1 /*
2  * drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64 
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
67 
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102 
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
105 
106 #define TX_TIMEOUT      (1*HZ)
107 
108 const char gfar_driver_version[] = "1.3";
109 
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 		struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139 			      int amount_pull);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145 				  const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147 
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151 
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 			    dma_addr_t buf)
154 {
155 	u32 lstatus;
156 
157 	bdp->bufPtr = buf;
158 
159 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 		lstatus |= BD_LFLAG(RXBD_WRAP);
162 
163 	eieio();
164 
165 	bdp->lstatus = lstatus;
166 }
167 
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 	struct gfar_private *priv = netdev_priv(ndev);
171 	struct gfar_priv_tx_q *tx_queue = NULL;
172 	struct gfar_priv_rx_q *rx_queue = NULL;
173 	struct txbd8 *txbdp;
174 	struct rxbd8 *rxbdp;
175 	int i, j;
176 
177 	for (i = 0; i < priv->num_tx_queues; i++) {
178 		tx_queue = priv->tx_queue[i];
179 		/* Initialize some variables in our dev structure */
180 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 		tx_queue->cur_tx = tx_queue->tx_bd_base;
183 		tx_queue->skb_curtx = 0;
184 		tx_queue->skb_dirtytx = 0;
185 
186 		/* Initialize Transmit Descriptor Ring */
187 		txbdp = tx_queue->tx_bd_base;
188 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 			txbdp->lstatus = 0;
190 			txbdp->bufPtr = 0;
191 			txbdp++;
192 		}
193 
194 		/* Set the last descriptor in the ring to indicate wrap */
195 		txbdp--;
196 		txbdp->status |= TXBD_WRAP;
197 	}
198 
199 	for (i = 0; i < priv->num_rx_queues; i++) {
200 		rx_queue = priv->rx_queue[i];
201 		rx_queue->cur_rx = rx_queue->rx_bd_base;
202 		rx_queue->skb_currx = 0;
203 		rxbdp = rx_queue->rx_bd_base;
204 
205 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
207 
208 			if (skb) {
209 				gfar_init_rxbdp(rx_queue, rxbdp,
210 						rxbdp->bufPtr);
211 			} else {
212 				skb = gfar_new_skb(ndev);
213 				if (!skb) {
214 					netdev_err(ndev, "Can't allocate RX buffers\n");
215 					goto err_rxalloc_fail;
216 				}
217 				rx_queue->rx_skbuff[j] = skb;
218 
219 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
220 			}
221 
222 			rxbdp++;
223 		}
224 
225 	}
226 
227 	return 0;
228 
229 err_rxalloc_fail:
230 	free_skb_resources(priv);
231 	return -ENOMEM;
232 }
233 
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236 	void *vaddr;
237 	dma_addr_t addr;
238 	int i, j, k;
239 	struct gfar_private *priv = netdev_priv(ndev);
240 	struct device *dev = &priv->ofdev->dev;
241 	struct gfar_priv_tx_q *tx_queue = NULL;
242 	struct gfar_priv_rx_q *rx_queue = NULL;
243 
244 	priv->total_tx_ring_size = 0;
245 	for (i = 0; i < priv->num_tx_queues; i++)
246 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247 
248 	priv->total_rx_ring_size = 0;
249 	for (i = 0; i < priv->num_rx_queues; i++)
250 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251 
252 	/* Allocate memory for the buffer descriptors */
253 	vaddr = dma_alloc_coherent(dev,
254 			sizeof(struct txbd8) * priv->total_tx_ring_size +
255 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
256 			&addr, GFP_KERNEL);
257 	if (!vaddr) {
258 		netif_err(priv, ifup, ndev,
259 			  "Could not allocate buffer descriptors!\n");
260 		return -ENOMEM;
261 	}
262 
263 	for (i = 0; i < priv->num_tx_queues; i++) {
264 		tx_queue = priv->tx_queue[i];
265 		tx_queue->tx_bd_base = vaddr;
266 		tx_queue->tx_bd_dma_base = addr;
267 		tx_queue->dev = ndev;
268 		/* enet DMA only understands physical addresses */
269 		addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
270 		vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271 	}
272 
273 	/* Start the rx descriptor ring where the tx ring leaves off */
274 	for (i = 0; i < priv->num_rx_queues; i++) {
275 		rx_queue = priv->rx_queue[i];
276 		rx_queue->rx_bd_base = vaddr;
277 		rx_queue->rx_bd_dma_base = addr;
278 		rx_queue->dev = ndev;
279 		addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
280 		vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281 	}
282 
283 	/* Setup the skbuff rings */
284 	for (i = 0; i < priv->num_tx_queues; i++) {
285 		tx_queue = priv->tx_queue[i];
286 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
287 				  tx_queue->tx_ring_size, GFP_KERNEL);
288 		if (!tx_queue->tx_skbuff) {
289 			netif_err(priv, ifup, ndev,
290 				  "Could not allocate tx_skbuff\n");
291 			goto cleanup;
292 		}
293 
294 		for (k = 0; k < tx_queue->tx_ring_size; k++)
295 			tx_queue->tx_skbuff[k] = NULL;
296 	}
297 
298 	for (i = 0; i < priv->num_rx_queues; i++) {
299 		rx_queue = priv->rx_queue[i];
300 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301 				  rx_queue->rx_ring_size, GFP_KERNEL);
302 
303 		if (!rx_queue->rx_skbuff) {
304 			netif_err(priv, ifup, ndev,
305 				  "Could not allocate rx_skbuff\n");
306 			goto cleanup;
307 		}
308 
309 		for (j = 0; j < rx_queue->rx_ring_size; j++)
310 			rx_queue->rx_skbuff[j] = NULL;
311 	}
312 
313 	if (gfar_init_bds(ndev))
314 		goto cleanup;
315 
316 	return 0;
317 
318 cleanup:
319 	free_skb_resources(priv);
320 	return -ENOMEM;
321 }
322 
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 	u32 __iomem *baddr;
327 	int i;
328 
329 	baddr = &regs->tbase0;
330 	for(i = 0; i < priv->num_tx_queues; i++) {
331 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 		baddr	+= 2;
333 	}
334 
335 	baddr = &regs->rbase0;
336 	for(i = 0; i < priv->num_rx_queues; i++) {
337 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 		baddr   += 2;
339 	}
340 }
341 
342 static void gfar_init_mac(struct net_device *ndev)
343 {
344 	struct gfar_private *priv = netdev_priv(ndev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 rctrl = 0;
347 	u32 tctrl = 0;
348 	u32 attrs = 0;
349 
350 	/* write the tx/rx base registers */
351 	gfar_init_tx_rx_base(priv);
352 
353 	/* Configure the coalescing support */
354 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
355 
356 	if (priv->rx_filer_enable) {
357 		rctrl |= RCTRL_FILREN;
358 		/* Program the RIR0 reg with the required distribution */
359 		gfar_write(&regs->rir0, DEFAULT_RIR0);
360 	}
361 
362 	if (ndev->features & NETIF_F_RXCSUM)
363 		rctrl |= RCTRL_CHECKSUMMING;
364 
365 	if (priv->extended_hash) {
366 		rctrl |= RCTRL_EXTHASH;
367 
368 		gfar_clear_exact_match(ndev);
369 		rctrl |= RCTRL_EMEN;
370 	}
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Insert receive time stamps into padding alignment bytes */
378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 		rctrl &= ~RCTRL_PAL_MASK;
380 		rctrl |= RCTRL_PADDING(8);
381 		priv->padding = 8;
382 	}
383 
384 	/* Enable HW time stamping if requested from user space */
385 	if (priv->hwts_rx_en)
386 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 
388 	if (ndev->features & NETIF_F_HW_VLAN_RX)
389 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 
394 	if (ndev->features & NETIF_F_IP_CSUM)
395 		tctrl |= TCTRL_INIT_CSUM;
396 
397 	tctrl |= TCTRL_TXSCHED_PRIO;
398 
399 	gfar_write(&regs->tctrl, tctrl);
400 
401 	/* Set the extraction length and index */
402 	attrs = ATTRELI_EL(priv->rx_stash_size) |
403 		ATTRELI_EI(priv->rx_stash_index);
404 
405 	gfar_write(&regs->attreli, attrs);
406 
407 	/* Start with defaults, and add stashing or locking
408 	 * depending on the approprate variables */
409 	attrs = ATTR_INIT_SETTINGS;
410 
411 	if (priv->bd_stash_en)
412 		attrs |= ATTR_BDSTASH;
413 
414 	if (priv->rx_stash_size != 0)
415 		attrs |= ATTR_BUFSTASH;
416 
417 	gfar_write(&regs->attr, attrs);
418 
419 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
420 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
421 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
422 }
423 
424 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
425 {
426 	struct gfar_private *priv = netdev_priv(dev);
427 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
428 	unsigned long tx_packets = 0, tx_bytes = 0;
429 	int i = 0;
430 
431 	for (i = 0; i < priv->num_rx_queues; i++) {
432 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
433 		rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
434 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
435 	}
436 
437 	dev->stats.rx_packets = rx_packets;
438 	dev->stats.rx_bytes = rx_bytes;
439 	dev->stats.rx_dropped = rx_dropped;
440 
441 	for (i = 0; i < priv->num_tx_queues; i++) {
442 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
443 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
444 	}
445 
446 	dev->stats.tx_bytes = tx_bytes;
447 	dev->stats.tx_packets = tx_packets;
448 
449 	return &dev->stats;
450 }
451 
452 static const struct net_device_ops gfar_netdev_ops = {
453 	.ndo_open = gfar_enet_open,
454 	.ndo_start_xmit = gfar_start_xmit,
455 	.ndo_stop = gfar_close,
456 	.ndo_change_mtu = gfar_change_mtu,
457 	.ndo_set_features = gfar_set_features,
458 	.ndo_set_rx_mode = gfar_set_multi,
459 	.ndo_tx_timeout = gfar_timeout,
460 	.ndo_do_ioctl = gfar_ioctl,
461 	.ndo_get_stats = gfar_get_stats,
462 	.ndo_set_mac_address = eth_mac_addr,
463 	.ndo_validate_addr = eth_validate_addr,
464 #ifdef CONFIG_NET_POLL_CONTROLLER
465 	.ndo_poll_controller = gfar_netpoll,
466 #endif
467 };
468 
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471 	int i = 0x0;
472 
473 	for (i = 0; i < priv->num_rx_queues; i++)
474 		spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476 
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479 	int i = 0x0;
480 
481 	for (i = 0; i < priv->num_tx_queues; i++)
482 		spin_lock(&priv->tx_queue[i]->txlock);
483 }
484 
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487 	int i = 0x0;
488 
489 	for (i = 0; i < priv->num_rx_queues; i++)
490 		spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492 
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495 	int i = 0x0;
496 
497 	for (i = 0; i < priv->num_tx_queues; i++)
498 		spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500 
501 static bool gfar_is_vlan_on(struct gfar_private *priv)
502 {
503 	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
504 	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
505 }
506 
507 /* Returns 1 if incoming frames use an FCB */
508 static inline int gfar_uses_fcb(struct gfar_private *priv)
509 {
510 	return gfar_is_vlan_on(priv) ||
511 		(priv->ndev->features & NETIF_F_RXCSUM) ||
512 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
513 }
514 
515 static void free_tx_pointers(struct gfar_private *priv)
516 {
517 	int i = 0;
518 
519 	for (i = 0; i < priv->num_tx_queues; i++)
520 		kfree(priv->tx_queue[i]);
521 }
522 
523 static void free_rx_pointers(struct gfar_private *priv)
524 {
525 	int i = 0;
526 
527 	for (i = 0; i < priv->num_rx_queues; i++)
528 		kfree(priv->rx_queue[i]);
529 }
530 
531 static void unmap_group_regs(struct gfar_private *priv)
532 {
533 	int i = 0;
534 
535 	for (i = 0; i < MAXGROUPS; i++)
536 		if (priv->gfargrp[i].regs)
537 			iounmap(priv->gfargrp[i].regs);
538 }
539 
540 static void disable_napi(struct gfar_private *priv)
541 {
542 	int i = 0;
543 
544 	for (i = 0; i < priv->num_grps; i++)
545 		napi_disable(&priv->gfargrp[i].napi);
546 }
547 
548 static void enable_napi(struct gfar_private *priv)
549 {
550 	int i = 0;
551 
552 	for (i = 0; i < priv->num_grps; i++)
553 		napi_enable(&priv->gfargrp[i].napi);
554 }
555 
556 static int gfar_parse_group(struct device_node *np,
557 		struct gfar_private *priv, const char *model)
558 {
559 	u32 *queue_mask;
560 
561 	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
562 	if (!priv->gfargrp[priv->num_grps].regs)
563 		return -ENOMEM;
564 
565 	priv->gfargrp[priv->num_grps].interruptTransmit =
566 			irq_of_parse_and_map(np, 0);
567 
568 	/* If we aren't the FEC we have multiple interrupts */
569 	if (model && strcasecmp(model, "FEC")) {
570 		priv->gfargrp[priv->num_grps].interruptReceive =
571 			irq_of_parse_and_map(np, 1);
