1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #ifdef CONFIG_PPC 92 #include <asm/reg.h> 93 #include <asm/mpc85xx.h> 94 #endif 95 #include <asm/irq.h> 96 #include <asm/uaccess.h> 97 #include <linux/module.h> 98 #include <linux/dma-mapping.h> 99 #include <linux/crc32.h> 100 #include <linux/mii.h> 101 #include <linux/phy.h> 102 #include <linux/phy_fixed.h> 103 #include <linux/of.h> 104 #include <linux/of_net.h> 105 #include <linux/of_address.h> 106 #include <linux/of_irq.h> 107 108 #include "gianfar.h" 109 110 #define TX_TIMEOUT (1*HZ) 111 112 const char gfar_driver_version[] = "1.3"; 113 114 static int gfar_enet_open(struct net_device *dev); 115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 116 static void gfar_reset_task(struct work_struct *work); 117 static void gfar_timeout(struct net_device *dev); 118 static int gfar_close(struct net_device *dev); 119 struct sk_buff *gfar_new_skb(struct net_device *dev); 120 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 121 struct sk_buff *skb); 122 static int gfar_set_mac_address(struct net_device *dev); 123 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 124 static irqreturn_t gfar_error(int irq, void *dev_id); 125 static irqreturn_t gfar_transmit(int irq, void *dev_id); 126 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 127 static void adjust_link(struct net_device *dev); 128 static noinline void gfar_update_link_state(struct gfar_private *priv); 129 static int init_phy(struct net_device *dev); 130 static int gfar_probe(struct platform_device *ofdev); 131 static int gfar_remove(struct platform_device *ofdev); 132 static void free_skb_resources(struct gfar_private *priv); 133 static void gfar_set_multi(struct net_device *dev); 134 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 135 static void gfar_configure_serdes(struct net_device *dev); 136 static int gfar_poll_rx(struct napi_struct *napi, int budget); 137 static int gfar_poll_tx(struct napi_struct *napi, int budget); 138 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 139 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 140 #ifdef CONFIG_NET_POLL_CONTROLLER 141 static void gfar_netpoll(struct net_device *dev); 142 #endif 143 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 144 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 145 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 146 int amount_pull, struct napi_struct *napi); 147 static void gfar_halt_nodisable(struct gfar_private *priv); 148 static void gfar_clear_exact_match(struct net_device *dev); 149 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 150 const u8 *addr); 151 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 152 153 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 154 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 155 MODULE_LICENSE("GPL"); 156 157 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 158 dma_addr_t buf) 159 { 160 u32 lstatus; 161 162 bdp->bufPtr = buf; 163 164 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 165 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 166 lstatus |= BD_LFLAG(RXBD_WRAP); 167 168 gfar_wmb(); 169 170 bdp->lstatus = lstatus; 171 } 172 173 static int gfar_init_bds(struct net_device *ndev) 174 { 175 struct gfar_private *priv = netdev_priv(ndev); 176 struct gfar_priv_tx_q *tx_queue = NULL; 177 struct gfar_priv_rx_q *rx_queue = NULL; 178 struct txbd8 *txbdp; 179 struct rxbd8 *rxbdp; 180 int i, j; 181 182 for (i = 0; i < priv->num_tx_queues; i++) { 183 tx_queue = priv->tx_queue[i]; 184 /* Initialize some variables in our dev structure */ 185 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 186 tx_queue->dirty_tx = tx_queue->tx_bd_base; 187 tx_queue->cur_tx = tx_queue->tx_bd_base; 188 tx_queue->skb_curtx = 0; 189 tx_queue->skb_dirtytx = 0; 190 191 /* Initialize Transmit Descriptor Ring */ 192 txbdp = tx_queue->tx_bd_base; 193 for (j = 0; j < tx_queue->tx_ring_size; j++) { 194 txbdp->lstatus = 0; 195 txbdp->bufPtr = 0; 196 txbdp++; 197 } 198 199 /* Set the last descriptor in the ring to indicate wrap */ 200 txbdp--; 201 txbdp->status |= TXBD_WRAP; 202 } 203 204 for (i = 0; i < priv->num_rx_queues; i++) { 205 rx_queue = priv->rx_queue[i]; 206 rx_queue->cur_rx = rx_queue->rx_bd_base; 207 rx_queue->skb_currx = 0; 208 rxbdp = rx_queue->rx_bd_base; 209 210 for (j = 0; j < rx_queue->rx_ring_size; j++) { 211 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 212 213 if (skb) { 214 gfar_init_rxbdp(rx_queue, rxbdp, 215 rxbdp->bufPtr); 216 } else { 217 skb = gfar_new_skb(ndev); 218 if (!skb) { 219 netdev_err(ndev, "Can't allocate RX buffers\n"); 220 return -ENOMEM; 221 } 222 rx_queue->rx_skbuff[j] = skb; 223 224 gfar_new_rxbdp(rx_queue, rxbdp, skb); 225 } 226 227 rxbdp++; 228 } 229 230 } 231 232 return 0; 233 } 234 235 static int gfar_alloc_skb_resources(struct net_device *ndev) 236 { 237 void *vaddr; 238 dma_addr_t addr; 239 int i, j, k; 240 struct gfar_private *priv = netdev_priv(ndev); 241 struct device *dev = priv->dev; 242 struct gfar_priv_tx_q *tx_queue = NULL; 243 struct gfar_priv_rx_q *rx_queue = NULL; 244 245 priv->total_tx_ring_size = 0; 246 for (i = 0; i < priv->num_tx_queues; i++) 247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 248 249 priv->total_rx_ring_size = 0; 250 for (i = 0; i < priv->num_rx_queues; i++) 251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 252 253 /* Allocate memory for the buffer descriptors */ 254 vaddr = dma_alloc_coherent(dev, 255 (priv->total_tx_ring_size * 256 sizeof(struct txbd8)) + 257 (priv->total_rx_ring_size * 258 sizeof(struct rxbd8)), 259 &addr, GFP_KERNEL); 260 if (!vaddr) 261 return -ENOMEM; 262 263 for (i = 0; i < priv->num_tx_queues; i++) { 264 tx_queue = priv->tx_queue[i]; 265 tx_queue->tx_bd_base = vaddr; 266 tx_queue->tx_bd_dma_base = addr; 267 tx_queue->dev = ndev; 268 /* enet DMA only understands physical addresses */ 269 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 270 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 271 } 272 273 /* Start the rx descriptor ring where the tx ring leaves off */ 274 for (i = 0; i < priv->num_rx_queues; i++) { 275 rx_queue = priv->rx_queue[i]; 276 rx_queue->rx_bd_base = vaddr; 277 rx_queue->rx_bd_dma_base = addr; 278 rx_queue->dev = ndev; 279 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 280 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 281 } 282 283 /* Setup the skbuff rings */ 284 for (i = 0; i < priv->num_tx_queues; i++) { 285 tx_queue = priv->tx_queue[i]; 286 tx_queue->tx_skbuff = 287 kmalloc_array(tx_queue->tx_ring_size, 288 sizeof(*tx_queue->tx_skbuff), 289 GFP_KERNEL); 290 if (!tx_queue->tx_skbuff) 291 goto cleanup; 292 293 for (k = 0; k < tx_queue->tx_ring_size; k++) 294 tx_queue->tx_skbuff[k] = NULL; 295 } 296 297 for (i = 0; i < priv->num_rx_queues; i++) { 298 rx_queue = priv->rx_queue[i]; 299 rx_queue->rx_skbuff = 300 kmalloc_array(rx_queue->rx_ring_size, 301 sizeof(*rx_queue->rx_skbuff), 302 GFP_KERNEL); 303 if (!rx_queue->rx_skbuff) 304 goto cleanup; 305 306 for (j = 0; j < rx_queue->rx_ring_size; j++) 307 rx_queue->rx_skbuff[j] = NULL; 308 } 309 310 if (gfar_init_bds(ndev)) 311 goto cleanup; 312 313 return 0; 314 315 cleanup: 316 free_skb_resources(priv); 317 return -ENOMEM; 318 } 319 320 static void gfar_init_tx_rx_base(struct gfar_private *priv) 321 { 322 struct gfar __iomem *regs = priv->gfargrp[0].regs; 323 u32 __iomem *baddr; 324 int i; 325 326 baddr = ®s->tbase0; 327 for (i = 0; i < priv->num_tx_queues; i++) { 328 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 329 baddr += 2; 330 } 331 332 baddr = ®s->rbase0; 333 for (i = 0; i < priv->num_rx_queues; i++) { 334 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 335 baddr += 2; 336 } 337 } 338 339 static void gfar_rx_buff_size_config(struct gfar_private *priv) 340 { 341 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN; 342 343 /* set this when rx hw offload (TOE) functions are being used */ 344 priv->uses_rxfcb = 0; 345 346 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 347 priv->uses_rxfcb = 1; 348 349 if (priv->hwts_rx_en) 350 priv->uses_rxfcb = 1; 351 352 if (priv->uses_rxfcb) 353 frame_size += GMAC_FCB_LEN; 354 355 frame_size += priv->padding; 356 357 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 358 INCREMENTAL_BUFFER_SIZE; 359 360 priv->rx_buffer_size = frame_size; 361 } 362 363 static void gfar_mac_rx_config(struct gfar_private *priv) 364 { 365 struct gfar __iomem *regs = priv->gfargrp[0].regs; 366 u32 rctrl = 0; 367 368 if (priv->rx_filer_enable) { 369 rctrl |= RCTRL_FILREN; 370 /* Program the RIR0 reg with the required distribution */ 371 if (priv->poll_mode == GFAR_SQ_POLLING) 372 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 373 else /* GFAR_MQ_POLLING */ 374 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 375 } 376 377 /* Restore PROMISC mode */ 378 if (priv->ndev->flags & IFF_PROMISC) 379 rctrl |= RCTRL_PROM; 380 381 if (priv->ndev->features & NETIF_F_RXCSUM) 382 rctrl |= RCTRL_CHECKSUMMING; 383 384 if (priv->extended_hash) 385 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 386 387 if (priv->padding) { 388 rctrl &= ~RCTRL_PAL_MASK; 389 rctrl |= RCTRL_PADDING(priv->padding); 390 } 391 392 /* Enable HW time stamping if requested from user space */ 393 if (priv->hwts_rx_en) 394 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 395 396 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 397 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 398 399 /* Init rctrl based on our settings */ 400 gfar_write(®s->rctrl, rctrl); 401 } 402 403 static void gfar_mac_tx_config(struct gfar_private *priv) 404 { 405 struct gfar __iomem *regs = priv->gfargrp[0].regs; 406 u32 tctrl = 0; 407 408 if (priv->ndev->features & NETIF_F_IP_CSUM) 409 tctrl |= TCTRL_INIT_CSUM; 410 411 if (priv->prio_sched_en) 412 tctrl |= TCTRL_TXSCHED_PRIO; 413 else { 414 tctrl |= TCTRL_TXSCHED_WRRS; 415 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 416 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 417 } 418 419 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 420 tctrl |= TCTRL_VLINS; 421 422 gfar_write(®s->tctrl, tctrl); 423 } 424 425 static void gfar_configure_coalescing(struct gfar_private *priv, 426 unsigned long tx_mask, unsigned long rx_mask) 427 { 428 struct gfar __iomem *regs = priv->gfargrp[0].regs; 429 u32 __iomem *baddr; 430 431 if (priv->mode == MQ_MG_MODE) { 432 int i = 0; 433 434 baddr = ®s->txic0; 435 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 436 gfar_write(baddr + i, 0); 437 if (likely(priv->tx_queue[i]->txcoalescing)) 438 gfar_write(baddr + i, priv->tx_queue[i]->txic); 439 } 440 441 baddr = ®s->rxic0; 442 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 443 gfar_write(baddr + i, 0); 444 if (likely(priv->rx_queue[i]->rxcoalescing)) 445 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 446 } 447 } else { 448 /* Backward compatible case -- even if we enable 449 * multiple queues, there's only single reg to program 450 */ 451 gfar_write(®s->txic, 0); 452 if (likely(priv->tx_queue[0]->txcoalescing)) 453 gfar_write(®s->txic, priv->tx_queue[0]->txic); 454 455 gfar_write(®s->rxic, 0); 456 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 457 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 458 } 459 } 460 461 void gfar_configure_coalescing_all(struct gfar_private *priv) 462 { 463 gfar_configure_coalescing(priv, 0xFF, 0xFF); 464 } 465 466 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 467 { 468 struct gfar_private *priv = netdev_priv(dev); 469 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 470 unsigned long tx_packets = 0, tx_bytes = 0; 471 int i; 472 473 for (i = 0; i < priv->num_rx_queues; i++) { 474 rx_packets += priv->rx_queue[i]->stats.rx_packets; 475 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 476 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 477 } 478 479 dev->stats.rx_packets = rx_packets; 480 dev->stats.rx_bytes = rx_bytes; 481 dev->stats.rx_dropped = rx_dropped; 482 483 for (i = 0; i < priv->num_tx_queues; i++) { 484 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 485 tx_packets += priv->tx_queue[i]->stats.tx_packets; 486 } 487 488 dev->stats.tx_bytes = tx_bytes; 489 dev->stats.tx_packets = tx_packets; 490 491 return &dev->stats; 492 } 493 494 static const struct net_device_ops gfar_netdev_ops = { 