1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "1.3";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 				    dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 			       int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 				  const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155 
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 			    dma_addr_t buf)
158 {
159 	u32 lstatus;
160 
161 	bdp->bufPtr = cpu_to_be32(buf);
162 
163 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 		lstatus |= BD_LFLAG(RXBD_WRAP);
166 
167 	gfar_wmb();
168 
169 	bdp->lstatus = cpu_to_be32(lstatus);
170 }
171 
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 	struct gfar_private *priv = netdev_priv(ndev);
175 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 	struct gfar_priv_tx_q *tx_queue = NULL;
177 	struct gfar_priv_rx_q *rx_queue = NULL;
178 	struct txbd8 *txbdp;
179 	struct rxbd8 *rxbdp;
180 	u32 __iomem *rfbptr;
181 	int i, j;
182 	dma_addr_t bufaddr;
183 
184 	for (i = 0; i < priv->num_tx_queues; i++) {
185 		tx_queue = priv->tx_queue[i];
186 		/* Initialize some variables in our dev structure */
187 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 		tx_queue->cur_tx = tx_queue->tx_bd_base;
190 		tx_queue->skb_curtx = 0;
191 		tx_queue->skb_dirtytx = 0;
192 
193 		/* Initialize Transmit Descriptor Ring */
194 		txbdp = tx_queue->tx_bd_base;
195 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 			txbdp->lstatus = 0;
197 			txbdp->bufPtr = 0;
198 			txbdp++;
199 		}
200 
201 		/* Set the last descriptor in the ring to indicate wrap */
202 		txbdp--;
203 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204 					    TXBD_WRAP);
205 	}
206 
207 	rfbptr = &regs->rfbptr0;
208 	for (i = 0; i < priv->num_rx_queues; i++) {
209 		rx_queue = priv->rx_queue[i];
210 		rx_queue->cur_rx = rx_queue->rx_bd_base;
211 		rx_queue->skb_currx = 0;
212 		rxbdp = rx_queue->rx_bd_base;
213 
214 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
215 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
216 
217 			if (skb) {
218 				bufaddr = be32_to_cpu(rxbdp->bufPtr);
219 			} else {
220 				skb = gfar_new_skb(ndev, &bufaddr);
221 				if (!skb) {
222 					netdev_err(ndev, "Can't allocate RX buffers\n");
223 					return -ENOMEM;
224 				}
225 				rx_queue->rx_skbuff[j] = skb;
226 			}
227 
228 			gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229 			rxbdp++;
230 		}
231 
232 		rx_queue->rfbptr = rfbptr;
233 		rfbptr += 2;
234 	}
235 
236 	return 0;
237 }
238 
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241 	void *vaddr;
242 	dma_addr_t addr;
243 	int i, j, k;
244 	struct gfar_private *priv = netdev_priv(ndev);
245 	struct device *dev = priv->dev;
246 	struct gfar_priv_tx_q *tx_queue = NULL;
247 	struct gfar_priv_rx_q *rx_queue = NULL;
248 
249 	priv->total_tx_ring_size = 0;
250 	for (i = 0; i < priv->num_tx_queues; i++)
251 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252 
253 	priv->total_rx_ring_size = 0;
254 	for (i = 0; i < priv->num_rx_queues; i++)
255 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256 
257 	/* Allocate memory for the buffer descriptors */
258 	vaddr = dma_alloc_coherent(dev,
259 				   (priv->total_tx_ring_size *
260 				    sizeof(struct txbd8)) +
261 				   (priv->total_rx_ring_size *
262 				    sizeof(struct rxbd8)),
263 				   &addr, GFP_KERNEL);
264 	if (!vaddr)
265 		return -ENOMEM;
266 
267 	for (i = 0; i < priv->num_tx_queues; i++) {
268 		tx_queue = priv->tx_queue[i];
269 		tx_queue->tx_bd_base = vaddr;
270 		tx_queue->tx_bd_dma_base = addr;
271 		tx_queue->dev = ndev;
272 		/* enet DMA only understands physical addresses */
273 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275 	}
276 
277 	/* Start the rx descriptor ring where the tx ring leaves off */
278 	for (i = 0; i < priv->num_rx_queues; i++) {
279 		rx_queue = priv->rx_queue[i];
280 		rx_queue->rx_bd_base = vaddr;
281 		rx_queue->rx_bd_dma_base = addr;
282 		rx_queue->dev = ndev;
283 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285 	}
286 
287 	/* Setup the skbuff rings */
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		tx_queue = priv->tx_queue[i];
290 		tx_queue->tx_skbuff =
291 			kmalloc_array(tx_queue->tx_ring_size,
292 				      sizeof(*tx_queue->tx_skbuff),
293 				      GFP_KERNEL);
294 		if (!tx_queue->tx_skbuff)
295 			goto cleanup;
296 
297 		for (k = 0; k < tx_queue->tx_ring_size; k++)
298 			tx_queue->tx_skbuff[k] = NULL;
299 	}
300 
301 	for (i = 0; i < priv->num_rx_queues; i++) {
302 		rx_queue = priv->rx_queue[i];
303 		rx_queue->rx_skbuff =
304 			kmalloc_array(rx_queue->rx_ring_size,
305 				      sizeof(*rx_queue->rx_skbuff),
306 				      GFP_KERNEL);
307 		if (!rx_queue->rx_skbuff)
308 			goto cleanup;
309 
310 		for (j = 0; j < rx_queue->rx_ring_size; j++)
311 			rx_queue->rx_skbuff[j] = NULL;
312 	}
313 
314 	if (gfar_init_bds(ndev))
315 		goto cleanup;
316 
317 	return 0;
318 
319 cleanup:
320 	free_skb_resources(priv);
321 	return -ENOMEM;
322 }
323 
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 	u32 __iomem *baddr;
328 	int i;
329 
330 	baddr = &regs->tbase0;
331 	for (i = 0; i < priv->num_tx_queues; i++) {
332 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 		baddr += 2;
334 	}
335 
336 	baddr = &regs->rbase0;
337 	for (i = 0; i < priv->num_rx_queues; i++) {
338 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 		baddr += 2;
340 	}
341 }
342 
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 __iomem *baddr;
347 	int i;
348 
349 	baddr = &regs->rqprm0;
350 	for (i = 0; i < priv->num_rx_queues; i++) {
351 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353 		baddr++;
354 	}
355 }
356 
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359 	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360 
361 	/* set this when rx hw offload (TOE) functions are being used */
362 	priv->uses_rxfcb = 0;
363 
364 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365 		priv->uses_rxfcb = 1;
366 
367 	if (priv->hwts_rx_en)
368 		priv->uses_rxfcb = 1;
369 
370 	if (priv->uses_rxfcb)
371 		frame_size += GMAC_FCB_LEN;
372 
373 	frame_size += priv->padding;
374 
375 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376 		     INCREMENTAL_BUFFER_SIZE;
377 
378 	priv->rx_buffer_size = frame_size;
379 }
380 
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
384 	u32 rctrl = 0;
385 
386 	if (priv->rx_filer_enable) {
387 		rctrl |= RCTRL_FILREN;
388 		/* Program the RIR0 reg with the required distribution */
389 		if (priv->poll_mode == GFAR_SQ_POLLING)
390 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391 		else /* GFAR_MQ_POLLING */
392 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393 	}
394 
395 	/* Restore PROMISC mode */
396 	if (priv->ndev->flags & IFF_PROMISC)
397 		rctrl |= RCTRL_PROM;
398 
399 	if (priv->ndev->features & NETIF_F_RXCSUM)
400 		rctrl |= RCTRL_CHECKSUMMING;
401 
402 	if (priv->extended_hash)
403 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404 
405 	if (priv->padding) {
406 		rctrl &= ~RCTRL_PAL_MASK;
407 		rctrl |= RCTRL_PADDING(priv->padding);
408 	}
409 
410 	/* Enable HW time stamping if requested from user space */
411 	if (priv->hwts_rx_en)
412 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413 
414 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416 
417 	/* Clear the LFC bit */
418 	gfar_write(&regs->rctrl, rctrl);
419 	/* Init flow control threshold values */
420 	gfar_init_rqprm(priv);
421 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422 	rctrl |= RCTRL_LFC;
423 
424 	/* Init rctrl based on our settings */
425 	gfar_write(&regs->rctrl, rctrl);
426 }
427 
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
431 	u32 tctrl = 0;
432 
433 	if (priv->ndev->features & NETIF_F_IP_CSUM)
434 		tctrl |= TCTRL_INIT_CSUM;
435 
436 	if (priv->prio_sched_en)
437 		tctrl |= TCTRL_TXSCHED_PRIO;
438 	else {
439 		tctrl |= TCTRL_TXSCHED_WRRS;
440 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442 	}
443 
444 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445 		tctrl |= TCTRL_VLINS;
446 
447 	gfar_write(&regs->tctrl, tctrl);
448 }
449 
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451 			       unsigned long tx_mask, unsigned long rx_mask)
452 {
453 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
454 	u32 __iomem *baddr;
455 
456 	if (priv->mode == MQ_MG_MODE) {
457 		int i = 0;
458 
459 		baddr = &regs->txic0;
460 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461 			gfar_write(baddr + i, 0);
462 			if (likely(priv->tx_queue[i]->txcoalescing))
463 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
464 		}
465 
466 		baddr = &regs->rxic0;
467 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468 			gfar_write(baddr + i, 0);
469 			if (likely(priv->rx_queue[i]->rxcoalescing))
470 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 		}
472 	} else {
473 		/* Backward compatible case -- even if we enable
474 		 * multiple queues, there's only single reg to program
475 		 */
476 		gfar_write(&regs->txic, 0);
477 		if (likely(priv->tx_queue[0]->txcoalescing))
478 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479 
480 		gfar_write(&regs->rxic, 0);
481 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
482 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483 	}
484 }
485 
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490 
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493 	struct gfar_private *priv = netdev_priv(dev);
494 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495 	unsigned long tx_packets = 0, tx_bytes = 0;
496 	int i;
497 
498 	for (i = 0; i < priv->num_rx_queues; i++) {
499 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
500 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
501 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502 	}
503 
504 	dev->stats.rx_packets = rx_packets;
505 	dev->stats.rx_bytes   = rx_bytes;
506 	dev->stats.rx_dropped = rx_dropped;
507 
508 	for (i = 0; i < priv->num_tx_queues; i++) {
509 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
511 	}
512 
513 	dev->stats.tx_bytes   = tx_bytes;
514 	dev->stats.tx_packets = tx_packets;
515 
516 	return &dev->stats;
517 }
518 
519 static const struct net_device_ops gfar_netdev_ops = {
520 	.ndo_open = gfar_enet_open,
521 	.ndo_start_xmit = gfar_start_xmit,
522 	.ndo_stop = gfar_close,
523 	.ndo_change_mtu = gfar_change_mtu,
524 	.ndo_set_features = gfar_set_features,
525 	.ndo_set_rx_mode = gfar_set_multi,
526 	.ndo_tx_timeout = gfar_timeout,
527 	.ndo_do_ioctl = gfar_ioctl,
528 	.ndo_get_stats = gfar_get_stats,
529 	.ndo_set_mac_address = eth_mac_addr,
530 	.ndo_validate_addr = eth_validate_addr,
531 #ifdef CONFIG_NET_POLL_CONTROLLER
532 	.ndo_poll_controller = gfar_netpoll,
533 #endif
534 };
535 
536 static void gfar_ints_disable(struct gfar_private *priv)
537 {
538 	int i;
539 	for (i = 0; i < priv->num_grps; i++) {
540 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
541 		/* Clear IEVENT */
542 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
543 
544 		/* Initialize IMASK */
545 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
546 	}
547 }
548 
549 static void gfar_ints_enable(struct gfar_private *priv)
550 {
551 	int i;
552 	for (i = 0; i < priv->num_grps; i++) {
553 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
554 		/* Unmask the interrupts we look for */
555 		gfar_write(&regs->imask, IMASK_DEFAULT);
