1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (!gfar_irq(grp, TX)->irq ||
651 		    !gfar_irq(grp, RX)->irq ||
652 		    !gfar_irq(grp, ER)->irq)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	u32 stash_len = 0;
742 	u32 stash_idx = 0;
743 	unsigned int num_tx_qs, num_rx_qs;
744 	unsigned short mode, poll_mode;
745 
746 	if (!np)
747 		return -ENODEV;
748 
749 	if (of_device_is_compatible(np, "fsl,etsec2")) {
750 		mode = MQ_MG_MODE;
751 		poll_mode = GFAR_SQ_POLLING;
752 	} else {
753 		mode = SQ_SG_MODE;
754 		poll_mode = GFAR_SQ_POLLING;
755 	}
756 
757 	if (mode == SQ_SG_MODE) {
758 		num_tx_qs = 1;
759 		num_rx_qs = 1;
760 	} else { /* MQ_MG_MODE */
761 		/* get the actual number of supported groups */
762 		unsigned int num_grps = gfar_of_group_count(np);
763 
764 		if (num_grps == 0 || num_grps > MAXGROUPS) {
765 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 				num_grps);
767 			pr_err("Cannot do alloc_etherdev, aborting\n");
768 			return -EINVAL;
769 		}
770 
771 		if (poll_mode == GFAR_SQ_POLLING) {
772 			num_tx_qs = num_grps; /* one txq per int group */
773 			num_rx_qs = num_grps; /* one rxq per int group */
774 		} else { /* GFAR_MQ_POLLING */
775 			u32 tx_queues, rx_queues;
776 			int ret;
777 
778 			/* parse the num of HW tx and rx queues */
779 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 						   &tx_queues);
781 			num_tx_qs = ret ? 1 : tx_queues;
782 
783 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 						   &rx_queues);
785 			num_rx_qs = ret ? 1 : rx_queues;
786 		}
787 	}
788 
789 	if (num_tx_qs > MAX_TX_QS) {
790 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 		       num_tx_qs, MAX_TX_QS);
792 		pr_err("Cannot do alloc_etherdev, aborting\n");
793 		return -EINVAL;
794 	}
795 
796 	if (num_rx_qs > MAX_RX_QS) {
797 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 		       num_rx_qs, MAX_RX_QS);
799 		pr_err("Cannot do alloc_etherdev, aborting\n");
800 		return -EINVAL;
801 	}
802 
803 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 	dev = *pdev;
805 	if (NULL == dev)
806 		return -ENOMEM;
807 
808 	priv = netdev_priv(dev);
809 	priv->ndev = dev;
810 
811 	priv->mode = mode;
812 	priv->poll_mode = poll_mode;
813 
814 	priv->num_tx_queues = num_tx_qs;
815 	netif_set_real_num_rx_queues(dev, num_rx_qs);
816 	priv->num_rx_queues = num_rx_qs;
817 
818 	err = gfar_alloc_tx_queues(priv);
819 	if (err)
820 		goto tx_alloc_failed;
821 
822 	err = gfar_alloc_rx_queues(priv);
823 	if (err)
824 		goto rx_alloc_failed;
825 
826 	err = of_property_read_string(np, "model", &model);
827 	if (err) {
828 		pr_err("Device model property missing, aborting\n");
829 		goto rx_alloc_failed;
830 	}
831 
832 	/* Init Rx queue filer rule set linked list */
833 	INIT_LIST_HEAD(&priv->rx_list.list);
834 	priv->rx_list.count = 0;
835 	mutex_init(&priv->rx_queue_access);
836 
837 	for (i = 0; i < MAXGROUPS; i++)
838 		priv->gfargrp[i].regs = NULL;
839 
840 	/* Parse and initialize group specific information */
841 	if (priv->mode == MQ_MG_MODE) {
842 		for_each_available_child_of_node(np, child) {
843 			if (of_node_cmp(child->name, "queue-group"))
844 				continue;
845 
846 			err = gfar_parse_group(child, priv, model);
847 			if (err)
848 				goto err_grp_init;
849 		}
850 	} else { /* SQ_SG_MODE */
851 		err = gfar_parse_group(np, priv, model);
852 		if (err)
853 			goto err_grp_init;
854 	}
855 
856 	if (of_property_read_bool(np, "bd-stash")) {
857 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 		priv->bd_stash_en = 1;
859 	}
860 
861 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862 
863 	if (err == 0)
864 		priv->rx_stash_size = stash_len;
865 
866 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867 
868 	if (err == 0)
869 		priv->rx_stash_index = stash_idx;
870 
871 	if (stash_len || stash_idx)
872 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873 
874 	mac_addr = of_get_mac_address(np);
875 
876 	if (mac_addr)
877 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878 
879 	if (model && !strcasecmp(model, "TSEC"))
880 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 				     FSL_GIANFAR_DEV_HAS_COALESCE |
882 				     FSL_GIANFAR_DEV_HAS_RMON |
883 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884 
885 	if (model && !strcasecmp(model, "eTSEC"))
886 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 				     FSL_GIANFAR_DEV_HAS_COALESCE |
888 				     FSL_GIANFAR_DEV_HAS_RMON |
889 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 				     FSL_GIANFAR_DEV_HAS_CSUM |
891 				     FSL_GIANFAR_DEV_HAS_VLAN |
892 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 				     FSL_GIANFAR_DEV_HAS_TIMER |
895 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
896 
897 	err = of_property_read_string(np, "phy-connection-type", &ctype);
898 
899 	/* We only care about rgmii-id.  The rest are autodetected */
900 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 	else
903 		priv->interface = PHY_INTERFACE_MODE_MII;
904 
905 	if (of_find_property(np, "fsl,magic-packet", NULL))
906 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907 
908 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910 
911 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912 
913 	/* In the case of a fixed PHY, the DT node associated
914 	 * to the PHY is the Ethernet MAC DT node.
915 	 */
916 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 		err = of_phy_register_fixed_link(np);
918 		if (err)
919 			goto err_grp_init;
920 
921 		priv->phy_node = of_node_get(np);
922 	}
923 
924 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
925 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926 
927 	return 0;
928 
929 err_grp_init:
930 	unmap_group_regs(priv);
931 rx_alloc_failed:
932 	gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 	gfar_free_tx_queues(priv);
935 	free_gfar_dev(priv);
936 	return err;
937 }
938 
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 	struct hwtstamp_config config;
942 	struct gfar_private *priv = netdev_priv(netdev);
943 
944 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 		return -EFAULT;
946 
947 	/* reserved for future extensions */
948 	if (config.flags)
949 		return -EINVAL;
950 
951 	switch (config.tx_type) {
952 	case HWTSTAMP_TX_OFF:
953 		priv->hwts_tx_en = 0;
954 		break;
955 	case HWTSTAMP_TX_ON:
956 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 			return -ERANGE;
958 		priv->hwts_tx_en = 1;
959 		break;
960 	default:
961 		return -ERANGE;
962 	}
963 
964 	switch (config.rx_filter) {
965 	case HWTSTAMP_FILTER_NONE:
966 		if (priv->hwts_rx_en) {
967 			priv->hwts_rx_en = 0;
968 			reset_gfar(netdev);
969 		}
970 		break;
971 	default:
972 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 			return -ERANGE;
974 		if (!priv->hwts_rx_en) {
975 			priv->hwts_rx_en = 1;
976 			reset_gfar(netdev);
977 		}
978 		config.rx_filter = HWTSTAMP_FILTER_ALL;
979 		break;
980 	}
981 
982 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 		-EFAULT : 0;
984 }
985 
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 	struct hwtstamp_config config;
989 	struct gfar_private *priv = netdev_priv(netdev);
990 
991 	config.flags = 0;
992 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 	config.rx_filter = (priv->hwts_rx_en ?
994 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995 
996 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 		-EFAULT : 0;
998 }
999 
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 	struct gfar_private *priv = netdev_priv(dev);
1003 
1004 	if (!netif_running(dev))
1005 		return -EINVAL;
1006 
1007 	if (cmd == SIOCSHWTSTAMP)
1008 		return gfar_hwtstamp_set(dev, rq);
1009 	if (cmd == SIOCGHWTSTAMP)
1010 		return gfar_hwtstamp_get(dev, rq);
1011 
1012 	if (!priv->phydev)
1013 		return -ENODEV;
1014 
1015 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1016 }
1017 
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 				   u32 class)
1020 {
1021 	u32 rqfpr = FPR_FILER_MASK;
1022 	u32 rqfcr = 0x0;
1023 
1024 	rqfar--;
1025 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 	priv->ftp_rqfpr[rqfar] = rqfpr;
1027 	priv->ftp_rqfcr[rqfar] = rqfcr;
1028 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029 
1030 	rqfar--;
1031 	rqfcr = RQFCR_CMP_NOMATCH;
1032 	priv->ftp_rqfpr[rqfar] = rqfpr;
1033 	priv->ftp_rqfcr[rqfar] = rqfcr;
1034 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035 
1036 	rqfar--;
1037 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 	rqfpr = class;
1039 	priv->ftp_rqfcr[rqfar] = rqfcr;
1040 	priv->ftp_rqfpr[rqfar] = rqfpr;
1041 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042 
1043 	rqfar--;
1044 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 	rqfpr = class;
1046 	priv->ftp_rqfcr[rqfar] = rqfcr;
1047 	priv->ftp_rqfpr[rqfar] = rqfpr;
1048 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049 
1050 	return rqfar;
1051 }
1052 
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 	int i = 0x0;
1056 	u32 rqfar = MAX_FILER_IDX;
1057 	u32 rqfcr = 0x0;
1058 	u32 rqfpr = FPR_FILER_MASK;
1059 
1060 	/* Default rule */
1061 	rqfcr = RQFCR_CMP_MATCH;
1062 	priv->ftp_rqfcr[rqfar] = rqfcr;
1063 	priv->ftp_rqfpr[rqfar] = rqfpr;
1064 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065 
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072 
1073 	/* cur_filer_idx indicated the first non-masked rule */
1074 	priv->cur_filer_idx = rqfar;
1075 
1076 	/* Rest are masked rules */
1077 	rqfcr = RQFCR_CMP_NOMATCH;
1078 	for (i = 0; i < rqfar; i++) {
1079 		priv->ftp_rqfcr[i] = rqfcr;
1080 		priv->ftp_rqfpr[i] = rqfpr;
1081 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 	}
1083 }
1084 
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 	unsigned int pvr = mfspr(SPRN_PVR);
1089 	unsigned int svr = mfspr(SPRN_SVR);
1090 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 	unsigned int rev = svr & 0xffff;
1092 
1093 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 		priv->errata |= GFAR_ERRATA_74;
1097 
1098 	/* MPC8313 and MPC837x all rev */
1099 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 		priv->errata |= GFAR_ERRATA_76;
1102 
1103 	/* MPC8313 Rev < 2.0 */
1104 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 		priv->errata |= GFAR_ERRATA_12;
1106 }
1107 
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 	unsigned int svr = mfspr(SPRN_SVR);
1111 
1112 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 		priv->errata |= GFAR_ERRATA_12;
1114 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1115 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1116 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1117 }
1118 #endif
1119 
1120 static void gfar_detect_errata(struct gfar_private *priv)
1121 {
1122 	struct device *dev = &priv->ofdev->dev;
1123 
1124 	/* no plans to fix */
1125 	priv->errata |= GFAR_ERRATA_A002;
1126 
1127 #ifdef CONFIG_PPC
1128 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1129 		__gfar_detect_errata_85xx(priv);
1130 	else /* non-mpc85xx parts, i.e. e300 core based */
1131 		__gfar_detect_errata_83xx(priv);
1132 #endif
1133 
1134 	if (priv->errata)
1135 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1136 			 priv->errata);
1137 }
1138 
1139 void gfar_mac_reset(struct gfar_private *priv)
1140 {
1141 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1142 	u32 tempval;
1143 
1144 	/* Reset MAC layer */
1145 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1146 
1147 	/* We need to delay at least 3 TX clocks */
1148 	udelay(3);
1149 
1150 	/* the soft reset bit is not self-resetting, so we need to
1151 	 * clear it before resuming normal operation
1152 	 */
1153 	gfar_write(&regs->maccfg1, 0);
1154 
1155 	udelay(3);
1156 
1157 	gfar_rx_offload_en(priv);
1158 
1159 	/* Initialize the max receive frame/buffer lengths */
1160 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1161 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1162 
1163 	/* Initialize the Minimum Frame Length Register */
1164 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1165 
1166 	/* Initialize MACCFG2. */
1167 	tempval = MACCFG2_INIT_SETTINGS;
1168 
1169 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1170 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1171 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1172 	 */
1173 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1174 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1175 
1176 	gfar_write(&regs->maccfg2, tempval);
1177 
1178 	/* Clear mac addr hash registers */
1179 	gfar_write(&regs->igaddr0, 0);
1180 	gfar_write(&regs->igaddr1, 0);
1181 	gfar_write(&regs->igaddr2, 0);
1182 	gfar_write(&regs->igaddr3, 0);
1183 	gfar_write(&regs->igaddr4, 0);
1184 	gfar_write(&regs->igaddr5, 0);
1185 	gfar_write(&regs->igaddr6, 0);
1186 	gfar_write(&regs->igaddr7, 0);
1187 
1188 	gfar_write(&regs->gaddr0, 0);
1189 	gfar_write(&regs->gaddr1, 0);
1190 	gfar_write(&regs->gaddr2, 0);
1191 	gfar_write(&regs->gaddr3, 0);
1192 	gfar_write(&regs->gaddr4, 0);
1193 	gfar_write(&regs->gaddr5, 0);
1194 	gfar_write(&regs->gaddr6, 0);
1195 	gfar_write(&regs->gaddr7, 0);
1196 
1197 	if (priv->extended_hash)
1198 		gfar_clear_exact_match(priv->ndev);
1199 
1200 	gfar_mac_rx_config(priv);
1201 
1202 	gfar_mac_tx_config(priv);
1203 
1204 	gfar_set_mac_address(priv->ndev);
1205 
1206 	gfar_set_multi(priv->ndev);
1207 
1208 	/* clear ievent and imask before configuring coalescing */
1209 	gfar_ints_disable(priv);
1210 
1211 	/* Configure the coalescing support */
1212 	gfar_configure_coalescing_all(priv);
1213 }
1214 
1215 static void gfar_hw_init(struct gfar_private *priv)
1216 {
1217 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1218 	u32 attrs;
1219 
1220 	/* Stop the DMA engine now, in case it was running before
1221 	 * (The firmware could have used it, and left it running).