495 .ndo_open = gfar_enet_open, 496 .ndo_start_xmit = gfar_start_xmit, 497 .ndo_stop = gfar_close, 498 .ndo_change_mtu = gfar_change_mtu, 499 .ndo_set_features = gfar_set_features, 500 .ndo_set_rx_mode = gfar_set_multi, 501 .ndo_tx_timeout = gfar_timeout, 502 .ndo_do_ioctl = gfar_ioctl, 503 .ndo_get_stats = gfar_get_stats, 504 .ndo_set_mac_address = eth_mac_addr, 505 .ndo_validate_addr = eth_validate_addr, 506 #ifdef CONFIG_NET_POLL_CONTROLLER 507 .ndo_poll_controller = gfar_netpoll, 508 #endif 509 }; 510 511 static void gfar_ints_disable(struct gfar_private *priv) 512 { 513 int i; 514 for (i = 0; i < priv->num_grps; i++) { 515 struct gfar __iomem *regs = priv->gfargrp[i].regs; 516 /* Clear IEVENT */ 517 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 518 519 /* Initialize IMASK */ 520 gfar_write(®s->imask, IMASK_INIT_CLEAR); 521 } 522 } 523 524 static void gfar_ints_enable(struct gfar_private *priv) 525 { 526 int i; 527 for (i = 0; i < priv->num_grps; i++) { 528 struct gfar __iomem *regs = priv->gfargrp[i].regs; 529 /* Unmask the interrupts we look for */ 530 gfar_write(®s->imask, IMASK_DEFAULT); 531 } 532 } 533 534 void lock_tx_qs(struct gfar_private *priv) 535 { 536 int i; 537 538 for (i = 0; i < priv->num_tx_queues; i++) 539 spin_lock(&priv->tx_queue[i]->txlock); 540 } 541 542 void unlock_tx_qs(struct gfar_private *priv) 543 { 544 int i; 545 546 for (i = 0; i < priv->num_tx_queues; i++) 547 spin_unlock(&priv->tx_queue[i]->txlock); 548 } 549 550 static int gfar_alloc_tx_queues(struct gfar_private *priv) 551 { 552 int i; 553 554 for (i = 0; i < priv->num_tx_queues; i++) { 555 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 556 GFP_KERNEL); 557 if (!priv->tx_queue[i]) 558 return -ENOMEM; 559 560 priv->tx_queue[i]->tx_skbuff = NULL; 561 priv->tx_queue[i]->qindex = i; 562 priv->tx_queue[i]->dev = priv->ndev; 563 spin_lock_init(&(priv->tx_queue[i]->txlock)); 564 } 565 return 0; 566 } 567 568 static int gfar_alloc_rx_queues(struct gfar_private *priv) 569 { 570 int i; 571 572 for (i = 0; i < priv->num_rx_queues; i++) { 573 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 574 GFP_KERNEL); 575 if (!priv->rx_queue[i]) 576 return -ENOMEM; 577 578 priv->rx_queue[i]->rx_skbuff = NULL; 579 priv->rx_queue[i]->qindex = i; 580 priv->rx_queue[i]->dev = priv->ndev; 581 } 582 return 0; 583 } 584 585 static void gfar_free_tx_queues(struct gfar_private *priv) 586 { 587 int i; 588 589 for (i = 0; i < priv->num_tx_queues; i++) 590 kfree(priv->tx_queue[i]); 591 } 592 593 static void gfar_free_rx_queues(struct gfar_private *priv) 594 { 595 int i; 596 597 for (i = 0; i < priv->num_rx_queues; i++) 598 kfree(priv->rx_queue[i]); 599 } 600 601 static void unmap_group_regs(struct gfar_private *priv) 602 { 603 int i; 604 605 for (i = 0; i < MAXGROUPS; i++) 606 if (priv->gfargrp[i].regs) 607 iounmap(priv->gfargrp[i].regs); 608 } 609 610 static void free_gfar_dev(struct gfar_private *priv) 611 { 612 int i, j; 613 614 for (i = 0; i < priv->num_grps; i++) 615 for (j = 0; j < GFAR_NUM_IRQS; j++) { 616 kfree(priv->gfargrp[i].irqinfo[j]); 617 priv->gfargrp[i].irqinfo[j] = NULL; 618 } 619 620 free_netdev(priv->ndev); 621 } 622 623 static void disable_napi(struct gfar_private *priv) 624 { 625 int i; 626 627 for (i = 0; i < priv->num_grps; i++) { 628 napi_disable(&priv->gfargrp[i].napi_rx); 629 napi_disable(&priv->gfargrp[i].napi_tx); 630 } 631 } 632 633 static void enable_napi(struct gfar_private *priv) 634 { 635 int i; 636 637 for (i = 0; i < priv->num_grps; i++) { 638 napi_enable(&priv->gfargrp[i].napi_rx); 639 napi_enable(&priv->gfargrp[i].napi_tx); 640 } 641 } 642 643 static int gfar_parse_group(struct device_node *np, 644 struct gfar_private *priv, const char *model) 645 { 646 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 647 int i; 648 649 for (i = 0; i < GFAR_NUM_IRQS; i++) { 650 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 651 GFP_KERNEL); 652 if (!grp->irqinfo[i]) 653 return -ENOMEM; 654 } 655 656 grp->regs = of_iomap(np, 0); 657 if (!grp->regs) 658 return -ENOMEM; 659 660 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 661 662 /* If we aren't the FEC we have multiple interrupts */ 663 if (model && strcasecmp(model, "FEC")) { 664 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 665 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 666 if (gfar_irq(grp, TX)->irq == NO_IRQ || 667 gfar_irq(grp, RX)->irq == NO_IRQ || 668 gfar_irq(grp, ER)->irq == NO_IRQ) 669 return -EINVAL; 670 } 671 672 grp->priv = priv; 673 spin_lock_init(&grp->grplock); 674 if (priv->mode == MQ_MG_MODE) { 675 u32 *rxq_mask, *txq_mask; 676 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL); 677 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL); 678 679 if (priv->poll_mode == GFAR_SQ_POLLING) { 680 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 681 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 682 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 683 } else { /* GFAR_MQ_POLLING */ 684 grp->rx_bit_map = rxq_mask ? 685 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 686 grp->tx_bit_map = txq_mask ? 687 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 688 } 689 } else { 690 grp->rx_bit_map = 0xFF; 691 grp->tx_bit_map = 0xFF; 692 } 693 694 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 695 * right to left, so we need to revert the 8 bits to get the q index 696 */ 697 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 698 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 699 700 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 701 * also assign queues to groups 702 */ 703 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 704 if (!grp->rx_queue) 705 grp->rx_queue = priv->rx_queue[i]; 706 grp->num_rx_queues++; 707 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 708 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 709 priv->rx_queue[i]->grp = grp; 710 } 711 712 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 713 if (!grp->tx_queue) 714 grp->tx_queue = priv->tx_queue[i]; 715 grp->num_tx_queues++; 716 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 717 priv->tqueue |= (TQUEUE_EN0 >> i); 718 priv->tx_queue[i]->grp = grp; 719 } 720 721 priv->num_grps++; 722 723 return 0; 724 } 725 726 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 727 { 728 const char *model; 729 const char *ctype; 730 const void *mac_addr; 731 int err = 0, i; 732 struct net_device *dev = NULL; 733 struct gfar_private *priv = NULL; 734 struct device_node *np = ofdev->dev.of_node; 735 struct device_node *child = NULL; 736 const u32 *stash; 737 const u32 *stash_len; 738 const u32 *stash_idx; 739 unsigned int num_tx_qs, num_rx_qs; 740 u32 *tx_queues, *rx_queues; 741 unsigned short mode, poll_mode; 742 743 if (!np || !of_device_is_available(np)) 744 return -ENODEV; 745 746 if (of_device_is_compatible(np, "fsl,etsec2")) { 747 mode = MQ_MG_MODE; 748 poll_mode = GFAR_SQ_POLLING; 749 } else { 750 mode = SQ_SG_MODE; 751 poll_mode = GFAR_SQ_POLLING; 752 } 753 754 /* parse the num of HW tx and rx queues */ 755 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 756 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 757 758 if (mode == SQ_SG_MODE) { 759 num_tx_qs = 1; 760 num_rx_qs = 1; 761 } else { /* MQ_MG_MODE */ 762 /* get the actual number of supported groups */ 763 unsigned int num_grps = of_get_available_child_count(np); 764 765 if (num_grps == 0 || num_grps > MAXGROUPS) { 766 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 767 num_grps); 768 pr_err("Cannot do alloc_etherdev, aborting\n"); 769 return -EINVAL; 770 } 771 772 if (poll_mode == GFAR_SQ_POLLING) { 773 num_tx_qs = num_grps; /* one txq per int group */ 774 num_rx_qs = num_grps; /* one rxq per int group */ 775 } else { /* GFAR_MQ_POLLING */ 776 num_tx_qs = tx_queues ? *tx_queues : 1; 777 num_rx_qs = rx_queues ? *rx_queues : 1; 778 } 779 } 780 781 if (num_tx_qs > MAX_TX_QS) { 782 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 783 num_tx_qs, MAX_TX_QS); 784 pr_err("Cannot do alloc_etherdev, aborting\n"); 785 return -EINVAL; 786 } 787 788 if (num_rx_qs > MAX_RX_QS) { 789 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 790 num_rx_qs, MAX_RX_QS); 791 pr_err("Cannot do alloc_etherdev, aborting\n"); 792 return -EINVAL; 793 } 794 795 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 796 dev = *pdev; 797 if (NULL == dev) 798 return -ENOMEM; 799 800 priv = netdev_priv(dev); 801 priv->ndev = dev; 802 803 priv->mode = mode; 804 priv->poll_mode = poll_mode; 805 806 priv->num_tx_queues = num_tx_qs; 807 netif_set_real_num_rx_queues(dev, num_rx_qs); 808 priv->num_rx_queues = num_rx_qs; 809 810 err = gfar_alloc_tx_queues(priv); 811 if (err) 812 goto tx_alloc_failed; 813 814 err = gfar_alloc_rx_queues(priv); 815 if (err) 816 goto rx_alloc_failed; 817 818 /* Init Rx queue filer rule set linked list */ 819 INIT_LIST_HEAD(&priv->rx_list.list); 820 priv->rx_list.count = 0; 821 mutex_init(&priv->rx_queue_access); 822 823 model = of_get_property(np, "model", NULL); 824 825 for (i = 0; i < MAXGROUPS; i++) 826 priv->gfargrp[i].regs = NULL; 827 828 /* Parse and initialize group specific information */ 829 if (priv->mode == MQ_MG_MODE) { 830 for_each_child_of_node(np, child) { 831 err = gfar_parse_group(child, priv, model); 832 if (err) 833 goto err_grp_init; 834 } 835 } else { /* SQ_SG_MODE */ 836 err = gfar_parse_group(np, priv, model); 837 if (err) 838 goto err_grp_init; 839 } 840 841 stash = of_get_property(np, "bd-stash", NULL); 842 843 if (stash) { 844 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 845 priv->bd_stash_en = 1; 846 } 847 848 stash_len = of_get_property(np, "rx-stash-len", NULL); 849 850 if (stash_len) 851 priv->rx_stash_size = *stash_len; 852 853 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 854 855 if (stash_idx) 856 priv->rx_stash_index = *stash_idx; 857 858 if (stash_len || stash_idx) 859 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 860 861 mac_addr = of_get_mac_address(np); 862 863 if (mac_addr) 864 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 865 866 if (model && !strcasecmp(model, "TSEC")) 867 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 868 FSL_GIANFAR_DEV_HAS_COALESCE | 869 FSL_GIANFAR_DEV_HAS_RMON | 870 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 871 872 if (model && !strcasecmp(model, "eTSEC")) 873 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 874 FSL_GIANFAR_DEV_HAS_COALESCE | 875 FSL_GIANFAR_DEV_HAS_RMON | 876 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 877 FSL_GIANFAR_DEV_HAS_CSUM | 878 FSL_GIANFAR_DEV_HAS_VLAN | 879 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 880 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 881 FSL_GIANFAR_DEV_HAS_TIMER; 882 883 ctype = of_get_property(np, "phy-connection-type", NULL); 884 885 /* We only care about rgmii-id. The rest are autodetected */ 886 if (ctype && !strcmp(ctype, "rgmii-id")) 887 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 888 else 889 priv->interface = PHY_INTERFACE_MODE_MII; 890 891 if (of_get_property(np, "fsl,magic-packet", NULL)) 892 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 893 894 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 895 896 /* In the case of a fixed PHY, the DT node associated 897 * to the PHY is the Ethernet MAC DT node. 898 */ 899 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 900 err = of_phy_register_fixed_link(np); 901 if (err) 902 goto err_grp_init; 903 904 priv->phy_node = of_node_get(np); 905 } 906 907 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 908 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 909 910 return 0; 911 912 err_grp_init: 913 unmap_group_regs(priv); 914 rx_alloc_failed: 915 gfar_free_rx_queues(priv); 916 tx_alloc_failed: 917 gfar_free_tx_queues(priv); 918 free_gfar_dev(priv); 919 return err; 920 } 921 922 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 923 { 924 struct hwtstamp_config config; 925 struct gfar_private *priv = netdev_priv(netdev); 926 927 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 928 return -EFAULT; 929 930 /* reserved for future extensions */ 931 if (config.flags) 932 return -EINVAL; 933 934 switch (config.tx_type) { 935 case HWTSTAMP_TX_OFF: 936 priv->hwts_tx_en = 0; 937 break; 938 case HWTSTAMP_TX_ON: 939 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 940 return -ERANGE; 941 priv->hwts_tx_en = 1; 942 break; 943 default: 944 return -ERANGE; 945 } 946 947 switch (config.rx_filter) { 948 case HWTSTAMP_FILTER_NONE: 949 if (priv->hwts_rx_en) { 950 priv->hwts_rx_en = 0; 951 reset_gfar(netdev); 952 } 953 break; 954 default: 955 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 956 return -ERANGE; 957 if (!priv->hwts_rx_en) { 958 priv->hwts_rx_en = 1; 959 reset_gfar(netdev); 960 } 961 config.rx_filter = HWTSTAMP_FILTER_ALL; 962 break; 963 } 964 965 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 966 -EFAULT : 0; 967 } 968 969 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 970 { 971 struct hwtstamp_config config; 972 struct gfar_private *priv = netdev_priv(netdev); 973 974 config.flags = 0; 975 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 976 config.rx_filter = (priv->hwts_rx_en ? 