3213 	gfar_write(&regs->igaddr6, 0);
3214 	gfar_write(&regs->igaddr7, 0);
3215 
3216 	gfar_write(&regs->gaddr0, 0);
3217 	gfar_write(&regs->gaddr1, 0);
3218 	gfar_write(&regs->gaddr2, 0);
3219 	gfar_write(&regs->gaddr3, 0);
3220 	gfar_write(&regs->gaddr4, 0);
3221 	gfar_write(&regs->gaddr5, 0);
3222 	gfar_write(&regs->gaddr6, 0);
3223 	gfar_write(&regs->gaddr7, 0);
3224 
3225 	if (priv->extended_hash)
3226 		gfar_clear_exact_match(priv->ndev);
3227 
3228 	gfar_mac_rx_config(priv);
3229 
3230 	gfar_mac_tx_config(priv);
3231 
3232 	gfar_set_mac_address(priv->ndev);
3233 
3234 	gfar_set_multi(priv->ndev);
3235 
3236 	/* clear ievent and imask before configuring coalescing */
3237 	gfar_ints_disable(priv);
3238 
3239 	/* Configure the coalescing support */
3240 	gfar_configure_coalescing_all(priv);
3241 }
3242 
3243 static void gfar_hw_init(struct gfar_private *priv)
3244 {
3245 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3246 	u32 attrs;
3247 
3248 	/* Stop the DMA engine now, in case it was running before
3249 	 * (The firmware could have used it, and left it running).
3250 	 */
3251 	gfar_halt(priv);
3252 
3253 	gfar_mac_reset(priv);
3254 
3255 	/* Zero out the rmon mib registers if it has them */
3256 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3257 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3258 
3259 		/* Mask off the CAM interrupts */
3260 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3261 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3262 	}
3263 
3264 	/* Initialize ECNTRL */
3265 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3266 
3267 	/* Set the extraction length and index */
3268 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3269 		ATTRELI_EI(priv->rx_stash_index);
3270 
3271 	gfar_write(&regs->attreli, attrs);
3272 
3273 	/* Start with defaults, and add stashing
3274 	 * depending on driver parameters
3275 	 */
3276 	attrs = ATTR_INIT_SETTINGS;
3277 
3278 	if (priv->bd_stash_en)
3279 		attrs |= ATTR_BDSTASH;
3280 
3281 	if (priv->rx_stash_size != 0)
3282 		attrs |= ATTR_BUFSTASH;
3283 
3284 	gfar_write(&regs->attr, attrs);
3285 
3286 	/* FIFO configs */
3287 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3288 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3289 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3290 
3291 	/* Program the interrupt steering regs, only for MG devices */
3292 	if (priv->num_grps > 1)
3293 		gfar_write_isrg(priv);
3294 }
3295 
3296 static const struct net_device_ops gfar_netdev_ops = {
3297 	.ndo_open = gfar_enet_open,
3298 	.ndo_start_xmit = gfar_start_xmit,
3299 	.ndo_stop = gfar_close,
3300 	.ndo_change_mtu = gfar_change_mtu,
3301 	.ndo_set_features = gfar_set_features,
3302 	.ndo_set_rx_mode = gfar_set_multi,
3303 	.ndo_tx_timeout = gfar_timeout,
3304 	.ndo_do_ioctl = gfar_ioctl,
3305 	.ndo_get_stats = gfar_get_stats,
3306 	.ndo_change_carrier = fixed_phy_change_carrier,
3307 	.ndo_set_mac_address = gfar_set_mac_addr,
3308 	.ndo_validate_addr = eth_validate_addr,
3309 #ifdef CONFIG_NET_POLL_CONTROLLER
3310 	.ndo_poll_controller = gfar_netpoll,
3311 #endif
3312 };
3313 
3314 /* Set up the ethernet device structure, private data,
3315  * and anything else we need before we start
3316  */
3317 static int gfar_probe(struct platform_device *ofdev)
3318 {
3319 	struct device_node *np = ofdev->dev.of_node;
3320 	struct net_device *dev = NULL;
3321 	struct gfar_private *priv = NULL;
3322 	int err = 0, i;
3323 
3324 	err = gfar_of_init(ofdev, &dev);
3325 
3326 	if (err)
3327 		return err;
3328 
3329 	priv = netdev_priv(dev);
3330 	priv->ndev = dev;
3331 	priv->ofdev = ofdev;
3332 	priv->dev = &ofdev->dev;
3333 	SET_NETDEV_DEV(dev, &ofdev->dev);
3334 
3335 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3336 
3337 	platform_set_drvdata(ofdev, priv);
3338 
3339 	gfar_detect_errata(priv);
3340 
3341 	/* Set the dev->base_addr to the gfar reg region */
3342 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3343 
3344 	/* Fill in the dev structure */
3345 	dev->watchdog_timeo = TX_TIMEOUT;
3346 	/* MTU range: 50 - 9586 */
3347 	dev->mtu = 1500;
3348 	dev->min_mtu = 50;
3349 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3350 	dev->netdev_ops = &gfar_netdev_ops;