556 	}
557 }
558 
559 static void lock_tx_qs(struct gfar_private *priv)
560 {
561 	int i;
562 
563 	for (i = 0; i < priv->num_tx_queues; i++)
564 		spin_lock(&priv->tx_queue[i]->txlock);
565 }
566 
567 static void unlock_tx_qs(struct gfar_private *priv)
568 {
569 	int i;
570 
571 	for (i = 0; i < priv->num_tx_queues; i++)
572 		spin_unlock(&priv->tx_queue[i]->txlock);
573 }
574 
575 static int gfar_alloc_tx_queues(struct gfar_private *priv)
576 {
577 	int i;
578 
579 	for (i = 0; i < priv->num_tx_queues; i++) {
580 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
581 					    GFP_KERNEL);
582 		if (!priv->tx_queue[i])
583 			return -ENOMEM;
584 
585 		priv->tx_queue[i]->tx_skbuff = NULL;
586 		priv->tx_queue[i]->qindex = i;
587 		priv->tx_queue[i]->dev = priv->ndev;
588 		spin_lock_init(&(priv->tx_queue[i]->txlock));
589 	}
590 	return 0;
591 }
592 
593 static int gfar_alloc_rx_queues(struct gfar_private *priv)
594 {
595 	int i;
596 
597 	for (i = 0; i < priv->num_rx_queues; i++) {
598 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
599 					    GFP_KERNEL);
600 		if (!priv->rx_queue[i])
601 			return -ENOMEM;
602 
603 		priv->rx_queue[i]->rx_skbuff = NULL;
604 		priv->rx_queue[i]->qindex = i;
605 		priv->rx_queue[i]->dev = priv->ndev;
606 	}
607 	return 0;
608 }
609 
610 static void gfar_free_tx_queues(struct gfar_private *priv)
611 {
612 	int i;
613 
614 	for (i = 0; i < priv->num_tx_queues; i++)
615 		kfree(priv->tx_queue[i]);
616 }
617 
618 static void gfar_free_rx_queues(struct gfar_private *priv)
619 {
620 	int i;
621 
622 	for (i = 0; i < priv->num_rx_queues; i++)
623 		kfree(priv->rx_queue[i]);
624 }
625 
626 static void unmap_group_regs(struct gfar_private *priv)
627 {
628 	int i;
629 
630 	for (i = 0; i < MAXGROUPS; i++)
631 		if (priv->gfargrp[i].regs)
632 			iounmap(priv->gfargrp[i].regs);
633 }
634 
635 static void free_gfar_dev(struct gfar_private *priv)
636 {
637 	int i, j;
638 
639 	for (i = 0; i < priv->num_grps; i++)
640 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
641 			kfree(priv->gfargrp[i].irqinfo[j]);
642 			priv->gfargrp[i].irqinfo[j] = NULL;
643 		}
644 
645 	free_netdev(priv->ndev);
646 }
647 
648 static void disable_napi(struct gfar_private *priv)
649 {
650 	int i;
651 
652 	for (i = 0; i < priv->num_grps; i++) {
653 		napi_disable(&priv->gfargrp[i].napi_rx);
654 		napi_disable(&priv->gfargrp[i].napi_tx);
655 	}
656 }
657 
658 static void enable_napi(struct gfar_private *priv)
659 {
660 	int i;
661 
662 	for (i = 0; i < priv->num_grps; i++) {
663 		napi_enable(&priv->gfargrp[i].napi_rx);
664 		napi_enable(&priv->gfargrp[i].napi_tx);
665 	}
666 }
667 
668 static int gfar_parse_group(struct device_node *np,
669 			    struct gfar_private *priv, const char *model)
670 {
671 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
672 	int i;
673 
674 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
675 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
676 					  GFP_KERNEL);
677 		if (!grp->irqinfo[i])
678 			return -ENOMEM;
679 	}
680 
681 	grp->regs = of_iomap(np, 0);
682 	if (!grp->regs)
683 		return -ENOMEM;
684 
685 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
686 
687 	/* If we aren't the FEC we have multiple interrupts */
688 	if (model && strcasecmp(model, "FEC")) {
689 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
690 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
691 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
692 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
693 		    gfar_irq(grp, ER)->irq == NO_IRQ)
694 			return -EINVAL;
695 	}
696 
697 	grp->priv = priv;
698 	spin_lock_init(&grp->grplock);
699 	if (priv->mode == MQ_MG_MODE) {
700 		u32 rxq_mask, txq_mask;
701 		int ret;
702 
703 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
704 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
705 
706 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
707 		if (!ret) {
708 			grp->rx_bit_map = rxq_mask ?
709 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710 		}
711 
712 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
713 		if (!ret) {
714 			grp->tx_bit_map = txq_mask ?
715 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
716 		}
717 
718 		if (priv->poll_mode == GFAR_SQ_POLLING) {
719 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
720 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
721 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
722 		}
723 	} else {
724 		grp->rx_bit_map = 0xFF;
725 		grp->tx_bit_map = 0xFF;
726 	}
727 
728 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
729 	 * right to left, so we need to revert the 8 bits to get the q index
730 	 */
731 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
732 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
733 
734 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
735 	 * also assign queues to groups
736 	 */
737 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
738 		if (!grp->rx_queue)
739 			grp->rx_queue = priv->rx_queue[i];
740 		grp->num_rx_queues++;
741 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
742 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
743 		priv->rx_queue[i]->grp = grp;
744 	}
745 
746 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
747 		if (!grp->tx_queue)
748 			grp->tx_queue = priv->tx_queue[i];
749 		grp->num_tx_queues++;
750 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
751 		priv->tqueue |= (TQUEUE_EN0 >> i);
752 		priv->tx_queue[i]->grp = grp;
753 	}
754 
755 	priv->num_grps++;
756 
757 	return 0;
758 }
759 
760 static int gfar_of_group_count(struct device_node *np)
761 {
762 	struct device_node *child;
763 	int num = 0;
764 
765 	for_each_available_child_of_node(np, child)
766 		if (!of_node_cmp(child->name, "queue-group"))
767 			num++;
768 
769 	return num;
770 }
771 
772 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
773 {
774 	const char *model;
775 	const char *ctype;
776 	const void *mac_addr;
777 	int err = 0, i;
778 	struct net_device *dev = NULL;
779 	struct gfar_private *priv = NULL;
780 	struct device_node *np = ofdev->dev.of_node;
781 	struct device_node *child = NULL;
782 	struct property *stash;
783 	u32 stash_len = 0;
784 	u32 stash_idx = 0;
785 	unsigned int num_tx_qs, num_rx_qs;
786 	unsigned short mode, poll_mode;
787 
788 	if (!np)
789 		return -ENODEV;
790 
791 	if (of_device_is_compatible(np, "fsl,etsec2")) {
792 		mode = MQ_MG_MODE;
793 		poll_mode = GFAR_SQ_POLLING;
794 	} else {
795 		mode = SQ_SG_MODE;
796 		poll_mode = GFAR_SQ_POLLING;
797 	}
798 
799 	if (mode == SQ_SG_MODE) {
800 		num_tx_qs = 1;
801 		num_rx_qs = 1;
802 	} else { /* MQ_MG_MODE */
803 		/* get the actual number of supported groups */
804 		unsigned int num_grps = gfar_of_group_count(np);
805 
806 		if (num_grps == 0 || num_grps > MAXGROUPS) {
807 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
808 				num_grps);
809 			pr_err("Cannot do alloc_etherdev, aborting\n");
810 			return -EINVAL;
811 		}
812 
813 		if (poll_mode == GFAR_SQ_POLLING) {
814 			num_tx_qs = num_grps; /* one txq per int group */
815 			num_rx_qs = num_grps; /* one rxq per int group */
816 		} else { /* GFAR_MQ_POLLING */
817 			u32 tx_queues, rx_queues;
818 			int ret;
819 
820 			/* parse the num of HW tx and rx queues */
821 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
822 						   &tx_queues);
823 			num_tx_qs = ret ? 1 : tx_queues;
824 
825 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
826 						   &rx_queues);
827 			num_rx_qs = ret ? 1 : rx_queues;
828 		}
829 	}
830 
831 	if (num_tx_qs > MAX_TX_QS) {
832 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
833 		       num_tx_qs, MAX_TX_QS);
834 		pr_err("Cannot do alloc_etherdev, aborting\n");
835 		return -EINVAL;
836 	}
837 
838 	if (num_rx_qs > MAX_RX_QS) {
839 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
840 		       num_rx_qs, MAX_RX_QS);
841 		pr_err("Cannot do alloc_etherdev, aborting\n");
842 		return -EINVAL;
843 	}
844 
845 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
846 	dev = *pdev;
847 	if (NULL == dev)
848 		return -ENOMEM;
849 
850 	priv = netdev_priv(dev);
851 	priv->ndev = dev;
852 
853 	priv->mode = mode;
854 	priv->poll_mode = poll_mode;
855 
856 	priv->num_tx_queues = num_tx_qs;
857 	netif_set_real_num_rx_queues(dev, num_rx_qs);
858 	priv->num_rx_queues = num_rx_qs;
859 
860 	err = gfar_alloc_tx_queues(priv);
861 	if (err)
862 		goto tx_alloc_failed;
863 
864 	err = gfar_alloc_rx_queues(priv);
865 	if (err)
866 		goto rx_alloc_failed;
867 
868 	err = of_property_read_string(np, "model", &model);
869 	if (err) {
870 		pr_err("Device model property missing, aborting\n");
871 		goto rx_alloc_failed;
872 	}
873 
874 	/* Init Rx queue filer rule set linked list */
875 	INIT_LIST_HEAD(&priv->rx_list.list);
876 	priv->rx_list.count = 0;
877 	mutex_init(&priv->rx_queue_access);
878 
879 	for (i = 0; i < MAXGROUPS; i++)
880 		priv->gfargrp[i].regs = NULL;
881 
882 	/* Parse and initialize group specific information */
883 	if (priv->mode == MQ_MG_MODE) {
884 		for_each_available_child_of_node(np, child) {
885 			if (of_node_cmp(child->name, "queue-group"))
886 				continue;
887 
888 			err = gfar_parse_group(child, priv, model);
889 			if (err)
890 				goto err_grp_init;
891 		}
892 	} else { /* SQ_SG_MODE */
893 		err = gfar_parse_group(np, priv, model);
894 		if (err)
895 			goto err_grp_init;
896 	}
897 
898 	stash = of_find_property(np, "bd-stash", NULL);
899 
900 	if (stash) {
901 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
902 		priv->bd_stash_en = 1;
903 	}
904 
905 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
906 
907 	if (err == 0)
908 		priv->rx_stash_size = stash_len;
909 
910 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
911 
912 	if (err == 0)
913 		priv->rx_stash_index = stash_idx;
914 
915 	if (stash_len || stash_idx)
916 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
917 
918 	mac_addr = of_get_mac_address(np);
919 
920 	if (mac_addr)
921 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
922 
923 	if (model && !strcasecmp(model, "TSEC"))
924 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
925 				     FSL_GIANFAR_DEV_HAS_COALESCE |
926 				     FSL_GIANFAR_DEV_HAS_RMON |
927 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
928 
929 	if (model && !strcasecmp(model, "eTSEC"))
930 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
931 				     FSL_GIANFAR_DEV_HAS_COALESCE |
932 				     FSL_GIANFAR_DEV_HAS_RMON |
933 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
934 				     FSL_GIANFAR_DEV_HAS_CSUM |
935 				     FSL_GIANFAR_DEV_HAS_VLAN |
936 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
937 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
938 				     FSL_GIANFAR_DEV_HAS_TIMER;
939 
940 	err = of_property_read_string(np, "phy-connection-type", &ctype);
941 
942 	/* We only care about rgmii-id.  The rest are autodetected */
943 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
944 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
945 	else
946 		priv->interface = PHY_INTERFACE_MODE_MII;
947 
948 	if (of_find_property(np, "fsl,magic-packet", NULL))
949 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
950 
951 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
952 
953 	/* In the case of a fixed PHY, the DT node associated
954 	 * to the PHY is the Ethernet MAC DT node.