977 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 978 979 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 980 -EFAULT : 0; 981 } 982 983 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 984 { 985 struct gfar_private *priv = netdev_priv(dev); 986 987 if (!netif_running(dev)) 988 return -EINVAL; 989 990 if (cmd == SIOCSHWTSTAMP) 991 return gfar_hwtstamp_set(dev, rq); 992 if (cmd == SIOCGHWTSTAMP) 993 return gfar_hwtstamp_get(dev, rq); 994 995 if (!priv->phydev) 996 return -ENODEV; 997 998 return phy_mii_ioctl(priv->phydev, rq, cmd); 999 } 1000 1001 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 1002 u32 class) 1003 { 1004 u32 rqfpr = FPR_FILER_MASK; 1005 u32 rqfcr = 0x0; 1006 1007 rqfar--; 1008 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 1009 priv->ftp_rqfpr[rqfar] = rqfpr; 1010 priv->ftp_rqfcr[rqfar] = rqfcr; 1011 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1012 1013 rqfar--; 1014 rqfcr = RQFCR_CMP_NOMATCH; 1015 priv->ftp_rqfpr[rqfar] = rqfpr; 1016 priv->ftp_rqfcr[rqfar] = rqfcr; 1017 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1018 1019 rqfar--; 1020 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 1021 rqfpr = class; 1022 priv->ftp_rqfcr[rqfar] = rqfcr; 1023 priv->ftp_rqfpr[rqfar] = rqfpr; 1024 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1025 1026 rqfar--; 1027 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 1028 rqfpr = class; 1029 priv->ftp_rqfcr[rqfar] = rqfcr; 1030 priv->ftp_rqfpr[rqfar] = rqfpr; 1031 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1032 1033 return rqfar; 1034 } 1035 1036 static void gfar_init_filer_table(struct gfar_private *priv) 1037 { 1038 int i = 0x0; 1039 u32 rqfar = MAX_FILER_IDX; 1040 u32 rqfcr = 0x0; 1041 u32 rqfpr = FPR_FILER_MASK; 1042 1043 /* Default rule */ 1044 rqfcr = RQFCR_CMP_MATCH; 1045 priv->ftp_rqfcr[rqfar] = rqfcr; 1046 priv->ftp_rqfpr[rqfar] = rqfpr; 1047 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1048 1049 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1050 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1051 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1052 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1053 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1054 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1055 1056 /* cur_filer_idx indicated the first non-masked rule */ 1057 priv->cur_filer_idx = rqfar; 1058 1059 /* Rest are masked rules */ 1060 rqfcr = RQFCR_CMP_NOMATCH; 1061 for (i = 0; i < rqfar; i++) { 1062 priv->ftp_rqfcr[i] = rqfcr; 1063 priv->ftp_rqfpr[i] = rqfpr; 1064 gfar_write_filer(priv, i, rqfcr, rqfpr); 1065 } 1066 } 1067 1068 #ifdef CONFIG_PPC 1069 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1070 { 1071 unsigned int pvr = mfspr(SPRN_PVR); 1072 unsigned int svr = mfspr(SPRN_SVR); 1073 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1074 unsigned int rev = svr & 0xffff; 1075 1076 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1077 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1078 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1079 priv->errata |= GFAR_ERRATA_74; 1080 1081 /* MPC8313 and MPC837x all rev */ 1082 if ((pvr == 0x80850010 && mod == 0x80b0) || 1083 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1084 priv->errata |= GFAR_ERRATA_76; 1085 1086 /* MPC8313 Rev < 2.0 */ 1087 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1088 priv->errata |= GFAR_ERRATA_12; 1089 } 1090 1091 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1092 { 1093 unsigned int svr = mfspr(SPRN_SVR); 1094 1095 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1096 priv->errata |= GFAR_ERRATA_12; 1097 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1098 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1099 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1100 } 1101 #endif 1102 1103 static void gfar_detect_errata(struct gfar_private *priv) 1104 { 1105 struct device *dev = &priv->ofdev->dev; 1106 1107 /* no plans to fix */ 1108 priv->errata |= GFAR_ERRATA_A002; 1109 1110 #ifdef CONFIG_PPC 1111 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1112 __gfar_detect_errata_85xx(priv); 1113 else /* non-mpc85xx parts, i.e. e300 core based */ 1114 __gfar_detect_errata_83xx(priv); 1115 #endif 1116 1117 if (priv->errata) 1118 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1119 priv->errata); 1120 } 1121 1122 void gfar_mac_reset(struct gfar_private *priv) 1123 { 1124 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1125 u32 tempval; 1126 1127 /* Reset MAC layer */ 1128 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1129 1130 /* We need to delay at least 3 TX clocks */ 1131 udelay(3); 1132 1133 /* the soft reset bit is not self-resetting, so we need to 1134 * clear it before resuming normal operation 1135 */ 1136 gfar_write(®s->maccfg1, 0); 1137 1138 udelay(3); 1139 1140 /* Compute rx_buff_size based on config flags */ 1141 gfar_rx_buff_size_config(priv); 1142 1143 /* Initialize the max receive frame/buffer lengths */ 1144 gfar_write(®s->maxfrm, priv->rx_buffer_size); 1145 gfar_write(®s->mrblr, priv->rx_buffer_size); 1146 1147 /* Initialize the Minimum Frame Length Register */ 1148 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1149 1150 /* Initialize MACCFG2. */ 1151 tempval = MACCFG2_INIT_SETTINGS; 1152 1153 /* If the mtu is larger than the max size for standard 1154 * ethernet frames (ie, a jumbo frame), then set maccfg2 1155 * to allow huge frames, and to check the length 1156 */ 1157 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 1158 gfar_has_errata(priv, GFAR_ERRATA_74)) 1159 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1160 1161 gfar_write(®s->maccfg2, tempval); 1162 1163 /* Clear mac addr hash registers */ 1164 gfar_write(®s->igaddr0, 0); 1165 gfar_write(®s->igaddr1, 0); 1166 gfar_write(®s->igaddr2, 0); 1167 gfar_write(®s->igaddr3, 0); 1168 gfar_write(®s->igaddr4, 0); 1169 gfar_write(®s->igaddr5, 0); 1170 gfar_write(®s->igaddr6, 0); 1171 gfar_write(®s->igaddr7, 0); 1172 1173 gfar_write(®s->gaddr0, 0); 1174 gfar_write(®s->gaddr1, 0); 1175 gfar_write(®s->gaddr2, 0); 1176 gfar_write(®s->gaddr3, 0); 1177 gfar_write(®s->gaddr4, 0); 1178 gfar_write(®s->gaddr5, 0); 1179 gfar_write(®s->gaddr6, 0); 1180 gfar_write(®s->gaddr7, 0); 1181 1182 if (priv->extended_hash) 1183 gfar_clear_exact_match(priv->ndev); 1184 1185 gfar_mac_rx_config(priv); 1186 1187 gfar_mac_tx_config(priv); 1188 1189 gfar_set_mac_address(priv->ndev); 1190 1191 gfar_set_multi(priv->ndev); 1192 1193 /* clear ievent and imask before configuring coalescing */ 1194 gfar_ints_disable(priv); 1195 1196 /* Configure the coalescing support */ 1197 gfar_configure_coalescing_all(priv); 1198 } 1199 1200 static void gfar_hw_init(struct gfar_private *priv) 1201 { 1202 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1203 u32 attrs; 1204 1205 /* Stop the DMA engine now, in case it was running before 1206 * (The firmware could have used it, and left it running). 1207 */ 1208 gfar_halt(priv); 1209 1210 gfar_mac_reset(priv); 1211 1212 /* Zero out the rmon mib registers if it has them */ 1213 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1214 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1215 1216 /* Mask off the CAM interrupts */ 1217 gfar_write(®s->rmon.cam1, 0xffffffff); 1218 gfar_write(®s->rmon.cam2, 0xffffffff); 1219 } 1220 1221 /* Initialize ECNTRL */ 1222 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1223 1224 /* Set the extraction length and index */ 1225 attrs = ATTRELI_EL(priv->rx_stash_size) | 1226 ATTRELI_EI(priv->rx_stash_index); 1227 1228 gfar_write(®s->attreli, attrs); 1229 1230 /* Start with defaults, and add stashing 1231 * depending on driver parameters 1232 */ 1233 attrs = ATTR_INIT_SETTINGS; 1234 1235 if (priv->bd_stash_en) 1236 attrs |= ATTR_BDSTASH; 1237 1238 if (priv->rx_stash_size != 0) 1239 attrs |= ATTR_BUFSTASH; 1240 1241 gfar_write(®s->attr, attrs); 1242 1243 /* FIFO configs */ 1244 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1245 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1246 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1247 1248 /* Program the interrupt steering regs, only for MG devices */ 1249 if (priv->num_grps > 1) 1250 gfar_write_isrg(priv); 1251 } 1252 1253 static void gfar_init_addr_hash_table(struct gfar_private *priv) 1254 { 1255 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1256 1257 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1258 priv->extended_hash = 1; 1259 priv->hash_width = 9; 1260 1261 priv->hash_regs[0] = ®s->igaddr0; 1262 priv->hash_regs[1] = ®s->igaddr1; 1263 priv->hash_regs[2] = ®s->igaddr2; 1264 priv->hash_regs[3] = ®s->igaddr3; 1265 priv->hash_regs[4] = ®s->igaddr4; 1266 priv->hash_regs[5] = ®s->igaddr5; 1267 priv->hash_regs[6] = ®s->igaddr6; 1268 priv->hash_regs[7] = ®s->igaddr7; 1269 priv->hash_regs[8] = ®s->gaddr0; 1270 priv->hash_regs[9] = ®s->gaddr1; 1271 priv->hash_regs[10] = ®s->gaddr2; 1272 priv->hash_regs[11] = ®s->gaddr3; 1273 priv->hash_regs[12] = ®s->gaddr4; 1274 priv->hash_regs[13] = ®s->gaddr5; 1275 priv->hash_regs[14] = ®s->gaddr6; 1276 priv->hash_regs[15] = ®s->gaddr7; 1277 1278 } else { 1279 priv->extended_hash = 0; 1280 priv->hash_width = 8; 1281 1282 priv->hash_regs[0] = ®s->gaddr0; 1283 priv->hash_regs[1] = ®s->gaddr1; 1284 priv->hash_regs[2] = ®s->gaddr2; 1285 priv->hash_regs[3] = ®s->gaddr3; 1286 priv->hash_regs[4] = ®s->gaddr4; 1287 priv->hash_regs[5] = ®s->gaddr5; 1288 priv->hash_regs[6] = ®s->gaddr6; 1289 priv->hash_regs[7] = ®s->gaddr7; 1290 } 1291 } 1292 1293 /* Set up the ethernet device structure, private data, 1294 * and anything else we need before we start 1295 */ 1296 static int gfar_probe(struct platform_device *ofdev) 1297 { 1298 struct net_device *dev = NULL; 1299 struct gfar_private *priv = NULL; 1300 int err = 0, i; 1301 1302 err = gfar_of_init(ofdev, &dev); 1303 1304 if (err) 1305 return err; 1306 1307 priv = netdev_priv(dev); 1308 priv->ndev = dev; 1309 priv->ofdev = ofdev; 1310 priv->dev = &ofdev->dev; 1311 SET_NETDEV_DEV(dev, &ofdev->dev); 1312 1313 spin_lock_init(&priv->bflock); 1314 INIT_WORK(&priv->reset_task, gfar_reset_task); 1315 1316 platform_set_drvdata(ofdev, priv); 1317 1318 gfar_detect_errata(priv); 1319 1320 /* Set the dev->base_addr to the gfar reg region */ 1321 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1322 1323 /* Fill in the dev structure */ 1324 dev->watchdog_timeo = TX_TIMEOUT; 1325 dev->mtu = 1500; 1326 dev->netdev_ops = &gfar_netdev_ops; 1327 dev->ethtool_ops = &gfar_ethtool_ops; 1328 1329 /* Register for napi ...We are registering NAPI for each grp */ 1330 for (i = 0; i < priv->num_grps; i++) { 1331 if (priv->poll_mode == GFAR_SQ_POLLING) { 1332 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1333 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1334 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1335 gfar_poll_tx_sq, 2); 1336 } else { 1337 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1338 gfar_poll_rx, GFAR_DEV_WEIGHT); 1339 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1340 gfar_poll_tx, 2); 1341 } 1342 } 1343 1344 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1345 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1346 NETIF_F_RXCSUM; 1347 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1348 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1349 } 1350 1351 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1352 