572 		priv->gfargrp[priv->num_grps].interruptError =
573 			irq_of_parse_and_map(np,2);
574 		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
575 		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
576 		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
577 			return -EINVAL;
578 	}
579 
580 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
581 	priv->gfargrp[priv->num_grps].priv = priv;
582 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
583 	if(priv->mode == MQ_MG_MODE) {
584 		queue_mask = (u32 *)of_get_property(np,
585 					"fsl,rx-bit-map", NULL);
586 		priv->gfargrp[priv->num_grps].rx_bit_map =
587 			queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
588 		queue_mask = (u32 *)of_get_property(np,
589 					"fsl,tx-bit-map", NULL);
590 		priv->gfargrp[priv->num_grps].tx_bit_map =
591 			queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592 	} else {
593 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595 	}
596 	priv->num_grps++;
597 
598 	return 0;
599 }
600 
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603 	const char *model;
604 	const char *ctype;
605 	const void *mac_addr;
606 	int err = 0, i;
607 	struct net_device *dev = NULL;
608 	struct gfar_private *priv = NULL;
609 	struct device_node *np = ofdev->dev.of_node;
610 	struct device_node *child = NULL;
611 	const u32 *stash;
612 	const u32 *stash_len;
613 	const u32 *stash_idx;
614 	unsigned int num_tx_qs, num_rx_qs;
615 	u32 *tx_queues, *rx_queues;
616 
617 	if (!np || !of_device_is_available(np))
618 		return -ENODEV;
619 
620 	/* parse the num of tx and rx queues */
621 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622 	num_tx_qs = tx_queues ? *tx_queues : 1;
623 
624 	if (num_tx_qs > MAX_TX_QS) {
625 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626 		       num_tx_qs, MAX_TX_QS);
627 		pr_err("Cannot do alloc_etherdev, aborting\n");
628 		return -EINVAL;
629 	}
630 
631 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632 	num_rx_qs = rx_queues ? *rx_queues : 1;
633 
634 	if (num_rx_qs > MAX_RX_QS) {
635 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636 		       num_rx_qs, MAX_RX_QS);
637 		pr_err("Cannot do alloc_etherdev, aborting\n");
638 		return -EINVAL;
639 	}
640 
641 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642 	dev = *pdev;
643 	if (NULL == dev)
644 		return -ENOMEM;
645 
646 	priv = netdev_priv(dev);
647 	priv->node = ofdev->dev.of_node;
648 	priv->ndev = dev;
649 
650 	priv->num_tx_queues = num_tx_qs;
651 	netif_set_real_num_rx_queues(dev, num_rx_qs);
652 	priv->num_rx_queues = num_rx_qs;
653 	priv->num_grps = 0x0;
654 
655 	/* Init Rx queue filer rule set linked list*/
656 	INIT_LIST_HEAD(&priv->rx_list.list);
657 	priv->rx_list.count = 0;
658 	mutex_init(&priv->rx_queue_access);
659 
660 	model = of_get_property(np, "model", NULL);
661 
662 	for (i = 0; i < MAXGROUPS; i++)
663 		priv->gfargrp[i].regs = NULL;
664 
665 	/* Parse and initialize group specific information */
666 	if (of_device_is_compatible(np, "fsl,etsec2")) {
667 		priv->mode = MQ_MG_MODE;
668 		for_each_child_of_node(np, child) {
669 			err = gfar_parse_group(child, priv, model);
670 			if (err)
671 				goto err_grp_init;
672 		}
673 	} else {
674 		priv->mode = SQ_SG_MODE;
675 		err = gfar_parse_group(np, priv, model);
676 		if(err)
677 			goto err_grp_init;
678 	}
679 
680 	for (i = 0; i < priv->num_tx_queues; i++)
681 	       priv->tx_queue[i] = NULL;
682 	for (i = 0; i < priv->num_rx_queues; i++)
683 		priv->rx_queue[i] = NULL;
684 
685 	for (i = 0; i < priv->num_tx_queues; i++) {
686 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687 					    GFP_KERNEL);
688 		if (!priv->tx_queue[i]) {
689 			err = -ENOMEM;
690 			goto tx_alloc_failed;
691 		}
692 		priv->tx_queue[i]->tx_skbuff = NULL;
693 		priv->tx_queue[i]->qindex = i;
694 		priv->tx_queue[i]->dev = dev;
695 		spin_lock_init(&(priv->tx_queue[i]->txlock));
696 	}
697 
698 	for (i = 0; i < priv->num_rx_queues; i++) {
699 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700 					    GFP_KERNEL);
701 		if (!priv->rx_queue[i]) {
702 			err = -ENOMEM;
703 			goto rx_alloc_failed;
704 		}
705 		priv->rx_queue[i]->rx_skbuff = NULL;
706 		priv->rx_queue[i]->qindex = i;
707 		priv->rx_queue[i]->dev = dev;
708 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
709 	}
710 
711 
712 	stash = of_get_property(np, "bd-stash", NULL);
713 
714 	if (stash) {
715 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716 		priv->bd_stash_en = 1;
717 	}
718 
719 	stash_len = of_get_property(np, "rx-stash-len", NULL);
720 
721 	if (stash_len)
722 		priv->rx_stash_size = *stash_len;
723 
724 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725 
726 	if (stash_idx)
727 		priv->rx_stash_index = *stash_idx;
728 
729 	if (stash_len || stash_idx)
730 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731 
732 	mac_addr = of_get_mac_address(np);
733 	if (mac_addr)
734 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
735 
736 	if (model && !strcasecmp(model, "TSEC"))
737 		priv->device_flags =
738 			FSL_GIANFAR_DEV_HAS_GIGABIT |
739 			FSL_GIANFAR_DEV_HAS_COALESCE |
740 			FSL_GIANFAR_DEV_HAS_RMON |
741 			FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742 	if (model && !strcasecmp(model, "eTSEC"))
743 		priv->device_flags =
744 			FSL_GIANFAR_DEV_HAS_GIGABIT |
745 			FSL_GIANFAR_DEV_HAS_COALESCE |
746 			FSL_GIANFAR_DEV_HAS_RMON |
747 			FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748 			FSL_GIANFAR_DEV_HAS_PADDING |
749 			FSL_GIANFAR_DEV_HAS_CSUM |
750 			FSL_GIANFAR_DEV_HAS_VLAN |
751 			FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752 			FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753 			FSL_GIANFAR_DEV_HAS_TIMER;
754 
755 	ctype = of_get_property(np, "phy-connection-type", NULL);
756 
757 	/* We only care about rgmii-id.  The rest are autodetected */
758 	if (ctype && !strcmp(ctype, "rgmii-id"))
759 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760 	else
761 		priv->interface = PHY_INTERFACE_MODE_MII;
762 
763 	if (of_get_property(np, "fsl,magic-packet", NULL))
764 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765 
766 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767 
768 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
769 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770 
771 	return 0;
772 
773 rx_alloc_failed:
774 	free_rx_pointers(priv);
775 tx_alloc_failed:
776 	free_tx_pointers(priv);
777 err_grp_init:
778 	unmap_group_regs(priv);
779 	free_netdev(dev);
780 	return err;
781 }
782 
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784 			struct ifreq *ifr, int cmd)
785 {
786 	struct hwtstamp_config config;
787 	struct gfar_private *priv = netdev_priv(netdev);
788 
789 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790 		return -EFAULT;
791 
792 	/* reserved for future extensions */
793 	if (config.flags)
794 		return -EINVAL;
795 
796 	switch (config.tx_type) {
797 	case HWTSTAMP_TX_OFF:
798 		priv->hwts_tx_en = 0;
799 		break;
800 	case HWTSTAMP_TX_ON:
801 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802 			return -ERANGE;
803 		priv->hwts_tx_en = 1;
804 		break;
805 	default:
806 		return -ERANGE;
807 	}
808 
809 	switch (config.rx_filter) {
810 	case HWTSTAMP_FILTER_NONE:
811 		if (priv->hwts_rx_en) {
812 			stop_gfar(netdev);
813 			priv->hwts_rx_en = 0;
814 			startup_gfar(netdev);
815 		}
816 		break;
817 	default:
818 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819 			return -ERANGE;
820 		if (!priv->hwts_rx_en) {
821 			stop_gfar(netdev);
822 			priv->hwts_rx_en = 1;
823 			startup_gfar(netdev);
824 		}
825 		config.rx_filter = HWTSTAMP_FILTER_ALL;
826 		break;
827 	}
828 
829 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830 		-EFAULT : 0;
831 }
832 
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836 	struct gfar_private *priv = netdev_priv(dev);
837 
838 	if (!netif_running(dev))
839 		return -EINVAL;
840 
841 	if (cmd == SIOCSHWTSTAMP)
842 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
843 
844 	if (!priv->phydev)
845 		return -ENODEV;
846 
847 	return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849 
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852 	unsigned int new_bit_map = 0x0;
853 	int mask = 0x1 << (max_qs - 1), i;
854 	for (i = 0; i < max_qs; i++) {
855 		if (bit_map & mask)
856 			new_bit_map = new_bit_map + (1 << i);
857 		mask = mask >> 0x1;
858 	}
859 	return new_bit_map;
860 }
861 
862 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
863 				   u32 class)
864 {
865 	u32 rqfpr = FPR_FILER_MASK;
866 	u32 rqfcr = 0x0;
867 
868 	rqfar--;
869 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
870 	priv->ftp_rqfpr[rqfar] = rqfpr;
871 	priv->ftp_rqfcr[rqfar] = rqfcr;
872 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873 
874 	rqfar--;
875 	rqfcr = RQFCR_CMP_NOMATCH;
876 	priv->ftp_rqfpr[rqfar] = rqfpr;
877 	priv->ftp_rqfcr[rqfar] = rqfcr;
878 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879 
880 	rqfar--;
881 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
882 	rqfpr = class;
883 	priv->ftp_rqfcr[rqfar] = rqfcr;
884 	priv->ftp_rqfpr[rqfar] = rqfpr;
885 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886 
887 	rqfar--;
888 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
889 	rqfpr = class;
890 	priv->ftp_rqfcr[rqfar] = rqfcr;
891 	priv->ftp_rqfpr[rqfar] = rqfpr;
892 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893 
894 	return rqfar;
895 }
896 
897 static void gfar_init_filer_table(struct gfar_private *priv)
898 {
899 	int i = 0x0;
900 	u32 rqfar = MAX_FILER_IDX;
901 	u32 rqfcr = 0x0;
902 	u32 rqfpr = FPR_FILER_MASK;
903 
904 	/* Default rule */
905 	rqfcr = RQFCR_CMP_MATCH;
906 	priv->ftp_rqfcr[rqfar] = rqfcr;
907 	priv->ftp_rqfpr[rqfar] = rqfpr;
908 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909 
910 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
911 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
912 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
913 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
914 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
915 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
916 
917 	/* cur_filer_idx indicated the first non-masked rule */
918 	priv->cur_filer_idx = rqfar;
919 
920 	/* Rest are masked rules */
921 	rqfcr = RQFCR_CMP_NOMATCH;
922 	for (i = 0; i < rqfar; i++) {
923 		priv->ftp_rqfcr[i] = rqfcr;
924 		priv->ftp_rqfpr[i] = rqfpr;
925 		gfar_write_filer(priv, i, rqfcr, rqfpr);
926 	}
927 }
928 
929 static void gfar_detect_errata(struct gfar_private *priv)
930 {
931 	struct device *dev = &priv->ofdev->dev;
932 	unsigned int pvr = mfspr(SPRN_PVR);
933 	unsigned int svr = mfspr(SPRN_SVR);
934 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
935 	unsigned int rev = svr & 0xffff;
936 
937 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
938 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
939 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940 		priv->errata |= GFAR_ERRATA_74;
941 
942 	/* MPC8313 and MPC837x all rev */
943 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
944 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
945 		priv->errata |= GFAR_ERRATA_76;
946 
947 	/* MPC8313 and MPC837x all rev */
948 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
949 			(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
950 		priv->errata |= GFAR_ERRATA_A002;
951 
952 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
953 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
954 			(pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
955 		priv->errata |= GFAR_ERRATA_12;
956 
957 	if (priv->errata)
958 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
959 			 priv->errata);
960 }
961 
962 /* Set up the ethernet device structure, private data,
963  * and anything else we need before we start */
964 static int gfar_probe(struct platform_device *ofdev)
965 {
966 	u32 tempval;
967 	struct net_device *dev = NULL;
968 	struct gfar_private *priv = NULL;
969 	struct gfar __iomem *regs = NULL;
970 	int err = 0, i, grp_idx = 0;
971 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972 	u32 isrg = 0;
973 	u32 __iomem *baddr;
974 
975 	err = gfar_of_init(ofdev, &dev);