1222 	 */
1223 	gfar_halt(priv);
1224 
1225 	gfar_mac_reset(priv);
1226 
1227 	/* Zero out the rmon mib registers if it has them */
1228 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1229 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1230 
1231 		/* Mask off the CAM interrupts */
1232 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1233 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1234 	}
1235 
1236 	/* Initialize ECNTRL */
1237 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1238 
1239 	/* Set the extraction length and index */
1240 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1241 		ATTRELI_EI(priv->rx_stash_index);
1242 
1243 	gfar_write(&regs->attreli, attrs);
1244 
1245 	/* Start with defaults, and add stashing
1246 	 * depending on driver parameters
1247 	 */
1248 	attrs = ATTR_INIT_SETTINGS;
1249 
1250 	if (priv->bd_stash_en)
1251 		attrs |= ATTR_BDSTASH;
1252 
1253 	if (priv->rx_stash_size != 0)
1254 		attrs |= ATTR_BUFSTASH;
1255 
1256 	gfar_write(&regs->attr, attrs);
1257 
1258 	/* FIFO configs */
1259 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1260 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1261 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1262 
1263 	/* Program the interrupt steering regs, only for MG devices */
1264 	if (priv->num_grps > 1)
1265 		gfar_write_isrg(priv);
1266 }
1267 
1268 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1269 {
1270 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1271 
1272 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1273 		priv->extended_hash = 1;
1274 		priv->hash_width = 9;
1275 
1276 		priv->hash_regs[0] = &regs->igaddr0;
1277 		priv->hash_regs[1] = &regs->igaddr1;
1278 		priv->hash_regs[2] = &regs->igaddr2;
1279 		priv->hash_regs[3] = &regs->igaddr3;
1280 		priv->hash_regs[4] = &regs->igaddr4;
1281 		priv->hash_regs[5] = &regs->igaddr5;
1282 		priv->hash_regs[6] = &regs->igaddr6;
1283 		priv->hash_regs[7] = &regs->igaddr7;
1284 		priv->hash_regs[8] = &regs->gaddr0;
1285 		priv->hash_regs[9] = &regs->gaddr1;
1286 		priv->hash_regs[10] = &regs->gaddr2;
1287 		priv->hash_regs[11] = &regs->gaddr3;
1288 		priv->hash_regs[12] = &regs->gaddr4;
1289 		priv->hash_regs[13] = &regs->gaddr5;
1290 		priv->hash_regs[14] = &regs->gaddr6;
1291 		priv->hash_regs[15] = &regs->gaddr7;
1292 
1293 	} else {
1294 		priv->extended_hash = 0;
1295 		priv->hash_width = 8;
1296 
1297 		priv->hash_regs[0] = &regs->gaddr0;
1298 		priv->hash_regs[1] = &regs->gaddr1;
1299 		priv->hash_regs[2] = &regs->gaddr2;
1300 		priv->hash_regs[3] = &regs->gaddr3;
1301 		priv->hash_regs[4] = &regs->gaddr4;
1302 		priv->hash_regs[5] = &regs->gaddr5;
1303 		priv->hash_regs[6] = &regs->gaddr6;
1304 		priv->hash_regs[7] = &regs->gaddr7;
1305 	}
1306 }
1307 
1308 /* Set up the ethernet device structure, private data,
1309  * and anything else we need before we start
1310  */
1311 static int gfar_probe(struct platform_device *ofdev)
1312 {
1313 	struct net_device *dev = NULL;
1314 	struct gfar_private *priv = NULL;
1315 	int err = 0, i;
1316 
1317 	err = gfar_of_init(ofdev, &dev);
1318 
1319 	if (err)
1320 		return err;
1321 
1322 	priv = netdev_priv(dev);
1323 	priv->ndev = dev;
1324 	priv->ofdev = ofdev;
1325 	priv->dev = &ofdev->dev;
1326 	SET_NETDEV_DEV(dev, &ofdev->dev);
1327 
1328 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1329 
1330 	platform_set_drvdata(ofdev, priv);
1331 
1332 	gfar_detect_errata(priv);
1333 
1334 	/* Set the dev->base_addr to the gfar reg region */
1335 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1336 
1337 	/* Fill in the dev structure */
1338 	dev->watchdog_timeo = TX_TIMEOUT;
1339 	dev->mtu = 1500;
1340 	dev->netdev_ops = &gfar_netdev_ops;
1341 	dev->ethtool_ops = &gfar_ethtool_ops;
1342 
1343 	/* Register for napi ...We are registering NAPI for each grp */
1344 	for (i = 0; i < priv->num_grps; i++) {
1345 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1346 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1347 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1348 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1349 				       gfar_poll_tx_sq, 2);
1350 		} else {
1351 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1352 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1353 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1354 				       gfar_poll_tx, 2);
1355 		}
1356 	}
1357 
1358 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1359 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1360 				   NETIF_F_RXCSUM;
1361 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1362 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1363 	}
1364 
1365 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1366 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1367 				    NETIF_F_HW_VLAN_CTAG_RX;
1368 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1369 	}
1370 
1371 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1372 
1373 	gfar_init_addr_hash_table(priv);
1374 
1375 	/* Insert receive time stamps into padding alignment bytes */
1376 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1377 		priv->padding = 8;
1378 
1379 	if (dev->features & NETIF_F_IP_CSUM ||
1380 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1381 		dev->needed_headroom = GMAC_FCB_LEN;
1382 
1383 	/* Initializing some of the rx/tx queue level parameters */
1384 	for (i = 0; i < priv->num_tx_queues; i++) {
1385 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1386 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1387 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1388 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1389 	}
1390 
1391 	for (i = 0; i < priv->num_rx_queues; i++) {
1392 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1393 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1394 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1395 	}
1396 
1397 	/* Always enable rx filer if available */
1398 	priv->rx_filer_enable =
1399 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1400 	/* Enable most messages by default */
1401 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1402 	/* use pritority h/w tx queue scheduling for single queue devices */
1403 	if (priv->num_tx_queues == 1)
1404 		priv->prio_sched_en = 1;
1405 
1406 	set_bit(GFAR_DOWN, &priv->state);
1407 
1408 	gfar_hw_init(priv);
1409 
1410 	/* Carrier starts down, phylib will bring it up */
1411 	netif_carrier_off(dev);
1412 
1413 	err = register_netdev(dev);
1414 
1415 	if (err) {
1416 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1417 		goto register_fail;
1418 	}
1419 
1420 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1421 		priv->wol_supported |= GFAR_WOL_MAGIC;
1422 
1423 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1424 	    priv->rx_filer_enable)
1425 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1426 
1427 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1428 
1429 	/* fill out IRQ number and name fields */
1430 	for (i = 0; i < priv->num_grps; i++) {
1431 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1432 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1433 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1434 				dev->name, "_g", '0' + i, "_tx");
1435 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1436 				dev->name, "_g", '0' + i, "_rx");
1437 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1438 				dev->name, "_g", '0' + i, "_er");
1439 		} else
1440 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1441 	}
1442 
1443 	/* Initialize the filer table */
1444 	gfar_init_filer_table(priv);
1445 
1446 	/* Print out the device info */
1447 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1448 
1449 	/* Even more device info helps when determining which kernel
1450 	 * provided which set of benchmarks.