955 	 */
956 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
957 		err = of_phy_register_fixed_link(np);
958 		if (err)
959 			goto err_grp_init;
960 
961 		priv->phy_node = of_node_get(np);
962 	}
963 
964 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
965 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
966 
967 	return 0;
968 
969 err_grp_init:
970 	unmap_group_regs(priv);
971 rx_alloc_failed:
972 	gfar_free_rx_queues(priv);
973 tx_alloc_failed:
974 	gfar_free_tx_queues(priv);
975 	free_gfar_dev(priv);
976 	return err;
977 }
978 
979 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
980 {
981 	struct hwtstamp_config config;
982 	struct gfar_private *priv = netdev_priv(netdev);
983 
984 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
985 		return -EFAULT;
986 
987 	/* reserved for future extensions */
988 	if (config.flags)
989 		return -EINVAL;
990 
991 	switch (config.tx_type) {
992 	case HWTSTAMP_TX_OFF:
993 		priv->hwts_tx_en = 0;
994 		break;
995 	case HWTSTAMP_TX_ON:
996 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
997 			return -ERANGE;
998 		priv->hwts_tx_en = 1;
999 		break;
1000 	default:
1001 		return -ERANGE;
1002 	}
1003 
1004 	switch (config.rx_filter) {
1005 	case HWTSTAMP_FILTER_NONE:
1006 		if (priv->hwts_rx_en) {
1007 			priv->hwts_rx_en = 0;
1008 			reset_gfar(netdev);
1009 		}
1010 		break;
1011 	default:
1012 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1013 			return -ERANGE;
1014 		if (!priv->hwts_rx_en) {
1015 			priv->hwts_rx_en = 1;
1016 			reset_gfar(netdev);
1017 		}
1018 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1019 		break;
1020 	}
1021 
1022 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1023 		-EFAULT : 0;
1024 }
1025 
1026 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1027 {
1028 	struct hwtstamp_config config;
1029 	struct gfar_private *priv = netdev_priv(netdev);
1030 
1031 	config.flags = 0;
1032 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1033 	config.rx_filter = (priv->hwts_rx_en ?
1034 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1035 
1036 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1037 		-EFAULT : 0;
1038 }
1039 
1040 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1041 {
1042 	struct gfar_private *priv = netdev_priv(dev);
1043 
1044 	if (!netif_running(dev))
1045 		return -EINVAL;
1046 
1047 	if (cmd == SIOCSHWTSTAMP)
1048 		return gfar_hwtstamp_set(dev, rq);
1049 	if (cmd == SIOCGHWTSTAMP)
1050 		return gfar_hwtstamp_get(dev, rq);
1051 
1052 	if (!priv->phydev)
1053 		return -ENODEV;
1054 
1055 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1056 }
1057 
1058 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1059 				   u32 class)
1060 {
1061 	u32 rqfpr = FPR_FILER_MASK;
1062 	u32 rqfcr = 0x0;
1063 
1064 	rqfar--;
1065 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1066 	priv->ftp_rqfpr[rqfar] = rqfpr;
1067 	priv->ftp_rqfcr[rqfar] = rqfcr;
1068 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1069 
1070 	rqfar--;
1071 	rqfcr = RQFCR_CMP_NOMATCH;
1072 	priv->ftp_rqfpr[rqfar] = rqfpr;
1073 	priv->ftp_rqfcr[rqfar] = rqfcr;
1074 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1075 
1076 	rqfar--;
1077 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1078 	rqfpr = class;
1079 	priv->ftp_rqfcr[rqfar] = rqfcr;
1080 	priv->ftp_rqfpr[rqfar] = rqfpr;
1081 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1082 
1083 	rqfar--;
1084 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1085 	rqfpr = class;
1086 	priv->ftp_rqfcr[rqfar] = rqfcr;
1087 	priv->ftp_rqfpr[rqfar] = rqfpr;
1088 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1089 
1090 	return rqfar;
1091 }
1092 
1093 static void gfar_init_filer_table(struct gfar_private *priv)
1094 {
1095 	int i = 0x0;
1096 	u32 rqfar = MAX_FILER_IDX;
1097 	u32 rqfcr = 0x0;
1098 	u32 rqfpr = FPR_FILER_MASK;
1099 
1100 	/* Default rule */
1101 	rqfcr = RQFCR_CMP_MATCH;
1102 	priv->ftp_rqfcr[rqfar] = rqfcr;
1103 	priv->ftp_rqfpr[rqfar] = rqfpr;
1104 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1105 
1106 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1107 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1108 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1109 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1110 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1111 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1112 
1113 	/* cur_filer_idx indicated the first non-masked rule */
1114 	priv->cur_filer_idx = rqfar;
1115 
1116 	/* Rest are masked rules */
1117 	rqfcr = RQFCR_CMP_NOMATCH;
1118 	for (i = 0; i < rqfar; i++) {
1119 		priv->ftp_rqfcr[i] = rqfcr;
1120 		priv->ftp_rqfpr[i] = rqfpr;
1121 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1122 	}
1123 }
1124 
1125 #ifdef CONFIG_PPC
1126 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1127 {
1128 	unsigned int pvr = mfspr(SPRN_PVR);
1129 	unsigned int svr = mfspr(SPRN_SVR);
1130 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1131 	unsigned int rev = svr & 0xffff;
1132 
1133 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1134 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1135 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1136 		priv->errata |= GFAR_ERRATA_74;
1137 
1138 	/* MPC8313 and MPC837x all rev */
1139 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1140 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1141 		priv->errata |= GFAR_ERRATA_76;
1142 
1143 	/* MPC8313 Rev < 2.0 */
1144 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1145 		priv->errata |= GFAR_ERRATA_12;
1146 }
1147 
1148 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1149 {
1150 	unsigned int svr = mfspr(SPRN_SVR);
1151 
1152 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1153 		priv->errata |= GFAR_ERRATA_12;
1154 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1155 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1156 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1157 }
1158 #endif
1159 
1160 static void gfar_detect_errata(struct gfar_private *priv)
1161 {
1162 	struct device *dev = &priv->ofdev->dev;
1163 
1164 	/* no plans to fix */
1165 	priv->errata |= GFAR_ERRATA_A002;
1166 
1167 #ifdef CONFIG_PPC
1168 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1169 		__gfar_detect_errata_85xx(priv);
1170 	else /* non-mpc85xx parts, i.e. e300 core based */
1171 		__gfar_detect_errata_83xx(priv);
1172 #endif
1173 
1174 	if (priv->errata)
1175 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1176 			 priv->errata);
1177 }
1178 
1179 void gfar_mac_reset(struct gfar_private *priv)
1180 {
1181 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1182 	u32 tempval;
1183 
1184 	/* Reset MAC layer */
1185 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1186 
1187 	/* We need to delay at least 3 TX clocks */
1188 	udelay(3);
1189 
1190 	/* the soft reset bit is not self-resetting, so we need to
1191 	 * clear it before resuming normal operation
1192 	 */
1193 	gfar_write(&regs->maccfg1, 0);
1194 
1195 	udelay(3);
1196 
1197 	/* Compute rx_buff_size based on config flags */
1198 	gfar_rx_buff_size_config(priv);
1199 
1200 	/* Initialize the max receive frame/buffer lengths */
1201 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1202 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1203 
1204 	/* Initialize the Minimum Frame Length Register */
1205 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1206 
1207 	/* Initialize MACCFG2. */
1208 	tempval = MACCFG2_INIT_SETTINGS;
1209 
1210 	/* If the mtu is larger than the max size for standard
1211 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1212 	 * to allow huge frames, and to check the length
1213 	 */
1214 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1215 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1216 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1217 
1218 	gfar_write(&regs->maccfg2, tempval);
1219 
1220 	/* Clear mac addr hash registers */
1221 	gfar_write(&regs->igaddr0, 0);
1222 	gfar_write(&regs->igaddr1, 0);
1223 	gfar_write(&regs->igaddr2, 0);
1224 	gfar_write(&regs->igaddr3, 0);
1225 	gfar_write(&regs->igaddr4, 0);
1226 	gfar_write(&regs->igaddr5, 0);
1227 	gfar_write(&regs->igaddr6, 0);
1228 	gfar_write(&regs->igaddr7, 0);
1229 
1230 	gfar_write(&regs->gaddr0, 0);
1231 	gfar_write(&regs->gaddr1, 0);
1232 	gfar_write(&regs->gaddr2, 0);
1233 	gfar_write(&regs->gaddr3, 0);
1234 	gfar_write(&regs->gaddr4, 0);
1235 	gfar_write(&regs->gaddr5, 0);
1236 	gfar_write(&regs->gaddr6, 0);
1237 	gfar_write(&regs->gaddr7, 0);
1238 
1239 	if (priv->extended_hash)
1240 		gfar_clear_exact_match(priv->ndev);
1241 
1242 	gfar_mac_rx_config(priv);
1243 
1244 	gfar_mac_tx_config(priv);
1245 
1246 	gfar_set_mac_address(priv->ndev);
1247 
1248 	gfar_set_multi(priv->ndev);
1249 
1250 	/* clear ievent and imask before configuring coalescing */
1251 	gfar_ints_disable(priv);
1252 
1253 	/* Configure the coalescing support */
1254 	gfar_configure_coalescing_all(priv);
1255 }
1256 
1257 static void gfar_hw_init(struct gfar_private *priv)
1258 {
1259 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1260 	u32 attrs;
1261 
1262 	/* Stop the DMA engine now, in case it was running before
1263 	 * (The firmware could have used it, and left it running).