976 
977 	if (err)
978 		return err;
979 
980 	priv = netdev_priv(dev);
981 	priv->ndev = dev;
982 	priv->ofdev = ofdev;
983 	priv->node = ofdev->dev.of_node;
984 	SET_NETDEV_DEV(dev, &ofdev->dev);
985 
986 	spin_lock_init(&priv->bflock);
987 	INIT_WORK(&priv->reset_task, gfar_reset_task);
988 
989 	dev_set_drvdata(&ofdev->dev, priv);
990 	regs = priv->gfargrp[0].regs;
991 
992 	gfar_detect_errata(priv);
993 
994 	/* Stop the DMA engine now, in case it was running before */
995 	/* (The firmware could have used it, and left it running). */
996 	gfar_halt(dev);
997 
998 	/* Reset MAC layer */
999 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000 
1001 	/* We need to delay at least 3 TX clocks */
1002 	udelay(2);
1003 
1004 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005 	gfar_write(&regs->maccfg1, tempval);
1006 
1007 	/* Initialize MACCFG2. */
1008 	tempval = MACCFG2_INIT_SETTINGS;
1009 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011 	gfar_write(&regs->maccfg2, tempval);
1012 
1013 	/* Initialize ECNTRL */
1014 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015 
1016 	/* Set the dev->base_addr to the gfar reg region */
1017 	dev->base_addr = (unsigned long) regs;
1018 
1019 	SET_NETDEV_DEV(dev, &ofdev->dev);
1020 
1021 	/* Fill in the dev structure */
1022 	dev->watchdog_timeo = TX_TIMEOUT;
1023 	dev->mtu = 1500;
1024 	dev->netdev_ops = &gfar_netdev_ops;
1025 	dev->ethtool_ops = &gfar_ethtool_ops;
1026 
1027 	/* Register for napi ...We are registering NAPI for each grp */
1028 	for (i = 0; i < priv->num_grps; i++)
1029 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030 
1031 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1033 			NETIF_F_RXCSUM;
1034 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1035 			NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1036 	}
1037 
1038 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1039 		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040 		dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041 	}
1042 
1043 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1044 		priv->extended_hash = 1;
1045 		priv->hash_width = 9;
1046 
1047 		priv->hash_regs[0] = &regs->igaddr0;
1048 		priv->hash_regs[1] = &regs->igaddr1;
1049 		priv->hash_regs[2] = &regs->igaddr2;
1050 		priv->hash_regs[3] = &regs->igaddr3;
1051 		priv->hash_regs[4] = &regs->igaddr4;
1052 		priv->hash_regs[5] = &regs->igaddr5;
1053 		priv->hash_regs[6] = &regs->igaddr6;
1054 		priv->hash_regs[7] = &regs->igaddr7;
1055 		priv->hash_regs[8] = &regs->gaddr0;
1056 		priv->hash_regs[9] = &regs->gaddr1;
1057 		priv->hash_regs[10] = &regs->gaddr2;
1058 		priv->hash_regs[11] = &regs->gaddr3;
1059 		priv->hash_regs[12] = &regs->gaddr4;
1060 		priv->hash_regs[13] = &regs->gaddr5;
1061 		priv->hash_regs[14] = &regs->gaddr6;
1062 		priv->hash_regs[15] = &regs->gaddr7;
1063 
1064 	} else {
1065 		priv->extended_hash = 0;
1066 		priv->hash_width = 8;
1067 
1068 		priv->hash_regs[0] = &regs->gaddr0;
1069 		priv->hash_regs[1] = &regs->gaddr1;
1070 		priv->hash_regs[2] = &regs->gaddr2;
1071 		priv->hash_regs[3] = &regs->gaddr3;
1072 		priv->hash_regs[4] = &regs->gaddr4;
1073 		priv->hash_regs[5] = &regs->gaddr5;
1074 		priv->hash_regs[6] = &regs->gaddr6;
1075 		priv->hash_regs[7] = &regs->gaddr7;
1076 	}
1077 
1078 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1079 		priv->padding = DEFAULT_PADDING;
1080 	else
1081 		priv->padding = 0;
1082 
1083 	if (dev->features & NETIF_F_IP_CSUM ||
1084 			priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1085 		dev->hard_header_len += GMAC_FCB_LEN;
1086 
1087 	/* Program the isrg regs only if number of grps > 1 */
1088 	if (priv->num_grps > 1) {
1089 		baddr = &regs->isrg0;
1090 		for (i = 0; i < priv->num_grps; i++) {
1091 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1092 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1093 			gfar_write(baddr, isrg);
1094 			baddr++;
1095 			isrg = 0x0;
1096 		}
1097 	}
1098 
1099 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1100 	 * but, for_each_set_bit parses from right to left, which
1101 	 * basically reverses the queue numbers */
1102 	for (i = 0; i< priv->num_grps; i++) {
1103 		priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1104 				priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1105 		priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1106 				priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1107 	}
1108 
1109 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110 	 * also assign queues to groups */
1111 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1112 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1113 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1114 				priv->num_rx_queues) {
1115 			priv->gfargrp[grp_idx].num_rx_queues++;
1116 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1117 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1118 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1119 		}
1120 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1121 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1122 				priv->num_tx_queues) {
1123 			priv->gfargrp[grp_idx].num_tx_queues++;
1124 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1126 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1127 		}
1128 		priv->gfargrp[grp_idx].rstat = rstat;
1129 		priv->gfargrp[grp_idx].tstat = tstat;
1130 		rstat = tstat =0;
1131 	}
1132 
1133 	gfar_write(&regs->rqueue, rqueue);
1134 	gfar_write(&regs->tqueue, tqueue);
1135 
1136 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1137 
1138 	/* Initializing some of the rx/tx queue level parameters */
1139 	for (i = 0; i < priv->num_tx_queues; i++) {
1140 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1141 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1142 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1143 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1144 	}
1145 
1146 	for (i = 0; i < priv->num_rx_queues; i++) {
1147 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1148 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1149 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1150 	}
1151 
1152 	/* always enable rx filer*/
1153 	priv->rx_filer_enable = 1;
1154 	/* Enable most messages by default */
1155 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156 
1157 	/* Carrier starts down, phylib will bring it up */
1158 	netif_carrier_off(dev);
1159 
1160 	err = register_netdev(dev);
1161 
1162 	if (err) {
1163 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1164 		goto register_fail;
1165 	}
1166 
1167 	device_init_wakeup(&dev->dev,
1168 		priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169 
1170 	/* fill out IRQ number and name fields */
1171 	for (i = 0; i < priv->num_grps; i++) {
1172 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173 			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1174 				dev->name, "_g", '0' + i, "_tx");
1175 			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1176 				dev->name, "_g", '0' + i, "_rx");
1177 			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1178 				dev->name, "_g", '0' + i, "_er");
1179 		} else
1180 			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1181 	}
1182 
1183 	/* Initialize the filer table */
1184 	gfar_init_filer_table(priv);
1185 
1186 	/* Create all the sysfs files */
1187 	gfar_init_sysfs(dev);
1188 
1189 	/* Print out the device info */
1190 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1191 
1192 	/* Even more device info helps when determining which kernel */
1193 	/* provided which set of benchmarks. */
1194 	netdev_info(dev, "Running with NAPI enabled\n");
1195 	for (i = 0; i < priv->num_rx_queues; i++)
1196 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1197 			    i, priv->rx_queue[i]->rx_ring_size);
1198 	for(i = 0; i < priv->num_tx_queues; i++)
1199 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1200 			    i, priv->tx_queue[i]->tx_ring_size);
1201 
1202 	return 0;
1203 
1204 register_fail:
1205 	unmap_group_regs(priv);
1206 	free_tx_pointers(priv);
1207 	free_rx_pointers(priv);
1208 	if (priv->phy_node)
1209 		of_node_put(priv->phy_node);
1210 	if (priv->tbi_node)
1211 		of_node_put(priv->tbi_node);
1212 	free_netdev(dev);
1213 	return err;
1214 }
1215 
1216 static int gfar_remove(struct platform_device *ofdev)
1217 {
1218 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1219 
1220 	if (priv->phy_node)
1221 		of_node_put(priv->phy_node);
1222 	if (priv->tbi_node)
1223 		of_node_put(priv->tbi_node);
1224 
1225 	dev_set_drvdata(&ofdev->dev, NULL);
1226 
1227 	unregister_netdev(priv->ndev);
1228 	unmap_group_regs(priv);
1229 	free_netdev(priv->ndev);
1230 
1231 	return 0;
1232 }
1233 
1234 #ifdef CONFIG_PM
1235 
1236 static int gfar_suspend(struct device *dev)
1237 {
1238 	struct gfar_private *priv = dev_get_drvdata(dev);
1239 	struct net_device *ndev = priv->ndev;
1240 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1241 	unsigned long flags;
1242 	u32 tempval;
1243 
1244 	int magic_packet = priv->wol_en &&
1245 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1246 
1247 	netif_device_detach(ndev);
1248 
1249 	if (netif_running(ndev)) {
1250 
1251 		local_irq_save(flags);
1252 		lock_tx_qs(priv);
1253 		lock_rx_qs(priv);
1254 
1255 		gfar_halt_nodisable(ndev);
1256 
1257 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1258 		tempval = gfar_read(&regs->maccfg1);
1259 
1260 		tempval &= ~MACCFG1_TX_EN;
1261 
1262 		if (!magic_packet)
1263 			tempval &= ~MACCFG1_RX_EN;
1264 
1265 		gfar_write(&regs->maccfg1, tempval);
1266 
1267 		unlock_rx_qs(priv);
1268 		unlock_tx_qs(priv);
1269 		local_irq_restore(flags);
1270 
1271 		disable_napi(priv);
1272 
1273 		if (magic_packet) {
1274 			/* Enable interrupt on Magic Packet */
1275 			gfar_write(&regs->imask, IMASK_MAG);
1276 
1277 			/* Enable Magic Packet mode */
1278 			tempval = gfar_read(&regs->maccfg2);
1279 			tempval |= MACCFG2_MPEN;
1280 			gfar_write(&regs->maccfg2, tempval);
1281 		} else {
1282 			phy_stop(priv->phydev);
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static int gfar_resume(struct device *dev)
1290 {
1291 	struct gfar_private *priv = dev_get_drvdata(dev);
1292 	struct net_device *ndev = priv->ndev;
1293 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1294 	unsigned long flags;
1295 	u32 tempval;
1296 	int magic_packet = priv->wol_en &&
1297 		(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1298 
1299 	if (!netif_running(ndev)) {
1300 		netif_device_attach(ndev);
1301 		return 0;
1302 	}
1303 
1304 	if (!magic_packet && priv->phydev)
1305 		phy_start(priv->phydev);
1306 
1307 	/* Disable Magic Packet mode, in case something
1308 	 * else woke us up.
1309 	 */
1310 	local_irq_save(flags);
1311 	lock_tx_qs(priv);
1312 	lock_rx_qs(priv);
1313 
1314 	tempval = gfar_read(&regs->maccfg2);
1315 	tempval &= ~MACCFG2_MPEN;
1316 	gfar_write(&regs->maccfg2, tempval);
1317 
1318 	gfar_start(ndev);
1319 
1320 	unlock_rx_qs(priv);
1321 	unlock_tx_qs(priv);
1322 	local_irq_restore(flags);
1323 
1324 	netif_device_attach(ndev);
1325 
1326 	enable_napi(priv);
1327 
1328 	return 0;
1329 }
1330 
1331 static int gfar_restore(struct device *dev)
1332 {
1333 	struct gfar_private *priv = dev_get_drvdata(dev);
1334 	struct net_device *ndev = priv->ndev;
1335 
1336 	if (!netif_running(ndev))
1337 		return 0;
1338 
1339 	gfar_init_bds(ndev);
1340 	init_registers(ndev);
1341 	gfar_set_mac_address(ndev);
1342 	gfar_init_mac(ndev);
1343 	gfar_start(ndev);
1344 
1345 	priv->oldlink = 0;
1346 	priv->oldspeed = 0;
1347 	priv->oldduplex = -1;
1348 
1349 	if (priv->phydev)
1350 		phy_start(priv->phydev);
1351 
1352 	netif_device_attach(ndev);
1353 	enable_napi(priv);
1354 
1355 	return 0;
1356 }
1357 
1358 static struct dev_pm_ops gfar_pm_ops = {
1359 	.suspend = gfar_suspend,
1360 	.resume = gfar_resume,
1361 	.freeze = gfar_suspend,
1362 	.thaw = gfar_resume,
1363 	.restore = gfar_restore,
1364 };
1365 
1366 #define GFAR_PM_OPS (&gfar_pm_ops)
1367 
1368 #else
1369 
1370 #define GFAR_PM_OPS NULL
1371 
1372 #endif
1373 
1374 /* Reads the controller's registers to determine what interface
1375  * connects it to the PHY.