1451 	 */
1452 	netdev_info(dev, "Running with NAPI enabled\n");
1453 	for (i = 0; i < priv->num_rx_queues; i++)
1454 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1455 			    i, priv->rx_queue[i]->rx_ring_size);
1456 	for (i = 0; i < priv->num_tx_queues; i++)
1457 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1458 			    i, priv->tx_queue[i]->tx_ring_size);
1459 
1460 	return 0;
1461 
1462 register_fail:
1463 	unmap_group_regs(priv);
1464 	gfar_free_rx_queues(priv);
1465 	gfar_free_tx_queues(priv);
1466 	of_node_put(priv->phy_node);
1467 	of_node_put(priv->tbi_node);
1468 	free_gfar_dev(priv);
1469 	return err;
1470 }
1471 
1472 static int gfar_remove(struct platform_device *ofdev)
1473 {
1474 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1475 
1476 	of_node_put(priv->phy_node);
1477 	of_node_put(priv->tbi_node);
1478 
1479 	unregister_netdev(priv->ndev);
1480 	unmap_group_regs(priv);
1481 	gfar_free_rx_queues(priv);
1482 	gfar_free_tx_queues(priv);
1483 	free_gfar_dev(priv);
1484 
1485 	return 0;
1486 }
1487 
1488 #ifdef CONFIG_PM
1489 
1490 static void __gfar_filer_disable(struct gfar_private *priv)
1491 {
1492 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1493 	u32 temp;
1494 
1495 	temp = gfar_read(&regs->rctrl);
1496 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1497 	gfar_write(&regs->rctrl, temp);
1498 }
1499 
1500 static void __gfar_filer_enable(struct gfar_private *priv)
1501 {
1502 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1503 	u32 temp;
1504 
1505 	temp = gfar_read(&regs->rctrl);
1506 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1507 	gfar_write(&regs->rctrl, temp);
1508 }
1509 
1510 /* Filer rules implementing wol capabilities */
1511 static void gfar_filer_config_wol(struct gfar_private *priv)
1512 {
1513 	unsigned int i;
1514 	u32 rqfcr;
1515 
1516 	__gfar_filer_disable(priv);
1517 
1518 	/* clear the filer table, reject any packet by default */
1519 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1520 	for (i = 0; i <= MAX_FILER_IDX; i++)
1521 		gfar_write_filer(priv, i, rqfcr, 0);
1522 
1523 	i = 0;
1524 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1525 		/* unicast packet, accept it */
1526 		struct net_device *ndev = priv->ndev;
1527 		/* get the default rx queue index */
1528 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1529 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1530 				    (ndev->dev_addr[1] << 8) |
1531 				     ndev->dev_addr[2];
1532 
1533 		rqfcr = (qindex << 10) | RQFCR_AND |
1534 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1535 
1536 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1537 
1538 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1539 				(ndev->dev_addr[4] << 8) |
1540 				 ndev->dev_addr[5];
1541 		rqfcr = (qindex << 10) | RQFCR_GPI |
1542 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1543 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1544 	}
1545 
1546 	__gfar_filer_enable(priv);
1547 }
1548 
1549 static void gfar_filer_restore_table(struct gfar_private *priv)
1550 {
1551 	u32 rqfcr, rqfpr;
1552 	unsigned int i;
1553 
1554 	__gfar_filer_disable(priv);
1555 
1556 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1557 		rqfcr = priv->ftp_rqfcr[i];
1558 		rqfpr = priv->ftp_rqfpr[i];
1559 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1560 	}
1561 
1562 	__gfar_filer_enable(priv);
1563 }
1564 
1565 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1566 static void gfar_start_wol_filer(struct gfar_private *priv)
1567 {
1568 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1569 	u32 tempval;
1570 	int i = 0;
1571 
1572 	/* Enable Rx hw queues */
1573 	gfar_write(&regs->rqueue, priv->rqueue);
1574 
1575 	/* Initialize DMACTRL to have WWR and WOP */
1576 	tempval = gfar_read(&regs->dmactrl);
1577 	tempval |= DMACTRL_INIT_SETTINGS;
1578 	gfar_write(&regs->dmactrl, tempval);
1579 
1580 	/* Make sure we aren't stopped */
1581 	tempval = gfar_read(&regs->dmactrl);
1582 	tempval &= ~DMACTRL_GRS;
1583 	gfar_write(&regs->dmactrl, tempval);
1584 
1585 	for (i = 0; i < priv->num_grps; i++) {
1586 		regs = priv->gfargrp[i].regs;
1587 		/* Clear RHLT, so that the DMA starts polling now */
1588 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1589 		/* enable the Filer General Purpose Interrupt */
1590 		gfar_write(&regs->imask, IMASK_FGPI);
1591 	}
1592 
1593 	/* Enable Rx DMA */
1594 	tempval = gfar_read(&regs->maccfg1);
1595 	tempval |= MACCFG1_RX_EN;
1596 	gfar_write(&regs->maccfg1, tempval);
1597 }
1598 
1599 static int gfar_suspend(struct device *dev)
1600 {
1601 	struct gfar_private *priv = dev_get_drvdata(dev);
1602 	struct net_device *ndev = priv->ndev;
1603 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1604 	u32 tempval;
1605 	u16 wol = priv->wol_opts;
1606 
1607 	if (!netif_running(ndev))
1608 		return 0;
1609 
1610 	disable_napi(priv);
1611 	netif_tx_lock(ndev);
1612 	netif_device_detach(ndev);
1613 	netif_tx_unlock(ndev);
1614 
1615 	gfar_halt(priv);
1616 
1617 	if (wol & GFAR_WOL_MAGIC) {
1618 		/* Enable interrupt on Magic Packet */
1619 		gfar_write(&regs->imask, IMASK_MAG);
1620 
1621 		/* Enable Magic Packet mode */
1622 		tempval = gfar_read(&regs->maccfg2);
1623 		tempval |= MACCFG2_MPEN;
1624 		gfar_write(&regs->maccfg2, tempval);
1625 
1626 		/* re-enable the Rx block */
1627 		tempval = gfar_read(&regs->maccfg1);
1628 		tempval |= MACCFG1_RX_EN;
1629 		gfar_write(&regs->maccfg1, tempval);
1630 
1631 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1632 		gfar_filer_config_wol(priv);
1633 		gfar_start_wol_filer(priv);
1634 
1635 	} else {
1636 		phy_stop(priv->phydev);
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static int gfar_resume(struct device *dev)
1643 {
1644 	struct gfar_private *priv = dev_get_drvdata(dev);
1645 	struct net_device *ndev = priv->ndev;
1646 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647 	u32 tempval;
1648 	u16 wol = priv->wol_opts;
1649 
1650 	if (!netif_running(ndev))
1651 		return 0;
1652 
1653 	if (wol & GFAR_WOL_MAGIC) {
1654 		/* Disable Magic Packet mode */
1655 		tempval = gfar_read(&regs->maccfg2);
1656 		tempval &= ~MACCFG2_MPEN;
1657 		gfar_write(&regs->maccfg2, tempval);
1658 
1659 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1660 		/* need to stop rx only, tx is already down */
1661 		gfar_halt(priv);
1662 		gfar_filer_restore_table(priv);
1663 
1664 	} else {
1665 		phy_start(priv->phydev);
1666 	}
1667 
1668 	gfar_start(priv);
1669 
1670 	netif_device_attach(ndev);
1671 	enable_napi(priv);
1672 
1673 	return 0;
1674 }
1675 
1676 static int gfar_restore(struct device *dev)
1677 {
1678 	struct gfar_private *priv = dev_get_drvdata(dev);
1679 	struct net_device *ndev = priv->ndev;
1680 
1681 	if (!netif_running(ndev)) {
1682 		netif_device_attach(ndev);
1683 
1684 		return 0;
1685 	}
1686 
1687 	gfar_init_bds(ndev);
1688 
1689 	gfar_mac_reset(priv);
1690 
1691 	gfar_init_tx_rx_base(priv);
1692 
1693 	gfar_start(priv);
1694 
1695 	priv->oldlink = 0;
1696 	priv->oldspeed = 0;
1697 	priv->oldduplex = -1;
1698 
1699 	if (priv->phydev)
1700 		phy_start(priv->phydev);
1701 
1702 	netif_device_attach(ndev);
1703 	enable_napi(priv);
1704 
1705 	return 0;
1706 }
1707 
1708 static struct dev_pm_ops gfar_pm_ops = {
1709 	.suspend = gfar_suspend,
1710 	.resume = gfar_resume,
1711 	.freeze = gfar_suspend,
1712 	.thaw = gfar_resume,
1713 	.restore = gfar_restore,
1714 };
1715 
1716 #define GFAR_PM_OPS (&gfar_pm_ops)
1717 
1718 #else
1719 
1720 #define GFAR_PM_OPS NULL
1721 
1722 #endif
1723 
1724 /* Reads the controller's registers to determine what interface
1725  * connects it to the PHY.
1726  */
1727 static phy_interface_t gfar_get_interface(struct net_device *dev)
1728 {
1729 	struct gfar_private *priv = netdev_priv(dev);
1730 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1731 	u32 ecntrl;
1732 
1733 	ecntrl = gfar_read(&regs->ecntrl);
1734 
1735 	if (ecntrl & ECNTRL_SGMII_MODE)
1736 		return PHY_INTERFACE_MODE_SGMII;
1737 
1738 	if (ecntrl & ECNTRL_TBI_MODE) {
1739 		if (ecntrl & ECNTRL_REDUCED_MODE)
1740 			return PHY_INTERFACE_MODE_RTBI;
1741 		else
1742 			return PHY_INTERFACE_MODE_TBI;
1743 	}
1744 
1745 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1746 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1747 			return PHY_INTERFACE_MODE_RMII;
1748 		}
1749 		else {
1750 			phy_interface_t interface = priv->interface;
1751 
1752 			/* This isn't autodetected right now, so it must
1753 			 * be set by the device tree or platform code.
1754 			 */
1755 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1756 				return PHY_INTERFACE_MODE_RGMII_ID;
1757 
1758 			return PHY_INTERFACE_MODE_RGMII;
1759 		}
1760 	}
1761 
1762 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1763 		return PHY_INTERFACE_MODE_GMII;
1764 
1765 	return PHY_INTERFACE_MODE_MII;
1766 }
1767 
1768 
1769 /* Initializes driver's PHY state, and attaches to the PHY.
1770  * Returns 0 on success.
1771  */
1772 static int init_phy(struct net_device *dev)
1773 {
1774 	struct gfar_private *priv = netdev_priv(dev);
1775 	uint gigabit_support =
1776 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1777 		GFAR_SUPPORTED_GBIT : 0;
1778 	phy_interface_t interface;
1779 
1780 	priv->oldlink = 0;
1781 	priv->oldspeed = 0;
1782 	priv->oldduplex = -1;
1783 
1784 	interface = gfar_get_interface(dev);
1785 
1786 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1787 				      interface);
1788 	if (!priv->phydev) {
1789 		dev_err(&dev->dev, "could not attach to PHY\n");
1790 		return -ENODEV;
1791 	}
1792 
1793 	if (interface == PHY_INTERFACE_MODE_SGMII)
1794 		gfar_configure_serdes(dev);
1795 
1796 	/* Remove any features not supported by the controller */
1797 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1798 	priv->phydev->advertising = priv->phydev->supported;
1799 
1800 	/* Add support for flow control, but don't advertise it by default */
1801 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1802 
1803 	return 0;
1804 }
1805 
1806 /* Initialize TBI PHY interface for communicating with the
1807  * SERDES lynx PHY on the chip.  We communicate with this PHY
1808  * through the MDIO bus on each controller, treating it as a
1809  * "normal" PHY at the address found in the TBIPA register.  We assume
1810  * that the TBIPA register is valid.  Either the MDIO bus code will set
1811  * it to a value that doesn't conflict with other PHYs on the bus, or the
1812  * value doesn't matter, as there are no other PHYs on the bus.
1813  */
1814 static void gfar_configure_serdes(struct net_device *dev)
1815 {
1816 	struct gfar_private *priv = netdev_priv(dev);
1817 	struct phy_device *tbiphy;
1818 
1819 	if (!priv->tbi_node) {
1820 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1821 				    "device tree specify a tbi-handle\n");
1822 		return;
1823 	}
1824 
1825 	tbiphy = of_phy_find_device(priv->tbi_node);
1826 	if (!tbiphy) {
1827 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1828 		return;
1829 	}
1830 
1831 	/* If the link is already up, we must already be ok, and don't need to
1832 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1833 	 * everything for us?  Resetting it takes the link down and requires
1834 	 * several seconds for it to come back.
1835 	 */
1836 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1837 		put_device(&tbiphy->mdio.dev);
1838 		return;
1839 	}
1840 
1841 	/* Single clk mode, mii mode off(for serdes communication) */
1842 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1843 
1844 	phy_write(tbiphy, MII_ADVERTISE,
1845 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1846 		  ADVERTISE_1000XPSE_ASYM);
1847 
1848 	phy_write(tbiphy, MII_BMCR,
1849 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1850 		  BMCR_SPEED1000);
1851 
1852 	put_device(&tbiphy->mdio.dev);
1853 }
1854 
1855 static int __gfar_is_rx_idle(struct gfar_private *priv)
1856 {
1857 	u32 res;
1858 
1859 	/* Normaly TSEC should not hang on GRS commands, so we should
1860 	 * actually wait for IEVENT_GRSC flag.
1861 	 */
1862 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1863 		return 0;
1864 
1865 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1866 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1867 	 * and the Rx can be safely reset.