1264 	 */
1265 	gfar_halt(priv);
1266 
1267 	gfar_mac_reset(priv);
1268 
1269 	/* Zero out the rmon mib registers if it has them */
1270 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1271 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1272 
1273 		/* Mask off the CAM interrupts */
1274 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1275 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1276 	}
1277 
1278 	/* Initialize ECNTRL */
1279 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1280 
1281 	/* Set the extraction length and index */
1282 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1283 		ATTRELI_EI(priv->rx_stash_index);
1284 
1285 	gfar_write(&regs->attreli, attrs);
1286 
1287 	/* Start with defaults, and add stashing
1288 	 * depending on driver parameters
1289 	 */
1290 	attrs = ATTR_INIT_SETTINGS;
1291 
1292 	if (priv->bd_stash_en)
1293 		attrs |= ATTR_BDSTASH;
1294 
1295 	if (priv->rx_stash_size != 0)
1296 		attrs |= ATTR_BUFSTASH;
1297 
1298 	gfar_write(&regs->attr, attrs);
1299 
1300 	/* FIFO configs */
1301 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1302 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1303 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1304 
1305 	/* Program the interrupt steering regs, only for MG devices */
1306 	if (priv->num_grps > 1)
1307 		gfar_write_isrg(priv);
1308 }
1309 
1310 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1311 {
1312 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313 
1314 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1315 		priv->extended_hash = 1;
1316 		priv->hash_width = 9;
1317 
1318 		priv->hash_regs[0] = &regs->igaddr0;
1319 		priv->hash_regs[1] = &regs->igaddr1;
1320 		priv->hash_regs[2] = &regs->igaddr2;
1321 		priv->hash_regs[3] = &regs->igaddr3;
1322 		priv->hash_regs[4] = &regs->igaddr4;
1323 		priv->hash_regs[5] = &regs->igaddr5;
1324 		priv->hash_regs[6] = &regs->igaddr6;
1325 		priv->hash_regs[7] = &regs->igaddr7;
1326 		priv->hash_regs[8] = &regs->gaddr0;
1327 		priv->hash_regs[9] = &regs->gaddr1;
1328 		priv->hash_regs[10] = &regs->gaddr2;
1329 		priv->hash_regs[11] = &regs->gaddr3;
1330 		priv->hash_regs[12] = &regs->gaddr4;
1331 		priv->hash_regs[13] = &regs->gaddr5;
1332 		priv->hash_regs[14] = &regs->gaddr6;
1333 		priv->hash_regs[15] = &regs->gaddr7;
1334 
1335 	} else {
1336 		priv->extended_hash = 0;
1337 		priv->hash_width = 8;
1338 
1339 		priv->hash_regs[0] = &regs->gaddr0;
1340 		priv->hash_regs[1] = &regs->gaddr1;
1341 		priv->hash_regs[2] = &regs->gaddr2;
1342 		priv->hash_regs[3] = &regs->gaddr3;
1343 		priv->hash_regs[4] = &regs->gaddr4;
1344 		priv->hash_regs[5] = &regs->gaddr5;
1345 		priv->hash_regs[6] = &regs->gaddr6;
1346 		priv->hash_regs[7] = &regs->gaddr7;
1347 	}
1348 }
1349 
1350 /* Set up the ethernet device structure, private data,
1351  * and anything else we need before we start
1352  */
1353 static int gfar_probe(struct platform_device *ofdev)
1354 {
1355 	struct net_device *dev = NULL;
1356 	struct gfar_private *priv = NULL;
1357 	int err = 0, i;
1358 
1359 	err = gfar_of_init(ofdev, &dev);
1360 
1361 	if (err)
1362 		return err;
1363 
1364 	priv = netdev_priv(dev);
1365 	priv->ndev = dev;
1366 	priv->ofdev = ofdev;
1367 	priv->dev = &ofdev->dev;
1368 	SET_NETDEV_DEV(dev, &ofdev->dev);
1369 
1370 	spin_lock_init(&priv->bflock);
1371 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1372 
1373 	platform_set_drvdata(ofdev, priv);
1374 
1375 	gfar_detect_errata(priv);
1376 
1377 	/* Set the dev->base_addr to the gfar reg region */
1378 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1379 
1380 	/* Fill in the dev structure */
1381 	dev->watchdog_timeo = TX_TIMEOUT;
1382 	dev->mtu = 1500;
1383 	dev->netdev_ops = &gfar_netdev_ops;
1384 	dev->ethtool_ops = &gfar_ethtool_ops;
1385 
1386 	/* Register for napi ...We are registering NAPI for each grp */
1387 	for (i = 0; i < priv->num_grps; i++) {
1388 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1389 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1390 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1391 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1392 				       gfar_poll_tx_sq, 2);
1393 		} else {
1394 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1395 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1396 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1397 				       gfar_poll_tx, 2);
1398 		}
1399 	}
1400 
1401 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1402 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1403 				   NETIF_F_RXCSUM;
1404 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1405 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1406 	}
1407 
1408 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1409 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1410 				    NETIF_F_HW_VLAN_CTAG_RX;
1411 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1412 	}
1413 
1414 	gfar_init_addr_hash_table(priv);
1415 
1416 	/* Insert receive time stamps into padding alignment bytes */
1417 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1418 		priv->padding = 8;
1419 
1420 	if (dev->features & NETIF_F_IP_CSUM ||
1421 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1422 		dev->needed_headroom = GMAC_FCB_LEN;
1423 
1424 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1425 
1426 	/* Initializing some of the rx/tx queue level parameters */
1427 	for (i = 0; i < priv->num_tx_queues; i++) {
1428 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1429 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1430 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1431 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1432 	}
1433 
1434 	for (i = 0; i < priv->num_rx_queues; i++) {
1435 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1436 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1437 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1438 	}
1439 
1440 	/* always enable rx filer */
1441 	priv->rx_filer_enable = 1;
1442 	/* Enable most messages by default */
1443 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1444 	/* use pritority h/w tx queue scheduling for single queue devices */
1445 	if (priv->num_tx_queues == 1)
1446 		priv->prio_sched_en = 1;
1447 
1448 	set_bit(GFAR_DOWN, &priv->state);
1449 
1450 	gfar_hw_init(priv);
1451 
1452 	/* Carrier starts down, phylib will bring it up */
1453 	netif_carrier_off(dev);
1454 
1455 	err = register_netdev(dev);
1456 
1457 	if (err) {
1458 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1459 		goto register_fail;
1460 	}
1461 
1462 	device_init_wakeup(&dev->dev,
1463 			   priv->device_flags &
1464 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1465 
1466 	/* fill out IRQ number and name fields */
1467 	for (i = 0; i < priv->num_grps; i++) {
1468 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1469 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1470 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1471 				dev->name, "_g", '0' + i, "_tx");
1472 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1473 				dev->name, "_g", '0' + i, "_rx");
1474 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1475 				dev->name, "_g", '0' + i, "_er");
1476 		} else
1477 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1478 	}
1479 
1480 	/* Initialize the filer table */
1481 	gfar_init_filer_table(priv);
1482 
1483 	/* Print out the device info */
1484 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1485 
1486 	/* Even more device info helps when determining which kernel
1487 	 * provided which set of benchmarks.
1488 	 */
1489 	netdev_info(dev, "Running with NAPI enabled\n");
1490 	for (i = 0; i < priv->num_rx_queues; i++)
1491 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1492 			    i, priv->rx_queue[i]->rx_ring_size);
1493 	for (i = 0; i < priv->num_tx_queues; i++)
1494 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1495 			    i, priv->tx_queue[i]->tx_ring_size);
1496 
1497 	return 0;
1498 
1499 register_fail:
1500 	unmap_group_regs(priv);
1501 	gfar_free_rx_queues(priv);
1502 	gfar_free_tx_queues(priv);
1503 	of_node_put(priv->phy_node);
1504 	of_node_put(priv->tbi_node);
1505 	free_gfar_dev(priv);
1506 	return err;
1507 }
1508 
1509 static int gfar_remove(struct platform_device *ofdev)
1510 {
1511 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1512 
1513 	of_node_put(priv->phy_node);
1514 	of_node_put(priv->tbi_node);
1515 
1516 	unregister_netdev(priv->ndev);
1517 	unmap_group_regs(priv);
1518 	gfar_free_rx_queues(priv);
1519 	gfar_free_tx_queues(priv);
1520 	free_gfar_dev(priv);
1521 
1522 	return 0;
1523 }
1524 
1525 #ifdef CONFIG_PM
1526 
1527 static int gfar_suspend(struct device *dev)
1528 {
1529 	struct gfar_private *priv = dev_get_drvdata(dev);
1530 	struct net_device *ndev = priv->ndev;
1531 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1532 	unsigned long flags;
1533 	u32 tempval;
1534 
1535 	int magic_packet = priv->wol_en &&
1536 			   (priv->device_flags &
1537 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1538 
1539 	netif_device_detach(ndev);
1540 
1541 	if (netif_running(ndev)) {
1542 
1543 		local_irq_save(flags);
1544 		lock_tx_qs(priv);
1545 
1546 		gfar_halt_nodisable(priv);
1547 
1548 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1549 		tempval = gfar_read(&regs->maccfg1);
1550 
1551 		tempval &= ~MACCFG1_TX_EN;
1552 
1553 		if (!magic_packet)
1554 			tempval &= ~MACCFG1_RX_EN;
1555 
1556 		gfar_write(&regs->maccfg1, tempval);
1557 
1558 		unlock_tx_qs(priv);
1559 		local_irq_restore(flags);
1560 
1561 		disable_napi(priv);
1562 
1563 		if (magic_packet) {
1564 			/* Enable interrupt on Magic Packet */
1565 			gfar_write(&regs->imask, IMASK_MAG);
1566 
1567 			/* Enable Magic Packet mode */
1568 			tempval = gfar_read(&regs->maccfg2);
1569 			tempval |= MACCFG2_MPEN;
1570 			gfar_write(&regs->maccfg2, tempval);
1571 		} else {
1572 			phy_stop(priv->phydev);
1573 		}
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 static int gfar_resume(struct device *dev)
1580 {
1581 	struct gfar_private *priv = dev_get_drvdata(dev);
1582 	struct net_device *ndev = priv->ndev;
1583 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584 	unsigned long flags;
1585 	u32 tempval;
1586 	int magic_packet = priv->wol_en &&
1587 			   (priv->device_flags &
1588 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1589 
1590 	if (!netif_running(ndev)) {
1591 		netif_device_attach(ndev);
1592 		return 0;
1593 	}
1594 
1595 	if (!magic_packet && priv->phydev)
1596 		phy_start(priv->phydev);
1597 
1598 	/* Disable Magic Packet mode, in case something
1599 	 * else woke us up.
1600 	 */
1601 	local_irq_save(flags);
1602 	lock_tx_qs(priv);
1603 
1604 	tempval = gfar_read(&regs->maccfg2);
1605 	tempval &= ~MACCFG2_MPEN;
1606 	gfar_write(&regs->maccfg2, tempval);
1607 
1608 	gfar_start(priv);
1609 
1610 	unlock_tx_qs(priv);
1611 	local_irq_restore(flags);
1612 
1613 	netif_device_attach(ndev);
1614 
1615 	enable_napi(priv);
1616 
1617 	return 0;
1618 }
1619 
1620 static int gfar_restore(struct device *dev)
1621 {
1622 	struct gfar_private *priv = dev_get_drvdata(dev);
1623 	struct net_device *ndev = priv->ndev;
1624 
1625 	if (!netif_running(ndev)) {
1626 		netif_device_attach(ndev);
1627 
1628 		return 0;
1629 	}
1630 
1631 	if (gfar_init_bds(ndev)) {
1632 		free_skb_resources(priv);
1633 		return -ENOMEM;
1634 	}
1635 
1636 	gfar_mac_reset(priv);
1637 
1638 	gfar_init_tx_rx_base(priv);
1639 
1640 	gfar_start(priv);
1641 
1642 	priv->oldlink = 0;
1643 	priv->oldspeed = 0;
1644 	priv->oldduplex = -1;
1645 
1646 	if (priv->phydev)
1647 		phy_start(priv->phydev);
1648 
1649 	netif_device_attach(ndev);
1650 	enable_napi(priv);
1651 
1652 	return 0;
1653 }
1654 
1655 static struct dev_pm_ops gfar_pm_ops = {
1656 	.suspend = gfar_suspend,
1657 	.resume = gfar_resume,
1658 	.freeze = gfar_suspend,
1659 	.thaw = gfar_resume,
1660 	.restore = gfar_restore,
1661 };
1662 
1663 #define GFAR_PM_OPS (&gfar_pm_ops)
1664 
1665 #else
1666 
1667 #define GFAR_PM_OPS NULL
1668 
1669 #endif
1670 
1671 /* Reads the controller's registers to determine what interface
1672  * connects it to the PHY.
1673  */
1674 static phy_interface_t gfar_get_interface(struct net_device *dev)
1675 {
1676 	struct gfar_private *priv = netdev_priv(dev);
1677 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1678 	u32 ecntrl;
1679 
1680 	ecntrl = gfar_read(&regs->ecntrl);
1681 
1682 	if (ecntrl & ECNTRL_SGMII_MODE)
1683 		return PHY_INTERFACE_MODE_SGMII;
1684 
1685 	if (ecntrl & ECNTRL_TBI_MODE) {
1686 		if (ecntrl & ECNTRL_REDUCED_MODE)
1687 			return PHY_INTERFACE_MODE_RTBI;
1688 		else
1689 			return PHY_INTERFACE_MODE_TBI;
1690 	}
1691 
1692 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1693 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1694 			return PHY_INTERFACE_MODE_RMII;
1695 		}
1696 		else {
1697 			phy_interface_t interface = priv->interface;
1698 
1699 			/* This isn't autodetected right now, so it must
1700 			 * be set by the device tree or platform code.
1701 			 */
1702 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1703 				return PHY_INTERFACE_MODE_RGMII_ID;
1704 
1705 			return PHY_INTERFACE_MODE_RGMII;
1706 		}
1707 	}
1708 
1709 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1710 		return PHY_INTERFACE_MODE_GMII;
1711 
1712 	return PHY_INTERFACE_MODE_MII;
1713 }
1714 
1715 
1716 /* Initializes driver's PHY state, and attaches to the PHY.
1717  * Returns 0 on success.