1376  */
1377 static phy_interface_t gfar_get_interface(struct net_device *dev)
1378 {
1379 	struct gfar_private *priv = netdev_priv(dev);
1380 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1381 	u32 ecntrl;
1382 
1383 	ecntrl = gfar_read(&regs->ecntrl);
1384 
1385 	if (ecntrl & ECNTRL_SGMII_MODE)
1386 		return PHY_INTERFACE_MODE_SGMII;
1387 
1388 	if (ecntrl & ECNTRL_TBI_MODE) {
1389 		if (ecntrl & ECNTRL_REDUCED_MODE)
1390 			return PHY_INTERFACE_MODE_RTBI;
1391 		else
1392 			return PHY_INTERFACE_MODE_TBI;
1393 	}
1394 
1395 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1396 		if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1397 			return PHY_INTERFACE_MODE_RMII;
1398 		else {
1399 			phy_interface_t interface = priv->interface;
1400 
1401 			/*
1402 			 * This isn't autodetected right now, so it must
1403 			 * be set by the device tree or platform code.
1404 			 */
1405 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1406 				return PHY_INTERFACE_MODE_RGMII_ID;
1407 
1408 			return PHY_INTERFACE_MODE_RGMII;
1409 		}
1410 	}
1411 
1412 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1413 		return PHY_INTERFACE_MODE_GMII;
1414 
1415 	return PHY_INTERFACE_MODE_MII;
1416 }
1417 
1418 
1419 /* Initializes driver's PHY state, and attaches to the PHY.
1420  * Returns 0 on success.
1421  */
1422 static int init_phy(struct net_device *dev)
1423 {
1424 	struct gfar_private *priv = netdev_priv(dev);
1425 	uint gigabit_support =
1426 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1427 		SUPPORTED_1000baseT_Full : 0;
1428 	phy_interface_t interface;
1429 
1430 	priv->oldlink = 0;
1431 	priv->oldspeed = 0;
1432 	priv->oldduplex = -1;
1433 
1434 	interface = gfar_get_interface(dev);
1435 
1436 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1437 				      interface);
1438 	if (!priv->phydev)
1439 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1440 							 interface);
1441 	if (!priv->phydev) {
1442 		dev_err(&dev->dev, "could not attach to PHY\n");
1443 		return -ENODEV;
1444 	}
1445 
1446 	if (interface == PHY_INTERFACE_MODE_SGMII)
1447 		gfar_configure_serdes(dev);
1448 
1449 	/* Remove any features not supported by the controller */
1450 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1451 	priv->phydev->advertising = priv->phydev->supported;
1452 
1453 	return 0;
1454 }
1455 
1456 /*
1457  * Initialize TBI PHY interface for communicating with the
1458  * SERDES lynx PHY on the chip.  We communicate with this PHY
1459  * through the MDIO bus on each controller, treating it as a
1460  * "normal" PHY at the address found in the TBIPA register.  We assume
1461  * that the TBIPA register is valid.  Either the MDIO bus code will set
1462  * it to a value that doesn't conflict with other PHYs on the bus, or the
1463  * value doesn't matter, as there are no other PHYs on the bus.
1464  */
1465 static void gfar_configure_serdes(struct net_device *dev)
1466 {
1467 	struct gfar_private *priv = netdev_priv(dev);
1468 	struct phy_device *tbiphy;
1469 
1470 	if (!priv->tbi_node) {
1471 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1472 				    "device tree specify a tbi-handle\n");
1473 		return;
1474 	}
1475 
1476 	tbiphy = of_phy_find_device(priv->tbi_node);
1477 	if (!tbiphy) {
1478 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * If the link is already up, we must already be ok, and don't need to
1484 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1485 	 * everything for us?  Resetting it takes the link down and requires
1486 	 * several seconds for it to come back.
1487 	 */
1488 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1489 		return;
1490 
1491 	/* Single clk mode, mii mode off(for serdes communication) */
1492 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1493 
1494 	phy_write(tbiphy, MII_ADVERTISE,
1495 			ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1496 			ADVERTISE_1000XPSE_ASYM);
1497 
1498 	phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1499 			BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1500 }
1501 
1502 static void init_registers(struct net_device *dev)
1503 {
1504 	struct gfar_private *priv = netdev_priv(dev);
1505 	struct gfar __iomem *regs = NULL;
1506 	int i = 0;
1507 
1508 	for (i = 0; i < priv->num_grps; i++) {
1509 		regs = priv->gfargrp[i].regs;
1510 		/* Clear IEVENT */
1511 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1512 
1513 		/* Initialize IMASK */
1514 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1515 	}
1516 
1517 	regs = priv->gfargrp[0].regs;
1518 	/* Init hash registers to zero */
1519 	gfar_write(&regs->igaddr0, 0);
1520 	gfar_write(&regs->igaddr1, 0);
1521 	gfar_write(&regs->igaddr2, 0);
1522 	gfar_write(&regs->igaddr3, 0);
1523 	gfar_write(&regs->igaddr4, 0);
1524 	gfar_write(&regs->igaddr5, 0);
1525 	gfar_write(&regs->igaddr6, 0);
1526 	gfar_write(&regs->igaddr7, 0);
1527 
1528 	gfar_write(&regs->gaddr0, 0);
1529 	gfar_write(&regs->gaddr1, 0);
1530 	gfar_write(&regs->gaddr2, 0);
1531 	gfar_write(&regs->gaddr3, 0);
1532 	gfar_write(&regs->gaddr4, 0);
1533 	gfar_write(&regs->gaddr5, 0);
1534 	gfar_write(&regs->gaddr6, 0);
1535 	gfar_write(&regs->gaddr7, 0);
1536 
1537 	/* Zero out the rmon mib registers if it has them */
1538 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1539 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1540 
1541 		/* Mask off the CAM interrupts */
1542 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1543 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1544 	}
1545 
1546 	/* Initialize the max receive buffer length */
1547 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1548 
1549 	/* Initialize the Minimum Frame Length Register */
1550 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1551 }
1552 
1553 static int __gfar_is_rx_idle(struct gfar_private *priv)
1554 {
1555 	u32 res;
1556 
1557 	/*
1558 	 * Normaly TSEC should not hang on GRS commands, so we should
1559 	 * actually wait for IEVENT_GRSC flag.
1560 	 */
1561 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1562 		return 0;
1563 
1564 	/*
1565 	 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1566 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1567 	 * and the Rx can be safely reset.
1568 	 */
1569 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1570 	res &= 0x7f807f80;
1571 	if ((res & 0xffff) == (res >> 16))
1572 		return 1;
1573 
1574 	return 0;
1575 }
1576 
1577 /* Halt the receive and transmit queues */
1578 static void gfar_halt_nodisable(struct net_device *dev)
1579 {
1580 	struct gfar_private *priv = netdev_priv(dev);
1581 	struct gfar __iomem *regs = NULL;
1582 	u32 tempval;
1583 	int i = 0;
1584 
1585 	for (i = 0; i < priv->num_grps; i++) {
1586 		regs = priv->gfargrp[i].regs;
1587 		/* Mask all interrupts */
1588 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1589 
1590 		/* Clear all interrupts */
1591 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1592 	}
1593 
1594 	regs = priv->gfargrp[0].regs;
1595 	/* Stop the DMA, and wait for it to stop */
1596 	tempval = gfar_read(&regs->dmactrl);
1597 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1598 	    != (DMACTRL_GRS | DMACTRL_GTS)) {
1599 		int ret;
1600 
1601 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1602 		gfar_write(&regs->dmactrl, tempval);
1603 
1604 		do {
1605 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1606 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1607 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1608 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1609 				ret = __gfar_is_rx_idle(priv);
1610 		} while (!ret);
1611 	}
1612 }
1613 
1614 /* Halt the receive and transmit queues */
1615 void gfar_halt(struct net_device *dev)
1616 {
1617 	struct gfar_private *priv = netdev_priv(dev);
1618 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619 	u32 tempval;
1620 
1621 	gfar_halt_nodisable(dev);
1622 
1623 	/* Disable Rx and Tx */
1624 	tempval = gfar_read(&regs->maccfg1);
1625 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1626 	gfar_write(&regs->maccfg1, tempval);
1627 }
1628 
1629 static void free_grp_irqs(struct gfar_priv_grp *grp)
1630 {
1631 	free_irq(grp->interruptError, grp);
1632 	free_irq(grp->interruptTransmit, grp);
1633 	free_irq(grp->interruptReceive, grp);
1634 }
1635 
1636 void stop_gfar(struct net_device *dev)
1637 {
1638 	struct gfar_private *priv = netdev_priv(dev);
1639 	unsigned long flags;
1640 	int i;
1641 
1642 	phy_stop(priv->phydev);
1643 
1644 
1645 	/* Lock it down */
1646 	local_irq_save(flags);
1647 	lock_tx_qs(priv);
1648 	lock_rx_qs(priv);
1649 
1650 	gfar_halt(dev);
1651 
1652 	unlock_rx_qs(priv);
1653 	unlock_tx_qs(priv);
1654 	local_irq_restore(flags);
1655 
1656 	/* Free the IRQs */
1657 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1658 		for (i = 0; i < priv->num_grps; i++)
1659 			free_grp_irqs(&priv->gfargrp[i]);
1660 	} else {
1661 		for (i = 0; i < priv->num_grps; i++)
1662 			free_irq(priv->gfargrp[i].interruptTransmit,
1663 					&priv->gfargrp[i]);
1664 	}
1665 
1666 	free_skb_resources(priv);
1667 }
1668 
1669 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1670 {
1671 	struct txbd8 *txbdp;
1672 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1673 	int i, j;
1674 
1675 	txbdp = tx_queue->tx_bd_base;
1676 
1677 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1678 		if (!tx_queue->tx_skbuff[i])
1679 			continue;
1680 
1681 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1682 				txbdp->length, DMA_TO_DEVICE);
1683 		txbdp->lstatus = 0;
1684 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1685 				j++) {
1686 			txbdp++;
1687 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1688 					txbdp->length, DMA_TO_DEVICE);
1689 		}
1690 		txbdp++;
1691 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1692 		tx_queue->tx_skbuff[i] = NULL;
1693 	}
1694 	kfree(tx_queue->tx_skbuff);
1695 }
1696 
1697 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1698 {
1699 	struct rxbd8 *rxbdp;
1700 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1701 	int i;
1702 
1703 	rxbdp = rx_queue->rx_bd_base;
1704 
1705 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1706 		if (rx_queue->rx_skbuff[i]) {
1707 			dma_unmap_single(&priv->ofdev->dev,
1708 					rxbdp->bufPtr, priv->rx_buffer_size,
1709 					DMA_FROM_DEVICE);
1710 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1711 			rx_queue->rx_skbuff[i] = NULL;
1712 		}
1713 		rxbdp->lstatus = 0;
1714 		rxbdp->bufPtr = 0;
1715 		rxbdp++;
1716 	}
1717 	kfree(rx_queue->rx_skbuff);
1718 }
1719 
1720 /* If there are any tx skbs or rx skbs still around, free them.