1868 	 */
1869 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1870 	res &= 0x7f807f80;
1871 	if ((res & 0xffff) == (res >> 16))
1872 		return 1;
1873 
1874 	return 0;
1875 }
1876 
1877 /* Halt the receive and transmit queues */
1878 static void gfar_halt_nodisable(struct gfar_private *priv)
1879 {
1880 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1881 	u32 tempval;
1882 	unsigned int timeout;
1883 	int stopped;
1884 
1885 	gfar_ints_disable(priv);
1886 
1887 	if (gfar_is_dma_stopped(priv))
1888 		return;
1889 
1890 	/* Stop the DMA, and wait for it to stop */
1891 	tempval = gfar_read(&regs->dmactrl);
1892 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1893 	gfar_write(&regs->dmactrl, tempval);
1894 
1895 retry:
1896 	timeout = 1000;
1897 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1898 		cpu_relax();
1899 		timeout--;
1900 	}
1901 
1902 	if (!timeout)
1903 		stopped = gfar_is_dma_stopped(priv);
1904 
1905 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1906 	    !__gfar_is_rx_idle(priv))
1907 		goto retry;
1908 }
1909 
1910 /* Halt the receive and transmit queues */
1911 void gfar_halt(struct gfar_private *priv)
1912 {
1913 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1914 	u32 tempval;
1915 
1916 	/* Dissable the Rx/Tx hw queues */
1917 	gfar_write(&regs->rqueue, 0);
1918 	gfar_write(&regs->tqueue, 0);
1919 
1920 	mdelay(10);
1921 
1922 	gfar_halt_nodisable(priv);
1923 
1924 	/* Disable Rx/Tx DMA */
1925 	tempval = gfar_read(&regs->maccfg1);
1926 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1927 	gfar_write(&regs->maccfg1, tempval);
1928 }
1929 
1930 void stop_gfar(struct net_device *dev)
1931 {
1932 	struct gfar_private *priv = netdev_priv(dev);
1933 
1934 	netif_tx_stop_all_queues(dev);
1935 
1936 	smp_mb__before_atomic();
1937 	set_bit(GFAR_DOWN, &priv->state);
1938 	smp_mb__after_atomic();
1939 
1940 	disable_napi(priv);
1941 
1942 	/* disable ints and gracefully shut down Rx/Tx DMA */
1943 	gfar_halt(priv);
1944 
1945 	phy_stop(priv->phydev);
1946 
1947 	free_skb_resources(priv);
1948 }
1949 
1950 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1951 {
1952 	struct txbd8 *txbdp;
1953 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1954 	int i, j;
1955 
1956 	txbdp = tx_queue->tx_bd_base;
1957 
1958 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1959 		if (!tx_queue->tx_skbuff[i])
1960 			continue;
1961 
1962 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1963 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1964 		txbdp->lstatus = 0;
1965 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1966 		     j++) {
1967 			txbdp++;
1968 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1969 				       be16_to_cpu(txbdp->length),
1970 				       DMA_TO_DEVICE);
1971 		}
1972 		txbdp++;
1973 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1974 		tx_queue->tx_skbuff[i] = NULL;
1975 	}
1976 	kfree(tx_queue->tx_skbuff);
1977 	tx_queue->tx_skbuff = NULL;
1978 }
1979 
1980 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1981 {
1982 	int i;
1983 
1984 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1985 
1986 	if (rx_queue->skb)
1987 		dev_kfree_skb(rx_queue->skb);
1988 
1989 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1990 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1991 
1992 		rxbdp->lstatus = 0;
1993 		rxbdp->bufPtr = 0;
1994 		rxbdp++;
1995 
1996 		if (!rxb->page)
1997 			continue;
1998 
1999 		dma_unmap_single(rx_queue->dev, rxb->dma,
2000 				 PAGE_SIZE, DMA_FROM_DEVICE);
2001 		__free_page(rxb->page);
2002 
2003 		rxb->page = NULL;
2004 	}
2005 
2006 	kfree(rx_queue->rx_buff);
2007 	rx_queue->rx_buff = NULL;
2008 }
2009 
2010 /* If there are any tx skbs or rx skbs still around, free them.
2011  * Then free tx_skbuff and rx_skbuff
2012  */
2013 static void free_skb_resources(struct gfar_private *priv)
2014 {
2015 	struct gfar_priv_tx_q *tx_queue = NULL;
2016 	struct gfar_priv_rx_q *rx_queue = NULL;
2017 	int i;
2018 
2019 	/* Go through all the buffer descriptors and free their data buffers */
2020 	for (i = 0; i < priv->num_tx_queues; i++) {
2021 		struct netdev_queue *txq;
2022 
2023 		tx_queue = priv->tx_queue[i];
2024 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2025 		if (tx_queue->tx_skbuff)
2026 			free_skb_tx_queue(tx_queue);
2027 		netdev_tx_reset_queue(txq);
2028 	}
2029 
2030 	for (i = 0; i < priv->num_rx_queues; i++) {
2031 		rx_queue = priv->rx_queue[i];
2032 		if (rx_queue->rx_buff)
2033 			free_skb_rx_queue(rx_queue);
2034 	}
2035 
2036 	dma_free_coherent(priv->dev,
2037 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2038 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2039 			  priv->tx_queue[0]->tx_bd_base,
2040 			  priv->tx_queue[0]->tx_bd_dma_base);
2041 }
2042 
2043 void gfar_start(struct gfar_private *priv)
2044 {
2045 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2046 	u32 tempval;
2047 	int i = 0;
2048 
2049 	/* Enable Rx/Tx hw queues */
2050 	gfar_write(&regs->rqueue, priv->rqueue);
2051 	gfar_write(&regs->tqueue, priv->tqueue);
2052 
2053 	/* Initialize DMACTRL to have WWR and WOP */
2054 	tempval = gfar_read(&regs->dmactrl);
2055 	tempval |= DMACTRL_INIT_SETTINGS;
2056 	gfar_write(&regs->dmactrl, tempval);
2057 
2058 	/* Make sure we aren't stopped */
2059 	tempval = gfar_read(&regs->dmactrl);
2060 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2061 	gfar_write(&regs->dmactrl, tempval);
2062 
2063 	for (i = 0; i < priv->num_grps; i++) {
2064 		regs = priv->gfargrp[i].regs;
2065 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2066 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2067 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2068 	}
2069 
2070 	/* Enable Rx/Tx DMA */
2071 	tempval = gfar_read(&regs->maccfg1);
2072 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2073 	gfar_write(&regs->maccfg1, tempval);
2074 
2075 	gfar_ints_enable(priv);
2076 
2077 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2078 }
2079 
2080 static void free_grp_irqs(struct gfar_priv_grp *grp)
2081 {
2082 	free_irq(gfar_irq(grp, TX)->irq, grp);
2083 	free_irq(gfar_irq(grp, RX)->irq, grp);
2084 	free_irq(gfar_irq(grp, ER)->irq, grp);
2085 }
2086 
2087 static int register_grp_irqs(struct gfar_priv_grp *grp)
2088 {
2089 	struct gfar_private *priv = grp->priv;
2090 	struct net_device *dev = priv->ndev;
2091 	int err;
2092 
2093 	/* If the device has multiple interrupts, register for
2094 	 * them.  Otherwise, only register for the one
2095 	 */
2096 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2097 		/* Install our interrupt handlers for Error,
2098 		 * Transmit, and Receive
2099 		 */
2100 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2101 				  gfar_irq(grp, ER)->name, grp);
2102 		if (err < 0) {
2103 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2104 				  gfar_irq(grp, ER)->irq);
2105 
2106 			goto err_irq_fail;
2107 		}
2108 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2109 
2110 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2111 				  gfar_irq(grp, TX)->name, grp);
2112 		if (err < 0) {
2113 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2114 				  gfar_irq(grp, TX)->irq);
2115 			goto tx_irq_fail;
2116 		}
2117 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2118 				  gfar_irq(grp, RX)->name, grp);
2119 		if (err < 0) {
2120 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2121 				  gfar_irq(grp, RX)->irq);
2122 			goto rx_irq_fail;
2123 		}
2124 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2125 
2126 	} else {
2127 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2128 				  gfar_irq(grp, TX)->name, grp);
2129 		if (err < 0) {
2130 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2131 				  gfar_irq(grp, TX)->irq);
2132 			goto err_irq_fail;
2133 		}
2134 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2135 	}
2136 
2137 	return 0;
2138 
2139 rx_irq_fail:
2140 	free_irq(gfar_irq(grp, TX)->irq, grp);
2141 tx_irq_fail:
2142 	free_irq(gfar_irq(grp, ER)->irq, grp);
2143 err_irq_fail:
2144 	return err;
2145 
2146 }
2147 
2148 static void gfar_free_irq(struct gfar_private *priv)
2149 {
2150 	int i;
2151 
2152 	/* Free the IRQs */
2153 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2154 		for (i = 0; i < priv->num_grps; i++)
2155 			free_grp_irqs(&priv->gfargrp[i]);
2156 	} else {
2157 		for (i = 0; i < priv->num_grps; i++)
2158 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2159 				 &priv->gfargrp[i]);
2160 	}
2161 }
2162 
2163 static int gfar_request_irq(struct gfar_private *priv)
2164 {
2165 	int err, i, j;
2166 
2167 	for (i = 0; i < priv->num_grps; i++) {
2168 		err = register_grp_irqs(&priv->gfargrp[i]);
2169 		if (err) {
2170 			for (j = 0; j < i; j++)
2171 				free_grp_irqs(&priv->gfargrp[j]);
2172 			return err;
2173 		}
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /* Bring the controller up and running */
2180 int startup_gfar(struct net_device *ndev)
2181 {
2182 	struct gfar_private *priv = netdev_priv(ndev);
2183 	int err;
2184 
2185 	gfar_mac_reset(priv);
2186 
2187 	err = gfar_alloc_skb_resources(ndev);
2188 	if (err)
2189 		return err;
2190 
2191 	gfar_init_tx_rx_base(priv);
2192 
2193 	smp_mb__before_atomic();
2194 	clear_bit(GFAR_DOWN, &priv->state);
2195 	smp_mb__after_atomic();
2196 
2197 	/* Start Rx/Tx DMA and enable the interrupts */
2198 	gfar_start(priv);
2199 
2200 	/* force link state update after mac reset */
2201 	priv->oldlink = 0;
2202 	priv->oldspeed = 0;
2203 	priv->oldduplex = -1;
2204 
2205 	phy_start(priv->phydev);
2206 
2207 	enable_napi(priv);
2208 
2209 	netif_tx_wake_all_queues(ndev);
2210 
2211 	return 0;
2212 }
2213 
2214 /* Called when something needs to use the ethernet device
2215  * Returns 0 for success.
2216  */
2217 static int gfar_enet_open(struct net_device *dev)
2218 {
2219 	struct gfar_private *priv = netdev_priv(dev);
2220 	int err;
2221 
2222 	err = init_phy(dev);
2223 	if (err)
2224 		return err;
2225 
2226 	err = gfar_request_irq(priv);
2227 	if (err)
2228 		return err;
2229 
2230 	err = startup_gfar(dev);
2231 	if (err)
2232 		return err;
2233 
2234 	return err;
2235 }
2236 
2237 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2238 {
2239 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2240 
2241 	memset(fcb, 0, GMAC_FCB_LEN);
2242 
2243 	return fcb;
2244 }
2245 
2246 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2247 				    int fcb_length)
2248 {
2249 	/* If we're here, it's a IP packet with a TCP or UDP
2250 	 * payload.  We set it to checksum, using a pseudo-header
2251 	 * we provide
2252 	 */
2253 	u8 flags = TXFCB_DEFAULT;
2254 
2255 	/* Tell the controller what the protocol is
2256 	 * And provide the already calculated phcs
2257 	 */
2258 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2259 		flags |= TXFCB_UDP;
2260 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2261 	} else
2262 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2263 
2264 	/* l3os is the distance between the start of the
2265 	 * frame (skb->data) and the start of the IP hdr.
2266 	 * l4os is the distance between the start of the
2267 	 * l3 hdr and the l4 hdr
2268 	 */
2269 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2270 	fcb->l4os = skb_network_header_len(skb);
2271 
2272 	fcb->flags = flags;
2273 }
2274 
2275 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2276 {
2277 	fcb->flags |= TXFCB_VLN;
2278 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2279 }
2280 
2281 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2282 				      struct txbd8 *base, int ring_size)
2283 {
2284 	struct txbd8 *new_bd = bdp + stride;
2285 
2286 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2287 }
2288 
2289 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2290 				      int ring_size)
2291 {
2292 	return skip_txbd(bdp, 1, base, ring_size);
2293 }
2294 
2295 /* eTSEC12: csum generation not supported for some fcb offsets */
2296 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2297 				       unsigned long fcb_addr)
2298 {
2299 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2300 	       (fcb_addr % 0x20) > 0x18);
2301 }
2302 
2303 /* eTSEC76: csum generation for frames larger than 2500 may
2304  * cause excess delays before start of transmission
2305  */
2306 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2307 				       unsigned int len)
2308 {
2309 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2310 	       (len > 2500));
2311 }
2312 
2313 /* This is called by the kernel when a frame is ready for transmission.