3351 	dev->ethtool_ops = &gfar_ethtool_ops;
3352 
3353 	/* Register for napi ...We are registering NAPI for each grp */
3354 	for (i = 0; i < priv->num_grps; i++) {
3355 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3356 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3357 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3358 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3359 				       gfar_poll_tx_sq, 2);
3360 		} else {
3361 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3362 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3363 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3364 				       gfar_poll_tx, 2);
3365 		}
3366 	}
3367 
3368 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3369 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3370 				   NETIF_F_RXCSUM;
3371 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3372 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3373 	}
3374 
3375 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3376 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3377 				    NETIF_F_HW_VLAN_CTAG_RX;
3378 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3379 	}
3380 
3381 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3382 
3383 	gfar_init_addr_hash_table(priv);
3384 
3385 	/* Insert receive time stamps into padding alignment bytes, and
3386 	 * plus 2 bytes padding to ensure the cpu alignment.
3387 	 */
3388 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3389 		priv->padding = 8 + DEFAULT_PADDING;
3390 
3391 	if (dev->features & NETIF_F_IP_CSUM ||
3392 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3393 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3394 
3395 	/* Initializing some of the rx/tx queue level parameters */
3396 	for (i = 0; i < priv->num_tx_queues; i++) {
3397 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3398 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3399 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3400 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3401 	}
3402 
3403 	for (i = 0; i < priv->num_rx_queues; i++) {
3404 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3405 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3406 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3407 	}
3408 
3409 	/* Always enable rx filer if available */
3410 	priv->rx_filer_enable =
3411 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3412 	/* Enable most messages by default */
3413 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3414 	/* use pritority h/w tx queue scheduling for single queue devices */
3415 	if (priv->num_tx_queues == 1)
3416 		priv->prio_sched_en = 1;
3417 
3418 	set_bit(GFAR_DOWN, &priv->state);
3419 
3420 	gfar_hw_init(priv);
3421 
3422 	/* Carrier starts down, phylib will bring it up */
3423 	netif_carrier_off(dev);
3424 
3425 	err = register_netdev(dev);
3426 
3427 	if (err) {
3428 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3429 		goto register_fail;
3430 	}
3431 
3432 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3433 		priv->wol_supported |= GFAR_WOL_MAGIC;
3434 
3435 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3436 	    priv->rx_filer_enable)
3437 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3438 
3439 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3440 
3441 	/* fill out IRQ number and name fields */
3442 	for (i = 0; i < priv->num_grps; i++) {
3443 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3444 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3445 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3446 				dev->name, "_g", '0' + i, "_tx");
3447 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3448 				dev->name, "_g", '0' + i, "_rx");
3449 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3450 				dev->name, "_g", '0' + i, "_er");
3451 		} else
3452 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3453 	}
3454 
3455 	/* Initialize the filer table */
3456 	gfar_init_filer_table(priv);
3457 
3458 	/* Print out the device info */
3459 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3460 
3461 	/* Even more device info helps when determining which kernel
3462 	 * provided which set of benchmarks.