1718  */
1719 static int init_phy(struct net_device *dev)
1720 {
1721 	struct gfar_private *priv = netdev_priv(dev);
1722 	uint gigabit_support =
1723 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1724 		GFAR_SUPPORTED_GBIT : 0;
1725 	phy_interface_t interface;
1726 
1727 	priv->oldlink = 0;
1728 	priv->oldspeed = 0;
1729 	priv->oldduplex = -1;
1730 
1731 	interface = gfar_get_interface(dev);
1732 
1733 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1734 				      interface);
1735 	if (!priv->phydev) {
1736 		dev_err(&dev->dev, "could not attach to PHY\n");
1737 		return -ENODEV;
1738 	}
1739 
1740 	if (interface == PHY_INTERFACE_MODE_SGMII)
1741 		gfar_configure_serdes(dev);
1742 
1743 	/* Remove any features not supported by the controller */
1744 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1745 	priv->phydev->advertising = priv->phydev->supported;
1746 
1747 	/* Add support for flow control, but don't advertise it by default */
1748 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1749 
1750 	return 0;
1751 }
1752 
1753 /* Initialize TBI PHY interface for communicating with the
1754  * SERDES lynx PHY on the chip.  We communicate with this PHY
1755  * through the MDIO bus on each controller, treating it as a
1756  * "normal" PHY at the address found in the TBIPA register.  We assume
1757  * that the TBIPA register is valid.  Either the MDIO bus code will set
1758  * it to a value that doesn't conflict with other PHYs on the bus, or the
1759  * value doesn't matter, as there are no other PHYs on the bus.
1760  */
1761 static void gfar_configure_serdes(struct net_device *dev)
1762 {
1763 	struct gfar_private *priv = netdev_priv(dev);
1764 	struct phy_device *tbiphy;
1765 
1766 	if (!priv->tbi_node) {
1767 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1768 				    "device tree specify a tbi-handle\n");
1769 		return;
1770 	}
1771 
1772 	tbiphy = of_phy_find_device(priv->tbi_node);
1773 	if (!tbiphy) {
1774 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1775 		return;
1776 	}
1777 
1778 	/* If the link is already up, we must already be ok, and don't need to
1779 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1780 	 * everything for us?  Resetting it takes the link down and requires
1781 	 * several seconds for it to come back.
1782 	 */
1783 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1784 		return;
1785 
1786 	/* Single clk mode, mii mode off(for serdes communication) */
1787 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1788 
1789 	phy_write(tbiphy, MII_ADVERTISE,
1790 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1791 		  ADVERTISE_1000XPSE_ASYM);
1792 
1793 	phy_write(tbiphy, MII_BMCR,
1794 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1795 		  BMCR_SPEED1000);
1796 }
1797 
1798 static int __gfar_is_rx_idle(struct gfar_private *priv)
1799 {
1800 	u32 res;
1801 
1802 	/* Normaly TSEC should not hang on GRS commands, so we should
1803 	 * actually wait for IEVENT_GRSC flag.
1804 	 */
1805 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1806 		return 0;
1807 
1808 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1809 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1810 	 * and the Rx can be safely reset.
1811 	 */
1812 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1813 	res &= 0x7f807f80;
1814 	if ((res & 0xffff) == (res >> 16))
1815 		return 1;
1816 
1817 	return 0;
1818 }
1819 
1820 /* Halt the receive and transmit queues */
1821 static void gfar_halt_nodisable(struct gfar_private *priv)
1822 {
1823 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 	u32 tempval;
1825 	unsigned int timeout;
1826 	int stopped;
1827 
1828 	gfar_ints_disable(priv);
1829 
1830 	if (gfar_is_dma_stopped(priv))
1831 		return;
1832 
1833 	/* Stop the DMA, and wait for it to stop */
1834 	tempval = gfar_read(&regs->dmactrl);
1835 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1836 	gfar_write(&regs->dmactrl, tempval);
1837 
1838 retry:
1839 	timeout = 1000;
1840 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1841 		cpu_relax();
1842 		timeout--;
1843 	}
1844 
1845 	if (!timeout)
1846 		stopped = gfar_is_dma_stopped(priv);
1847 
1848 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1849 	    !__gfar_is_rx_idle(priv))
1850 		goto retry;
1851 }
1852 
1853 /* Halt the receive and transmit queues */
1854 void gfar_halt(struct gfar_private *priv)
1855 {
1856 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1857 	u32 tempval;
1858 
1859 	/* Dissable the Rx/Tx hw queues */
1860 	gfar_write(&regs->rqueue, 0);
1861 	gfar_write(&regs->tqueue, 0);
1862 
1863 	mdelay(10);
1864 
1865 	gfar_halt_nodisable(priv);
1866 
1867 	/* Disable Rx/Tx DMA */
1868 	tempval = gfar_read(&regs->maccfg1);
1869 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1870 	gfar_write(&regs->maccfg1, tempval);
1871 }
1872 
1873 void stop_gfar(struct net_device *dev)
1874 {
1875 	struct gfar_private *priv = netdev_priv(dev);
1876 
1877 	netif_tx_stop_all_queues(dev);
1878 
1879 	smp_mb__before_atomic();
1880 	set_bit(GFAR_DOWN, &priv->state);
1881 	smp_mb__after_atomic();
1882 
1883 	disable_napi(priv);
1884 
1885 	/* disable ints and gracefully shut down Rx/Tx DMA */
1886 	gfar_halt(priv);
1887 
1888 	phy_stop(priv->phydev);
1889 
1890 	free_skb_resources(priv);
1891 }
1892 
1893 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1894 {
1895 	struct txbd8 *txbdp;
1896 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1897 	int i, j;
1898 
1899 	txbdp = tx_queue->tx_bd_base;
1900 
1901 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1902 		if (!tx_queue->tx_skbuff[i])
1903 			continue;
1904 
1905 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1906 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1907 		txbdp->lstatus = 0;
1908 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1909 		     j++) {
1910 			txbdp++;
1911 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1912 				       be16_to_cpu(txbdp->length),
1913 				       DMA_TO_DEVICE);
1914 		}
1915 		txbdp++;
1916 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1917 		tx_queue->tx_skbuff[i] = NULL;
1918 	}
1919 	kfree(tx_queue->tx_skbuff);
1920 	tx_queue->tx_skbuff = NULL;
1921 }
1922 
1923 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1924 {
1925 	struct rxbd8 *rxbdp;
1926 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1927 	int i;
1928 
1929 	rxbdp = rx_queue->rx_bd_base;
1930 
1931 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1932 		if (rx_queue->rx_skbuff[i]) {
1933 			dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1934 					 priv->rx_buffer_size,
1935 					 DMA_FROM_DEVICE);
1936 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1937 			rx_queue->rx_skbuff[i] = NULL;
1938 		}
1939 		rxbdp->lstatus = 0;
1940 		rxbdp->bufPtr = 0;
1941 		rxbdp++;
1942 	}
1943 	kfree(rx_queue->rx_skbuff);
1944 	rx_queue->rx_skbuff = NULL;
1945 }
1946 
1947 /* If there are any tx skbs or rx skbs still around, free them.
1948  * Then free tx_skbuff and rx_skbuff
1949  */
1950 static void free_skb_resources(struct gfar_private *priv)
1951 {
1952 	struct gfar_priv_tx_q *tx_queue = NULL;
1953 	struct gfar_priv_rx_q *rx_queue = NULL;
1954 	int i;
1955 
1956 	/* Go through all the buffer descriptors and free their data buffers */
1957 	for (i = 0; i < priv->num_tx_queues; i++) {
1958 		struct netdev_queue *txq;
1959 
1960 		tx_queue = priv->tx_queue[i];
1961 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1962 		if (tx_queue->tx_skbuff)
1963 			free_skb_tx_queue(tx_queue);
1964 		netdev_tx_reset_queue(txq);
1965 	}
1966 
1967 	for (i = 0; i < priv->num_rx_queues; i++) {
1968 		rx_queue = priv->rx_queue[i];
1969 		if (rx_queue->rx_skbuff)
1970 			free_skb_rx_queue(rx_queue);
1971 	}
1972 
1973 	dma_free_coherent(priv->dev,
1974 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1975 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1976 			  priv->tx_queue[0]->tx_bd_base,
1977 			  priv->tx_queue[0]->tx_bd_dma_base);
1978 }
1979 
1980 void gfar_start(struct gfar_private *priv)
1981 {
1982 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1983 	u32 tempval;
1984 	int i = 0;
1985 
1986 	/* Enable Rx/Tx hw queues */
1987 	gfar_write(&regs->rqueue, priv->rqueue);
1988 	gfar_write(&regs->tqueue, priv->tqueue);
1989 
1990 	/* Initialize DMACTRL to have WWR and WOP */
1991 	tempval = gfar_read(&regs->dmactrl);
1992 	tempval |= DMACTRL_INIT_SETTINGS;
1993 	gfar_write(&regs->dmactrl, tempval);
1994 
1995 	/* Make sure we aren't stopped */
1996 	tempval = gfar_read(&regs->dmactrl);
1997 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1998 	gfar_write(&regs->dmactrl, tempval);
1999 
2000 	for (i = 0; i < priv->num_grps; i++) {
2001 		regs = priv->gfargrp[i].regs;
2002 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2003 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2004 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2005 	}
2006 
2007 	/* Enable Rx/Tx DMA */
2008 	tempval = gfar_read(&regs->maccfg1);
2009 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2010 	gfar_write(&regs->maccfg1, tempval);
2011 
2012 	gfar_ints_enable(priv);
2013 
2014 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2015 }
2016 
2017 static void free_grp_irqs(struct gfar_priv_grp *grp)
2018 {
2019 	free_irq(gfar_irq(grp, TX)->irq, grp);
2020 	free_irq(gfar_irq(grp, RX)->irq, grp);
2021 	free_irq(gfar_irq(grp, ER)->irq, grp);
2022 }
2023 
2024 static int register_grp_irqs(struct gfar_priv_grp *grp)
2025 {
2026 	struct gfar_private *priv = grp->priv;
2027 	struct net_device *dev = priv->ndev;
2028 	int err;
2029 
2030 	/* If the device has multiple interrupts, register for
2031 	 * them.  Otherwise, only register for the one
2032 	 */
2033 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2034 		/* Install our interrupt handlers for Error,
2035 		 * Transmit, and Receive
2036 		 */
2037 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2038 				  gfar_irq(grp, ER)->name, grp);
2039 		if (err < 0) {
2040 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2041 				  gfar_irq(grp, ER)->irq);
2042 
2043 			goto err_irq_fail;
2044 		}
2045 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2046 				  gfar_irq(grp, TX)->name, grp);
2047 		if (err < 0) {
2048 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2049 				  gfar_irq(grp, TX)->irq);
2050 			goto tx_irq_fail;
2051 		}
2052 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2053 				  gfar_irq(grp, RX)->name, grp);
2054 		if (err < 0) {
2055 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2056 				  gfar_irq(grp, RX)->irq);
2057 			goto rx_irq_fail;
2058 		}
2059 	} else {
2060 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2061 				  gfar_irq(grp, TX)->name, grp);
2062 		if (err < 0) {
2063 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2064 				  gfar_irq(grp, TX)->irq);
2065 			goto err_irq_fail;
2066 		}
2067 	}
2068 
2069 	return 0;
2070 
2071 rx_irq_fail:
2072 	free_irq(gfar_irq(grp, TX)->irq, grp);
2073 tx_irq_fail:
2074 	free_irq(gfar_irq(grp, ER)->irq, grp);
2075 err_irq_fail:
2076 	return err;
2077 
2078 }
2079 
2080 static void gfar_free_irq(struct gfar_private *priv)
2081 {
2082 	int i;
2083 
2084 	/* Free the IRQs */
2085 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2086 		for (i = 0; i < priv->num_grps; i++)
2087 			free_grp_irqs(&priv->gfargrp[i]);
2088 	} else {
2089 		for (i = 0; i < priv->num_grps; i++)
2090 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2091 				 &priv->gfargrp[i]);
2092 	}
2093 }
2094 
2095 static int gfar_request_irq(struct gfar_private *priv)
2096 {
2097 	int err, i, j;
2098 
2099 	for (i = 0; i < priv->num_grps; i++) {
2100 		err = register_grp_irqs(&priv->gfargrp[i]);
2101 		if (err) {
2102 			for (j = 0; j < i; j++)
2103 				free_grp_irqs(&priv->gfargrp[j]);
2104 			return err;
2105 		}
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 /* Bring the controller up and running */
2112 int startup_gfar(struct net_device *ndev)
2113 {
2114 	struct gfar_private *priv = netdev_priv(ndev);
2115 	int err;
2116 
2117 	gfar_mac_reset(priv);
2118 
2119 	err = gfar_alloc_skb_resources(ndev);
2120 	if (err)
2121 		return err;
2122 
2123 	gfar_init_tx_rx_base(priv);
2124 
2125 	smp_mb__before_atomic();
2126 	clear_bit(GFAR_DOWN, &priv->state);
2127 	smp_mb__after_atomic();
2128 
2129 	/* Start Rx/Tx DMA and enable the interrupts */
2130 	gfar_start(priv);
2131 
2132 	phy_start(priv->phydev);
2133 
2134 	enable_napi(priv);
2135 
2136 	netif_tx_wake_all_queues(ndev);
2137 
2138 	return 0;
2139 }
2140 
2141 /* Called when something needs to use the ethernet device
2142  * Returns 0 for success.