2314  * It is pointed to by the dev->hard_start_xmit function pointer
2315  */
2316 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2317 {
2318 	struct gfar_private *priv = netdev_priv(dev);
2319 	struct gfar_priv_tx_q *tx_queue = NULL;
2320 	struct netdev_queue *txq;
2321 	struct gfar __iomem *regs = NULL;
2322 	struct txfcb *fcb = NULL;
2323 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2324 	u32 lstatus;
2325 	int i, rq = 0;
2326 	int do_tstamp, do_csum, do_vlan;
2327 	u32 bufaddr;
2328 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2329 
2330 	rq = skb->queue_mapping;
2331 	tx_queue = priv->tx_queue[rq];
2332 	txq = netdev_get_tx_queue(dev, rq);
2333 	base = tx_queue->tx_bd_base;
2334 	regs = tx_queue->grp->regs;
2335 
2336 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2337 	do_vlan = skb_vlan_tag_present(skb);
2338 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2339 		    priv->hwts_tx_en;
2340 
2341 	if (do_csum || do_vlan)
2342 		fcb_len = GMAC_FCB_LEN;
2343 
2344 	/* check if time stamp should be generated */
2345 	if (unlikely(do_tstamp))
2346 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2347 
2348 	/* make space for additional header when fcb is needed */
2349 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2350 		struct sk_buff *skb_new;
2351 
2352 		skb_new = skb_realloc_headroom(skb, fcb_len);
2353 		if (!skb_new) {
2354 			dev->stats.tx_errors++;
2355 			dev_kfree_skb_any(skb);
2356 			return NETDEV_TX_OK;
2357 		}
2358 
2359 		if (skb->sk)
2360 			skb_set_owner_w(skb_new, skb->sk);
2361 		dev_consume_skb_any(skb);
2362 		skb = skb_new;
2363 	}
2364 
2365 	/* total number of fragments in the SKB */
2366 	nr_frags = skb_shinfo(skb)->nr_frags;
2367 
2368 	/* calculate the required number of TxBDs for this skb */
2369 	if (unlikely(do_tstamp))
2370 		nr_txbds = nr_frags + 2;
2371 	else
2372 		nr_txbds = nr_frags + 1;
2373 
2374 	/* check if there is space to queue this packet */
2375 	if (nr_txbds > tx_queue->num_txbdfree) {
2376 		/* no space, stop the queue */
2377 		netif_tx_stop_queue(txq);
2378 		dev->stats.tx_fifo_errors++;
2379 		return NETDEV_TX_BUSY;
2380 	}
2381 
2382 	/* Update transmit stats */
2383 	bytes_sent = skb->len;
2384 	tx_queue->stats.tx_bytes += bytes_sent;
2385 	/* keep Tx bytes on wire for BQL accounting */
2386 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2387 	tx_queue->stats.tx_packets++;
2388 
2389 	txbdp = txbdp_start = tx_queue->cur_tx;
2390 	lstatus = be32_to_cpu(txbdp->lstatus);
2391 
2392 	/* Time stamp insertion requires one additional TxBD */
2393 	if (unlikely(do_tstamp))
2394 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2395 						 tx_queue->tx_ring_size);
2396 
2397 	if (nr_frags == 0) {
2398 		if (unlikely(do_tstamp)) {
2399 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2400 
2401 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2402 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2403 		} else {
2404 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2405 		}
2406 	} else {
2407 		/* Place the fragment addresses and lengths into the TxBDs */
2408 		for (i = 0; i < nr_frags; i++) {
2409 			unsigned int frag_len;
2410 			/* Point at the next BD, wrapping as needed */
2411 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2412 
2413 			frag_len = skb_shinfo(skb)->frags[i].size;
2414 
2415 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2416 				  BD_LFLAG(TXBD_READY);
2417 
2418 			/* Handle the last BD specially */
2419 			if (i == nr_frags - 1)
2420 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2421 
2422 			bufaddr = skb_frag_dma_map(priv->dev,
2423 						   &skb_shinfo(skb)->frags[i],
2424 						   0,
2425 						   frag_len,
2426 						   DMA_TO_DEVICE);
2427 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2428 				goto dma_map_err;
2429 
2430 			/* set the TxBD length and buffer pointer */
2431 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2432 			txbdp->lstatus = cpu_to_be32(lstatus);
2433 		}
2434 
2435 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2436 	}
2437 
2438 	/* Add TxPAL between FCB and frame if required */
2439 	if (unlikely(do_tstamp)) {
2440 		skb_push(skb, GMAC_TXPAL_LEN);
2441 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2442 	}
2443 
2444 	/* Add TxFCB if required */
2445 	if (fcb_len) {
2446 		fcb = gfar_add_fcb(skb);
2447 		lstatus |= BD_LFLAG(TXBD_TOE);
2448 	}
2449 
2450 	/* Set up checksumming */
2451 	if (do_csum) {
2452 		gfar_tx_checksum(skb, fcb, fcb_len);
2453 
2454 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2455 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2456 			__skb_pull(skb, GMAC_FCB_LEN);
2457 			skb_checksum_help(skb);
2458 			if (do_vlan || do_tstamp) {
2459 				/* put back a new fcb for vlan/tstamp TOE */
2460 				fcb = gfar_add_fcb(skb);
2461 			} else {
2462 				/* Tx TOE not used */
2463 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2464 				fcb = NULL;
2465 			}
2466 		}
2467 	}
2468 
2469 	if (do_vlan)
2470 		gfar_tx_vlan(skb, fcb);
2471 
2472 	/* Setup tx hardware time stamping if requested */
2473 	if (unlikely(do_tstamp)) {
2474 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2475 		fcb->ptp = 1;
2476 	}
2477 
2478 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2479 				 DMA_TO_DEVICE);
2480 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2481 		goto dma_map_err;
2482 
2483 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2484 
2485 	/* If time stamping is requested one additional TxBD must be set up. The
2486 	 * first TxBD points to the FCB and must have a data length of
2487 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2488 	 * the full frame length.
2489 	 */
2490 	if (unlikely(do_tstamp)) {
2491 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2492 
2493 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2494 		bufaddr += fcb_len;
2495 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2496 			      (skb_headlen(skb) - fcb_len);
2497 
2498 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2499 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2500 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2501 	} else {
2502 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2503 	}
2504 
2505 	netdev_tx_sent_queue(txq, bytes_sent);
2506 
2507 	gfar_wmb();
2508 
2509 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2510 
2511 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2512 
2513 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2514 
2515 	/* Update the current skb pointer to the next entry we will use
2516 	 * (wrapping if necessary)
2517 	 */
2518 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2519 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2520 
2521 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2522 
2523 	/* We can work in parallel with gfar_clean_tx_ring(), except
2524 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2525 	 * when we were reading the num_txbdfree and checking for available
2526 	 * space, that's because outside of this function it can only grow.
2527 	 */
2528 	spin_lock_bh(&tx_queue->txlock);
2529 	/* reduce TxBD free count */
2530 	tx_queue->num_txbdfree -= (nr_txbds);
2531 	spin_unlock_bh(&tx_queue->txlock);
2532 
2533 	/* If the next BD still needs to be cleaned up, then the bds
2534 	 * are full.  We need to tell the kernel to stop sending us stuff.
2535 	 */
2536 	if (!tx_queue->num_txbdfree) {
2537 		netif_tx_stop_queue(txq);
2538 
2539 		dev->stats.tx_fifo_errors++;
2540 	}
2541 
2542 	/* Tell the DMA to go go go */
2543 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2544 
2545 	return NETDEV_TX_OK;
2546 
2547 dma_map_err:
2548 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2549 	if (do_tstamp)
2550 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2551 	for (i = 0; i < nr_frags; i++) {
2552 		lstatus = be32_to_cpu(txbdp->lstatus);
2553 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2554 			break;
2555 
2556 		lstatus &= ~BD_LFLAG(TXBD_READY);
2557 		txbdp->lstatus = cpu_to_be32(lstatus);
2558 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2559 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2560 			       DMA_TO_DEVICE);
2561 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562 	}
2563 	gfar_wmb();
2564 	dev_kfree_skb_any(skb);
2565 	return NETDEV_TX_OK;
2566 }
2567 
2568 /* Stops the kernel queue, and halts the controller */
2569 static int gfar_close(struct net_device *dev)
2570 {
2571 	struct gfar_private *priv = netdev_priv(dev);
2572 
2573 	cancel_work_sync(&priv->reset_task);
2574 	stop_gfar(dev);
2575 
2576 	/* Disconnect from the PHY */
2577 	phy_disconnect(priv->phydev);
2578 	priv->phydev = NULL;
2579 
2580 	gfar_free_irq(priv);
2581 
2582 	return 0;
2583 }
2584 
2585 /* Changes the mac address if the controller is not running. */
2586 static int gfar_set_mac_address(struct net_device *dev)
2587 {
2588 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2589 
2590 	return 0;
2591 }
2592 
2593 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2594 {
2595 	struct gfar_private *priv = netdev_priv(dev);
2596 	int frame_size = new_mtu + ETH_HLEN;
2597 
2598 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2599 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2600 		return -EINVAL;
2601 	}
2602 
2603 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2604 		cpu_relax();
2605 
2606 	if (dev->flags & IFF_UP)
2607 		stop_gfar(dev);
2608 
2609 	dev->mtu = new_mtu;
2610 
2611 	if (dev->flags & IFF_UP)
2612 		startup_gfar(dev);
2613 
2614 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2615 
2616 	return 0;
2617 }
2618 
2619 void reset_gfar(struct net_device *ndev)
2620 {
2621 	struct gfar_private *priv = netdev_priv(ndev);
2622 
2623 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2624 		cpu_relax();
2625 
2626 	stop_gfar(ndev);
2627 	startup_gfar(ndev);
2628 
2629 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2630 }
2631 
2632 /* gfar_reset_task gets scheduled when a packet has not been
2633  * transmitted after a set amount of time.
2634  * For now, assume that clearing out all the structures, and
2635  * starting over will fix the problem.
2636  */
2637 static void gfar_reset_task(struct work_struct *work)
2638 {
2639 	struct gfar_private *priv = container_of(work, struct gfar_private,
2640 						 reset_task);
2641 	reset_gfar(priv->ndev);
2642 }
2643 
2644 static void gfar_timeout(struct net_device *dev)
2645 {
2646 	struct gfar_private *priv = netdev_priv(dev);
2647 
2648 	dev->stats.tx_errors++;
2649 	schedule_work(&priv->reset_task);
2650 }
2651 
2652 /* Interrupt Handler for Transmit complete */
2653 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2654 {
2655 	struct net_device *dev = tx_queue->dev;
2656 	struct netdev_queue *txq;
2657 	struct gfar_private *priv = netdev_priv(dev);
2658 	struct txbd8 *bdp, *next = NULL;
2659 	struct txbd8 *lbdp = NULL;
2660 	struct txbd8 *base = tx_queue->tx_bd_base;
2661 	struct sk_buff *skb;
2662 	int skb_dirtytx;
2663 	int tx_ring_size = tx_queue->tx_ring_size;
2664 	int frags = 0, nr_txbds = 0;
2665 	int i;
2666 	int howmany = 0;
2667 	int tqi = tx_queue->qindex;
2668 	unsigned int bytes_sent = 0;
2669 	u32 lstatus;
2670 	size_t buflen;
2671 
2672 	txq = netdev_get_tx_queue(dev, tqi);
2673 	bdp = tx_queue->dirty_tx;
2674 	skb_dirtytx = tx_queue->skb_dirtytx;
2675 
2676 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2677 
2678 		frags = skb_shinfo(skb)->nr_frags;
2679 
2680 		/* When time stamping, one additional TxBD must be freed.
2681 		 * Also, we need to dma_unmap_single() the TxPAL.