3463 	 */
3464 	netdev_info(dev, "Running with NAPI enabled\n");
3465 	for (i = 0; i < priv->num_rx_queues; i++)
3466 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3467 			    i, priv->rx_queue[i]->rx_ring_size);
3468 	for (i = 0; i < priv->num_tx_queues; i++)
3469 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3470 			    i, priv->tx_queue[i]->tx_ring_size);
3471 
3472 	return 0;
3473 
3474 register_fail:
3475 	if (of_phy_is_fixed_link(np))
3476 		of_phy_deregister_fixed_link(np);
3477 	unmap_group_regs(priv);
3478 	gfar_free_rx_queues(priv);
3479 	gfar_free_tx_queues(priv);
3480 	of_node_put(priv->phy_node);
3481 	of_node_put(priv->tbi_node);
3482 	free_gfar_dev(priv);
3483 	return err;
3484 }
3485 
3486 static int gfar_remove(struct platform_device *ofdev)
3487 {
3488 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3489 	struct device_node *np = ofdev->dev.of_node;
3490 
3491 	of_node_put(priv->phy_node);
3492 	of_node_put(priv->tbi_node);
3493 
3494 	unregister_netdev(priv->ndev);
3495 
3496 	if (of_phy_is_fixed_link(np))
3497 		of_phy_deregister_fixed_link(np);
3498 
3499 	unmap_group_regs(priv);
3500 	gfar_free_rx_queues(priv);
3501 	gfar_free_tx_queues(priv);
3502 	free_gfar_dev(priv);
3503 
3504 	return 0;
3505 }
3506 
3507 #ifdef CONFIG_PM
3508 
3509 static void __gfar_filer_disable(struct gfar_private *priv)
3510 {
3511 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3512 	u32 temp;
3513 
3514 	temp = gfar_read(&regs->rctrl);
3515 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3516 	gfar_write(&regs->rctrl, temp);
3517 }
3518 
3519 static void __gfar_filer_enable(struct gfar_private *priv)
3520 {
3521 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3522 	u32 temp;
3523 
3524 	temp = gfar_read(&regs->rctrl);
3525 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3526 	gfar_write(&regs->rctrl, temp);
3527 }
3528 
3529 /* Filer rules implementing wol capabilities */
3530 static void gfar_filer_config_wol(struct gfar_private *priv)
3531 {
3532 	unsigned int i;
3533 	u32 rqfcr;
3534 
3535 	__gfar_filer_disable(priv);
3536 
3537 	/* clear the filer table, reject any packet by default */
3538 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3539 	for (i = 0; i <= MAX_FILER_IDX; i++)
3540 		gfar_write_filer(priv, i, rqfcr, 0);
3541 
3542 	i = 0;
3543 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3544 		/* unicast packet, accept it */
3545 		struct net_device *ndev = priv->ndev;
3546 		/* get the default rx queue index */
3547 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3548 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3549 				    (ndev->dev_addr[1] << 8) |
3550 				     ndev->dev_addr[2];
3551 
3552 		rqfcr = (qindex << 10) | RQFCR_AND |
3553 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3554 
3555 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3556 
3557 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3558 				(ndev->dev_addr[4] << 8) |
3559 				 ndev->dev_addr[5];
3560 		rqfcr = (qindex << 10) | RQFCR_GPI |
3561 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3562 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3563 	}
3564 
3565 	__gfar_filer_enable(priv);
3566 }
3567 
3568 static void gfar_filer_restore_table(struct gfar_private *priv)
3569 {
3570 	u32 rqfcr, rqfpr;
3571 	unsigned int i;
3572 
3573 	__gfar_filer_disable(priv);
3574 
3575 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3576 		rqfcr = priv->ftp_rqfcr[i];
3577 		rqfpr = priv->ftp_rqfpr[i];
3578 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3579 	}
3580 
3581 	__gfar_filer_enable(priv);
3582 }
3583 
3584 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3585 static void gfar_start_wol_filer(struct gfar_private *priv)
3586 {
3587 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3588 	u32 tempval;
3589 	int i = 0;
3590 
3591 	/* Enable Rx hw queues */
3592 	gfar_write(&regs->rqueue, priv->rqueue);
3593 
3594 	/* Initialize DMACTRL to have WWR and WOP */
3595 	tempval = gfar_read(&regs->dmactrl);
3596 	tempval |= DMACTRL_INIT_SETTINGS;
3597 	gfar_write(&regs->dmactrl, tempval);
3598 
3599 	/* Make sure we aren't stopped */