1721  * Then free tx_skbuff and rx_skbuff */
1722 static void free_skb_resources(struct gfar_private *priv)
1723 {
1724 	struct gfar_priv_tx_q *tx_queue = NULL;
1725 	struct gfar_priv_rx_q *rx_queue = NULL;
1726 	int i;
1727 
1728 	/* Go through all the buffer descriptors and free their data buffers */
1729 	for (i = 0; i < priv->num_tx_queues; i++) {
1730 		struct netdev_queue *txq;
1731 		tx_queue = priv->tx_queue[i];
1732 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1733 		if(tx_queue->tx_skbuff)
1734 			free_skb_tx_queue(tx_queue);
1735 		netdev_tx_reset_queue(txq);
1736 	}
1737 
1738 	for (i = 0; i < priv->num_rx_queues; i++) {
1739 		rx_queue = priv->rx_queue[i];
1740 		if(rx_queue->rx_skbuff)
1741 			free_skb_rx_queue(rx_queue);
1742 	}
1743 
1744 	dma_free_coherent(&priv->ofdev->dev,
1745 			sizeof(struct txbd8) * priv->total_tx_ring_size +
1746 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
1747 			priv->tx_queue[0]->tx_bd_base,
1748 			priv->tx_queue[0]->tx_bd_dma_base);
1749 	skb_queue_purge(&priv->rx_recycle);
1750 }
1751 
1752 void gfar_start(struct net_device *dev)
1753 {
1754 	struct gfar_private *priv = netdev_priv(dev);
1755 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756 	u32 tempval;
1757 	int i = 0;
1758 
1759 	/* Enable Rx and Tx in MACCFG1 */
1760 	tempval = gfar_read(&regs->maccfg1);
1761 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1762 	gfar_write(&regs->maccfg1, tempval);
1763 
1764 	/* Initialize DMACTRL to have WWR and WOP */
1765 	tempval = gfar_read(&regs->dmactrl);
1766 	tempval |= DMACTRL_INIT_SETTINGS;
1767 	gfar_write(&regs->dmactrl, tempval);
1768 
1769 	/* Make sure we aren't stopped */
1770 	tempval = gfar_read(&regs->dmactrl);
1771 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1772 	gfar_write(&regs->dmactrl, tempval);
1773 
1774 	for (i = 0; i < priv->num_grps; i++) {
1775 		regs = priv->gfargrp[i].regs;
1776 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1777 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1778 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1779 		/* Unmask the interrupts we look for */
1780 		gfar_write(&regs->imask, IMASK_DEFAULT);
1781 	}
1782 
1783 	dev->trans_start = jiffies; /* prevent tx timeout */
1784 }
1785 
1786 void gfar_configure_coalescing(struct gfar_private *priv,
1787 	unsigned long tx_mask, unsigned long rx_mask)
1788 {
1789 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790 	u32 __iomem *baddr;
1791 	int i = 0;
1792 
1793 	/* Backward compatible case ---- even if we enable
1794 	 * multiple queues, there's only single reg to program
1795 	 */
1796 	gfar_write(&regs->txic, 0);
1797 	if(likely(priv->tx_queue[0]->txcoalescing))
1798 		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1799 
1800 	gfar_write(&regs->rxic, 0);
1801 	if(unlikely(priv->rx_queue[0]->rxcoalescing))
1802 		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1803 
1804 	if (priv->mode == MQ_MG_MODE) {
1805 		baddr = &regs->txic0;
1806 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1807 			if (likely(priv->tx_queue[i]->txcoalescing)) {
1808 				gfar_write(baddr + i, 0);
1809 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1810 			}
1811 		}
1812 
1813 		baddr = &regs->rxic0;
1814 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1815 			if (likely(priv->rx_queue[i]->rxcoalescing)) {
1816 				gfar_write(baddr + i, 0);
1817 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1818 			}
1819 		}
1820 	}
1821 }
1822 
1823 static int register_grp_irqs(struct gfar_priv_grp *grp)
1824 {
1825 	struct gfar_private *priv = grp->priv;
1826 	struct net_device *dev = priv->ndev;
1827 	int err;
1828 
1829 	/* If the device has multiple interrupts, register for
1830 	 * them.  Otherwise, only register for the one */
1831 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1832 		/* Install our interrupt handlers for Error,
1833 		 * Transmit, and Receive */
1834 		if ((err = request_irq(grp->interruptError, gfar_error, 0,
1835 				grp->int_name_er,grp)) < 0) {
1836 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1837 				  grp->interruptError);
1838 
1839 			goto err_irq_fail;
1840 		}
1841 
1842 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1843 				0, grp->int_name_tx, grp)) < 0) {
1844 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1845 				  grp->interruptTransmit);
1846 			goto tx_irq_fail;
1847 		}
1848 
1849 		if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1850 				grp->int_name_rx, grp)) < 0) {
1851 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1852 				  grp->interruptReceive);
1853 			goto rx_irq_fail;
1854 		}
1855 	} else {
1856 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1857 				grp->int_name_tx, grp)) < 0) {
1858 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1859 				  grp->interruptTransmit);
1860 			goto err_irq_fail;
1861 		}
1862 	}
1863 
1864 	return 0;
1865 
1866 rx_irq_fail:
1867 	free_irq(grp->interruptTransmit, grp);
1868 tx_irq_fail:
1869 	free_irq(grp->interruptError, grp);
1870 err_irq_fail:
1871 	return err;
1872 
1873 }
1874 
1875 /* Bring the controller up and running */
1876 int startup_gfar(struct net_device *ndev)
1877 {
1878 	struct gfar_private *priv = netdev_priv(ndev);
1879 	struct gfar __iomem *regs = NULL;
1880 	int err, i, j;
1881 
1882 	for (i = 0; i < priv->num_grps; i++) {
1883 		regs= priv->gfargrp[i].regs;
1884 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1885 	}
1886 
1887 	regs= priv->gfargrp[0].regs;
1888 	err = gfar_alloc_skb_resources(ndev);
1889 	if (err)
1890 		return err;
1891 
1892 	gfar_init_mac(ndev);
1893 
1894 	for (i = 0; i < priv->num_grps; i++) {
1895 		err = register_grp_irqs(&priv->gfargrp[i]);
1896 		if (err) {
1897 			for (j = 0; j < i; j++)
1898 				free_grp_irqs(&priv->gfargrp[j]);
1899 			goto irq_fail;
1900 		}
1901 	}
1902 
1903 	/* Start the controller */
1904 	gfar_start(ndev);
1905 
1906 	phy_start(priv->phydev);
1907 
1908 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1909 
1910 	return 0;
1911 
1912 irq_fail:
1913 	free_skb_resources(priv);
1914 	return err;
1915 }
1916 
1917 /* Called when something needs to use the ethernet device */
1918 /* Returns 0 for success. */
1919 static int gfar_enet_open(struct net_device *dev)
1920 {
1921 	struct gfar_private *priv = netdev_priv(dev);
1922 	int err;
1923 
1924 	enable_napi(priv);
1925 
1926 	skb_queue_head_init(&priv->rx_recycle);
1927 
1928 	/* Initialize a bunch of registers */
1929 	init_registers(dev);
1930 
1931 	gfar_set_mac_address(dev);
1932 
1933 	err = init_phy(dev);
1934 
1935 	if (err) {
1936 		disable_napi(priv);
1937 		return err;
1938 	}
1939 
1940 	err = startup_gfar(dev);
1941 	if (err) {
1942 		disable_napi(priv);
1943 		return err;
1944 	}
1945 
1946 	netif_tx_start_all_queues(dev);
1947 
1948 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1949 
1950 	return err;
1951 }
1952 
1953 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1954 {
1955 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1956 
1957 	memset(fcb, 0, GMAC_FCB_LEN);
1958 
1959 	return fcb;
1960 }
1961 
1962 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1963 		int fcb_length)
1964 {
1965 	u8 flags = 0;
1966 
1967 	/* If we're here, it's a IP packet with a TCP or UDP
1968 	 * payload.  We set it to checksum, using a pseudo-header
1969 	 * we provide
1970 	 */
1971 	flags = TXFCB_DEFAULT;
1972 
1973 	/* Tell the controller what the protocol is */
1974 	/* And provide the already calculated phcs */
1975 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1976 		flags |= TXFCB_UDP;
1977 		fcb->phcs = udp_hdr(skb)->check;
1978 	} else
1979 		fcb->phcs = tcp_hdr(skb)->check;
1980 
1981 	/* l3os is the distance between the start of the
1982 	 * frame (skb->data) and the start of the IP hdr.
1983 	 * l4os is the distance between the start of the
1984 	 * l3 hdr and the l4 hdr */
1985 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1986 	fcb->l4os = skb_network_header_len(skb);
1987 
1988 	fcb->flags = flags;
1989 }
1990 
1991 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1992 {
1993 	fcb->flags |= TXFCB_VLN;
1994 	fcb->vlctl = vlan_tx_tag_get(skb);
1995 }
1996 
1997 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1998 			       struct txbd8 *base, int ring_size)
1999 {
2000 	struct txbd8 *new_bd = bdp + stride;
2001 
2002 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2003 }
2004 
2005 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2006 		int ring_size)
2007 {
2008 	return skip_txbd(bdp, 1, base, ring_size);
2009 }
2010 
2011 /* This is called by the kernel when a frame is ready for transmission. */
2012 /* It is pointed to by the dev->hard_start_xmit function pointer */
2013 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2014 {
2015 	struct gfar_private *priv = netdev_priv(dev);
2016 	struct gfar_priv_tx_q *tx_queue = NULL;
2017 	struct netdev_queue *txq;
2018 	struct gfar __iomem *regs = NULL;
2019 	struct txfcb *fcb = NULL;
2020 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2021 	u32 lstatus;
2022 	int i, rq = 0, do_tstamp = 0;
2023 	u32 bufaddr;
2024 	unsigned long flags;
2025 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2026 
2027 	/*
2028 	 * TOE=1 frames larger than 2500 bytes may see excess delays
2029 	 * before start of transmission.
2030 	 */
2031 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2032 			skb->ip_summed == CHECKSUM_PARTIAL &&
2033 			skb->len > 2500)) {
2034 		int ret;
2035 
2036 		ret = skb_checksum_help(skb);
2037 		if (ret)
2038 			return ret;
2039 	}
2040 
2041 	rq = skb->queue_mapping;
2042 	tx_queue = priv->tx_queue[rq];
2043 	txq = netdev_get_tx_queue(dev, rq);
2044 	base = tx_queue->tx_bd_base;
2045 	regs = tx_queue->grp->regs;
2046 
2047 	/* check if time stamp should be generated */
2048 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2049 			priv->hwts_tx_en)) {
2050 		do_tstamp = 1;
2051 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2052 	}
2053 
2054 	/* make space for additional header when fcb is needed */
2055 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2056 			vlan_tx_tag_present(skb) ||
2057 			unlikely(do_tstamp)) &&
2058 			(skb_headroom(skb) < fcb_length)) {
2059 		struct sk_buff *skb_new;
2060 
2061 		skb_new = skb_realloc_headroom(skb, fcb_length);
2062 		if (!skb_new) {
2063 			dev->stats.tx_errors++;
2064 			kfree_skb(skb);
2065 			return NETDEV_TX_OK;
2066 		}
2067 
2068 		/* Steal sock reference for processing TX time stamps */
2069 		swap(skb_new->sk, skb->sk);
2070 		swap(skb_new->destructor, skb->destructor);
2071 		kfree_skb(skb);
2072 		skb = skb_new;
2073 	}
2074 
2075 	/* total number of fragments in the SKB */
2076 	nr_frags = skb_shinfo(skb)->nr_frags;
2077 
2078 	/* calculate the required number of TxBDs for this skb */
2079 	if (unlikely(do_tstamp))
2080 		nr_txbds = nr_frags + 2;
2081 	else
2082 		nr_txbds = nr_frags + 1;
2083 
2084 	/* check if there is space to queue this packet */
2085 	if (nr_txbds > tx_queue->num_txbdfree) {
2086 		/* no space, stop the queue */
2087 		netif_tx_stop_queue(txq);
2088 		dev->stats.tx_fifo_errors++;
2089 		return NETDEV_TX_BUSY;
2090 	}
2091 
2092 	/* Update transmit stats */
2093 	tx_queue->stats.tx_bytes += skb->len;
2094 	tx_queue->stats.tx_packets++;
2095 
2096 	txbdp = txbdp_start = tx_queue->cur_tx;
2097 	lstatus = txbdp->lstatus;
2098 
2099 	/* Time stamp insertion requires one additional TxBD */
2100 	if (unlikely(do_tstamp))
2101 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2102 				tx_queue->tx_ring_size);
2103 
2104 	if (nr_frags == 0) {
2105 		if (unlikely(do_tstamp))
2106 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2107 					TXBD_INTERRUPT);
2108 		else
2109 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2110 	} else {
2111 		/* Place the fragment addresses and lengths into the TxBDs */
2112 		for (i = 0; i < nr_frags; i++) {
2113 			/* Point at the next BD, wrapping as needed */
2114 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2115 
2116 			length = skb_shinfo(skb)->frags[i].size;
2117 
2118 			lstatus = txbdp->lstatus | length |
2119 				BD_LFLAG(TXBD_READY);
2120 
2121 			/* Handle the last BD specially */
2122 			if (i == nr_frags - 1)
2123 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2124 
2125 			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2126 						   &skb_shinfo(skb)->frags[i],
2127 						   0,
2128 						   length,
2129 						   DMA_TO_DEVICE);
2130 
2131 			/* set the TxBD length and buffer pointer */
2132 			txbdp->bufPtr = bufaddr;
2133 			txbdp->lstatus = lstatus;
2134 		}
2135 
2136 		lstatus = txbdp_start->lstatus;
2137 	}
2138 
2139 	/* Add TxPAL between FCB and frame if required */
2140 	if (unlikely(do_tstamp)) {
2141 		skb_push(skb, GMAC_TXPAL_LEN);
2142 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2143 	}
2144 
2145 	/* Set up checksumming */
2146 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2147 		fcb = gfar_add_fcb(skb);
2148 		/* as specified by errata */
2149 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2150 			     && ((unsigned long)fcb % 0x20) > 0x18)) {
2151 			__skb_pull(skb, GMAC_FCB_LEN);
2152 			skb_checksum_help(skb);
2153 		} else {
2154 			lstatus |= BD_LFLAG(TXBD_TOE);
2155 			gfar_tx_checksum(skb, fcb, fcb_length);
2156 		}
2157 	}
2158 
2159 	if (vlan_tx_tag_present(skb)) {
2160 		if (unlikely(NULL == fcb)) {
2161 			fcb = gfar_add_fcb(skb);
2162 			lstatus |= BD_LFLAG(TXBD_TOE);
2163 		}
2164 
2165 		gfar_tx_vlan(skb, fcb);
2166 	}
2167 
2168 	/* Setup tx hardware time stamping if requested */
2169 	if (unlikely(do_tstamp)) {
2170 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2171 		if (fcb == NULL)
2172 			fcb = gfar_add_fcb(skb);
2173 		fcb->ptp = 1;
2174 		lstatus |= BD_LFLAG(TXBD_TOE);
2175 	}
2176 
2177 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2178 			skb_headlen(skb), DMA_TO_DEVICE);
2179 
2180 	/*
2181 	 * If time stamping is requested one additional TxBD must be set up. The
2182 	 * first TxBD points to the FCB and must have a data length of
2183 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2184 	 * the full frame length.