2682 		 */
2683 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2684 			nr_txbds = frags + 2;
2685 		else
2686 			nr_txbds = frags + 1;
2687 
2688 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2689 
2690 		lstatus = be32_to_cpu(lbdp->lstatus);
2691 
2692 		/* Only clean completed frames */
2693 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2694 		    (lstatus & BD_LENGTH_MASK))
2695 			break;
2696 
2697 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2698 			next = next_txbd(bdp, base, tx_ring_size);
2699 			buflen = be16_to_cpu(next->length) +
2700 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2701 		} else
2702 			buflen = be16_to_cpu(bdp->length);
2703 
2704 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2705 				 buflen, DMA_TO_DEVICE);
2706 
2707 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2708 			struct skb_shared_hwtstamps shhwtstamps;
2709 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2710 					  ~0x7UL);
2711 
2712 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2713 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2714 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2715 			skb_tstamp_tx(skb, &shhwtstamps);
2716 			gfar_clear_txbd_status(bdp);
2717 			bdp = next;
2718 		}
2719 
2720 		gfar_clear_txbd_status(bdp);
2721 		bdp = next_txbd(bdp, base, tx_ring_size);
2722 
2723 		for (i = 0; i < frags; i++) {
2724 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2725 				       be16_to_cpu(bdp->length),
2726 				       DMA_TO_DEVICE);
2727 			gfar_clear_txbd_status(bdp);
2728 			bdp = next_txbd(bdp, base, tx_ring_size);
2729 		}
2730 
2731 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2732 
2733 		dev_kfree_skb_any(skb);
2734 
2735 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2736 
2737 		skb_dirtytx = (skb_dirtytx + 1) &
2738 			      TX_RING_MOD_MASK(tx_ring_size);
2739 
2740 		howmany++;
2741 		spin_lock(&tx_queue->txlock);
2742 		tx_queue->num_txbdfree += nr_txbds;
2743 		spin_unlock(&tx_queue->txlock);
2744 	}
2745 
2746 	/* If we freed a buffer, we can restart transmission, if necessary */
2747 	if (tx_queue->num_txbdfree &&
2748 	    netif_tx_queue_stopped(txq) &&
2749 	    !(test_bit(GFAR_DOWN, &priv->state)))
2750 		netif_wake_subqueue(priv->ndev, tqi);
2751 
2752 	/* Update dirty indicators */
2753 	tx_queue->skb_dirtytx = skb_dirtytx;
2754 	tx_queue->dirty_tx = bdp;
2755 
2756 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2757 }
2758 
2759 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2760 {
2761 	struct page *page;
2762 	dma_addr_t addr;
2763 
2764 	page = dev_alloc_page();
2765 	if (unlikely(!page))
2766 		return false;
2767 
2768 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2769 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2770 		__free_page(page);
2771 
2772 		return false;
2773 	}
2774 
2775 	rxb->dma = addr;
2776 	rxb->page = page;
2777 	rxb->page_offset = 0;
2778 
2779 	return true;
2780 }
2781 
2782 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2783 {
2784 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2785 	struct gfar_extra_stats *estats = &priv->extra_stats;
2786 
2787 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2788 	atomic64_inc(&estats->rx_alloc_err);
2789 }
2790 
2791 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2792 				int alloc_cnt)
2793 {
2794 	struct rxbd8 *bdp;
2795 	struct gfar_rx_buff *rxb;
2796 	int i;
2797 
2798 	i = rx_queue->next_to_use;
2799 	bdp = &rx_queue->rx_bd_base[i];
2800 	rxb = &rx_queue->rx_buff[i];
2801 
2802 	while (alloc_cnt--) {
2803 		/* try reuse page */
2804 		if (unlikely(!rxb->page)) {
2805 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2806 				gfar_rx_alloc_err(rx_queue);
2807 				break;
2808 			}
2809 		}
2810 
2811 		/* Setup the new RxBD */
2812 		gfar_init_rxbdp(rx_queue, bdp,
2813 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2814 
2815 		/* Update to the next pointer */
2816 		bdp++;
2817 		rxb++;
2818 
2819 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2820 			i = 0;
2821 			bdp = rx_queue->rx_bd_base;
2822 			rxb = rx_queue->rx_buff;
2823 		}
2824 	}
2825 
2826 	rx_queue->next_to_use = i;
2827 	rx_queue->next_to_alloc = i;
2828 }
2829 
2830 static void count_errors(u32 lstatus, struct net_device *ndev)
2831 {
2832 	struct gfar_private *priv = netdev_priv(ndev);
2833 	struct net_device_stats *stats = &ndev->stats;
2834 	struct gfar_extra_stats *estats = &priv->extra_stats;
2835 
2836 	/* If the packet was truncated, none of the other errors matter */
2837 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2838 		stats->rx_length_errors++;
2839 
2840 		atomic64_inc(&estats->rx_trunc);
2841 
2842 		return;
2843 	}
2844 	/* Count the errors, if there were any */
2845 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2846 		stats->rx_length_errors++;
2847 
2848 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2849 			atomic64_inc(&estats->rx_large);
2850 		else
2851 			atomic64_inc(&estats->rx_short);
2852 	}
2853 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2854 		stats->rx_frame_errors++;
2855 		atomic64_inc(&estats->rx_nonoctet);
2856 	}
2857 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2858 		atomic64_inc(&estats->rx_crcerr);
2859 		stats->rx_crc_errors++;
2860 	}
2861 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2862 		atomic64_inc(&estats->rx_overrun);
2863 		stats->rx_over_errors++;
2864 	}
2865 }
2866 
2867 irqreturn_t gfar_receive(int irq, void *grp_id)
2868 {
2869 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2870 	unsigned long flags;
2871 	u32 imask, ievent;
2872 
2873 	ievent = gfar_read(&grp->regs->ievent);
2874 
2875 	if (unlikely(ievent & IEVENT_FGPI)) {
2876 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2877 		return IRQ_HANDLED;
2878 	}
2879 
2880 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2881 		spin_lock_irqsave(&grp->grplock, flags);
2882 		imask = gfar_read(&grp->regs->imask);
2883 		imask &= IMASK_RX_DISABLED;
2884 		gfar_write(&grp->regs->imask, imask);
2885 		spin_unlock_irqrestore(&grp->grplock, flags);
2886 		__napi_schedule(&grp->napi_rx);
2887 	} else {
2888 		/* Clear IEVENT, so interrupts aren't called again
2889 		 * because of the packets that have already arrived.
2890 		 */
2891 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2892 	}
2893 
2894 	return IRQ_HANDLED;
2895 }
2896 
2897 /* Interrupt Handler for Transmit complete */
2898 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2899 {
2900 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2901 	unsigned long flags;
2902 	u32 imask;
2903 
2904 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2905 		spin_lock_irqsave(&grp->grplock, flags);
2906 		imask = gfar_read(&grp->regs->imask);
2907 		imask &= IMASK_TX_DISABLED;
2908 		gfar_write(&grp->regs->imask, imask);
2909 		spin_unlock_irqrestore(&grp->grplock, flags);
2910 		__napi_schedule(&grp->napi_tx);
2911 	} else {
2912 		/* Clear IEVENT, so interrupts aren't called again
2913 		 * because of the packets that have already arrived.
2914 		 */
2915 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2916 	}
2917 
2918 	return IRQ_HANDLED;
2919 }
2920 
2921 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2922 			     struct sk_buff *skb, bool first)
2923 {
2924 	unsigned int size = lstatus & BD_LENGTH_MASK;
2925 	struct page *page = rxb->page;
2926 
2927 	/* Remove the FCS from the packet length */
2928 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2929 		size -= ETH_FCS_LEN;
2930 
2931 	if (likely(first))
2932 		skb_put(skb, size);
2933 	else
2934 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2935 				rxb->page_offset + RXBUF_ALIGNMENT,
2936 				size, GFAR_RXB_TRUESIZE);
2937 
2938 	/* try reuse page */
2939 	if (unlikely(page_count(page) != 1))
2940 		return false;
2941 
2942 	/* change offset to the other half */
2943 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2944 
2945 	atomic_inc(&page->_count);
2946 
2947 	return true;
2948 }
2949 
2950 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2951 			       struct gfar_rx_buff *old_rxb)
2952 {
2953 	struct gfar_rx_buff *new_rxb;
2954 	u16 nta = rxq->next_to_alloc;
2955 
2956 	new_rxb = &rxq->rx_buff[nta];
2957 
2958 	/* find next buf that can reuse a page */
2959 	nta++;
2960 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2961 
2962 	/* copy page reference */
2963 	*new_rxb = *old_rxb;
2964 
2965 	/* sync for use by the device */
2966 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2967 					 old_rxb->page_offset,
2968 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2969 }
2970 
2971 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2972 					    u32 lstatus, struct sk_buff *skb)
2973 {
2974 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2975 	struct page *page = rxb->page;
2976 	bool first = false;
2977 
2978 	if (likely(!skb)) {
2979 		void *buff_addr = page_address(page) + rxb->page_offset;
2980 
2981 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2982 		if (unlikely(!skb)) {
2983 			gfar_rx_alloc_err(rx_queue);
2984 			return NULL;
2985 		}
2986 		skb_reserve(skb, RXBUF_ALIGNMENT);
2987 		first = true;
2988 	}
2989 
2990 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2991 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2992 
2993 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2994 		/* reuse the free half of the page */
2995 		gfar_reuse_rx_page(rx_queue, rxb);
2996 	} else {
2997 		/* page cannot be reused, unmap it */
2998 		dma_unmap_page(rx_queue->dev, rxb->dma,
2999 			       PAGE_SIZE, DMA_FROM_DEVICE);
3000 	}
3001 
3002 	/* clear rxb content */
3003 	rxb->page = NULL;
3004 
3005 	return skb;
3006 }
3007 
3008 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3009 {
3010 	/* If valid headers were found, and valid sums
3011 	 * were verified, then we tell the kernel that no
3012 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3013 	 */
3014 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3015 	    (RXFCB_CIP | RXFCB_CTU))
3016 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3017 	else
3018 		skb_checksum_none_assert(skb);
3019 }
3020 
3021 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3022 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3023 {
3024 	struct gfar_private *priv = netdev_priv(ndev);
3025 	struct rxfcb *fcb = NULL;
3026 
3027 	/* fcb is at the beginning if exists */
3028 	fcb = (struct rxfcb *)skb->data;
3029 
3030 	/* Remove the FCB from the skb
3031 	 * Remove the padded bytes, if there are any
3032 	 */
3033 	if (priv->uses_rxfcb)
3034 		skb_pull(skb, GMAC_FCB_LEN);
3035 
3036 	/* Get receive timestamp from the skb */
3037 	if (priv->hwts_rx_en) {
3038 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3039 		u64 *ns = (u64 *) skb->data;
3040 
3041 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3042 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3043 	}
3044 
3045 	if (priv->padding)
3046 		skb_pull(skb, priv->padding);
3047 
3048 	if (ndev->features & NETIF_F_RXCSUM)
3049 		gfar_rx_checksum(skb, fcb);
3050 
3051 	/* Tell the skb what kind of packet this is */
3052 	skb->protocol = eth_type_trans(skb, ndev);
3053 
3054 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3055 	 * Even if vlan rx accel is disabled, on some chips
3056 	 * RXFCB_VLN is pseudo randomly set.