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1353 NETIF_F_HW_VLAN_CTAG_RX; 1354 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1355 } 1356 1357 gfar_init_addr_hash_table(priv); 1358 1359 /* Insert receive time stamps into padding alignment bytes */ 1360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1361 priv->padding = 8; 1362 1363 if (dev->features & NETIF_F_IP_CSUM || 1364 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1365 dev->needed_headroom = GMAC_FCB_LEN; 1366 1367 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1368 1369 /* Initializing some of the rx/tx queue level parameters */ 1370 for (i = 0; i < priv->num_tx_queues; i++) { 1371 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1372 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1373 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1374 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1375 } 1376 1377 for (i = 0; i < priv->num_rx_queues; i++) { 1378 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1379 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1380 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1381 } 1382 1383 /* always enable rx filer */ 1384 priv->rx_filer_enable = 1; 1385 /* Enable most messages by default */ 1386 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1387 /* use pritority h/w tx queue scheduling for single queue devices */ 1388 if (priv->num_tx_queues == 1) 1389 priv->prio_sched_en = 1; 1390 1391 set_bit(GFAR_DOWN, &priv->state); 1392 1393 gfar_hw_init(priv); 1394 1395 /* Carrier starts down, phylib will bring it up */ 1396 netif_carrier_off(dev); 1397 1398 err = register_netdev(dev); 1399 1400 if (err) { 1401 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1402 goto register_fail; 1403 } 1404 1405 device_init_wakeup(&dev->dev, 1406 priv->device_flags & 1407 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1408 1409 /* fill out IRQ number and name fields */ 1410 for (i = 0; i < priv->num_grps; i++) { 1411 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1412 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1413 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1414 dev->name, "_g", '0' + i, "_tx"); 1415 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1416 dev->name, "_g", '0' + i, "_rx"); 1417 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1418 dev->name, "_g", '0' + i, "_er"); 1419 } else 1420 strcpy(gfar_irq(grp, TX)->name, dev->name); 1421 } 1422 1423 /* Initialize the filer table */ 1424 gfar_init_filer_table(priv); 1425 1426 /* Print out the device info */ 1427 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1428 1429 /* Even more device info helps when determining which kernel 1430 * provided which set of benchmarks. 1431 */ 1432 netdev_info(dev, "Running with NAPI enabled\n"); 1433 for (i = 0; i < priv->num_rx_queues; i++) 1434 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1435 i, priv->rx_queue[i]->rx_ring_size); 1436 for (i = 0; i < priv->num_tx_queues; i++) 1437 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1438 i, priv->tx_queue[i]->tx_ring_size); 1439 1440 return 0; 1441 1442 register_fail: 1443 unmap_group_regs(priv); 1444 gfar_free_rx_queues(priv); 1445 gfar_free_tx_queues(priv); 1446 of_node_put(priv->phy_node); 1447 of_node_put(priv->tbi_node); 1448 free_gfar_dev(priv); 1449 return err; 1450 } 1451 1452 static int gfar_remove(struct platform_device *ofdev) 1453 { 1454 struct gfar_private *priv = platform_get_drvdata(ofdev); 1455 1456 of_node_put(priv->phy_node); 1457 of_node_put(priv->tbi_node); 1458 1459 unregister_netdev(priv->ndev); 1460 unmap_group_regs(priv); 1461 gfar_free_rx_queues(priv); 1462 gfar_free_tx_queues(priv); 1463 free_gfar_dev(priv); 1464 1465 return 0; 1466 } 1467 1468 #ifdef CONFIG_PM 1469 1470 static int gfar_suspend(struct device *dev) 1471 { 1472 struct gfar_private *priv = dev_get_drvdata(dev); 1473 struct net_device *ndev = priv->ndev; 1474 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1475 unsigned long flags; 1476 u32 tempval; 1477 1478 int magic_packet = priv->wol_en && 1479 (priv->device_flags & 1480 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1481 1482 netif_device_detach(ndev); 1483 1484 if (netif_running(ndev)) { 1485 1486 local_irq_save(flags); 1487 lock_tx_qs(priv); 1488 1489 gfar_halt_nodisable(priv); 1490 1491 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1492 tempval = gfar_read(®s->maccfg1); 1493 1494 tempval &= ~MACCFG1_TX_EN; 1495 1496 if (!magic_packet) 1497 tempval &= ~MACCFG1_RX_EN; 1498 1499 gfar_write(®s->maccfg1, tempval); 1500 1501 unlock_tx_qs(priv); 1502 local_irq_restore(flags); 1503 1504 disable_napi(priv); 1505 1506 if (magic_packet) { 1507 /* Enable interrupt on Magic Packet */ 1508 gfar_write(®s->imask, IMASK_MAG); 1509 1510 /* Enable Magic Packet mode */ 1511 tempval = gfar_read(®s->maccfg2); 1512 tempval |= MACCFG2_MPEN; 1513 gfar_write(®s->maccfg2, tempval); 1514 } else { 1515 phy_stop(priv->phydev); 1516 } 1517 } 1518 1519 return 0; 1520 } 1521 1522 static int gfar_resume(struct device *dev) 1523 { 1524 struct gfar_private *priv = dev_get_drvdata(dev); 1525 struct net_device *ndev = priv->ndev; 1526 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1527 unsigned long flags; 1528 u32 tempval; 1529 int magic_packet = priv->wol_en && 1530 (priv->device_flags & 1531 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1532 1533 if (!netif_running(ndev)) { 1534 netif_device_attach(ndev); 1535 return 0; 1536 } 1537 1538 if (!magic_packet && priv->phydev) 1539 phy_start(priv->phydev); 1540 1541 /* Disable Magic Packet mode, in case something 1542 * else woke us up. 1543 */ 1544 local_irq_save(flags); 1545 lock_tx_qs(priv); 1546 1547 tempval = gfar_read(®s->maccfg2); 1548 tempval &= ~MACCFG2_MPEN; 1549 gfar_write(®s->maccfg2, tempval); 1550 1551 gfar_start(priv); 1552 1553 unlock_tx_qs(priv); 1554 local_irq_restore(flags); 1555 1556 netif_device_attach(ndev); 1557 1558 enable_napi(priv); 1559 1560 return 0; 1561 } 1562 1563 static int gfar_restore(struct device *dev) 1564 { 1565 struct gfar_private *priv = dev_get_drvdata(dev); 1566 struct net_device *ndev = priv->ndev; 1567 1568 if (!netif_running(ndev)) { 1569 netif_device_attach(ndev); 1570 1571 return 0; 1572 } 1573 1574 if (gfar_init_bds(ndev)) { 1575 free_skb_resources(priv); 1576 return -ENOMEM; 1577 } 1578 1579 gfar_mac_reset(priv); 1580 1581 gfar_init_tx_rx_base(priv); 1582 1583 gfar_start(priv); 1584 1585 priv->oldlink = 0; 1586 priv->oldspeed = 0; 1587 priv->oldduplex = -1; 1588 1589 if (priv->phydev) 1590 phy_start(priv->phydev); 1591 1592 netif_device_attach(ndev); 1593 enable_napi(priv); 1594 1595 return 0; 1596 } 1597 1598 static struct dev_pm_ops gfar_pm_ops = { 1599 .suspend = gfar_suspend, 1600 .resume = gfar_resume, 1601 .freeze = gfar_suspend, 1602 .thaw = gfar_resume, 1603 .restore = gfar_restore, 1604 }; 1605 1606 #define GFAR_PM_OPS (&gfar_pm_ops) 1607 1608 #else 1609 1610 #define GFAR_PM_OPS NULL 1611 1612 #endif 1613 1614 /* Reads the controller's registers to determine what interface 1615 * connects it to the PHY. 1616 */ 1617 static phy_interface_t gfar_get_interface(struct net_device *dev) 1618 { 1619 struct gfar_private *priv = netdev_priv(dev); 1620 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1621 u32 ecntrl; 1622 1623 ecntrl = gfar_read(®s->ecntrl); 1624 1625 if (ecntrl & ECNTRL_SGMII_MODE) 1626 return PHY_INTERFACE_MODE_SGMII; 1627 1628 if (ecntrl & ECNTRL_TBI_MODE) { 1629 if (ecntrl & ECNTRL_REDUCED_MODE) 1630 return PHY_INTERFACE_MODE_RTBI; 1631 else 1632 return PHY_INTERFACE_MODE_TBI; 1633 } 1634 1635 if (ecntrl & ECNTRL_REDUCED_MODE) { 1636 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1637 return PHY_INTERFACE_MODE_RMII; 1638 } 1639 else { 1640 phy_interface_t interface = priv->interface; 1641 1642 /* This isn't autodetected right now, so it must 1643 * be set by the device tree or platform code. 1644 */ 1645 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1646 return PHY_INTERFACE_MODE_RGMII_ID; 1647 1648 return PHY_INTERFACE_MODE_RGMII; 1649 } 1650 } 1651 1652 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1653 return PHY_INTERFACE_MODE_GMII; 1654 1655 return PHY_INTERFACE_MODE_MII; 1656 } 1657 1658 1659 /* Initializes driver's PHY state, and attaches to the PHY. 1660 * Returns 0 on success. 1661 */ 1662 static int init_phy(struct net_device *dev) 1663 { 1664 struct gfar_private *priv = netdev_priv(dev); 1665 uint gigabit_support = 1666 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1667 GFAR_SUPPORTED_GBIT : 0; 1668 phy_interface_t interface; 1669 1670 priv->oldlink = 0; 1671 priv->oldspeed = 0; 1672 priv->oldduplex = -1; 1673 1674 interface = gfar_get_interface(dev); 1675 1676 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1677 interface); 1678 if (!priv->phydev) { 1679 dev_err(&dev->dev, "could not attach to PHY\n"); 1680 return -ENODEV; 1681 } 1682 1683 if (interface == PHY_INTERFACE_MODE_SGMII) 1684 gfar_configure_serdes(dev); 1685 1686 /* Remove any features not supported by the controller */ 1687 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1688 priv->phydev->advertising = priv->phydev->supported; 1689 1690 return 0; 1691 } 1692 1693 /* Initialize TBI PHY interface for communicating with the 1694 * SERDES lynx PHY on the chip. We communicate with this PHY 1695 * through the MDIO bus on each controller, treating it as a 1696 * "normal" PHY at the address found in the TBIPA register. We assume 1697 * that the TBIPA register is valid. Either the MDIO bus code will set 1698 * it to a value that doesn't conflict with other PHYs on the bus, or the 1699 * value doesn't matter, as there are no other PHYs on the bus. 1700 */ 1701 static void gfar_configure_serdes(struct net_device *dev) 1702 { 1703 struct gfar_private *priv = netdev_priv(dev); 1704 struct phy_device *tbiphy; 1705 1706 if (!priv->tbi_node) { 1707 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1708 "device tree specify a tbi-handle\n"); 1709 return; 1710 } 1711 1712 tbiphy = of_phy_find_device(priv->tbi_node); 1713 if (!tbiphy) { 1714 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1715 return; 1716 } 1717 1718 /* If the link is already up, we must already be ok, and don't need to 1719 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1720 * everything for us? Resetting it takes the link down and requires 1721 * several seconds for it to come back. 1722 */ 1723 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1724 return; 1725 1726 /* Single clk mode, mii mode off(for serdes communication) */ 1727 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1728 1729 phy_write(tbiphy, MII_ADVERTISE, 1730 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1731 ADVERTISE_1000XPSE_ASYM); 1732 1733 phy_write(tbiphy, MII_BMCR, 1734 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1735 BMCR_SPEED1000); 1736 } 1737 1738 static int __gfar_is_rx_idle(struct gfar_private *priv) 1739 { 1740 u32 res; 1741 1742 /* Normaly TSEC should not hang on GRS commands, so we should 1743 * actually wait for IEVENT_GRSC flag. 1744 */ 1745 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1746 return 0; 1747 1748 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1749 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1750 * and the Rx can be safely reset. 1751 */ 1752 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1753 res &= 0x7f807f80; 1754 if ((res & 0xffff) == (res >> 16)) 1755 return 1; 1756 1757 return 0; 1758 } 1759 1760 /* Halt the receive and transmit queues */ 1761 static void gfar_halt_nodisable(struct gfar_private *priv) 1762 { 1763 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1764 u32 tempval; 1765 unsigned int timeout; 1766 int stopped; 1767 1768 gfar_ints_disable(priv); 1769 1770 if (gfar_is_dma_stopped(priv)) 1771 return; 1772 1773 /* Stop the DMA, and wait for it to stop */ 1774 tempval = gfar_read(®s->dmactrl); 1775 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1776 gfar_write(®s->dmactrl, tempval); 1777 1778 retry: 1779 timeout = 1000; 1780 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1781 cpu_relax(); 1782 timeout--; 1783 } 1784 1785 if (!timeout) 1786 stopped = gfar_is_dma_stopped(priv); 1787 1788 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1789 !