2185 	 */
2186 	if (unlikely(do_tstamp)) {
2187 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2188 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2189 				(skb_headlen(skb) - fcb_length);
2190 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2191 	} else {
2192 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2193 	}
2194 
2195 	netdev_tx_sent_queue(txq, skb->len);
2196 
2197 	/*
2198 	 * We can work in parallel with gfar_clean_tx_ring(), except
2199 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2200 	 * when we were reading the num_txbdfree and checking for available
2201 	 * space, that's because outside of this function it can only grow,
2202 	 * and once we've got needed space, it cannot suddenly disappear.
2203 	 *
2204 	 * The lock also protects us from gfar_error(), which can modify
2205 	 * regs->tstat and thus retrigger the transfers, which is why we
2206 	 * also must grab the lock before setting ready bit for the first
2207 	 * to be transmitted BD.
2208 	 */
2209 	spin_lock_irqsave(&tx_queue->txlock, flags);
2210 
2211 	/*
2212 	 * The powerpc-specific eieio() is used, as wmb() has too strong
2213 	 * semantics (it requires synchronization between cacheable and
2214 	 * uncacheable mappings, which eieio doesn't provide and which we
2215 	 * don't need), thus requiring a more expensive sync instruction.  At
2216 	 * some point, the set of architecture-independent barrier functions
2217 	 * should be expanded to include weaker barriers.
2218 	 */
2219 	eieio();
2220 
2221 	txbdp_start->lstatus = lstatus;
2222 
2223 	eieio(); /* force lstatus write before tx_skbuff */
2224 
2225 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2226 
2227 	/* Update the current skb pointer to the next entry we will use
2228 	 * (wrapping if necessary) */
2229 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2230 		TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2231 
2232 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2233 
2234 	/* reduce TxBD free count */
2235 	tx_queue->num_txbdfree -= (nr_txbds);
2236 
2237 	/* If the next BD still needs to be cleaned up, then the bds
2238 	   are full.  We need to tell the kernel to stop sending us stuff. */
2239 	if (!tx_queue->num_txbdfree) {
2240 		netif_tx_stop_queue(txq);
2241 
2242 		dev->stats.tx_fifo_errors++;
2243 	}
2244 
2245 	/* Tell the DMA to go go go */
2246 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2247 
2248 	/* Unlock priv */
2249 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2250 
2251 	return NETDEV_TX_OK;
2252 }
2253 
2254 /* Stops the kernel queue, and halts the controller */
2255 static int gfar_close(struct net_device *dev)
2256 {
2257 	struct gfar_private *priv = netdev_priv(dev);
2258 
2259 	disable_napi(priv);
2260 
2261 	cancel_work_sync(&priv->reset_task);
2262 	stop_gfar(dev);
2263 
2264 	/* Disconnect from the PHY */
2265 	phy_disconnect(priv->phydev);
2266 	priv->phydev = NULL;
2267 
2268 	netif_tx_stop_all_queues(dev);
2269 
2270 	return 0;
2271 }
2272 
2273 /* Changes the mac address if the controller is not running. */
2274 static int gfar_set_mac_address(struct net_device *dev)
2275 {
2276 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2277 
2278 	return 0;
2279 }
2280 
2281 /* Check if rx parser should be activated */
2282 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2283 {
2284 	struct gfar __iomem *regs;
2285 	u32 tempval;
2286 
2287 	regs = priv->gfargrp[0].regs;
2288 
2289 	tempval = gfar_read(&regs->rctrl);
2290 	/* If parse is no longer required, then disable parser */
2291 	if (tempval & RCTRL_REQ_PARSER)
2292 		tempval |= RCTRL_PRSDEP_INIT;
2293 	else
2294 		tempval &= ~RCTRL_PRSDEP_INIT;
2295 	gfar_write(&regs->rctrl, tempval);
2296 }
2297 
2298 /* Enables and disables VLAN insertion/extraction */
2299 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2300 {
2301 	struct gfar_private *priv = netdev_priv(dev);
2302 	struct gfar __iomem *regs = NULL;
2303 	unsigned long flags;
2304 	u32 tempval;
2305 
2306 	regs = priv->gfargrp[0].regs;
2307 	local_irq_save(flags);
2308 	lock_rx_qs(priv);
2309 
2310 	if (features & NETIF_F_HW_VLAN_TX) {
2311 		/* Enable VLAN tag insertion */
2312 		tempval = gfar_read(&regs->tctrl);
2313 		tempval |= TCTRL_VLINS;
2314 		gfar_write(&regs->tctrl, tempval);
2315 	} else {
2316 		/* Disable VLAN tag insertion */
2317 		tempval = gfar_read(&regs->tctrl);
2318 		tempval &= ~TCTRL_VLINS;
2319 		gfar_write(&regs->tctrl, tempval);
2320 	}
2321 
2322 	if (features & NETIF_F_HW_VLAN_RX) {
2323 		/* Enable VLAN tag extraction */
2324 		tempval = gfar_read(&regs->rctrl);
2325 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2326 		gfar_write(&regs->rctrl, tempval);
2327 	} else {
2328 		/* Disable VLAN tag extraction */
2329 		tempval = gfar_read(&regs->rctrl);
2330 		tempval &= ~RCTRL_VLEX;
2331 		gfar_write(&regs->rctrl, tempval);
2332 
2333 		gfar_check_rx_parser_mode(priv);
2334 	}
2335 
2336 	gfar_change_mtu(dev, dev->mtu);
2337 
2338 	unlock_rx_qs(priv);
2339 	local_irq_restore(flags);
2340 }
2341 
2342 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2343 {
2344 	int tempsize, tempval;
2345 	struct gfar_private *priv = netdev_priv(dev);
2346 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2347 	int oldsize = priv->rx_buffer_size;
2348 	int frame_size = new_mtu + ETH_HLEN;
2349 
2350 	if (gfar_is_vlan_on(priv))
2351 		frame_size += VLAN_HLEN;
2352 
2353 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2354 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2355 		return -EINVAL;
2356 	}
2357 
2358 	if (gfar_uses_fcb(priv))
2359 		frame_size += GMAC_FCB_LEN;
2360 
2361 	frame_size += priv->padding;
2362 
2363 	tempsize =
2364 	    (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2365 	    INCREMENTAL_BUFFER_SIZE;
2366 
2367 	/* Only stop and start the controller if it isn't already
2368 	 * stopped, and we changed something */
2369 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2370 		stop_gfar(dev);
2371 
2372 	priv->rx_buffer_size = tempsize;
2373 
2374 	dev->mtu = new_mtu;
2375 
2376 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2377 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2378 
2379 	/* If the mtu is larger than the max size for standard
2380 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2381 	 * to allow huge frames, and to check the length */
2382 	tempval = gfar_read(&regs->maccfg2);
2383 
2384 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2385 			gfar_has_errata(priv, GFAR_ERRATA_74))
2386 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2387 	else
2388 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2389 
2390 	gfar_write(&regs->maccfg2, tempval);
2391 
2392 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2393 		startup_gfar(dev);
2394 
2395 	return 0;
2396 }
2397 
2398 /* gfar_reset_task gets scheduled when a packet has not been
2399  * transmitted after a set amount of time.
2400  * For now, assume that clearing out all the structures, and
2401  * starting over will fix the problem.
2402  */
2403 static void gfar_reset_task(struct work_struct *work)
2404 {
2405 	struct gfar_private *priv = container_of(work, struct gfar_private,
2406 			reset_task);
2407 	struct net_device *dev = priv->ndev;
2408 
2409 	if (dev->flags & IFF_UP) {
2410 		netif_tx_stop_all_queues(dev);
2411 		stop_gfar(dev);
2412 		startup_gfar(dev);
2413 		netif_tx_start_all_queues(dev);
2414 	}
2415 
2416 	netif_tx_schedule_all(dev);
2417 }
2418 
2419 static void gfar_timeout(struct net_device *dev)
2420 {
2421 	struct gfar_private *priv = netdev_priv(dev);
2422 
2423 	dev->stats.tx_errors++;
2424 	schedule_work(&priv->reset_task);
2425 }
2426 
2427 static void gfar_align_skb(struct sk_buff *skb)
2428 {
2429 	/* We need the data buffer to be aligned properly.  We will reserve
2430 	 * as many bytes as needed to align the data properly
2431 	 */
2432 	skb_reserve(skb, RXBUF_ALIGNMENT -
2433 		(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2434 }
2435 
2436 /* Interrupt Handler for Transmit complete */
2437 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2438 {
2439 	struct net_device *dev = tx_queue->dev;
2440 	struct netdev_queue *txq;
2441 	struct gfar_private *priv = netdev_priv(dev);
2442 	struct gfar_priv_rx_q *rx_queue = NULL;
2443 	struct txbd8 *bdp, *next = NULL;
2444 	struct txbd8 *lbdp = NULL;
2445 	struct txbd8 *base = tx_queue->tx_bd_base;
2446 	struct sk_buff *skb;
2447 	int skb_dirtytx;
2448 	int tx_ring_size = tx_queue->tx_ring_size;
2449 	int frags = 0, nr_txbds = 0;
2450 	int i;
2451 	int howmany = 0;
2452 	int tqi = tx_queue->qindex;
2453 	unsigned int bytes_sent = 0;
2454 	u32 lstatus;
2455 	size_t buflen;
2456 
2457 	rx_queue = priv->rx_queue[tqi];
2458 	txq = netdev_get_tx_queue(dev, tqi);
2459 	bdp = tx_queue->dirty_tx;
2460 	skb_dirtytx = tx_queue->skb_dirtytx;
2461 
2462 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2463 		unsigned long flags;
2464 
2465 		frags = skb_shinfo(skb)->nr_frags;
2466 
2467 		/*
2468 		 * When time stamping, one additional TxBD must be freed.
2469 		 * Also, we need to dma_unmap_single() the TxPAL.
2470 		 */
2471 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2472 			nr_txbds = frags + 2;
2473 		else
2474 			nr_txbds = frags + 1;
2475 
2476 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2477 
2478 		lstatus = lbdp->lstatus;
2479 
2480 		/* Only clean completed frames */
2481 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2482 				(lstatus & BD_LENGTH_MASK))
2483 			break;
2484 
2485 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2486 			next = next_txbd(bdp, base, tx_ring_size);
2487 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2488 		} else
2489 			buflen = bdp->length;
2490 
2491 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2492 				buflen, DMA_TO_DEVICE);
2493 
2494 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2495 			struct skb_shared_hwtstamps shhwtstamps;
2496 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2497 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2498 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2499 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2500 			skb_tstamp_tx(skb, &shhwtstamps);
2501 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502 			bdp = next;
2503 		}
2504 
2505 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2506 		bdp = next_txbd(bdp, base, tx_ring_size);
2507 
2508 		for (i = 0; i < frags; i++) {
2509 			dma_unmap_page(&priv->ofdev->dev,
2510 					bdp->bufPtr,
2511 					bdp->length,
2512 					DMA_TO_DEVICE);
2513 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2514 			bdp = next_txbd(bdp, base, tx_ring_size);
2515 		}
2516 
2517 		bytes_sent += skb->len;
2518 
2519 		/*
2520 		 * If there's room in the queue (limit it to rx_buffer_size)
2521 		 * we add this skb back into the pool, if it's the right size
2522 		 */
2523 		if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2524 				skb_recycle_check(skb, priv->rx_buffer_size +
2525 					RXBUF_ALIGNMENT)) {
2526 			gfar_align_skb(skb);
2527 			skb_queue_head(&priv->rx_recycle, skb);
2528 		} else
2529 			dev_kfree_skb_any(skb);
2530 
2531 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2532 
2533 		skb_dirtytx = (skb_dirtytx + 1) &
2534 			TX_RING_MOD_MASK(tx_ring_size);
2535 
2536 		howmany++;
2537 		spin_lock_irqsave(&tx_queue->txlock, flags);
2538 		tx_queue->num_txbdfree += nr_txbds;
2539 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2540 	}
2541 
2542 	/* If we freed a buffer, we can restart transmission, if necessary */
2543 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2544 		netif_wake_subqueue(dev, tqi);
2545 
2546 	/* Update dirty indicators */
2547 	tx_queue->skb_dirtytx = skb_dirtytx;
2548 	tx_queue->dirty_tx = bdp;
2549 
2550 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2551 
2552 	return howmany;
2553 }
2554 
2555 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2556 {
2557 	unsigned long flags;
2558 
2559 	spin_lock_irqsave(&gfargrp->grplock, flags);
2560 	if (napi_schedule_prep(&gfargrp->napi)) {
2561 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2562 		__napi_schedule(&gfargrp->napi);
2563 	} else {
2564 		/*
2565 		 * Clear IEVENT, so interrupts aren't called again
2566 		 * because of the packets that have already arrived.