2143  */
2144 static int gfar_enet_open(struct net_device *dev)
2145 {
2146 	struct gfar_private *priv = netdev_priv(dev);
2147 	int err;
2148 
2149 	err = init_phy(dev);
2150 	if (err)
2151 		return err;
2152 
2153 	err = gfar_request_irq(priv);
2154 	if (err)
2155 		return err;
2156 
2157 	err = startup_gfar(dev);
2158 	if (err)
2159 		return err;
2160 
2161 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2162 
2163 	return err;
2164 }
2165 
2166 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2167 {
2168 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2169 
2170 	memset(fcb, 0, GMAC_FCB_LEN);
2171 
2172 	return fcb;
2173 }
2174 
2175 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2176 				    int fcb_length)
2177 {
2178 	/* If we're here, it's a IP packet with a TCP or UDP
2179 	 * payload.  We set it to checksum, using a pseudo-header
2180 	 * we provide
2181 	 */
2182 	u8 flags = TXFCB_DEFAULT;
2183 
2184 	/* Tell the controller what the protocol is
2185 	 * And provide the already calculated phcs
2186 	 */
2187 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2188 		flags |= TXFCB_UDP;
2189 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2190 	} else
2191 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2192 
2193 	/* l3os is the distance between the start of the
2194 	 * frame (skb->data) and the start of the IP hdr.
2195 	 * l4os is the distance between the start of the
2196 	 * l3 hdr and the l4 hdr
2197 	 */
2198 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2199 	fcb->l4os = skb_network_header_len(skb);
2200 
2201 	fcb->flags = flags;
2202 }
2203 
2204 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2205 {
2206 	fcb->flags |= TXFCB_VLN;
2207 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2208 }
2209 
2210 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2211 				      struct txbd8 *base, int ring_size)
2212 {
2213 	struct txbd8 *new_bd = bdp + stride;
2214 
2215 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2216 }
2217 
2218 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2219 				      int ring_size)
2220 {
2221 	return skip_txbd(bdp, 1, base, ring_size);
2222 }
2223 
2224 /* eTSEC12: csum generation not supported for some fcb offsets */
2225 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2226 				       unsigned long fcb_addr)
2227 {
2228 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2229 	       (fcb_addr % 0x20) > 0x18);
2230 }
2231 
2232 /* eTSEC76: csum generation for frames larger than 2500 may
2233  * cause excess delays before start of transmission
2234  */
2235 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2236 				       unsigned int len)
2237 {
2238 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2239 	       (len > 2500));
2240 }
2241 
2242 /* This is called by the kernel when a frame is ready for transmission.
2243  * It is pointed to by the dev->hard_start_xmit function pointer
2244  */
2245 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2246 {
2247 	struct gfar_private *priv = netdev_priv(dev);
2248 	struct gfar_priv_tx_q *tx_queue = NULL;
2249 	struct netdev_queue *txq;
2250 	struct gfar __iomem *regs = NULL;
2251 	struct txfcb *fcb = NULL;
2252 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2253 	u32 lstatus;
2254 	int i, rq = 0;
2255 	int do_tstamp, do_csum, do_vlan;
2256 	u32 bufaddr;
2257 	unsigned long flags;
2258 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2259 
2260 	rq = skb->queue_mapping;
2261 	tx_queue = priv->tx_queue[rq];
2262 	txq = netdev_get_tx_queue(dev, rq);
2263 	base = tx_queue->tx_bd_base;
2264 	regs = tx_queue->grp->regs;
2265 
2266 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2267 	do_vlan = skb_vlan_tag_present(skb);
2268 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2269 		    priv->hwts_tx_en;
2270 
2271 	if (do_csum || do_vlan)
2272 		fcb_len = GMAC_FCB_LEN;
2273 
2274 	/* check if time stamp should be generated */
2275 	if (unlikely(do_tstamp))
2276 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2277 
2278 	/* make space for additional header when fcb is needed */
2279 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2280 		struct sk_buff *skb_new;
2281 
2282 		skb_new = skb_realloc_headroom(skb, fcb_len);
2283 		if (!skb_new) {
2284 			dev->stats.tx_errors++;
2285 			dev_kfree_skb_any(skb);
2286 			return NETDEV_TX_OK;
2287 		}
2288 
2289 		if (skb->sk)
2290 			skb_set_owner_w(skb_new, skb->sk);
2291 		dev_consume_skb_any(skb);
2292 		skb = skb_new;
2293 	}
2294 
2295 	/* total number of fragments in the SKB */
2296 	nr_frags = skb_shinfo(skb)->nr_frags;
2297 
2298 	/* calculate the required number of TxBDs for this skb */
2299 	if (unlikely(do_tstamp))
2300 		nr_txbds = nr_frags + 2;
2301 	else
2302 		nr_txbds = nr_frags + 1;
2303 
2304 	/* check if there is space to queue this packet */
2305 	if (nr_txbds > tx_queue->num_txbdfree) {
2306 		/* no space, stop the queue */
2307 		netif_tx_stop_queue(txq);
2308 		dev->stats.tx_fifo_errors++;
2309 		return NETDEV_TX_BUSY;
2310 	}
2311 
2312 	/* Update transmit stats */
2313 	bytes_sent = skb->len;
2314 	tx_queue->stats.tx_bytes += bytes_sent;
2315 	/* keep Tx bytes on wire for BQL accounting */
2316 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2317 	tx_queue->stats.tx_packets++;
2318 
2319 	txbdp = txbdp_start = tx_queue->cur_tx;
2320 	lstatus = be32_to_cpu(txbdp->lstatus);
2321 
2322 	/* Time stamp insertion requires one additional TxBD */
2323 	if (unlikely(do_tstamp))
2324 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2325 						 tx_queue->tx_ring_size);
2326 
2327 	if (nr_frags == 0) {
2328 		if (unlikely(do_tstamp)) {
2329 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2330 
2331 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2332 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2333 		} else {
2334 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2335 		}
2336 	} else {
2337 		/* Place the fragment addresses and lengths into the TxBDs */
2338 		for (i = 0; i < nr_frags; i++) {
2339 			unsigned int frag_len;
2340 			/* Point at the next BD, wrapping as needed */
2341 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2342 
2343 			frag_len = skb_shinfo(skb)->frags[i].size;
2344 
2345 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2346 				  BD_LFLAG(TXBD_READY);
2347 
2348 			/* Handle the last BD specially */
2349 			if (i == nr_frags - 1)
2350 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2351 
2352 			bufaddr = skb_frag_dma_map(priv->dev,
2353 						   &skb_shinfo(skb)->frags[i],
2354 						   0,
2355 						   frag_len,
2356 						   DMA_TO_DEVICE);
2357 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2358 				goto dma_map_err;
2359 
2360 			/* set the TxBD length and buffer pointer */
2361 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2362 			txbdp->lstatus = cpu_to_be32(lstatus);
2363 		}
2364 
2365 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2366 	}
2367 
2368 	/* Add TxPAL between FCB and frame if required */
2369 	if (unlikely(do_tstamp)) {
2370 		skb_push(skb, GMAC_TXPAL_LEN);
2371 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2372 	}
2373 
2374 	/* Add TxFCB if required */
2375 	if (fcb_len) {
2376 		fcb = gfar_add_fcb(skb);
2377 		lstatus |= BD_LFLAG(TXBD_TOE);
2378 	}
2379 
2380 	/* Set up checksumming */
2381 	if (do_csum) {
2382 		gfar_tx_checksum(skb, fcb, fcb_len);
2383 
2384 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2385 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2386 			__skb_pull(skb, GMAC_FCB_LEN);
2387 			skb_checksum_help(skb);
2388 			if (do_vlan || do_tstamp) {
2389 				/* put back a new fcb for vlan/tstamp TOE */
2390 				fcb = gfar_add_fcb(skb);
2391 			} else {
2392 				/* Tx TOE not used */
2393 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2394 				fcb = NULL;
2395 			}
2396 		}
2397 	}
2398 
2399 	if (do_vlan)
2400 		gfar_tx_vlan(skb, fcb);
2401 
2402 	/* Setup tx hardware time stamping if requested */
2403 	if (unlikely(do_tstamp)) {
2404 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2405 		fcb->ptp = 1;
2406 	}
2407 
2408 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2409 				 DMA_TO_DEVICE);
2410 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2411 		goto dma_map_err;
2412 
2413 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2414 
2415 	/* If time stamping is requested one additional TxBD must be set up. The
2416 	 * first TxBD points to the FCB and must have a data length of
2417 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2418 	 * the full frame length.
2419 	 */
2420 	if (unlikely(do_tstamp)) {
2421 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2422 
2423 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2424 		bufaddr += fcb_len;
2425 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2426 			      (skb_headlen(skb) - fcb_len);
2427 
2428 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2429 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2430 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2431 	} else {
2432 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2433 	}
2434 
2435 	netdev_tx_sent_queue(txq, bytes_sent);
2436 
2437 	/* We can work in parallel with gfar_clean_tx_ring(), except
2438 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2439 	 * when we were reading the num_txbdfree and checking for available
2440 	 * space, that's because outside of this function it can only grow,
2441 	 * and once we've got needed space, it cannot suddenly disappear.
2442 	 *
2443 	 * The lock also protects us from gfar_error(), which can modify
2444 	 * regs->tstat and thus retrigger the transfers, which is why we
2445 	 * also must grab the lock before setting ready bit for the first
2446 	 * to be transmitted BD.
2447 	 */
2448 	spin_lock_irqsave(&tx_queue->txlock, flags);
2449 
2450 	gfar_wmb();
2451 
2452 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2453 
2454 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2455 
2456 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2457 
2458 	/* Update the current skb pointer to the next entry we will use
2459 	 * (wrapping if necessary)
2460 	 */
2461 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2462 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2463 
2464 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2465 
2466 	/* reduce TxBD free count */
2467 	tx_queue->num_txbdfree -= (nr_txbds);
2468 
2469 	/* If the next BD still needs to be cleaned up, then the bds
2470 	 * are full.  We need to tell the kernel to stop sending us stuff.