__gfar_is_rx_idle(priv)) 1790 goto retry; 1791 } 1792 1793 /* Halt the receive and transmit queues */ 1794 void gfar_halt(struct gfar_private *priv) 1795 { 1796 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1797 u32 tempval; 1798 1799 /* Dissable the Rx/Tx hw queues */ 1800 gfar_write(®s->rqueue, 0); 1801 gfar_write(®s->tqueue, 0); 1802 1803 mdelay(10); 1804 1805 gfar_halt_nodisable(priv); 1806 1807 /* Disable Rx/Tx DMA */ 1808 tempval = gfar_read(®s->maccfg1); 1809 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1810 gfar_write(®s->maccfg1, tempval); 1811 } 1812 1813 void stop_gfar(struct net_device *dev) 1814 { 1815 struct gfar_private *priv = netdev_priv(dev); 1816 1817 netif_tx_stop_all_queues(dev); 1818 1819 smp_mb__before_atomic(); 1820 set_bit(GFAR_DOWN, &priv->state); 1821 smp_mb__after_atomic(); 1822 1823 disable_napi(priv); 1824 1825 /* disable ints and gracefully shut down Rx/Tx DMA */ 1826 gfar_halt(priv); 1827 1828 phy_stop(priv->phydev); 1829 1830 free_skb_resources(priv); 1831 } 1832 1833 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1834 { 1835 struct txbd8 *txbdp; 1836 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1837 int i, j; 1838 1839 txbdp = tx_queue->tx_bd_base; 1840 1841 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1842 if (!tx_queue->tx_skbuff[i]) 1843 continue; 1844 1845 dma_unmap_single(priv->dev, txbdp->bufPtr, 1846 txbdp->length, DMA_TO_DEVICE); 1847 txbdp->lstatus = 0; 1848 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1849 j++) { 1850 txbdp++; 1851 dma_unmap_page(priv->dev, txbdp->bufPtr, 1852 txbdp->length, DMA_TO_DEVICE); 1853 } 1854 txbdp++; 1855 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1856 tx_queue->tx_skbuff[i] = NULL; 1857 } 1858 kfree(tx_queue->tx_skbuff); 1859 tx_queue->tx_skbuff = NULL; 1860 } 1861 1862 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1863 { 1864 struct rxbd8 *rxbdp; 1865 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1866 int i; 1867 1868 rxbdp = rx_queue->rx_bd_base; 1869 1870 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1871 if (rx_queue->rx_skbuff[i]) { 1872 dma_unmap_single(priv->dev, rxbdp->bufPtr, 1873 priv->rx_buffer_size, 1874 DMA_FROM_DEVICE); 1875 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1876 rx_queue->rx_skbuff[i] = NULL; 1877 } 1878 rxbdp->lstatus = 0; 1879 rxbdp->bufPtr = 0; 1880 rxbdp++; 1881 } 1882 kfree(rx_queue->rx_skbuff); 1883 rx_queue->rx_skbuff = NULL; 1884 } 1885 1886 /* If there are any tx skbs or rx skbs still around, free them. 1887 * Then free tx_skbuff and rx_skbuff 1888 */ 1889 static void free_skb_resources(struct gfar_private *priv) 1890 { 1891 struct gfar_priv_tx_q *tx_queue = NULL; 1892 struct gfar_priv_rx_q *rx_queue = NULL; 1893 int i; 1894 1895 /* Go through all the buffer descriptors and free their data buffers */ 1896 for (i = 0; i < priv->num_tx_queues; i++) { 1897 struct netdev_queue *txq; 1898 1899 tx_queue = priv->tx_queue[i]; 1900 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1901 if (tx_queue->tx_skbuff) 1902 free_skb_tx_queue(tx_queue); 1903 netdev_tx_reset_queue(txq); 1904 } 1905 1906 for (i = 0; i < priv->num_rx_queues; i++) { 1907 rx_queue = priv->rx_queue[i]; 1908 if (rx_queue->rx_skbuff) 1909 free_skb_rx_queue(rx_queue); 1910 } 1911 1912 dma_free_coherent(priv->dev, 1913 sizeof(struct txbd8) * priv->total_tx_ring_size + 1914 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1915 priv->tx_queue[0]->tx_bd_base, 1916 priv->tx_queue[0]->tx_bd_dma_base); 1917 } 1918 1919 void gfar_start(struct gfar_private *priv) 1920 { 1921 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1922 u32 tempval; 1923 int i = 0; 1924 1925 /* Enable Rx/Tx hw queues */ 1926 gfar_write(®s->rqueue, priv->rqueue); 1927 gfar_write(®s->tqueue, priv->tqueue); 1928 1929 /* Initialize DMACTRL to have WWR and WOP */ 1930 tempval = gfar_read(®s->dmactrl); 1931 tempval |= DMACTRL_INIT_SETTINGS; 1932 gfar_write(®s->dmactrl, tempval); 1933 1934 /* Make sure we aren't stopped */ 1935 tempval = gfar_read(®s->dmactrl); 1936 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1937 gfar_write(®s->dmactrl, tempval); 1938 1939 for (i = 0; i < priv->num_grps; i++) { 1940 regs = priv->gfargrp[i].regs; 1941 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1942 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1943 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1944 } 1945 1946 /* Enable Rx/Tx DMA */ 1947 tempval = gfar_read(®s->maccfg1); 1948 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1949 gfar_write(®s->maccfg1, tempval); 1950 1951 gfar_ints_enable(priv); 1952 1953 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 1954 } 1955 1956 static void free_grp_irqs(struct gfar_priv_grp *grp) 1957 { 1958 free_irq(gfar_irq(grp, TX)->irq, grp); 1959 free_irq(gfar_irq(grp, RX)->irq, grp); 1960 free_irq(gfar_irq(grp, ER)->irq, grp); 1961 } 1962 1963 static int register_grp_irqs(struct gfar_priv_grp *grp) 1964 { 1965 struct gfar_private *priv = grp->priv; 1966 struct net_device *dev = priv->ndev; 1967 int err; 1968 1969 /* If the device has multiple interrupts, register for 1970 * them. Otherwise, only register for the one 1971 */ 1972 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1973 /* Install our interrupt handlers for Error, 1974 * Transmit, and Receive 1975 */ 1976 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 1977 gfar_irq(grp, ER)->name, grp); 1978 if (err < 0) { 1979 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1980 gfar_irq(grp, ER)->irq); 1981 1982 goto err_irq_fail; 1983 } 1984 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 1985 gfar_irq(grp, TX)->name, grp); 1986 if (err < 0) { 1987 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1988 gfar_irq(grp, TX)->irq); 1989 goto tx_irq_fail; 1990 } 1991 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 1992 gfar_irq(grp, RX)->name, grp); 1993 if (err < 0) { 1994 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1995 gfar_irq(grp, RX)->irq); 1996 goto rx_irq_fail; 1997 } 1998 } else { 1999 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2000 gfar_irq(grp, TX)->name, grp); 2001 if (err < 0) { 2002 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2003 gfar_irq(grp, TX)->irq); 2004 goto err_irq_fail; 2005 } 2006 } 2007 2008 return 0; 2009 2010 rx_irq_fail: 2011 free_irq(gfar_irq(grp, TX)->irq, grp); 2012 tx_irq_fail: 2013 free_irq(gfar_irq(grp, ER)->irq, grp); 2014 err_irq_fail: 2015 return err; 2016 2017 } 2018 2019 static void gfar_free_irq(struct gfar_private *priv) 2020 { 2021 int i; 2022 2023 /* Free the IRQs */ 2024 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2025 for (i = 0; i < priv->num_grps; i++) 2026 free_grp_irqs(&priv->gfargrp[i]); 2027 } else { 2028 for (i = 0; i < priv->num_grps; i++) 2029 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2030 &priv->gfargrp[i]); 2031 } 2032 } 2033 2034 static int gfar_request_irq(struct gfar_private *priv) 2035 { 2036 int err, i, j; 2037 2038 for (i = 0; i < priv->num_grps; i++) { 2039 err = register_grp_irqs(&priv->gfargrp[i]); 2040 if (err) { 2041 for (j = 0; j < i; j++) 2042 free_grp_irqs(&priv->gfargrp[j]); 2043 return err; 2044 } 2045 } 2046 2047 return 0; 2048 } 2049 2050 /* Bring the controller up and running */ 2051 int startup_gfar(struct net_device *ndev) 2052 { 2053 struct gfar_private *priv = netdev_priv(ndev); 2054 int err; 2055 2056 gfar_mac_reset(priv); 2057 2058 err = gfar_alloc_skb_resources(ndev); 2059 if (err) 2060 return err; 2061 2062 gfar_init_tx_rx_base(priv); 2063 2064 smp_mb__before_atomic(); 2065 clear_bit(GFAR_DOWN, &priv->state); 2066 smp_mb__after_atomic(); 2067 2068 /* Start Rx/Tx DMA and enable the interrupts */ 2069 gfar_start(priv); 2070 2071 phy_start(priv->phydev); 2072 2073 enable_napi(priv); 2074 2075 netif_tx_wake_all_queues(ndev); 2076 2077 return 0; 2078 } 2079 2080 /* Called when something needs to use the ethernet device 2081 * Returns 0 for success. 2082 */ 2083 static int gfar_enet_open(struct net_device *dev) 2084 { 2085 struct gfar_private *priv = netdev_priv(dev); 2086 int err; 2087 2088 err = init_phy(dev); 2089 if (err) 2090 return err; 2091 2092 err = gfar_request_irq(priv); 2093 if (err) 2094 return err; 2095 2096 err = startup_gfar(dev); 2097 if (err) 2098 return err; 2099 2100 device_set_wakeup_enable(&dev->dev, priv->wol_en); 2101 2102 return err; 2103 } 2104 2105 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2106 { 2107 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2108 2109 memset(fcb, 0, GMAC_FCB_LEN); 2110 2111 return fcb; 2112 } 2113 2114 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2115 int fcb_length) 2116 { 2117 /* If we're here, it's a IP packet with a TCP or UDP 2118 * payload. We set it to checksum, using a pseudo-header 2119 * we provide 2120 */ 2121 u8 flags = TXFCB_DEFAULT; 2122 2123 /* Tell the controller what the protocol is 2124 * And provide the already calculated phcs 2125 */ 2126 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2127 flags |= TXFCB_UDP; 2128 fcb->phcs = udp_hdr(skb)->check; 2129 } else 2130 fcb->phcs = tcp_hdr(skb)->check; 2131 2132 /* l3os is the distance between the start of the 2133 * frame (skb->data) and the start of the IP hdr. 2134 * l4os is the distance between the start of the 2135 * l3 hdr and the l4 hdr 2136 */ 2137 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); 2138 fcb->l4os = skb_network_header_len(skb); 2139 2140 fcb->flags = flags; 2141 } 2142 2143 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2144 { 2145 fcb->flags |= TXFCB_VLN; 2146 fcb->vlctl = vlan_tx_tag_get(skb); 2147 } 2148 2149 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2150 struct txbd8 *base, int ring_size) 2151 { 2152 struct txbd8 *new_bd = bdp + stride; 2153 2154 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2155 } 2156 2157 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2158 int ring_size) 2159 { 2160 return skip_txbd(bdp, 1, base, ring_size); 2161 } 2162 2163 /* eTSEC12: csum generation not supported for some fcb offsets */ 2164 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2165 unsigned long fcb_addr) 2166 { 2167 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2168 (fcb_addr % 0x20) > 0x18); 2169 } 2170 2171 /* eTSEC76: csum generation for frames larger than 2500 may 2172 * cause excess delays before start of transmission 2173 */ 2174 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2175 unsigned int len) 2176 { 2177 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2178 (len > 2500)); 2179 } 2180 2181 /* This is called by the kernel when a frame is ready for transmission. 