2567 		 */
2568 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2569 	}
2570 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2571 
2572 }
2573 
2574 /* Interrupt Handler for Transmit complete */
2575 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2576 {
2577 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2578 	return IRQ_HANDLED;
2579 }
2580 
2581 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2582 		struct sk_buff *skb)
2583 {
2584 	struct net_device *dev = rx_queue->dev;
2585 	struct gfar_private *priv = netdev_priv(dev);
2586 	dma_addr_t buf;
2587 
2588 	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2589 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2590 	gfar_init_rxbdp(rx_queue, bdp, buf);
2591 }
2592 
2593 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2594 {
2595 	struct gfar_private *priv = netdev_priv(dev);
2596 	struct sk_buff *skb = NULL;
2597 
2598 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2599 	if (!skb)
2600 		return NULL;
2601 
2602 	gfar_align_skb(skb);
2603 
2604 	return skb;
2605 }
2606 
2607 struct sk_buff * gfar_new_skb(struct net_device *dev)
2608 {
2609 	struct gfar_private *priv = netdev_priv(dev);
2610 	struct sk_buff *skb = NULL;
2611 
2612 	skb = skb_dequeue(&priv->rx_recycle);
2613 	if (!skb)
2614 		skb = gfar_alloc_skb(dev);
2615 
2616 	return skb;
2617 }
2618 
2619 static inline void count_errors(unsigned short status, struct net_device *dev)
2620 {
2621 	struct gfar_private *priv = netdev_priv(dev);
2622 	struct net_device_stats *stats = &dev->stats;
2623 	struct gfar_extra_stats *estats = &priv->extra_stats;
2624 
2625 	/* If the packet was truncated, none of the other errors
2626 	 * matter */
2627 	if (status & RXBD_TRUNCATED) {
2628 		stats->rx_length_errors++;
2629 
2630 		estats->rx_trunc++;
2631 
2632 		return;
2633 	}
2634 	/* Count the errors, if there were any */
2635 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2636 		stats->rx_length_errors++;
2637 
2638 		if (status & RXBD_LARGE)
2639 			estats->rx_large++;
2640 		else
2641 			estats->rx_short++;
2642 	}
2643 	if (status & RXBD_NONOCTET) {
2644 		stats->rx_frame_errors++;
2645 		estats->rx_nonoctet++;
2646 	}
2647 	if (status & RXBD_CRCERR) {
2648 		estats->rx_crcerr++;
2649 		stats->rx_crc_errors++;
2650 	}
2651 	if (status & RXBD_OVERRUN) {
2652 		estats->rx_overrun++;
2653 		stats->rx_crc_errors++;
2654 	}
2655 }
2656 
2657 irqreturn_t gfar_receive(int irq, void *grp_id)
2658 {
2659 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2660 	return IRQ_HANDLED;
2661 }
2662 
2663 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2664 {
2665 	/* If valid headers were found, and valid sums
2666 	 * were verified, then we tell the kernel that no
2667 	 * checksumming is necessary.  Otherwise, it is */
2668 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2669 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2670 	else
2671 		skb_checksum_none_assert(skb);
2672 }
2673 
2674 
2675 /* gfar_process_frame() -- handle one incoming packet if skb
2676  * isn't NULL.  */
2677 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2678 			      int amount_pull)
2679 {
2680 	struct gfar_private *priv = netdev_priv(dev);
2681 	struct rxfcb *fcb = NULL;
2682 
2683 	int ret;
2684 
2685 	/* fcb is at the beginning if exists */
2686 	fcb = (struct rxfcb *)skb->data;
2687 
2688 	/* Remove the FCB from the skb */
2689 	/* Remove the padded bytes, if there are any */
2690 	if (amount_pull) {
2691 		skb_record_rx_queue(skb, fcb->rq);
2692 		skb_pull(skb, amount_pull);
2693 	}
2694 
2695 	/* Get receive timestamp from the skb */
2696 	if (priv->hwts_rx_en) {
2697 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2698 		u64 *ns = (u64 *) skb->data;
2699 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2700 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2701 	}
2702 
2703 	if (priv->padding)
2704 		skb_pull(skb, priv->padding);
2705 
2706 	if (dev->features & NETIF_F_RXCSUM)
2707 		gfar_rx_checksum(skb, fcb);
2708 
2709 	/* Tell the skb what kind of packet this is */
2710 	skb->protocol = eth_type_trans(skb, dev);
2711 
2712 	/*
2713 	 * There's need to check for NETIF_F_HW_VLAN_RX here.
2714 	 * Even if vlan rx accel is disabled, on some chips
2715 	 * RXFCB_VLN is pseudo randomly set.
2716 	 */
2717 	if (dev->features & NETIF_F_HW_VLAN_RX &&
2718 	    fcb->flags & RXFCB_VLN)
2719 		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2720 
2721 	/* Send the packet up the stack */
2722 	ret = netif_receive_skb(skb);
2723 
2724 	if (NET_RX_DROP == ret)
2725 		priv->extra_stats.kernel_dropped++;
2726 
2727 	return 0;
2728 }
2729 
2730 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2731  *   until the budget/quota has been reached. Returns the number
2732  *   of frames handled
2733  */
2734 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2735 {
2736 	struct net_device *dev = rx_queue->dev;
2737 	struct rxbd8 *bdp, *base;
2738 	struct sk_buff *skb;
2739 	int pkt_len;
2740 	int amount_pull;
2741 	int howmany = 0;
2742 	struct gfar_private *priv = netdev_priv(dev);
2743 
2744 	/* Get the first full descriptor */
2745 	bdp = rx_queue->cur_rx;
2746 	base = rx_queue->rx_bd_base;
2747 
2748 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2749 
2750 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2751 		struct sk_buff *newskb;
2752 		rmb();
2753 
2754 		/* Add another skb for the future */
2755 		newskb = gfar_new_skb(dev);
2756 
2757 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2758 
2759 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760 				priv->rx_buffer_size, DMA_FROM_DEVICE);
2761 
2762 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2763 				bdp->length > priv->rx_buffer_size))
2764 			bdp->status = RXBD_LARGE;
2765 
2766 		/* We drop the frame if we failed to allocate a new buffer */
2767 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768 				 bdp->status & RXBD_ERR)) {
2769 			count_errors(bdp->status, dev);
2770 
2771 			if (unlikely(!newskb))
2772 				newskb = skb;
2773 			else if (skb)
2774 				skb_queue_head(&priv->rx_recycle, skb);
2775 		} else {
2776 			/* Increment the number of packets */
2777 			rx_queue->stats.rx_packets++;
2778 			howmany++;
2779 
2780 			if (likely(skb)) {
2781 				pkt_len = bdp->length - ETH_FCS_LEN;
2782 				/* Remove the FCS from the packet length */
2783 				skb_put(skb, pkt_len);
2784 				rx_queue->stats.rx_bytes += pkt_len;
2785 				skb_record_rx_queue(skb, rx_queue->qindex);
2786 				gfar_process_frame(dev, skb, amount_pull);
2787 
2788 			} else {
2789 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2790 				rx_queue->stats.rx_dropped++;
2791 				priv->extra_stats.rx_skbmissing++;
2792 			}
2793 
2794 		}
2795 
2796 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2797 
2798 		/* Setup the new bdp */
2799 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2800 
2801 		/* Update to the next pointer */
2802 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2803 
2804 		/* update to point at the next skb */
2805 		rx_queue->skb_currx =
2806 		    (rx_queue->skb_currx + 1) &
2807 		    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2808 	}
2809 
2810 	/* Update the current rxbd pointer to be the next one */
2811 	rx_queue->cur_rx = bdp;
2812 
2813 	return howmany;
2814 }
2815 
2816 static int gfar_poll(struct napi_struct *napi, int budget)
2817 {
2818 	struct gfar_priv_grp *gfargrp = container_of(napi,
2819 			struct gfar_priv_grp, napi);
2820 	struct gfar_private *priv = gfargrp->priv;
2821 	struct gfar __iomem *regs = gfargrp->regs;
2822 	struct gfar_priv_tx_q *tx_queue = NULL;
2823 	struct gfar_priv_rx_q *rx_queue = NULL;
2824 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2825 	int tx_cleaned = 0, i, left_over_budget = budget;
2826 	unsigned long serviced_queues = 0;
2827 	int num_queues = 0;
2828 
2829 	num_queues = gfargrp->num_rx_queues;
2830 	budget_per_queue = budget/num_queues;
2831 
2832 	/* Clear IEVENT, so interrupts aren't called again
2833 	 * because of the packets that have already arrived */
2834 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2835 
2836 	while (num_queues && left_over_budget) {
2837 
2838 		budget_per_queue = left_over_budget/num_queues;
2839 		left_over_budget = 0;
2840 
2841 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2842 			if (test_bit(i, &serviced_queues))
2843 				continue;
2844 			rx_queue = priv->rx_queue[i];
2845 			tx_queue = priv->tx_queue[rx_queue->qindex];
2846 
2847 			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2848 			rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2849 							budget_per_queue);
2850 			rx_cleaned += rx_cleaned_per_queue;
2851 			if(rx_cleaned_per_queue < budget_per_queue) {
2852 				left_over_budget = left_over_budget +
2853 					(budget_per_queue - rx_cleaned_per_queue);
2854 				set_bit(i, &serviced_queues);
2855 				num_queues--;
2856 			}
2857 		}
2858 	}
2859 
2860 	if (tx_cleaned)
2861 		return budget;
2862 
2863 	if (rx_cleaned < budget) {
2864 		napi_complete(napi);
2865 
2866 		/* Clear the halt bit in RSTAT */
2867 		gfar_write(&regs->rstat, gfargrp->rstat);
2868 
2869 		gfar_write(&regs->imask, IMASK_DEFAULT);
2870 
2871 		/* If we are coalescing interrupts, update the timer */
2872 		/* Otherwise, clear it */
2873 		gfar_configure_coalescing(priv,
2874 				gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2875 	}
2876 
2877 	return rx_cleaned;
2878 }
2879 
2880 #ifdef CONFIG_NET_POLL_CONTROLLER
2881 /*
2882  * Polling 'interrupt' - used by things like netconsole to send skbs
2883  * without having to re-enable interrupts. It's not called while
2884  * the interrupt routine is executing.
2885  */
2886 static void gfar_netpoll(struct net_device *dev)
2887 {
2888 	struct gfar_private *priv = netdev_priv(dev);
2889 	int i = 0;
2890 
2891 	/* If the device has multiple interrupts, run tx/rx */
2892 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893 		for (i = 0; i < priv->num_grps; i++) {
2894 			disable_irq(priv->gfargrp[i].interruptTransmit);
2895 			disable_irq(priv->gfargrp[i].interruptReceive);
2896 			disable_irq(priv->gfargrp[i].interruptError);
2897 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2898 						&priv->gfargrp[i]);
2899 			enable_irq(priv->gfargrp[i].interruptError);
2900 			enable_irq(priv->gfargrp[i].interruptReceive);
2901 			enable_irq(priv->gfargrp[i].interruptTransmit);
2902 		}
2903 	} else {
2904 		for (i = 0; i < priv->num_grps; i++) {
2905 			disable_irq(priv->gfargrp[i].interruptTransmit);
2906 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907 						&priv->gfargrp[i]);
2908 			enable_irq(priv->gfargrp[i].interruptTransmit);
2909 		}
2910 	}
2911 }
2912 #endif
2913 
2914 /* The interrupt handler for devices with one interrupt */
2915 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2916 {
2917 	struct gfar_priv_grp *gfargrp = grp_id;
2918 
2919 	/* Save ievent for future reference */
2920 	u32 events = gfar_read(&gfargrp->regs->ievent);
2921 
2922 	/* Check for reception */
2923 	if (events & IEVENT_RX_MASK)
2924 		gfar_receive(irq, grp_id);
2925 
2926 	/* Check for transmit completion */
2927 	if (events & IEVENT_TX_MASK)
2928 		gfar_transmit(irq, grp_id);
2929 
2930 	/* Check for errors */
2931 	if (events & IEVENT_ERR_MASK)
2932 		gfar_error(irq, grp_id);
2933 
2934 	return IRQ_HANDLED;
2935 }
2936 
2937 /* Called every time the controller might need to be made
2938  * aware of new link state.  The PHY code conveys this
2939  * information through variables in the phydev structure, and this
2940  * function converts those variables into the appropriate
2941  * register values, and can bring down the device if needed.