2471 	 */
2472 	if (!tx_queue->num_txbdfree) {
2473 		netif_tx_stop_queue(txq);
2474 
2475 		dev->stats.tx_fifo_errors++;
2476 	}
2477 
2478 	/* Tell the DMA to go go go */
2479 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2480 
2481 	/* Unlock priv */
2482 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2483 
2484 	return NETDEV_TX_OK;
2485 
2486 dma_map_err:
2487 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2488 	if (do_tstamp)
2489 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2490 	for (i = 0; i < nr_frags; i++) {
2491 		lstatus = be32_to_cpu(txbdp->lstatus);
2492 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2493 			break;
2494 
2495 		lstatus &= ~BD_LFLAG(TXBD_READY);
2496 		txbdp->lstatus = cpu_to_be32(lstatus);
2497 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2498 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2499 			       DMA_TO_DEVICE);
2500 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2501 	}
2502 	gfar_wmb();
2503 	dev_kfree_skb_any(skb);
2504 	return NETDEV_TX_OK;
2505 }
2506 
2507 /* Stops the kernel queue, and halts the controller */
2508 static int gfar_close(struct net_device *dev)
2509 {
2510 	struct gfar_private *priv = netdev_priv(dev);
2511 
2512 	cancel_work_sync(&priv->reset_task);
2513 	stop_gfar(dev);
2514 
2515 	/* Disconnect from the PHY */
2516 	phy_disconnect(priv->phydev);
2517 	priv->phydev = NULL;
2518 
2519 	gfar_free_irq(priv);
2520 
2521 	return 0;
2522 }
2523 
2524 /* Changes the mac address if the controller is not running. */
2525 static int gfar_set_mac_address(struct net_device *dev)
2526 {
2527 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2528 
2529 	return 0;
2530 }
2531 
2532 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2533 {
2534 	struct gfar_private *priv = netdev_priv(dev);
2535 	int frame_size = new_mtu + ETH_HLEN;
2536 
2537 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2538 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2539 		return -EINVAL;
2540 	}
2541 
2542 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2543 		cpu_relax();
2544 
2545 	if (dev->flags & IFF_UP)
2546 		stop_gfar(dev);
2547 
2548 	dev->mtu = new_mtu;
2549 
2550 	if (dev->flags & IFF_UP)
2551 		startup_gfar(dev);
2552 
2553 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2554 
2555 	return 0;
2556 }
2557 
2558 void reset_gfar(struct net_device *ndev)
2559 {
2560 	struct gfar_private *priv = netdev_priv(ndev);
2561 
2562 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2563 		cpu_relax();
2564 
2565 	stop_gfar(ndev);
2566 	startup_gfar(ndev);
2567 
2568 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2569 }
2570 
2571 /* gfar_reset_task gets scheduled when a packet has not been
2572  * transmitted after a set amount of time.
2573  * For now, assume that clearing out all the structures, and
2574  * starting over will fix the problem.
2575  */
2576 static void gfar_reset_task(struct work_struct *work)
2577 {
2578 	struct gfar_private *priv = container_of(work, struct gfar_private,
2579 						 reset_task);
2580 	reset_gfar(priv->ndev);
2581 }
2582 
2583 static void gfar_timeout(struct net_device *dev)
2584 {
2585 	struct gfar_private *priv = netdev_priv(dev);
2586 
2587 	dev->stats.tx_errors++;
2588 	schedule_work(&priv->reset_task);
2589 }
2590 
2591 static void gfar_align_skb(struct sk_buff *skb)
2592 {
2593 	/* We need the data buffer to be aligned properly.  We will reserve
2594 	 * as many bytes as needed to align the data properly
2595 	 */
2596 	skb_reserve(skb, RXBUF_ALIGNMENT -
2597 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2598 }
2599 
2600 /* Interrupt Handler for Transmit complete */
2601 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2602 {
2603 	struct net_device *dev = tx_queue->dev;
2604 	struct netdev_queue *txq;
2605 	struct gfar_private *priv = netdev_priv(dev);
2606 	struct txbd8 *bdp, *next = NULL;
2607 	struct txbd8 *lbdp = NULL;
2608 	struct txbd8 *base = tx_queue->tx_bd_base;
2609 	struct sk_buff *skb;
2610 	int skb_dirtytx;
2611 	int tx_ring_size = tx_queue->tx_ring_size;
2612 	int frags = 0, nr_txbds = 0;
2613 	int i;
2614 	int howmany = 0;
2615 	int tqi = tx_queue->qindex;
2616 	unsigned int bytes_sent = 0;
2617 	u32 lstatus;
2618 	size_t buflen;
2619 
2620 	txq = netdev_get_tx_queue(dev, tqi);
2621 	bdp = tx_queue->dirty_tx;
2622 	skb_dirtytx = tx_queue->skb_dirtytx;
2623 
2624 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2625 		unsigned long flags;
2626 
2627 		frags = skb_shinfo(skb)->nr_frags;
2628 
2629 		/* When time stamping, one additional TxBD must be freed.
2630 		 * Also, we need to dma_unmap_single() the TxPAL.
2631 		 */
2632 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2633 			nr_txbds = frags + 2;
2634 		else
2635 			nr_txbds = frags + 1;
2636 
2637 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2638 
2639 		lstatus = be32_to_cpu(lbdp->lstatus);
2640 
2641 		/* Only clean completed frames */
2642 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2643 		    (lstatus & BD_LENGTH_MASK))
2644 			break;
2645 
2646 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2647 			next = next_txbd(bdp, base, tx_ring_size);
2648 			buflen = be16_to_cpu(next->length) +
2649 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2650 		} else
2651 			buflen = be16_to_cpu(bdp->length);
2652 
2653 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2654 				 buflen, DMA_TO_DEVICE);
2655 
2656 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2657 			struct skb_shared_hwtstamps shhwtstamps;
2658 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2659 
2660 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2661 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2662 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2663 			skb_tstamp_tx(skb, &shhwtstamps);
2664 			gfar_clear_txbd_status(bdp);
2665 			bdp = next;
2666 		}
2667 
2668 		gfar_clear_txbd_status(bdp);
2669 		bdp = next_txbd(bdp, base, tx_ring_size);
2670 
2671 		for (i = 0; i < frags; i++) {
2672 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2673 				       be16_to_cpu(bdp->length),
2674 				       DMA_TO_DEVICE);
2675 			gfar_clear_txbd_status(bdp);
2676 			bdp = next_txbd(bdp, base, tx_ring_size);
2677 		}
2678 
2679 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2680 
2681 		dev_kfree_skb_any(skb);
2682 
2683 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2684 
2685 		skb_dirtytx = (skb_dirtytx + 1) &
2686 			      TX_RING_MOD_MASK(tx_ring_size);
2687 
2688 		howmany++;
2689 		spin_lock_irqsave(&tx_queue->txlock, flags);
2690 		tx_queue->num_txbdfree += nr_txbds;
2691 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2692 	}
2693 
2694 	/* If we freed a buffer, we can restart transmission, if necessary */
2695 	if (tx_queue->num_txbdfree &&
2696 	    netif_tx_queue_stopped(txq) &&
2697 	    !(test_bit(GFAR_DOWN, &priv->state)))
2698 		netif_wake_subqueue(priv->ndev, tqi);
2699 
2700 	/* Update dirty indicators */
2701 	tx_queue->skb_dirtytx = skb_dirtytx;
2702 	tx_queue->dirty_tx = bdp;
2703 
2704 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2705 }
2706 
2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2708 {
2709 	struct gfar_private *priv = netdev_priv(dev);
2710 	struct sk_buff *skb;
2711 
2712 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2713 	if (!skb)
2714 		return NULL;
2715 
2716 	gfar_align_skb(skb);
2717 
2718 	return skb;
2719 }
2720 
2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2722 {
2723 	struct gfar_private *priv = netdev_priv(dev);
2724 	struct sk_buff *skb;
2725 	dma_addr_t addr;
2726 
2727 	skb = gfar_alloc_skb(dev);
2728 	if (!skb)
2729 		return NULL;
2730 
2731 	addr = dma_map_single(priv->dev, skb->data,
2732 			      priv->rx_buffer_size, DMA_FROM_DEVICE);
2733 	if (unlikely(dma_mapping_error(priv->dev, addr))) {
2734 		dev_kfree_skb_any(skb);
2735 		return NULL;
2736 	}
2737 
2738 	*bufaddr = addr;
2739 	return skb;
2740 }
2741 
2742 static inline void count_errors(unsigned short status, struct net_device *dev)
2743 {
2744 	struct gfar_private *priv = netdev_priv(dev);
2745 	struct net_device_stats *stats = &dev->stats;
2746 	struct gfar_extra_stats *estats = &priv->extra_stats;
2747 
2748 	/* If the packet was truncated, none of the other errors matter */
2749 	if (status & RXBD_TRUNCATED) {
2750 		stats->rx_length_errors++;
2751 
2752 		atomic64_inc(&estats->rx_trunc);
2753 
2754 		return;
2755 	}
2756 	/* Count the errors, if there were any */
2757 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2758 		stats->rx_length_errors++;
2759 
2760 		if (status & RXBD_LARGE)
2761 			atomic64_inc(&estats->rx_large);
2762 		else
2763 			atomic64_inc(&estats->rx_short);
2764 	}
2765 	if (status & RXBD_NONOCTET) {
2766 		stats->rx_frame_errors++;
2767 		atomic64_inc(&estats->rx_nonoctet);
2768 	}
2769 	if (status & RXBD_CRCERR) {
2770 		atomic64_inc(&estats->rx_crcerr);
2771 		stats->rx_crc_errors++;
2772 	}
2773 	if (status & RXBD_OVERRUN) {
2774 		atomic64_inc(&estats->rx_overrun);
2775 		stats->rx_crc_errors++;
2776 	}
2777 }
2778 
2779 irqreturn_t gfar_receive(int irq, void *grp_id)
2780 {
2781 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2782 	unsigned long flags;
2783 	u32 imask;
2784 
2785 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2786 		spin_lock_irqsave(&grp->grplock, flags);
2787 		imask = gfar_read(&grp->regs->imask);
2788 		imask &= IMASK_RX_DISABLED;
2789 		gfar_write(&grp->regs->imask, imask);
2790 		spin_unlock_irqrestore(&grp->grplock, flags);
2791 		__napi_schedule(&grp->napi_rx);
2792 	} else {
2793 		/* Clear IEVENT, so interrupts aren't called again
2794 		 * because of the packets that have already arrived.
2795 		 */
2796 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2797 	}
2798 
2799 	return IRQ_HANDLED;
2800 }
2801 
2802 /* Interrupt Handler for Transmit complete */
2803 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2804 {
2805 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2806 	unsigned long flags;
2807 	u32 imask;
2808 
2809 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2810 		spin_lock_irqsave(&grp->grplock, flags);
2811 		imask = gfar_read(&grp->regs->imask);
2812 		imask &= IMASK_TX_DISABLED;
2813 		gfar_write(&grp->regs->imask, imask);
2814 		spin_unlock_irqrestore(&grp->grplock, flags);
2815 		__napi_schedule(&grp->napi_tx);
2816 	} else {
2817 		/* Clear IEVENT, so interrupts aren't called again
2818 		 * because of the packets that have already arrived.
2819 		 */
2820 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2821 	}
2822 
2823 	return IRQ_HANDLED;
2824 }
2825 
2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2827 {
2828 	/* If valid headers were found, and valid sums
2829 	 * were verified, then we tell the kernel that no
2830 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2831 	 */
2832 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2833 	    (RXFCB_CIP | RXFCB_CTU))
2834 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2835 	else
2836 		skb_checksum_none_assert(skb);
2837 }
2838 
2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2841 			       int amount_pull, struct napi_struct *napi)
2842 {
2843 	struct gfar_private *priv = netdev_priv(dev);
2844 	struct rxfcb *fcb = NULL;
2845 
2846 	/* fcb is at the beginning if exists */
2847 	fcb = (struct rxfcb *)skb->data;
2848 
2849 	/* Remove the FCB from the skb
2850 	 * Remove the padded bytes, if there are any
2851 	 */
2852 	if (amount_pull) {
2853 		skb_record_rx_queue(skb, fcb->rq);
2854 		skb_pull(skb, amount_pull);
2855 	}
2856 
2857 	/* Get receive timestamp from the skb */
2858 	if (priv->hwts_rx_en) {
2859 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2860 		u64 *ns = (u64 *) skb->data;
2861 
2862 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2863 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2864 	}
2865 
2866 	if (priv->padding)
2867 		skb_pull(skb, priv->padding);
2868 
2869 	if (dev->features & NETIF_F_RXCSUM)
2870 		gfar_rx_checksum(skb, fcb);
2871 
2872 	/* Tell the skb what kind of packet this is */
2873 	skb->protocol = eth_type_trans(skb, dev);
2874 
2875 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2876 	 * Even if vlan rx accel is disabled, on some chips
2877 	 * RXFCB_VLN is pseudo randomly set.