2182 * It is pointed to by the dev->hard_start_xmit function pointer 2183 */ 2184 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2185 { 2186 struct gfar_private *priv = netdev_priv(dev); 2187 struct gfar_priv_tx_q *tx_queue = NULL; 2188 struct netdev_queue *txq; 2189 struct gfar __iomem *regs = NULL; 2190 struct txfcb *fcb = NULL; 2191 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2192 u32 lstatus; 2193 int i, rq = 0; 2194 int do_tstamp, do_csum, do_vlan; 2195 u32 bufaddr; 2196 unsigned long flags; 2197 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2198 2199 rq = skb->queue_mapping; 2200 tx_queue = priv->tx_queue[rq]; 2201 txq = netdev_get_tx_queue(dev, rq); 2202 base = tx_queue->tx_bd_base; 2203 regs = tx_queue->grp->regs; 2204 2205 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2206 do_vlan = vlan_tx_tag_present(skb); 2207 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2208 priv->hwts_tx_en; 2209 2210 if (do_csum || do_vlan) 2211 fcb_len = GMAC_FCB_LEN; 2212 2213 /* check if time stamp should be generated */ 2214 if (unlikely(do_tstamp)) 2215 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2216 2217 /* make space for additional header when fcb is needed */ 2218 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2219 struct sk_buff *skb_new; 2220 2221 skb_new = skb_realloc_headroom(skb, fcb_len); 2222 if (!skb_new) { 2223 dev->stats.tx_errors++; 2224 dev_kfree_skb_any(skb); 2225 return NETDEV_TX_OK; 2226 } 2227 2228 if (skb->sk) 2229 skb_set_owner_w(skb_new, skb->sk); 2230 dev_consume_skb_any(skb); 2231 skb = skb_new; 2232 } 2233 2234 /* total number of fragments in the SKB */ 2235 nr_frags = skb_shinfo(skb)->nr_frags; 2236 2237 /* calculate the required number of TxBDs for this skb */ 2238 if (unlikely(do_tstamp)) 2239 nr_txbds = nr_frags + 2; 2240 else 2241 nr_txbds = nr_frags + 1; 2242 2243 /* check if there is space to queue this packet */ 2244 if (nr_txbds > tx_queue->num_txbdfree) { 2245 /* no space, stop the queue */ 2246 netif_tx_stop_queue(txq); 2247 dev->stats.tx_fifo_errors++; 2248 return NETDEV_TX_BUSY; 2249 } 2250 2251 /* Update transmit stats */ 2252 bytes_sent = skb->len; 2253 tx_queue->stats.tx_bytes += bytes_sent; 2254 /* keep Tx bytes on wire for BQL accounting */ 2255 GFAR_CB(skb)->bytes_sent = bytes_sent; 2256 tx_queue->stats.tx_packets++; 2257 2258 txbdp = txbdp_start = tx_queue->cur_tx; 2259 lstatus = txbdp->lstatus; 2260 2261 /* Time stamp insertion requires one additional TxBD */ 2262 if (unlikely(do_tstamp)) 2263 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2264 tx_queue->tx_ring_size); 2265 2266 if (nr_frags == 0) { 2267 if (unlikely(do_tstamp)) 2268 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | 2269 TXBD_INTERRUPT); 2270 else 2271 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2272 } else { 2273 /* Place the fragment addresses and lengths into the TxBDs */ 2274 for (i = 0; i < nr_frags; i++) { 2275 unsigned int frag_len; 2276 /* Point at the next BD, wrapping as needed */ 2277 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2278 2279 frag_len = skb_shinfo(skb)->frags[i].size; 2280 2281 lstatus = txbdp->lstatus | frag_len | 2282 BD_LFLAG(TXBD_READY); 2283 2284 /* Handle the last BD specially */ 2285 if (i == nr_frags - 1) 2286 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2287 2288 bufaddr = skb_frag_dma_map(priv->dev, 2289 &skb_shinfo(skb)->frags[i], 2290 0, 2291 frag_len, 2292 DMA_TO_DEVICE); 2293 2294 /* set the TxBD length and buffer pointer */ 2295 txbdp->bufPtr = bufaddr; 2296 txbdp->lstatus = lstatus; 2297 } 2298 2299 lstatus = txbdp_start->lstatus; 2300 } 2301 2302 /* Add TxPAL between FCB and frame if required */ 2303 if (unlikely(do_tstamp)) { 2304 skb_push(skb, GMAC_TXPAL_LEN); 2305 memset(skb->data, 0, GMAC_TXPAL_LEN); 2306 } 2307 2308 /* Add TxFCB if required */ 2309 if (fcb_len) { 2310 fcb = gfar_add_fcb(skb); 2311 lstatus |= BD_LFLAG(TXBD_TOE); 2312 } 2313 2314 /* Set up checksumming */ 2315 if (do_csum) { 2316 gfar_tx_checksum(skb, fcb, fcb_len); 2317 2318 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2319 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2320 __skb_pull(skb, GMAC_FCB_LEN); 2321 skb_checksum_help(skb); 2322 if (do_vlan || do_tstamp) { 2323 /* put back a new fcb for vlan/tstamp TOE */ 2324 fcb = gfar_add_fcb(skb); 2325 } else { 2326 /* Tx TOE not used */ 2327 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2328 fcb = NULL; 2329 } 2330 } 2331 } 2332 2333 if (do_vlan) 2334 gfar_tx_vlan(skb, fcb); 2335 2336 /* Setup tx hardware time stamping if requested */ 2337 if (unlikely(do_tstamp)) { 2338 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2339 fcb->ptp = 1; 2340 } 2341 2342 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data, 2343 skb_headlen(skb), DMA_TO_DEVICE); 2344 2345 /* If time stamping is requested one additional TxBD must be set up. The 2346 * first TxBD points to the FCB and must have a data length of 2347 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2348 * the full frame length. 2349 */ 2350 if (unlikely(do_tstamp)) { 2351 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len; 2352 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | 2353 (skb_headlen(skb) - fcb_len); 2354 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2355 } else { 2356 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2357 } 2358 2359 netdev_tx_sent_queue(txq, bytes_sent); 2360 2361 /* We can work in parallel with gfar_clean_tx_ring(), except 2362 * when modifying num_txbdfree. Note that we didn't grab the lock 2363 * when we were reading the num_txbdfree and checking for available 2364 * space, that's because outside of this function it can only grow, 2365 * and once we've got needed space, it cannot suddenly disappear. 2366 * 2367 * The lock also protects us from gfar_error(), which can modify 2368 * regs->tstat and thus retrigger the transfers, which is why we 2369 * also must grab the lock before setting ready bit for the first 2370 * to be transmitted BD. 2371 */ 2372 spin_lock_irqsave(&tx_queue->txlock, flags); 2373 2374 gfar_wmb(); 2375 2376 txbdp_start->lstatus = lstatus; 2377 2378 gfar_wmb(); /* force lstatus write before tx_skbuff */ 2379 2380 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2381 2382 /* Update the current skb pointer to the next entry we will use 2383 * (wrapping if necessary) 2384 */ 2385 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2386 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2387 2388 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2389 2390 /* reduce TxBD free count */ 2391 tx_queue->num_txbdfree -= (nr_txbds); 2392 2393 /* If the next BD still needs to be cleaned up, then the bds 2394 * are full. We need to tell the kernel to stop sending us stuff. 2395 */ 2396 if (!tx_queue->num_txbdfree) { 2397 netif_tx_stop_queue(txq); 2398 2399 dev->stats.tx_fifo_errors++; 2400 } 2401 2402 /* Tell the DMA to go go go */ 2403 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2404 2405 /* Unlock priv */ 2406 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2407 2408 return NETDEV_TX_OK; 2409 } 2410 2411 /* Stops the kernel queue, and halts the controller */ 2412 static int gfar_close(struct net_device *dev) 2413 { 2414 struct gfar_private *priv = netdev_priv(dev); 2415 2416 cancel_work_sync(&priv->reset_task); 2417 stop_gfar(dev); 2418 2419 /* Disconnect from the PHY */ 2420 phy_disconnect(priv->phydev); 2421 priv->phydev = NULL; 2422 2423 gfar_free_irq(priv); 2424 2425 return 0; 2426 } 2427 2428 /* Changes the mac address if the controller is not running. */ 2429 static int gfar_set_mac_address(struct net_device *dev) 2430 { 2431 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2432 2433 return 0; 2434 } 2435 2436 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2437 { 2438 struct gfar_private *priv = netdev_priv(dev); 2439 int frame_size = new_mtu + ETH_HLEN; 2440 2441 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2442 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2443 return -EINVAL; 2444 } 2445 2446 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2447 cpu_relax(); 2448 2449 if (dev->flags & IFF_UP) 2450 stop_gfar(dev); 2451 2452 dev->mtu = new_mtu; 2453 2454 if (dev->flags & IFF_UP) 2455 startup_gfar(dev); 2456 2457 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2458 2459 return 0; 2460 } 2461 2462 void reset_gfar(struct net_device *ndev) 2463 { 2464 struct gfar_private *priv = netdev_priv(ndev); 2465 2466 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2467 cpu_relax(); 2468 2469 stop_gfar(ndev); 2470 startup_gfar(ndev); 2471 2472 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2473 } 2474 2475 /* gfar_reset_task gets scheduled when a packet has not been 2476 * transmitted after a set amount of time. 2477 * For now, assume that clearing out all the structures, and 2478 * starting over will fix the problem. 2479 */ 2480 static void gfar_reset_task(struct work_struct *work) 2481 { 2482 struct gfar_private *priv = container_of(work, struct gfar_private, 2483 reset_task); 2484 reset_gfar(priv->ndev); 2485 } 2486 2487 static void gfar_timeout(struct net_device *dev) 2488 { 2489 struct gfar_private *priv = netdev_priv(dev); 2490 2491 dev->stats.tx_errors++; 2492 schedule_work(&priv->reset_task); 2493 } 2494 2495 static void gfar_align_skb(struct sk_buff *skb) 2496 { 2497 /* We need the data buffer to be aligned properly. We will reserve 2498 * as many bytes as needed to align the data properly 2499 */ 2500 skb_reserve(skb, RXBUF_ALIGNMENT - 2501 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2502 } 2503 2504 /* Interrupt Handler for Transmit complete */ 2505 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2506 { 2507 struct net_device *dev = tx_queue->dev; 2508 struct netdev_queue *txq; 2509 struct gfar_private *priv = netdev_priv(dev); 2510 struct txbd8 *bdp, *next = NULL; 2511 struct txbd8 *lbdp = NULL; 2512 struct txbd8 *base = tx_queue->tx_bd_base; 2513 struct sk_buff *skb; 2514 int skb_dirtytx; 2515 int tx_ring_size = tx_queue->tx_ring_size; 2516 int frags = 0, nr_txbds = 0; 2517 int i; 2518 int howmany = 0; 2519 int tqi = tx_queue->qindex; 2520 unsigned int bytes_sent = 0; 2521 u32 lstatus; 2522 size_t buflen; 2523 2524 txq = netdev_get_tx_queue(dev, tqi); 2525 bdp = tx_queue->dirty_tx; 2526 skb_dirtytx = tx_queue->skb_dirtytx; 2527 2528 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2529 unsigned long flags; 2530 2531 frags = skb_shinfo(skb)->nr_frags; 2532 2533 /* When time stamping, one additional TxBD must be freed. 2534 * Also, we need to dma_unmap_single() the TxPAL. 2535 */ 2536 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2537 nr_txbds = frags + 2; 2538 else 2539 nr_txbds = frags + 1; 2540 2541 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2542 2543 lstatus = lbdp->lstatus; 2544 2545 /* Only clean completed frames */ 2546 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2547 (lstatus & BD_LENGTH_MASK)) 2548 break; 2549 2550 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2551 next = next_txbd(bdp, base, tx_ring_size); 2552 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2553 } else 2554 buflen = bdp->length; 2555 2556 dma_unmap_single(priv->dev, bdp->bufPtr, 2557 buflen, DMA_TO_DEVICE); 2558 2559 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2560 struct skb_shared_hwtstamps shhwtstamps; 2561 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2562 2563 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2564 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2565 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2566 skb_tstamp_tx(skb, &shhwtstamps); 2567 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2568 bdp = next; 2569 } 2570 2571 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2572 bdp = next_txbd(bdp, base, tx_ring_size); 2573 2574 for (i = 0; i < frags; i++) { 2575 dma_unmap_page(priv->dev, bdp->bufPtr, 2576 bdp->length, DMA_TO_DEVICE); 2577 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2578 bdp = next_txbd(bdp, base, tx_ring_size); 2579 } 2580 2581 bytes_sent += GFAR_CB(skb)->bytes_sent; 2582 2583 dev_kfree_skb_any(skb); 2584 2585 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2586 2587 skb_dirtytx = (skb_dirtytx + 1) & 2588 TX_RING_MOD_MASK(tx_ring_size); 2589 2590 howmany++; 2591 spin_lock_irqsave(&tx_queue->txlock, flags); 2592 tx_queue->num_txbdfree += nr_txbds; 2593 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2594 } 2595 2596 /* If we freed a buffer, we can restart transmission, if necessary */ 2597 if (tx_queue->num_txbdfree && 2598 netif_tx_queue_stopped(txq) && 2599 !(test_bit(GFAR_DOWN, &priv->state))) 2600 netif_wake_subqueue(priv->ndev, tqi); 2601 2602 /* Update dirty indicators */ 2603 tx_queue->skb_dirtytx = skb_dirtytx; 2604 tx_queue->dirty_tx = bdp; 2605 2606 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2607 } 2608 2609 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 2610 struct sk_buff *skb) 2611 { 2612 struct net_device *dev = rx_queue->dev; 2613 struct gfar_private *priv = netdev_priv(dev); 2614 dma_addr_t buf; 2615 2616 buf = dma_map_single(priv->dev, skb->data, 2617 priv->rx_buffer_size, DMA_FROM_DEVICE); 2618 gfar_init_rxbdp(rx_queue, bdp, buf); 2619 } 2620 2621 static struct sk_buff *gfar_alloc_skb(struct net_device *dev) 2622 { 2623 struct gfar_private *priv = netdev_priv(dev); 2624 struct sk_buff *skb; 2625 2626 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2627 if (!skb) 2628 return NULL; 2629 2630 gfar_align_skb(skb); 2631 2632 return skb; 2633 } 2634 2635 struct sk_buff *gfar_new_skb(struct net_device *dev) 2636 { 2637 return gfar_alloc_skb(dev); 2638 } 2639 2640 static inline void count_errors(unsigned short status, struct net_device *dev) 2641 { 2642 struct gfar_private *priv = netdev_priv(dev); 2643 struct net_device_stats *stats = &dev->stats; 2644 struct gfar_extra_stats *estats = &priv->extra_stats; 2645 2646 /* If the packet was truncated, none of the other errors matter */ 2647 if (status & RXBD_TRUNCATED) { 2648 stats->rx_length_errors++; 2649 2650 atomic64_inc(&estats->rx_trunc); 2651 2652 return; 2653 } 2654 /* Count the errors, if there were any */ 2655 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2656 stats->rx_length_errors++; 2657 2658 if (status & RXBD_LARGE) 2659 atomic64_inc(&estats->rx_large); 2660 else 2661 atomic64_inc(&estats->rx_short); 2662 } 2663 if (status & RXBD_NONOCTET) { 2664 stats->rx_frame_errors++; 2665 atomic64_inc(&estats->rx_nonoctet); 2666 } 2667 if (status & RXBD_CRCERR) { 2668 atomic64_inc(&estats->rx_crcerr); 2669 stats->rx_crc_errors++; 2670 } 2671 if (status & RXBD_OVERRUN) { 2672 atomic64_inc(&estats->rx_overrun); 2673 stats->rx_crc_errors++; 2674 } 2675 } 2676 2677 irqreturn_t gfar_receive(int irq, void *grp_id) 2678 { 2679 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2680 unsigned long flags; 2681 u32 imask; 2682 2683 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2684 spin_lock_irqsave(&grp->grplock, flags); 2685 imask = gfar_read(&grp->regs->imask); 2686 imask &= IMASK_RX_DISABLED; 2687 gfar_write(&grp->regs->imask, imask); 2688 spin_unlock_irqrestore(&grp->grplock, flags); 2689 __napi_schedule(&grp->napi_rx); 2690 } else { 2691 /* Clear IEVENT, so interrupts aren't called again 2692 * because of the packets that have already arrived. 