3057 	 */
3058 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3059 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3060 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3061 				       be16_to_cpu(fcb->vlctl));
3062 }
3063 
3064 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3065  * until the budget/quota has been reached. Returns the number
3066  * of frames handled
3067  */
3068 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3069 {
3070 	struct net_device *ndev = rx_queue->ndev;
3071 	struct gfar_private *priv = netdev_priv(ndev);
3072 	struct rxbd8 *bdp;
3073 	int i, howmany = 0;
3074 	struct sk_buff *skb = rx_queue->skb;
3075 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3076 	unsigned int total_bytes = 0, total_pkts = 0;
3077 
3078 	/* Get the first full descriptor */
3079 	i = rx_queue->next_to_clean;
3080 
3081 	while (rx_work_limit--) {
3082 		u32 lstatus;
3083 
3084 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3085 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3086 			cleaned_cnt = 0;
3087 		}
3088 
3089 		bdp = &rx_queue->rx_bd_base[i];
3090 		lstatus = be32_to_cpu(bdp->lstatus);
3091 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3092 			break;
3093 
3094 		/* order rx buffer descriptor reads */
3095 		rmb();
3096 
3097 		/* fetch next to clean buffer from the ring */
3098 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3099 		if (unlikely(!skb))
3100 			break;
3101 
3102 		cleaned_cnt++;
3103 		howmany++;
3104 
3105 		if (unlikely(++i == rx_queue->rx_ring_size))
3106 			i = 0;
3107 
3108 		rx_queue->next_to_clean = i;
3109 
3110 		/* fetch next buffer if not the last in frame */
3111 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3112 			continue;
3113 
3114 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3115 			count_errors(lstatus, ndev);
3116 
3117 			/* discard faulty buffer */
3118 			dev_kfree_skb(skb);
3119 			skb = NULL;
3120 			rx_queue->stats.rx_dropped++;
3121 			continue;
3122 		}
3123 
3124 		/* Increment the number of packets */
3125 		total_pkts++;
3126 		total_bytes += skb->len;
3127 
3128 		skb_record_rx_queue(skb, rx_queue->qindex);
3129 
3130 		gfar_process_frame(ndev, skb);
3131 
3132 		/* Send the packet up the stack */
3133 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3134 
3135 		skb = NULL;
3136 	}
3137 
3138 	/* Store incomplete frames for completion */
3139 	rx_queue->skb = skb;
3140 
3141 	rx_queue->stats.rx_packets += total_pkts;
3142 	rx_queue->stats.rx_bytes += total_bytes;
3143 
3144 	if (cleaned_cnt)
3145 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3146 
3147 	/* Update Last Free RxBD pointer for LFC */
3148 	if (unlikely(priv->tx_actual_en)) {
3149 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3150 
3151 		gfar_write(rx_queue->rfbptr, bdp_dma);
3152 	}
3153 
3154 	return howmany;
3155 }
3156 
3157 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3158 {
3159 	struct gfar_priv_grp *gfargrp =
3160 		container_of(napi, struct gfar_priv_grp, napi_rx);
3161 	struct gfar __iomem *regs = gfargrp->regs;
3162 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3163 	int work_done = 0;
3164 
3165 	/* Clear IEVENT, so interrupts aren't called again
3166 	 * because of the packets that have already arrived
3167 	 */
3168 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3169 
3170 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3171 
3172 	if (work_done < budget) {
3173 		u32 imask;
3174 		napi_complete(napi);
3175 		/* Clear the halt bit in RSTAT */
3176 		gfar_write(&regs->rstat, gfargrp->rstat);
3177 
3178 		spin_lock_irq(&gfargrp->grplock);
3179 		imask = gfar_read(&regs->imask);
3180 		imask |= IMASK_RX_DEFAULT;
3181 		gfar_write(&regs->imask, imask);
3182 		spin_unlock_irq(&gfargrp->grplock);
3183 	}
3184 
3185 	return work_done;
3186 }
3187 
3188 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3189 {
3190 	struct gfar_priv_grp *gfargrp =
3191 		container_of(napi, struct gfar_priv_grp, napi_tx);
3192 	struct gfar __iomem *regs = gfargrp->regs;
3193 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3194 	u32 imask;
3195 
3196 	/* Clear IEVENT, so interrupts aren't called again
3197 	 * because of the packets that have already arrived
3198 	 */
3199 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3200 
3201 	/* run Tx cleanup to completion */
3202 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3203 		gfar_clean_tx_ring(tx_queue);
3204 
3205 	napi_complete(napi);
3206 
3207 	spin_lock_irq(&gfargrp->grplock);
3208 	imask = gfar_read(&regs->imask);
3209 	imask |= IMASK_TX_DEFAULT;
3210 	gfar_write(&regs->imask, imask);
3211 	spin_unlock_irq(&gfargrp->grplock);
3212 
3213 	return 0;
3214 }
3215 
3216 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3217 {
3218 	struct gfar_priv_grp *gfargrp =
3219 		container_of(napi, struct gfar_priv_grp, napi_rx);
3220 	struct gfar_private *priv = gfargrp->priv;
3221 	struct gfar __iomem *regs = gfargrp->regs;
3222 	struct gfar_priv_rx_q *rx_queue = NULL;
3223 	int work_done = 0, work_done_per_q = 0;
3224 	int i, budget_per_q = 0;
3225 	unsigned long rstat_rxf;
3226 	int num_act_queues;
3227 
3228 	/* Clear IEVENT, so interrupts aren't called again
3229 	 * because of the packets that have already arrived
3230 	 */
3231 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3232 
3233 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3234 
3235 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3236 	if (num_act_queues)
3237 		budget_per_q = budget/num_act_queues;
3238 
3239 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3240 		/* skip queue if not active */
3241 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3242 			continue;
3243 
3244 		rx_queue = priv->rx_queue[i];
3245 		work_done_per_q =
3246 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3247 		work_done += work_done_per_q;
3248 
3249 		/* finished processing this queue */
3250 		if (work_done_per_q < budget_per_q) {
3251 			/* clear active queue hw indication */
3252 			gfar_write(&regs->rstat,
3253 				   RSTAT_CLEAR_RXF0 >> i);
3254 			num_act_queues--;
3255 
3256 			if (!num_act_queues)
3257 				break;
3258 		}
3259 	}
3260 
3261 	if (!num_act_queues) {
3262 		u32 imask;
3263 		napi_complete(napi);
3264 
3265 		/* Clear the halt bit in RSTAT */
3266 		gfar_write(&regs->rstat, gfargrp->rstat);
3267 
3268 		spin_lock_irq(&gfargrp->grplock);
3269 		imask = gfar_read(&regs->imask);
3270 		imask |= IMASK_RX_DEFAULT;
3271 		gfar_write(&regs->imask, imask);
3272 		spin_unlock_irq(&gfargrp->grplock);
3273 	}
3274 
3275 	return work_done;
3276 }
3277 
3278 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3279 {
3280 	struct gfar_priv_grp *gfargrp =
3281 		container_of(napi, struct gfar_priv_grp, napi_tx);
3282 	struct gfar_private *priv = gfargrp->priv;
3283 	struct gfar __iomem *regs = gfargrp->regs;
3284 	struct gfar_priv_tx_q *tx_queue = NULL;
3285 	int has_tx_work = 0;
3286 	int i;
3287 
3288 	/* Clear IEVENT, so interrupts aren't called again
3289 	 * because of the packets that have already arrived
3290 	 */
3291 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3292 
3293 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3294 		tx_queue = priv->tx_queue[i];
3295 		/* run Tx cleanup to completion */
3296 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3297 			gfar_clean_tx_ring(tx_queue);
3298 			has_tx_work = 1;
3299 		}
3300 	}
3301 
3302 	if (!has_tx_work) {
3303 		u32 imask;
3304 		napi_complete(napi);
3305 
3306 		spin_lock_irq(&gfargrp->grplock);
3307 		imask = gfar_read(&regs->imask);
3308 		imask |= IMASK_TX_DEFAULT;
3309 		gfar_write(&regs->imask, imask);
3310 		spin_unlock_irq(&gfargrp->grplock);
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 
3317 #ifdef CONFIG_NET_POLL_CONTROLLER
3318 /* Polling 'interrupt' - used by things like netconsole to send skbs
3319  * without having to re-enable interrupts. It's not called while
3320  * the interrupt routine is executing.
3321  */
3322 static void gfar_netpoll(struct net_device *dev)
3323 {
3324 	struct gfar_private *priv = netdev_priv(dev);
3325 	int i;
3326 
3327 	/* If the device has multiple interrupts, run tx/rx */
3328 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329 		for (i = 0; i < priv->num_grps; i++) {
3330 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3331 
3332 			disable_irq(gfar_irq(grp, TX)->irq);
3333 			disable_irq(gfar_irq(grp, RX)->irq);
3334 			disable_irq(gfar_irq(grp, ER)->irq);
3335 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3336 			enable_irq(gfar_irq(grp, ER)->irq);
3337 			enable_irq(gfar_irq(grp, RX)->irq);
3338 			enable_irq(gfar_irq(grp, TX)->irq);
3339 		}
3340 	} else {
3341 		for (i = 0; i < priv->num_grps; i++) {
3342 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343 
3344 			disable_irq(gfar_irq(grp, TX)->irq);
3345 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3346 			enable_irq(gfar_irq(grp, TX)->irq);
3347 		}
3348 	}
3349 }
3350 #endif
3351 
3352 /* The interrupt handler for devices with one interrupt */
3353 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3354 {
3355 	struct gfar_priv_grp *gfargrp = grp_id;
3356 
3357 	/* Save ievent for future reference */
3358 	u32 events = gfar_read(&gfargrp->regs->ievent);
3359 
3360 	/* Check for reception */
3361 	if (events & IEVENT_RX_MASK)
3362 		gfar_receive(irq, grp_id);
3363 
3364 	/* Check for transmit completion */
3365 	if (events & IEVENT_TX_MASK)
3366 		gfar_transmit(irq, grp_id);
3367 
3368 	/* Check for errors */
3369 	if (events & IEVENT_ERR_MASK)
3370 		gfar_error(irq, grp_id);
3371 
3372 	return IRQ_HANDLED;
3373 }
3374 
3375 /* Called every time the controller might need to be made
3376  * aware of new link state.  The PHY code conveys this
3377  * information through variables in the phydev structure, and this
3378  * function converts those variables into the appropriate
3379  * register values, and can bring down the device if needed.