2942  */
2943 static void adjust_link(struct net_device *dev)
2944 {
2945 	struct gfar_private *priv = netdev_priv(dev);
2946 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2947 	unsigned long flags;
2948 	struct phy_device *phydev = priv->phydev;
2949 	int new_state = 0;
2950 
2951 	local_irq_save(flags);
2952 	lock_tx_qs(priv);
2953 
2954 	if (phydev->link) {
2955 		u32 tempval = gfar_read(&regs->maccfg2);
2956 		u32 ecntrl = gfar_read(&regs->ecntrl);
2957 
2958 		/* Now we make sure that we can be in full duplex mode.
2959 		 * If not, we operate in half-duplex mode. */
2960 		if (phydev->duplex != priv->oldduplex) {
2961 			new_state = 1;
2962 			if (!(phydev->duplex))
2963 				tempval &= ~(MACCFG2_FULL_DUPLEX);
2964 			else
2965 				tempval |= MACCFG2_FULL_DUPLEX;
2966 
2967 			priv->oldduplex = phydev->duplex;
2968 		}
2969 
2970 		if (phydev->speed != priv->oldspeed) {
2971 			new_state = 1;
2972 			switch (phydev->speed) {
2973 			case 1000:
2974 				tempval =
2975 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2976 
2977 				ecntrl &= ~(ECNTRL_R100);
2978 				break;
2979 			case 100:
2980 			case 10:
2981 				tempval =
2982 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2983 
2984 				/* Reduced mode distinguishes
2985 				 * between 10 and 100 */
2986 				if (phydev->speed == SPEED_100)
2987 					ecntrl |= ECNTRL_R100;
2988 				else
2989 					ecntrl &= ~(ECNTRL_R100);
2990 				break;
2991 			default:
2992 				netif_warn(priv, link, dev,
2993 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2994 					   phydev->speed);
2995 				break;
2996 			}
2997 
2998 			priv->oldspeed = phydev->speed;
2999 		}
3000 
3001 		gfar_write(&regs->maccfg2, tempval);
3002 		gfar_write(&regs->ecntrl, ecntrl);
3003 
3004 		if (!priv->oldlink) {
3005 			new_state = 1;
3006 			priv->oldlink = 1;
3007 		}
3008 	} else if (priv->oldlink) {
3009 		new_state = 1;
3010 		priv->oldlink = 0;
3011 		priv->oldspeed = 0;
3012 		priv->oldduplex = -1;
3013 	}
3014 
3015 	if (new_state && netif_msg_link(priv))
3016 		phy_print_status(phydev);
3017 	unlock_tx_qs(priv);
3018 	local_irq_restore(flags);
3019 }
3020 
3021 /* Update the hash table based on the current list of multicast
3022  * addresses we subscribe to.  Also, change the promiscuity of
3023  * the device based on the flags (this function is called
3024  * whenever dev->flags is changed */
3025 static void gfar_set_multi(struct net_device *dev)
3026 {
3027 	struct netdev_hw_addr *ha;
3028 	struct gfar_private *priv = netdev_priv(dev);
3029 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3030 	u32 tempval;
3031 
3032 	if (dev->flags & IFF_PROMISC) {
3033 		/* Set RCTRL to PROM */
3034 		tempval = gfar_read(&regs->rctrl);
3035 		tempval |= RCTRL_PROM;
3036 		gfar_write(&regs->rctrl, tempval);
3037 	} else {
3038 		/* Set RCTRL to not PROM */
3039 		tempval = gfar_read(&regs->rctrl);
3040 		tempval &= ~(RCTRL_PROM);
3041 		gfar_write(&regs->rctrl, tempval);
3042 	}
3043 
3044 	if (dev->flags & IFF_ALLMULTI) {
3045 		/* Set the hash to rx all multicast frames */
3046 		gfar_write(&regs->igaddr0, 0xffffffff);
3047 		gfar_write(&regs->igaddr1, 0xffffffff);
3048 		gfar_write(&regs->igaddr2, 0xffffffff);
3049 		gfar_write(&regs->igaddr3, 0xffffffff);
3050 		gfar_write(&regs->igaddr4, 0xffffffff);
3051 		gfar_write(&regs->igaddr5, 0xffffffff);
3052 		gfar_write(&regs->igaddr6, 0xffffffff);
3053 		gfar_write(&regs->igaddr7, 0xffffffff);
3054 		gfar_write(&regs->gaddr0, 0xffffffff);
3055 		gfar_write(&regs->gaddr1, 0xffffffff);
3056 		gfar_write(&regs->gaddr2, 0xffffffff);
3057 		gfar_write(&regs->gaddr3, 0xffffffff);
3058 		gfar_write(&regs->gaddr4, 0xffffffff);
3059 		gfar_write(&regs->gaddr5, 0xffffffff);
3060 		gfar_write(&regs->gaddr6, 0xffffffff);
3061 		gfar_write(&regs->gaddr7, 0xffffffff);
3062 	} else {
3063 		int em_num;
3064 		int idx;
3065 
3066 		/* zero out the hash */
3067 		gfar_write(&regs->igaddr0, 0x0);
3068 		gfar_write(&regs->igaddr1, 0x0);
3069 		gfar_write(&regs->igaddr2, 0x0);
3070 		gfar_write(&regs->igaddr3, 0x0);
3071 		gfar_write(&regs->igaddr4, 0x0);
3072 		gfar_write(&regs->igaddr5, 0x0);
3073 		gfar_write(&regs->igaddr6, 0x0);
3074 		gfar_write(&regs->igaddr7, 0x0);
3075 		gfar_write(&regs->gaddr0, 0x0);
3076 		gfar_write(&regs->gaddr1, 0x0);
3077 		gfar_write(&regs->gaddr2, 0x0);
3078 		gfar_write(&regs->gaddr3, 0x0);
3079 		gfar_write(&regs->gaddr4, 0x0);
3080 		gfar_write(&regs->gaddr5, 0x0);
3081 		gfar_write(&regs->gaddr6, 0x0);
3082 		gfar_write(&regs->gaddr7, 0x0);
3083 
3084 		/* If we have extended hash tables, we need to
3085 		 * clear the exact match registers to prepare for
3086 		 * setting them */
3087 		if (priv->extended_hash) {
3088 			em_num = GFAR_EM_NUM + 1;
3089 			gfar_clear_exact_match(dev);
3090 			idx = 1;
3091 		} else {
3092 			idx = 0;
3093 			em_num = 0;
3094 		}
3095 
3096 		if (netdev_mc_empty(dev))
3097 			return;
3098 
3099 		/* Parse the list, and set the appropriate bits */
3100 		netdev_for_each_mc_addr(ha, dev) {
3101 			if (idx < em_num) {
3102 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3103 				idx++;
3104 			} else
3105 				gfar_set_hash_for_addr(dev, ha->addr);
3106 		}
3107 	}
3108 }
3109 
3110 
3111 /* Clears each of the exact match registers to zero, so they
3112  * don't interfere with normal reception */
3113 static void gfar_clear_exact_match(struct net_device *dev)
3114 {
3115 	int idx;
3116 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3117 
3118 	for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3119 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3120 }
3121 
3122 /* Set the appropriate hash bit for the given addr */
3123 /* The algorithm works like so:
3124  * 1) Take the Destination Address (ie the multicast address), and
3125  * do a CRC on it (little endian), and reverse the bits of the
3126  * result.
3127  * 2) Use the 8 most significant bits as a hash into a 256-entry
3128  * table.  The table is controlled through 8 32-bit registers:
3129  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3130  * gaddr7.  This means that the 3 most significant bits in the
3131  * hash index which gaddr register to use, and the 5 other bits
3132  * indicate which bit (assuming an IBM numbering scheme, which
3133  * for PowerPC (tm) is usually the case) in the register holds
3134  * the entry. */
3135 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3136 {
3137 	u32 tempval;
3138 	struct gfar_private *priv = netdev_priv(dev);
3139 	u32 result = ether_crc(ETH_ALEN, addr);
3140 	int width = priv->hash_width;
3141 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3142 	u8 whichreg = result >> (32 - width + 5);
3143 	u32 value = (1 << (31-whichbit));
3144 
3145 	tempval = gfar_read(priv->hash_regs[whichreg]);
3146 	tempval |= value;
3147 	gfar_write(priv->hash_regs[whichreg], tempval);
3148 }
3149 
3150 
3151 /* There are multiple MAC Address register pairs on some controllers
3152  * This function sets the numth pair to a given address
3153  */
3154 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3155 				  const u8 *addr)
3156 {
3157 	struct gfar_private *priv = netdev_priv(dev);
3158 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3159 	int idx;
3160 	char tmpbuf[ETH_ALEN];
3161 	u32 tempval;
3162 	u32 __iomem *macptr = &regs->macstnaddr1;
3163 
3164 	macptr += num*2;
3165 
3166 	/* Now copy it into the mac registers backwards, cuz */
3167 	/* little endian is silly */
3168 	for (idx = 0; idx < ETH_ALEN; idx++)
3169 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3170 
3171 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3172 
3173 	tempval = *((u32 *) (tmpbuf + 4));
3174 
3175 	gfar_write(macptr+1, tempval);
3176 }
3177 
3178 /* GFAR error interrupt handler */
3179 static irqreturn_t gfar_error(int irq, void *grp_id)
3180 {
3181 	struct gfar_priv_grp *gfargrp = grp_id;
3182 	struct gfar __iomem *regs = gfargrp->regs;
3183 	struct gfar_private *priv= gfargrp->priv;
3184 	struct net_device *dev = priv->ndev;
3185 
3186 	/* Save ievent for future reference */
3187 	u32 events = gfar_read(&regs->ievent);
3188 
3189 	/* Clear IEVENT */
3190 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3191 
3192 	/* Magic Packet is not an error. */
3193 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3194 	    (events & IEVENT_MAG))
3195 		events &= ~IEVENT_MAG;
3196 
3197 	/* Hmm... */
3198 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3199 		netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3200 			   events, gfar_read(&regs->imask));
3201 
3202 	/* Update the error counters */
3203 	if (events & IEVENT_TXE) {
3204 		dev->stats.tx_errors++;
3205 
3206 		if (events & IEVENT_LC)
3207 			dev->stats.tx_window_errors++;
3208 		if (events & IEVENT_CRL)
3209 			dev->stats.tx_aborted_errors++;
3210 		if (events & IEVENT_XFUN) {
3211 			unsigned long flags;
3212 
3213 			netif_dbg(priv, tx_err, dev,
3214 				  "TX FIFO underrun, packet dropped\n");
3215 			dev->stats.tx_dropped++;
3216 			priv->extra_stats.tx_underrun++;
3217 
3218 			local_irq_save(flags);
3219 			lock_tx_qs(priv);
3220 
3221 			/* Reactivate the Tx Queues */
3222 			gfar_write(&regs->tstat, gfargrp->tstat);
3223 
3224 			unlock_tx_qs(priv);
3225 			local_irq_restore(flags);
3226 		}
3227 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3228 	}
3229 	if (events & IEVENT_BSY) {
3230 		dev->stats.rx_errors++;
3231 		priv->extra_stats.rx_bsy++;
3232 
3233 		gfar_receive(irq, grp_id);
3234 
3235 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3236 			  gfar_read(&regs->rstat));
3237 	}
3238 	if (events & IEVENT_BABR) {
3239 		dev->stats.rx_errors++;
3240 		priv->extra_stats.rx_babr++;
3241 
3242 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3243 	}
3244 	if (events & IEVENT_EBERR) {
3245 		priv->extra_stats.eberr++;
3246 		netif_dbg(priv, rx_err, dev, "bus error\n");
3247 	}
3248 	if (events & IEVENT_RXC)
3249 		netif_dbg(priv, rx_status, dev, "control frame\n");
3250 
3251 	if (events & IEVENT_BABT) {
3252 		priv->extra_stats.tx_babt++;
3253 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3254 	}
3255 	return IRQ_HANDLED;
3256 }
3257 
3258 static struct of_device_id gfar_match[] =
3259 {
3260 	{
3261 		.type = "network",
3262 		.compatible = "gianfar",
3263 	},
3264 	{
3265 		.compatible = "fsl,etsec2",
3266 	},
3267 	{},
3268 };
3269 MODULE_DEVICE_TABLE(of, gfar_match);
3270 
3271 /* Structure for a device driver */
3272 static struct platform_driver gfar_driver = {
3273 	.driver = {
3274 		.name = "fsl-gianfar",
3275 		.owner = THIS_MODULE,
3276 		.pm = GFAR_PM_OPS,
3277 		.of_match_table = gfar_match,
3278 	},
3279 	.probe = gfar_probe,
3280 	.remove = gfar_remove,
3281 };
3282 
3283 module_platform_driver(gfar_driver);
3284