2693 */ 2694 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2695 } 2696 2697 return IRQ_HANDLED; 2698 } 2699 2700 /* Interrupt Handler for Transmit complete */ 2701 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2702 { 2703 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2704 unsigned long flags; 2705 u32 imask; 2706 2707 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2708 spin_lock_irqsave(&grp->grplock, flags); 2709 imask = gfar_read(&grp->regs->imask); 2710 imask &= IMASK_TX_DISABLED; 2711 gfar_write(&grp->regs->imask, imask); 2712 spin_unlock_irqrestore(&grp->grplock, flags); 2713 __napi_schedule(&grp->napi_tx); 2714 } else { 2715 /* Clear IEVENT, so interrupts aren't called again 2716 * because of the packets that have already arrived. 2717 */ 2718 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2719 } 2720 2721 return IRQ_HANDLED; 2722 } 2723 2724 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2725 { 2726 /* If valid headers were found, and valid sums 2727 * were verified, then we tell the kernel that no 2728 * checksumming is necessary. Otherwise, it is [FIXME] 2729 */ 2730 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2731 skb->ip_summed = CHECKSUM_UNNECESSARY; 2732 else 2733 skb_checksum_none_assert(skb); 2734 } 2735 2736 2737 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2738 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2739 int amount_pull, struct napi_struct *napi) 2740 { 2741 struct gfar_private *priv = netdev_priv(dev); 2742 struct rxfcb *fcb = NULL; 2743 2744 /* fcb is at the beginning if exists */ 2745 fcb = (struct rxfcb *)skb->data; 2746 2747 /* Remove the FCB from the skb 2748 * Remove the padded bytes, if there are any 2749 */ 2750 if (amount_pull) { 2751 skb_record_rx_queue(skb, fcb->rq); 2752 skb_pull(skb, amount_pull); 2753 } 2754 2755 /* Get receive timestamp from the skb */ 2756 if (priv->hwts_rx_en) { 2757 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2758 u64 *ns = (u64 *) skb->data; 2759 2760 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2761 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2762 } 2763 2764 if (priv->padding) 2765 skb_pull(skb, priv->padding); 2766 2767 if (dev->features & NETIF_F_RXCSUM) 2768 gfar_rx_checksum(skb, fcb); 2769 2770 /* Tell the skb what kind of packet this is */ 2771 skb->protocol = eth_type_trans(skb, dev); 2772 2773 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2774 * Even if vlan rx accel is disabled, on some chips 2775 * RXFCB_VLN is pseudo randomly set. 2776 */ 2777 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2778 fcb->flags & RXFCB_VLN) 2779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl); 2780 2781 /* Send the packet up the stack */ 2782 napi_gro_receive(napi, skb); 2783 2784 } 2785 2786 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2787 * until the budget/quota has been reached. Returns the number 2788 * of frames handled 2789 */ 2790 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2791 { 2792 struct net_device *dev = rx_queue->dev; 2793 struct rxbd8 *bdp, *base; 2794 struct sk_buff *skb; 2795 int pkt_len; 2796 int amount_pull; 2797 int howmany = 0; 2798 struct gfar_private *priv = netdev_priv(dev); 2799 2800 /* Get the first full descriptor */ 2801 bdp = rx_queue->cur_rx; 2802 base = rx_queue->rx_bd_base; 2803 2804 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0; 2805 2806 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2807 struct sk_buff *newskb; 2808 2809 rmb(); 2810 2811 /* Add another skb for the future */ 2812 newskb = gfar_new_skb(dev); 2813 2814 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2815 2816 dma_unmap_single(priv->dev, bdp->bufPtr, 2817 priv->rx_buffer_size, DMA_FROM_DEVICE); 2818 2819 if (unlikely(!(bdp->status & RXBD_ERR) && 2820 bdp->length > priv->rx_buffer_size)) 2821 bdp->status = RXBD_LARGE; 2822 2823 /* We drop the frame if we failed to allocate a new buffer */ 2824 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2825 bdp->status & RXBD_ERR)) { 2826 count_errors(bdp->status, dev); 2827 2828 if (unlikely(!newskb)) 2829 newskb = skb; 2830 else if (skb) 2831 dev_kfree_skb(skb); 2832 } else { 2833 /* Increment the number of packets */ 2834 rx_queue->stats.rx_packets++; 2835 howmany++; 2836 2837 if (likely(skb)) { 2838 pkt_len = bdp->length - ETH_FCS_LEN; 2839 /* Remove the FCS from the packet length */ 2840 skb_put(skb, pkt_len); 2841 rx_queue->stats.rx_bytes += pkt_len; 2842 skb_record_rx_queue(skb, rx_queue->qindex); 2843 gfar_process_frame(dev, skb, amount_pull, 2844 &rx_queue->grp->napi_rx); 2845 2846 } else { 2847 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2848 rx_queue->stats.rx_dropped++; 2849 atomic64_inc(&priv->extra_stats.rx_skbmissing); 2850 } 2851 2852 } 2853 2854 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2855 2856 /* Setup the new bdp */ 2857 gfar_new_rxbdp(rx_queue, bdp, newskb); 2858 2859 /* Update to the next pointer */ 2860 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2861 2862 /* update to point at the next skb */ 2863 rx_queue->skb_currx = (rx_queue->skb_currx + 1) & 2864 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2865 } 2866 2867 /* Update the current rxbd pointer to be the next one */ 2868 rx_queue->cur_rx = bdp; 2869 2870 return howmany; 2871 } 2872 2873 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2874 { 2875 struct gfar_priv_grp *gfargrp = 2876 container_of(napi, struct gfar_priv_grp, napi_rx); 2877 struct gfar __iomem *regs = gfargrp->regs; 2878 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2879 int work_done = 0; 2880 2881 /* Clear IEVENT, so interrupts aren't called again 2882 * because of the packets that have already arrived 2883 */ 2884 gfar_write(®s->ievent, IEVENT_RX_MASK); 2885 2886 work_done = gfar_clean_rx_ring(rx_queue, budget); 2887 2888 if (work_done < budget) { 2889 u32 imask; 2890 napi_complete(napi); 2891 /* Clear the halt bit in RSTAT */ 2892 gfar_write(®s->rstat, gfargrp->rstat); 2893 2894 spin_lock_irq(&gfargrp->grplock); 2895 imask = gfar_read(®s->imask); 2896 imask |= IMASK_RX_DEFAULT; 2897 gfar_write(®s->imask, imask); 2898 spin_unlock_irq(&gfargrp->grplock); 2899 } 2900 2901 return work_done; 2902 } 2903 2904 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2905 { 2906 struct gfar_priv_grp *gfargrp = 2907 container_of(napi, struct gfar_priv_grp, napi_tx); 2908 struct gfar __iomem *regs = gfargrp->regs; 2909 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2910 u32 imask; 2911 2912 /* Clear IEVENT, so interrupts aren't called again 2913 * because of the packets that have already arrived 2914 */ 2915 gfar_write(®s->ievent, IEVENT_TX_MASK); 2916 2917 /* run Tx cleanup to completion */ 2918 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2919 gfar_clean_tx_ring(tx_queue); 2920 2921 napi_complete(napi); 2922 2923 spin_lock_irq(&gfargrp->grplock); 2924 imask = gfar_read(®s->imask); 2925 imask |= IMASK_TX_DEFAULT; 2926 gfar_write(®s->imask, imask); 2927 spin_unlock_irq(&gfargrp->grplock); 2928 2929 return 0; 2930 } 2931 2932 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2933 { 2934 struct gfar_priv_grp *gfargrp = 2935 container_of(napi, struct gfar_priv_grp, napi_rx); 2936 struct gfar_private *priv = gfargrp->priv; 2937 struct gfar __iomem *regs = gfargrp->regs; 2938 struct gfar_priv_rx_q *rx_queue = NULL; 2939 int work_done = 0, work_done_per_q = 0; 2940 int i, budget_per_q = 0; 2941 unsigned long rstat_rxf; 2942 int num_act_queues; 2943 2944 /* Clear IEVENT, so interrupts aren't called again 2945 * because of the packets that have already arrived 2946 */ 2947 gfar_write(®s->ievent, IEVENT_RX_MASK); 2948 2949 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2950 2951 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2952 if (num_act_queues) 2953 budget_per_q = budget/num_act_queues; 2954 2955 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2956 /* skip queue if not active */ 2957 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2958 continue; 2959 2960 rx_queue = priv->rx_queue[i]; 2961 work_done_per_q = 2962 gfar_clean_rx_ring(rx_queue, budget_per_q); 2963 work_done += work_done_per_q; 2964 2965 /* finished processing this queue */ 2966 if (work_done_per_q < budget_per_q) { 2967 /* clear active queue hw indication */ 2968 gfar_write(®s->rstat, 2969 RSTAT_CLEAR_RXF0 >> i); 2970 num_act_queues--; 2971 2972 if (!num_act_queues) 2973 break; 2974 } 2975 } 2976 2977 if (!num_act_queues) { 2978 u32 imask; 2979 napi_complete(napi); 2980 2981 /* Clear the halt bit in RSTAT */ 2982 gfar_write(®s->rstat, gfargrp->rstat); 2983 2984 spin_lock_irq(&gfargrp->grplock); 2985 imask = gfar_read(®s->imask); 2986 imask |= IMASK_RX_DEFAULT; 2987 gfar_write(®s->imask, imask); 2988 spin_unlock_irq(&gfargrp->grplock); 2989 } 2990 2991 return work_done; 2992 } 2993 2994 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2995 { 2996 struct gfar_priv_grp *gfargrp = 2997 container_of(napi, struct gfar_priv_grp, napi_tx); 2998 struct gfar_private *priv = gfargrp->priv; 2999 struct gfar __iomem *regs = gfargrp->regs; 3000 struct gfar_priv_tx_q *tx_queue = NULL; 3001 int has_tx_work = 0; 3002 int i; 3003 3004 /* Clear IEVENT, so interrupts aren't called again 3005 * because of the packets that have already arrived 3006 */ 3007 gfar_write(®s->ievent, IEVENT_TX_MASK); 3008 3009 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 3010 tx_queue = priv->tx_queue[i]; 3011 /* run Tx cleanup to completion */ 3012 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 3013 gfar_clean_tx_ring(tx_queue); 3014 has_tx_work = 1; 3015 } 3016 } 3017 3018 if (!has_tx_work) { 3019 u32 imask; 3020 napi_complete(napi); 3021 3022 spin_lock_irq(&gfargrp->grplock); 3023 imask = gfar_read(®s->imask); 3024 imask |= IMASK_TX_DEFAULT; 3025 gfar_write(®s->imask, imask); 3026 spin_unlock_irq(&gfargrp->grplock); 3027 } 3028 3029 return 0; 3030 } 3031 3032 3033 #ifdef CONFIG_NET_POLL_CONTROLLER 3034 /* Polling 'interrupt' - used by things like netconsole to send skbs 3035 * without having to re-enable interrupts. It's not called while 3036 * the interrupt routine is executing. 