3380  */
3381 static void adjust_link(struct net_device *dev)
3382 {
3383 	struct gfar_private *priv = netdev_priv(dev);
3384 	struct phy_device *phydev = priv->phydev;
3385 
3386 	if (unlikely(phydev->link != priv->oldlink ||
3387 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3388 				       phydev->speed != priv->oldspeed))))
3389 		gfar_update_link_state(priv);
3390 }
3391 
3392 /* Update the hash table based on the current list of multicast
3393  * addresses we subscribe to.  Also, change the promiscuity of
3394  * the device based on the flags (this function is called
3395  * whenever dev->flags is changed
3396  */
3397 static void gfar_set_multi(struct net_device *dev)
3398 {
3399 	struct netdev_hw_addr *ha;
3400 	struct gfar_private *priv = netdev_priv(dev);
3401 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3402 	u32 tempval;
3403 
3404 	if (dev->flags & IFF_PROMISC) {
3405 		/* Set RCTRL to PROM */
3406 		tempval = gfar_read(&regs->rctrl);
3407 		tempval |= RCTRL_PROM;
3408 		gfar_write(&regs->rctrl, tempval);
3409 	} else {
3410 		/* Set RCTRL to not PROM */
3411 		tempval = gfar_read(&regs->rctrl);
3412 		tempval &= ~(RCTRL_PROM);
3413 		gfar_write(&regs->rctrl, tempval);
3414 	}
3415 
3416 	if (dev->flags & IFF_ALLMULTI) {
3417 		/* Set the hash to rx all multicast frames */
3418 		gfar_write(&regs->igaddr0, 0xffffffff);
3419 		gfar_write(&regs->igaddr1, 0xffffffff);
3420 		gfar_write(&regs->igaddr2, 0xffffffff);
3421 		gfar_write(&regs->igaddr3, 0xffffffff);
3422 		gfar_write(&regs->igaddr4, 0xffffffff);
3423 		gfar_write(&regs->igaddr5, 0xffffffff);
3424 		gfar_write(&regs->igaddr6, 0xffffffff);
3425 		gfar_write(&regs->igaddr7, 0xffffffff);
3426 		gfar_write(&regs->gaddr0, 0xffffffff);
3427 		gfar_write(&regs->gaddr1, 0xffffffff);
3428 		gfar_write(&regs->gaddr2, 0xffffffff);
3429 		gfar_write(&regs->gaddr3, 0xffffffff);
3430 		gfar_write(&regs->gaddr4, 0xffffffff);
3431 		gfar_write(&regs->gaddr5, 0xffffffff);
3432 		gfar_write(&regs->gaddr6, 0xffffffff);
3433 		gfar_write(&regs->gaddr7, 0xffffffff);
3434 	} else {
3435 		int em_num;
3436 		int idx;
3437 
3438 		/* zero out the hash */
3439 		gfar_write(&regs->igaddr0, 0x0);
3440 		gfar_write(&regs->igaddr1, 0x0);
3441 		gfar_write(&regs->igaddr2, 0x0);
3442 		gfar_write(&regs->igaddr3, 0x0);
3443 		gfar_write(&regs->igaddr4, 0x0);
3444 		gfar_write(&regs->igaddr5, 0x0);
3445 		gfar_write(&regs->igaddr6, 0x0);
3446 		gfar_write(&regs->igaddr7, 0x0);
3447 		gfar_write(&regs->gaddr0, 0x0);
3448 		gfar_write(&regs->gaddr1, 0x0);
3449 		gfar_write(&regs->gaddr2, 0x0);
3450 		gfar_write(&regs->gaddr3, 0x0);
3451 		gfar_write(&regs->gaddr4, 0x0);
3452 		gfar_write(&regs->gaddr5, 0x0);
3453 		gfar_write(&regs->gaddr6, 0x0);
3454 		gfar_write(&regs->gaddr7, 0x0);
3455 
3456 		/* If we have extended hash tables, we need to
3457 		 * clear the exact match registers to prepare for
3458 		 * setting them
3459 		 */
3460 		if (priv->extended_hash) {
3461 			em_num = GFAR_EM_NUM + 1;
3462 			gfar_clear_exact_match(dev);
3463 			idx = 1;
3464 		} else {
3465 			idx = 0;
3466 			em_num = 0;
3467 		}
3468 
3469 		if (netdev_mc_empty(dev))
3470 			return;
3471 
3472 		/* Parse the list, and set the appropriate bits */
3473 		netdev_for_each_mc_addr(ha, dev) {
3474 			if (idx < em_num) {
3475 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3476 				idx++;
3477 			} else
3478 				gfar_set_hash_for_addr(dev, ha->addr);
3479 		}
3480 	}
3481 }
3482 
3483 
3484 /* Clears each of the exact match registers to zero, so they
3485  * don't interfere with normal reception
3486  */
3487 static void gfar_clear_exact_match(struct net_device *dev)
3488 {
3489 	int idx;
3490 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3491 
3492 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3493 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3494 }
3495 
3496 /* Set the appropriate hash bit for the given addr */
3497 /* The algorithm works like so:
3498  * 1) Take the Destination Address (ie the multicast address), and
3499  * do a CRC on it (little endian), and reverse the bits of the
3500  * result.
3501  * 2) Use the 8 most significant bits as a hash into a 256-entry
3502  * table.  The table is controlled through 8 32-bit registers:
3503  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3504  * gaddr7.  This means that the 3 most significant bits in the
3505  * hash index which gaddr register to use, and the 5 other bits
3506  * indicate which bit (assuming an IBM numbering scheme, which
3507  * for PowerPC (tm) is usually the case) in the register holds
3508  * the entry.
3509  */
3510 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3511 {
3512 	u32 tempval;
3513 	struct gfar_private *priv = netdev_priv(dev);
3514 	u32 result = ether_crc(ETH_ALEN, addr);
3515 	int width = priv->hash_width;
3516 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3517 	u8 whichreg = result >> (32 - width + 5);
3518 	u32 value = (1 << (31-whichbit));
3519 
3520 	tempval = gfar_read(priv->hash_regs[whichreg]);
3521 	tempval |= value;
3522 	gfar_write(priv->hash_regs[whichreg], tempval);
3523 }
3524 
3525 
3526 /* There are multiple MAC Address register pairs on some controllers
3527  * This function sets the numth pair to a given address
3528  */
3529 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3530 				  const u8 *addr)
3531 {
3532 	struct gfar_private *priv = netdev_priv(dev);
3533 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3534 	u32 tempval;
3535 	u32 __iomem *macptr = &regs->macstnaddr1;
3536 
3537 	macptr += num*2;
3538 
3539 	/* For a station address of 0x12345678ABCD in transmission
3540 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3541 	 * MACnADDR2 is set to 0x34120000.
3542 	 */
3543 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3544 		  (addr[3] << 8)  |  addr[2];
3545 
3546 	gfar_write(macptr, tempval);
3547 
3548 	tempval = (addr[1] << 24) | (addr[0] << 16);
3549 
3550 	gfar_write(macptr+1, tempval);
3551 }
3552 
3553 /* GFAR error interrupt handler */
3554 static irqreturn_t gfar_error(int irq, void *grp_id)
3555 {
3556 	struct gfar_priv_grp *gfargrp = grp_id;
3557 	struct gfar __iomem *regs = gfargrp->regs;
3558 	struct gfar_private *priv= gfargrp->priv;
3559 	struct net_device *dev = priv->ndev;
3560 
3561 	/* Save ievent for future reference */
3562 	u32 events = gfar_read(&regs->ievent);
3563 
3564 	/* Clear IEVENT */
3565 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3566 
3567 	/* Magic Packet is not an error. */
3568 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3569 	    (events & IEVENT_MAG))
3570 		events &= ~IEVENT_MAG;
3571 
3572 	/* Hmm... */
3573 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3574 		netdev_dbg(dev,
3575 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3576 			   events, gfar_read(&regs->imask));
3577 
3578 	/* Update the error counters */
3579 	if (events & IEVENT_TXE) {
3580 		dev->stats.tx_errors++;
3581 
3582 		if (events & IEVENT_LC)
3583 			dev->stats.tx_window_errors++;
3584 		if (events & IEVENT_CRL)
3585 			dev->stats.tx_aborted_errors++;
3586 		if (events & IEVENT_XFUN) {
3587 			netif_dbg(priv, tx_err, dev,
3588 				  "TX FIFO underrun, packet dropped\n");
3589 			dev->stats.tx_dropped++;
3590 			atomic64_inc(&priv->extra_stats.tx_underrun);
3591 
3592 			schedule_work(&priv->reset_task);
3593 		}
3594 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3595 	}
3596 	if (events & IEVENT_BSY) {
3597 		dev->stats.rx_over_errors++;
3598 		atomic64_inc(&priv->extra_stats.rx_bsy);
3599 
3600 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3601 			  gfar_read(&regs->rstat));
3602 	}
3603 	if (events & IEVENT_BABR) {
3604 		dev->stats.rx_errors++;
3605 		atomic64_inc(&priv->extra_stats.rx_babr);
3606 
3607 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3608 	}
3609 	if (events & IEVENT_EBERR) {
3610 		atomic64_inc(&priv->extra_stats.eberr);
3611 		netif_dbg(priv, rx_err, dev, "bus error\n");
3612 	}
3613 	if (events & IEVENT_RXC)
3614 		netif_dbg(priv, rx_status, dev, "control frame\n");
3615 
3616 	if (events & IEVENT_BABT) {
3617 		atomic64_inc(&priv->extra_stats.tx_babt);
3618 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3619 	}
3620 	return IRQ_HANDLED;
3621 }
3622 
3623 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3624 {
3625 	struct phy_device *phydev = priv->phydev;
3626 	u32 val = 0;
3627 
3628 	if (!phydev->duplex)
3629 		return val;
3630 
3631 	if (!priv->pause_aneg_en) {
3632 		if (priv->tx_pause_en)
3633 			val |= MACCFG1_TX_FLOW;
3634 		if (priv->rx_pause_en)
3635 			val |= MACCFG1_RX_FLOW;
3636 	} else {
3637 		u16 lcl_adv, rmt_adv;
3638 		u8 flowctrl;
3639 		/* get link partner capabilities */
3640 		rmt_adv = 0;
3641 		if (phydev->pause)
3642 			rmt_adv = LPA_PAUSE_CAP;
3643 		if (phydev->asym_pause)
3644 			rmt_adv |= LPA_PAUSE_ASYM;
3645 
3646 		lcl_adv = 0;
3647 		if (phydev->advertising & ADVERTISED_Pause)
3648 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3649 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3650 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3651 
3652 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3653 		if (flowctrl & FLOW_CTRL_TX)
3654 			val |= MACCFG1_TX_FLOW;
3655 		if (flowctrl & FLOW_CTRL_RX)
3656 			val |= MACCFG1_RX_FLOW;
3657 	}
3658 
3659 	return val;
3660 }
3661 
3662 static noinline void gfar_update_link_state(struct gfar_private *priv)
3663 {
3664 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3665 	struct phy_device *phydev = priv->phydev;
3666 	struct gfar_priv_rx_q *rx_queue = NULL;
3667 	int i;
3668 
3669 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3670 		return;
3671 
3672 	if (phydev->link) {
3673 		u32 tempval1 = gfar_read(&regs->maccfg1);
3674 		u32 tempval = gfar_read(&regs->maccfg2);
3675 		u32 ecntrl = gfar_read(&regs->ecntrl);
3676 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3677 
3678 		if (phydev->duplex != priv->oldduplex) {
3679 			if (!(phydev->duplex))
3680 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3681 			else
3682 				tempval |= MACCFG2_FULL_DUPLEX;
3683 
3684 			priv->oldduplex = phydev->duplex;
3685 		}
3686 
3687 		if (phydev->speed != priv->oldspeed) {
3688 			switch (phydev->speed) {
3689 			case 1000:
3690 				tempval =
3691 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3692 
3693 				ecntrl &= ~(ECNTRL_R100);
3694 				break;
3695 			case 100:
3696 			case 10:
3697 				tempval =
3698 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3699 
3700 				/* Reduced mode distinguishes
3701 				 * between 10 and 100
3702 				 */
3703 				if (phydev->speed == SPEED_100)
3704 					ecntrl |= ECNTRL_R100;
3705 				else
3706 					ecntrl &= ~(ECNTRL_R100);
3707 				break;
3708 			default:
3709 				netif_warn(priv, link, priv->ndev,
3710 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3711 					   phydev->speed);
3712 				break;
3713 			}
3714 
3715 			priv->oldspeed = phydev->speed;
3716 		}
3717 
3718 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3719 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3720 
3721 		/* Turn last free buffer recording on */
3722 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3723 			for (i = 0; i < priv->num_rx_queues; i++) {
3724 				u32 bdp_dma;
3725 
3726 				rx_queue = priv->rx_queue[i];
3727 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3728 				gfar_write(rx_queue->rfbptr, bdp_dma);
3729 			}
3730 
3731 			priv->tx_actual_en = 1;
3732 		}
3733 
3734 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3735 			priv->tx_actual_en = 0;
3736 
3737 		gfar_write(&regs->maccfg1, tempval1);
3738 		gfar_write(&regs->maccfg2, tempval);
3739 		gfar_write(&regs->ecntrl, ecntrl);
3740 
3741 		if (!priv->oldlink)
3742 			priv->oldlink = 1;
3743 
3744 	} else if (priv->oldlink) {
3745 		priv->oldlink = 0;
3746 		priv->oldspeed = 0;
3747 		priv->oldduplex = -1;
3748 	}
3749 
3750 	if (netif_msg_link(priv))
3751 		phy_print_status(phydev);
3752 }
3753 
3754 static const struct of_device_id gfar_match[] =
3755 {
3756 	{
3757 		.type = "network",
3758 		.compatible = "gianfar",
3759 	},
3760 	{
3761 		.compatible = "fsl,etsec2",
3762 	},
3763 	{},
3764 };
3765 MODULE_DEVICE_TABLE(of, gfar_match);
3766 
3767 /* Structure for a device driver */
3768 static struct platform_driver gfar_driver = {
3769 	.driver = {
3770 		.name = "fsl-gianfar",
3771 		.pm = GFAR_PM_OPS,
3772 		.of_match_table = gfar_match,
3773 	},
3774 	.probe = gfar_probe,
3775 	.remove = gfar_remove,
3776 };
3777 
3778 module_platform_driver(gfar_driver);
3779