3600 	tempval = gfar_read(&regs->dmactrl);
3601 	tempval &= ~DMACTRL_GRS;
3602 	gfar_write(&regs->dmactrl, tempval);
3603 
3604 	for (i = 0; i < priv->num_grps; i++) {
3605 		regs = priv->gfargrp[i].regs;
3606 		/* Clear RHLT, so that the DMA starts polling now */
3607 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3608 		/* enable the Filer General Purpose Interrupt */
3609 		gfar_write(&regs->imask, IMASK_FGPI);
3610 	}
3611 
3612 	/* Enable Rx DMA */
3613 	tempval = gfar_read(&regs->maccfg1);
3614 	tempval |= MACCFG1_RX_EN;
3615 	gfar_write(&regs->maccfg1, tempval);
3616 }
3617 
3618 static int gfar_suspend(struct device *dev)
3619 {
3620 	struct gfar_private *priv = dev_get_drvdata(dev);
3621 	struct net_device *ndev = priv->ndev;
3622 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3623 	u32 tempval;
3624 	u16 wol = priv->wol_opts;
3625 
3626 	if (!netif_running(ndev))
3627 		return 0;
3628 
3629 	disable_napi(priv);
3630 	netif_tx_lock(ndev);
3631 	netif_device_detach(ndev);
3632 	netif_tx_unlock(ndev);
3633 
3634 	gfar_halt(priv);
3635 
3636 	if (wol & GFAR_WOL_MAGIC) {
3637 		/* Enable interrupt on Magic Packet */
3638 		gfar_write(&regs->imask, IMASK_MAG);
3639 
3640 		/* Enable Magic Packet mode */
3641 		tempval = gfar_read(&regs->maccfg2);
3642 		tempval |= MACCFG2_MPEN;
3643 		gfar_write(&regs->maccfg2, tempval);
3644 
3645 		/* re-enable the Rx block */
3646 		tempval = gfar_read(&regs->maccfg1);
3647 		tempval |= MACCFG1_RX_EN;
3648 		gfar_write(&regs->maccfg1, tempval);
3649 
3650 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3651 		gfar_filer_config_wol(priv);
3652 		gfar_start_wol_filer(priv);
3653 
3654 	} else {
3655 		phy_stop(ndev->phydev);
3656 	}
3657 
3658 	return 0;
3659 }
3660 
3661 static int gfar_resume(struct device *dev)
3662 {
3663 	struct gfar_private *priv = dev_get_drvdata(dev);
3664 	struct net_device *ndev = priv->ndev;
3665 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3666 	u32 tempval;
3667 	u16 wol = priv->wol_opts;
3668 
3669 	if (!netif_running(ndev))
3670 		return 0;
3671 
3672 	if (wol & GFAR_WOL_MAGIC) {
3673 		/* Disable Magic Packet mode */
3674 		tempval = gfar_read(&regs->maccfg2);
3675 		tempval &= ~MACCFG2_MPEN;
3676 		gfar_write(&regs->maccfg2, tempval);
3677 
3678 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3679 		/* need to stop rx only, tx is already down */
3680 		gfar_halt(priv);
3681 		gfar_filer_restore_table(priv);
3682 
3683 	} else {
3684 		phy_start(ndev->phydev);
3685 	}
3686 
3687 	gfar_start(priv);
3688 
3689 	netif_device_attach(ndev);
3690 	enable_napi(priv);
3691 
3692 	return 0;
3693 }
3694 
3695 static int gfar_restore(struct device *dev)
3696 {
3697 	struct gfar_private *priv = dev_get_drvdata(dev);
3698 	struct net_device *ndev = priv->ndev;
3699 
3700 	if (!netif_running(ndev)) {
3701 		netif_device_attach(ndev);
3702 
3703 		return 0;
3704 	}
3705 
3706 	gfar_init_bds(ndev);
3707 
3708 	gfar_mac_reset(priv);
3709 
3710 	gfar_init_tx_rx_base(priv);
3711 
3712 	gfar_start(priv);
3713 
3714 	priv->oldlink = 0;
3715 	priv->oldspeed = 0;
3716 	priv->oldduplex = -1;
3717 
3718 	if (ndev->phydev)
3719 		phy_start(ndev->phydev);
3720 
3721 	netif_device_attach(ndev);
3722 	enable_napi(priv);
3723 
3724 	return 0;
3725 }
3726 
3727 static const struct dev_pm_ops gfar_pm_ops = {
3728 	.suspend = gfar_suspend,
3729 	.resume = gfar_resume,
3730 	.freeze = gfar_suspend,
3731 	.thaw = gfar_resume,
3732 	.restore = gfar_restore,
3733 };
3734 
3735 #define GFAR_PM_OPS (&gfar_pm_ops)
3736 
3737 #else
3738 
3739 #define GFAR_PM_OPS NULL
3740 
3741 #endif
3742 
3743 static const struct of_device_id gfar_match[] =
3744 {
3745 	{
3746 		.type = "network",
3747 		.compatible = "gianfar",
3748 	},
3749 	{
3750 		.compatible = "fsl,etsec2",
3751 	},
3752 	{},
3753 };
3754 MODULE_DEVICE_TABLE(of, gfar_match);
3755 
3756 /* Structure for a device driver */
3757 static struct platform_driver gfar_driver = {
3758 	.driver = {
3759 		.name = "fsl-gianfar",
3760 		.pm = GFAR_PM_OPS,
3761 		.of_match_table = gfar_match,
3762 	},
3763 	.probe = gfar_probe,
3764 	.remove = gfar_remove,
3765 };
3766 
3767 module_platform_driver(gfar_driver);
3768