3037 */ 3038 static void gfar_netpoll(struct net_device *dev) 3039 { 3040 struct gfar_private *priv = netdev_priv(dev); 3041 int i; 3042 3043 /* If the device has multiple interrupts, run tx/rx */ 3044 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3045 for (i = 0; i < priv->num_grps; i++) { 3046 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3047 3048 disable_irq(gfar_irq(grp, TX)->irq); 3049 disable_irq(gfar_irq(grp, RX)->irq); 3050 disable_irq(gfar_irq(grp, ER)->irq); 3051 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3052 enable_irq(gfar_irq(grp, ER)->irq); 3053 enable_irq(gfar_irq(grp, RX)->irq); 3054 enable_irq(gfar_irq(grp, TX)->irq); 3055 } 3056 } else { 3057 for (i = 0; i < priv->num_grps; i++) { 3058 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3059 3060 disable_irq(gfar_irq(grp, TX)->irq); 3061 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3062 enable_irq(gfar_irq(grp, TX)->irq); 3063 } 3064 } 3065 } 3066 #endif 3067 3068 /* The interrupt handler for devices with one interrupt */ 3069 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3070 { 3071 struct gfar_priv_grp *gfargrp = grp_id; 3072 3073 /* Save ievent for future reference */ 3074 u32 events = gfar_read(&gfargrp->regs->ievent); 3075 3076 /* Check for reception */ 3077 if (events & IEVENT_RX_MASK) 3078 gfar_receive(irq, grp_id); 3079 3080 /* Check for transmit completion */ 3081 if (events & IEVENT_TX_MASK) 3082 gfar_transmit(irq, grp_id); 3083 3084 /* Check for errors */ 3085 if (events & IEVENT_ERR_MASK) 3086 gfar_error(irq, grp_id); 3087 3088 return IRQ_HANDLED; 3089 } 3090 3091 /* Called every time the controller might need to be made 3092 * aware of new link state. The PHY code conveys this 3093 * information through variables in the phydev structure, and this 3094 * function converts those variables into the appropriate 3095 * register values, and can bring down the device if needed. 3096 */ 3097 static void adjust_link(struct net_device *dev) 3098 { 3099 struct gfar_private *priv = netdev_priv(dev); 3100 struct phy_device *phydev = priv->phydev; 3101 3102 if (unlikely(phydev->link != priv->oldlink || 3103 phydev->duplex != priv->oldduplex || 3104 phydev->speed != priv->oldspeed)) 3105 gfar_update_link_state(priv); 3106 } 3107 3108 /* Update the hash table based on the current list of multicast 3109 * addresses we subscribe to. Also, change the promiscuity of 3110 * the device based on the flags (this function is called 3111 * whenever dev->flags is changed 3112 */ 3113 static void gfar_set_multi(struct net_device *dev) 3114 { 3115 struct netdev_hw_addr *ha; 3116 struct gfar_private *priv = netdev_priv(dev); 3117 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3118 u32 tempval; 3119 3120 if (dev->flags & IFF_PROMISC) { 3121 /* Set RCTRL to PROM */ 3122 tempval = gfar_read(®s->rctrl); 3123 tempval |= RCTRL_PROM; 3124 gfar_write(®s->rctrl, tempval); 3125 } else { 3126 /* Set RCTRL to not PROM */ 3127 tempval = gfar_read(®s->rctrl); 3128 tempval &= ~(RCTRL_PROM); 3129 gfar_write(®s->rctrl, tempval); 3130 } 3131 3132 if (dev->flags & IFF_ALLMULTI) { 3133 /* Set the hash to rx all multicast frames */ 3134 gfar_write(®s->igaddr0, 0xffffffff); 3135 gfar_write(®s->igaddr1, 0xffffffff); 3136 gfar_write(®s->igaddr2, 0xffffffff); 3137 gfar_write(®s->igaddr3, 0xffffffff); 3138 gfar_write(®s->igaddr4, 0xffffffff); 3139 gfar_write(®s->igaddr5, 0xffffffff); 3140 gfar_write(®s->igaddr6, 0xffffffff); 3141 gfar_write(®s->igaddr7, 0xffffffff); 3142 gfar_write(®s->gaddr0, 0xffffffff); 3143 gfar_write(®s->gaddr1, 0xffffffff); 3144 gfar_write(®s->gaddr2, 0xffffffff); 3145 gfar_write(®s->gaddr3, 0xffffffff); 3146 gfar_write(®s->gaddr4, 0xffffffff); 3147 gfar_write(®s->gaddr5, 0xffffffff); 3148 gfar_write(®s->gaddr6, 0xffffffff); 3149 gfar_write(®s->gaddr7, 0xffffffff); 3150 } else { 3151 int em_num; 3152 int idx; 3153 3154 /* zero out the hash */ 3155 gfar_write(®s->igaddr0, 0x0); 3156 gfar_write(®s->igaddr1, 0x0); 3157 gfar_write(®s->igaddr2, 0x0); 3158 gfar_write(®s->igaddr3, 0x0); 3159 gfar_write(®s->igaddr4, 0x0); 3160 gfar_write(®s->igaddr5, 0x0); 3161 gfar_write(®s->igaddr6, 0x0); 3162 gfar_write(®s->igaddr7, 0x0); 3163 gfar_write(®s->gaddr0, 0x0); 3164 gfar_write(®s->gaddr1, 0x0); 3165 gfar_write(®s->gaddr2, 0x0); 3166 gfar_write(®s->gaddr3, 0x0); 3167 gfar_write(®s->gaddr4, 0x0); 3168 gfar_write(®s->gaddr5, 0x0); 3169 gfar_write(®s->gaddr6, 0x0); 3170 gfar_write(®s->gaddr7, 0x0); 3171 3172 /* If we have extended hash tables, we need to 3173 * clear the exact match registers to prepare for 3174 * setting them 3175 */ 3176 if (priv->extended_hash) { 3177 em_num = GFAR_EM_NUM + 1; 3178 gfar_clear_exact_match(dev); 3179 idx = 1; 3180 } else { 3181 idx = 0; 3182 em_num = 0; 3183 } 3184 3185 if (netdev_mc_empty(dev)) 3186 return; 3187 3188 /* Parse the list, and set the appropriate bits */ 3189 netdev_for_each_mc_addr(ha, dev) { 3190 if (idx < em_num) { 3191 gfar_set_mac_for_addr(dev, idx, ha->addr); 3192 idx++; 3193 } else 3194 gfar_set_hash_for_addr(dev, ha->addr); 3195 } 3196 } 3197 } 3198 3199 3200 /* Clears each of the exact match registers to zero, so they 3201 * don't interfere with normal reception 3202 */ 3203 static void gfar_clear_exact_match(struct net_device *dev) 3204 { 3205 int idx; 3206 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3207 3208 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3209 gfar_set_mac_for_addr(dev, idx, zero_arr); 3210 } 3211 3212 /* Set the appropriate hash bit for the given addr */ 3213 /* The algorithm works like so: 3214 * 1) Take the Destination Address (ie the multicast address), and 3215 * do a CRC on it (little endian), and reverse the bits of the 3216 * result. 3217 * 2) Use the 8 most significant bits as a hash into a 256-entry 3218 * table. The table is controlled through 8 32-bit registers: 3219 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3220 * gaddr7. This means that the 3 most significant bits in the 3221 * hash index which gaddr register to use, and the 5 other bits 3222 * indicate which bit (assuming an IBM numbering scheme, which 3223 * for PowerPC (tm) is usually the case) in the register holds 3224 * the entry. 3225 */ 3226 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3227 { 3228 u32 tempval; 3229 struct gfar_private *priv = netdev_priv(dev); 3230 u32 result = ether_crc(ETH_ALEN, addr); 3231 int width = priv->hash_width; 3232 u8 whichbit = (result >> (32 - width)) & 0x1f; 3233 u8 whichreg = result >> (32 - width + 5); 3234 u32 value = (1 << (31-whichbit)); 3235 3236 tempval = gfar_read(priv->hash_regs[whichreg]); 3237 tempval |= value; 3238 gfar_write(priv->hash_regs[whichreg], tempval); 3239 } 3240 3241 3242 /* There are multiple MAC Address register pairs on some controllers 3243 * This function sets the numth pair to a given address 3244 */ 3245 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3246 const u8 *addr) 3247 { 3248 struct gfar_private *priv = netdev_priv(dev); 3249 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3250 u32 tempval; 3251 u32 __iomem *macptr = ®s->macstnaddr1; 3252 3253 macptr += num*2; 3254 3255 /* For a station address of 0x12345678ABCD in transmission 3256 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 3257 * MACnADDR2 is set to 0x34120000. 3258 */ 3259 tempval = (addr[5] << 24) | (addr[4] << 16) | 3260 (addr[3] << 8) | addr[2]; 3261 3262 gfar_write(macptr, tempval); 3263 3264 tempval = (addr[1] << 24) | (addr[0] << 16); 3265 3266 gfar_write(macptr+1, tempval); 3267 } 3268 3269 /* GFAR error interrupt handler */ 3270 static irqreturn_t gfar_error(int irq, void *grp_id) 3271 { 3272 struct gfar_priv_grp *gfargrp = grp_id; 3273 struct gfar __iomem *regs = gfargrp->regs; 3274 struct gfar_private *priv= gfargrp->priv; 3275 struct net_device *dev = priv->ndev; 3276 3277 /* Save ievent for future reference */ 3278 u32 events = gfar_read(®s->ievent); 3279 3280 /* Clear IEVENT */ 3281 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3282 3283 /* Magic Packet is not an error. */ 3284 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3285 (events & IEVENT_MAG)) 3286 events &= ~IEVENT_MAG; 3287 3288 /* Hmm... */ 3289 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3290 netdev_dbg(dev, 3291 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3292 events, gfar_read(®s->imask)); 3293 3294 /* Update the error counters */ 3295 if (events & IEVENT_TXE) { 3296 dev->stats.tx_errors++; 3297 3298 if (events & IEVENT_LC) 3299 dev->stats.tx_window_errors++; 3300 if (events & IEVENT_CRL) 3301 dev->stats.tx_aborted_errors++; 3302 if (events & IEVENT_XFUN) { 3303 unsigned long flags; 3304 3305 netif_dbg(priv, tx_err, dev, 3306 "TX FIFO underrun, packet dropped\n"); 3307 dev->stats.tx_dropped++; 3308 atomic64_inc(&priv->extra_stats.tx_underrun); 3309 3310 local_irq_save(flags); 3311 lock_tx_qs(priv); 3312 3313 /* Reactivate the Tx Queues */ 3314 gfar_write(®s->tstat, gfargrp->tstat); 3315 3316 unlock_tx_qs(priv); 3317 local_irq_restore(flags); 3318 } 3319 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3320 } 3321 if (events & IEVENT_BSY) { 3322 dev->stats.rx_errors++; 3323 atomic64_inc(&priv->extra_stats.rx_bsy); 3324 3325 gfar_receive(irq, grp_id); 3326 3327 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3328 gfar_read(®s->rstat)); 3329 } 3330 if (events & IEVENT_BABR) { 3331 dev->stats.rx_errors++; 3332 atomic64_inc(&priv->extra_stats.rx_babr); 3333 3334 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3335 } 3336 if (events & IEVENT_EBERR) { 3337 atomic64_inc(&priv->extra_stats.eberr); 3338 netif_dbg(priv, rx_err, dev, "bus error\n"); 3339 } 3340 if (events & IEVENT_RXC) 3341 netif_dbg(priv, rx_status, dev, "control frame\n"); 3342 3343 if (events & IEVENT_BABT) { 3344 atomic64_inc(&priv->extra_stats.tx_babt); 3345 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3346 } 3347 return IRQ_HANDLED; 3348 } 3349 3350 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3351 { 3352 struct phy_device *phydev = priv->phydev; 3353 u32 val = 0; 3354 3355 if (!phydev->duplex) 3356 return val; 3357 3358 if (!priv->pause_aneg_en) { 3359 if (priv->tx_pause_en) 3360 val |= MACCFG1_TX_FLOW; 3361 if (priv->rx_pause_en) 3362 val |= MACCFG1_RX_FLOW; 3363 } else { 3364 u16 lcl_adv, rmt_adv; 3365 u8 flowctrl; 3366 /* get link partner capabilities */ 3367 rmt_adv = 0; 3368 if (phydev->pause) 3369 rmt_adv = LPA_PAUSE_CAP; 3370 if (phydev->asym_pause) 3371 rmt_adv |= LPA_PAUSE_ASYM; 3372 3373 lcl_adv = mii_advertise_flowctrl(phydev->advertising); 3374 3375 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3376 if (flowctrl & FLOW_CTRL_TX) 3377 val |= MACCFG1_TX_FLOW; 3378 if (flowctrl & FLOW_CTRL_RX) 3379 val |= MACCFG1_RX_FLOW; 3380 } 3381 3382 return val; 3383 } 3384 3385 static noinline void gfar_update_link_state(struct gfar_private *priv) 3386 { 3387 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3388 struct phy_device *phydev = priv->phydev; 3389 3390 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 3391 return; 3392 3393 if (phydev->link) { 3394 u32 tempval1 = gfar_read(®s->maccfg1); 3395 u32 tempval = gfar_read(®s->maccfg2); 3396 u32 ecntrl = gfar_read(®s->ecntrl); 3397 3398 if (phydev->duplex != priv->oldduplex) { 3399 if (!(phydev->duplex)) 3400 tempval &= ~(MACCFG2_FULL_DUPLEX); 3401 else 3402 tempval |= MACCFG2_FULL_DUPLEX; 3403 3404 priv->oldduplex = phydev->duplex; 3405 } 3406 3407 if (phydev->speed != priv->oldspeed) { 3408 switch (phydev->speed) { 3409 case 1000: 3410 tempval = 3411 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3412 3413 ecntrl &= ~(ECNTRL_R100); 3414 break; 3415 case 100: 3416 case 10: 3417 tempval = 3418 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3419 3420 /* Reduced mode distinguishes 3421 * between 10 and 100 3422 */ 3423 if (phydev->speed == SPEED_100) 3424 ecntrl |= ECNTRL_R100; 3425 else 3426 ecntrl &= ~(ECNTRL_R100); 3427 break; 3428 default: 3429 netif_warn(priv, link, priv->ndev, 3430 "Ack! Speed (%d) is not 10/100/1000!\n", 3431 phydev->speed); 3432 break; 3433 } 3434 3435 priv->oldspeed = phydev->speed; 3436 } 3437 3438 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3439 tempval1 |= gfar_get_flowctrl_cfg(priv); 3440 3441 gfar_write(®s->maccfg1, tempval1); 3442 gfar_write(®s->maccfg2, tempval); 3443 gfar_write(®s->ecntrl, ecntrl); 3444 3445 if (!priv->oldlink) 3446 priv->oldlink = 1; 3447 3448 } else if (priv->oldlink) { 3449 priv->oldlink = 0; 3450 priv->oldspeed = 0; 3451 priv->oldduplex = -1; 3452 } 3453 3454 if (netif_msg_link(priv)) 3455 phy_print_status(phydev); 3456 } 3457 3458 static struct of_device_id gfar_match[] = 3459 { 3460 { 3461 .type = "network", 3462 .compatible = "gianfar", 3463 }, 3464 { 3465 .compatible = "fsl,etsec2", 3466 }, 3467 {}, 3468 }; 3469 MODULE_DEVICE_TABLE(of, gfar_match); 3470 3471 /* Structure for a device driver */ 3472 static struct platform_driver gfar_driver = { 3473 .driver = { 3474 .name = "fsl-gianfar", 3475 .owner = THIS_MODULE, 3476 .pm = GFAR_PM_OPS, 3477 .of_match_table = gfar_match, 3478 }, 3479 .probe = gfar_probe, 3480 .remove = gfar_remove, 3481 }; 3482 3483 module_platform_driver(gfar_driver); 3484