2878 	 */
2879 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2880 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2881 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2882 				       be16_to_cpu(fcb->vlctl));
2883 
2884 	/* Send the packet up the stack */
2885 	napi_gro_receive(napi, skb);
2886 
2887 }
2888 
2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2890  * until the budget/quota has been reached. Returns the number
2891  * of frames handled
2892  */
2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2894 {
2895 	struct net_device *dev = rx_queue->dev;
2896 	struct rxbd8 *bdp, *base;
2897 	struct sk_buff *skb;
2898 	int pkt_len;
2899 	int amount_pull;
2900 	int howmany = 0;
2901 	struct gfar_private *priv = netdev_priv(dev);
2902 
2903 	/* Get the first full descriptor */
2904 	bdp = rx_queue->cur_rx;
2905 	base = rx_queue->rx_bd_base;
2906 
2907 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2908 
2909 	while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2910 		struct sk_buff *newskb;
2911 		dma_addr_t bufaddr;
2912 
2913 		rmb();
2914 
2915 		/* Add another skb for the future */
2916 		newskb = gfar_new_skb(dev, &bufaddr);
2917 
2918 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2919 
2920 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2921 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2922 
2923 		if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2924 			     be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2925 			bdp->status = cpu_to_be16(RXBD_LARGE);
2926 
2927 		/* We drop the frame if we failed to allocate a new buffer */
2928 		if (unlikely(!newskb ||
2929 			     !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2930 			     be16_to_cpu(bdp->status) & RXBD_ERR)) {
2931 			count_errors(be16_to_cpu(bdp->status), dev);
2932 
2933 			if (unlikely(!newskb)) {
2934 				newskb = skb;
2935 				bufaddr = be32_to_cpu(bdp->bufPtr);
2936 			} else if (skb)
2937 				dev_kfree_skb(skb);
2938 		} else {
2939 			/* Increment the number of packets */
2940 			rx_queue->stats.rx_packets++;
2941 			howmany++;
2942 
2943 			if (likely(skb)) {
2944 				pkt_len = be16_to_cpu(bdp->length) -
2945 					  ETH_FCS_LEN;
2946 				/* Remove the FCS from the packet length */
2947 				skb_put(skb, pkt_len);
2948 				rx_queue->stats.rx_bytes += pkt_len;
2949 				skb_record_rx_queue(skb, rx_queue->qindex);
2950 				gfar_process_frame(dev, skb, amount_pull,
2951 						   &rx_queue->grp->napi_rx);
2952 
2953 			} else {
2954 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2955 				rx_queue->stats.rx_dropped++;
2956 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2957 			}
2958 
2959 		}
2960 
2961 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2962 
2963 		/* Setup the new bdp */
2964 		gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2965 
2966 		/* Update Last Free RxBD pointer for LFC */
2967 		if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2968 			gfar_write(rx_queue->rfbptr, (u32)bdp);
2969 
2970 		/* Update to the next pointer */
2971 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2972 
2973 		/* update to point at the next skb */
2974 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2975 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2976 	}
2977 
2978 	/* Update the current rxbd pointer to be the next one */
2979 	rx_queue->cur_rx = bdp;
2980 
2981 	return howmany;
2982 }
2983 
2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2985 {
2986 	struct gfar_priv_grp *gfargrp =
2987 		container_of(napi, struct gfar_priv_grp, napi_rx);
2988 	struct gfar __iomem *regs = gfargrp->regs;
2989 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2990 	int work_done = 0;
2991 
2992 	/* Clear IEVENT, so interrupts aren't called again
2993 	 * because of the packets that have already arrived
2994 	 */
2995 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2996 
2997 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2998 
2999 	if (work_done < budget) {
3000 		u32 imask;
3001 		napi_complete(napi);
3002 		/* Clear the halt bit in RSTAT */
3003 		gfar_write(&regs->rstat, gfargrp->rstat);
3004 
3005 		spin_lock_irq(&gfargrp->grplock);
3006 		imask = gfar_read(&regs->imask);
3007 		imask |= IMASK_RX_DEFAULT;
3008 		gfar_write(&regs->imask, imask);
3009 		spin_unlock_irq(&gfargrp->grplock);
3010 	}
3011 
3012 	return work_done;
3013 }
3014 
3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3016 {
3017 	struct gfar_priv_grp *gfargrp =
3018 		container_of(napi, struct gfar_priv_grp, napi_tx);
3019 	struct gfar __iomem *regs = gfargrp->regs;
3020 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3021 	u32 imask;
3022 
3023 	/* Clear IEVENT, so interrupts aren't called again
3024 	 * because of the packets that have already arrived
3025 	 */
3026 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3027 
3028 	/* run Tx cleanup to completion */
3029 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3030 		gfar_clean_tx_ring(tx_queue);
3031 
3032 	napi_complete(napi);
3033 
3034 	spin_lock_irq(&gfargrp->grplock);
3035 	imask = gfar_read(&regs->imask);
3036 	imask |= IMASK_TX_DEFAULT;
3037 	gfar_write(&regs->imask, imask);
3038 	spin_unlock_irq(&gfargrp->grplock);
3039 
3040 	return 0;
3041 }
3042 
3043 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3044 {
3045 	struct gfar_priv_grp *gfargrp =
3046 		container_of(napi, struct gfar_priv_grp, napi_rx);
3047 	struct gfar_private *priv = gfargrp->priv;
3048 	struct gfar __iomem *regs = gfargrp->regs;
3049 	struct gfar_priv_rx_q *rx_queue = NULL;
3050 	int work_done = 0, work_done_per_q = 0;
3051 	int i, budget_per_q = 0;
3052 	unsigned long rstat_rxf;
3053 	int num_act_queues;
3054 
3055 	/* Clear IEVENT, so interrupts aren't called again
3056 	 * because of the packets that have already arrived
3057 	 */
3058 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3059 
3060 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3061 
3062 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3063 	if (num_act_queues)
3064 		budget_per_q = budget/num_act_queues;
3065 
3066 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3067 		/* skip queue if not active */
3068 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3069 			continue;
3070 
3071 		rx_queue = priv->rx_queue[i];
3072 		work_done_per_q =
3073 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3074 		work_done += work_done_per_q;
3075 
3076 		/* finished processing this queue */
3077 		if (work_done_per_q < budget_per_q) {
3078 			/* clear active queue hw indication */
3079 			gfar_write(&regs->rstat,
3080 				   RSTAT_CLEAR_RXF0 >> i);
3081 			num_act_queues--;
3082 
3083 			if (!num_act_queues)
3084 				break;
3085 		}
3086 	}
3087 
3088 	if (!num_act_queues) {
3089 		u32 imask;
3090 		napi_complete(napi);
3091 
3092 		/* Clear the halt bit in RSTAT */
3093 		gfar_write(&regs->rstat, gfargrp->rstat);
3094 
3095 		spin_lock_irq(&gfargrp->grplock);
3096 		imask = gfar_read(&regs->imask);
3097 		imask |= IMASK_RX_DEFAULT;
3098 		gfar_write(&regs->imask, imask);
3099 		spin_unlock_irq(&gfargrp->grplock);
3100 	}
3101 
3102 	return work_done;
3103 }
3104 
3105 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3106 {
3107 	struct gfar_priv_grp *gfargrp =
3108 		container_of(napi, struct gfar_priv_grp, napi_tx);
3109 	struct gfar_private *priv = gfargrp->priv;
3110 	struct gfar __iomem *regs = gfargrp->regs;
3111 	struct gfar_priv_tx_q *tx_queue = NULL;
3112 	int has_tx_work = 0;
3113 	int i;
3114 
3115 	/* Clear IEVENT, so interrupts aren't called again
3116 	 * because of the packets that have already arrived
3117 	 */
3118 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3119 
3120 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3121 		tx_queue = priv->tx_queue[i];
3122 		/* run Tx cleanup to completion */
3123 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3124 			gfar_clean_tx_ring(tx_queue);
3125 			has_tx_work = 1;
3126 		}
3127 	}
3128 
3129 	if (!has_tx_work) {
3130 		u32 imask;
3131 		napi_complete(napi);
3132 
3133 		spin_lock_irq(&gfargrp->grplock);
3134 		imask = gfar_read(&regs->imask);
3135 		imask |= IMASK_TX_DEFAULT;
3136 		gfar_write(&regs->imask, imask);
3137 		spin_unlock_irq(&gfargrp->grplock);
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 
3144 #ifdef CONFIG_NET_POLL_CONTROLLER
3145 /* Polling 'interrupt' - used by things like netconsole to send skbs
3146  * without having to re-enable interrupts. It's not called while
3147  * the interrupt routine is executing.
3148  */
3149 static void gfar_netpoll(struct net_device *dev)
3150 {
3151 	struct gfar_private *priv = netdev_priv(dev);
3152 	int i;
3153 
3154 	/* If the device has multiple interrupts, run tx/rx */
3155 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3156 		for (i = 0; i < priv->num_grps; i++) {
3157 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3158 
3159 			disable_irq(gfar_irq(grp, TX)->irq);
3160 			disable_irq(gfar_irq(grp, RX)->irq);
3161 			disable_irq(gfar_irq(grp, ER)->irq);
3162 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3163 			enable_irq(gfar_irq(grp, ER)->irq);
3164 			enable_irq(gfar_irq(grp, RX)->irq);
3165 			enable_irq(gfar_irq(grp, TX)->irq);
3166 		}
3167 	} else {
3168 		for (i = 0; i < priv->num_grps; i++) {
3169 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3170 
3171 			disable_irq(gfar_irq(grp, TX)->irq);
3172 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3173 			enable_irq(gfar_irq(grp, TX)->irq);
3174 		}
3175 	}
3176 }
3177 #endif
3178 
3179 /* The interrupt handler for devices with one interrupt */
3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3181 {
3182 	struct gfar_priv_grp *gfargrp = grp_id;
3183 
3184 	/* Save ievent for future reference */
3185 	u32 events = gfar_read(&gfargrp->regs->ievent);
3186 
3187 	/* Check for reception */
3188 	if (events & IEVENT_RX_MASK)
3189 		gfar_receive(irq, grp_id);
3190 
3191 	/* Check for transmit completion */
3192 	if (events & IEVENT_TX_MASK)
3193 		gfar_transmit(irq, grp_id);
3194 
3195 	/* Check for errors */
3196 	if (events & IEVENT_ERR_MASK)
3197 		gfar_error(irq, grp_id);
3198 
3199 	return IRQ_HANDLED;
3200 }
3201 
3202 /* Called every time the controller might need to be made
3203  * aware of new link state.  The PHY code conveys this
3204  * information through variables in the phydev structure, and this
3205  * function converts those variables into the appropriate
3206  * register values, and can bring down the device if needed.
3207  */
3208 static void adjust_link(struct net_device *dev)
3209 {
3210 	struct gfar_private *priv = netdev_priv(dev);
3211 	struct phy_device *phydev = priv->phydev;
3212 
3213 	if (unlikely(phydev->link != priv->oldlink ||
3214 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3215 				       phydev->speed != priv->oldspeed))))
3216 		gfar_update_link_state(priv);
3217 }
3218 
3219 /* Update the hash table based on the current list of multicast
3220  * addresses we subscribe to.  Also, change the promiscuity of
3221  * the device based on the flags (this function is called
3222  * whenever dev->flags is changed
3223  */
3224 static void gfar_set_multi(struct net_device *dev)
3225 {
3226 	struct netdev_hw_addr *ha;
3227 	struct gfar_private *priv = netdev_priv(dev);
3228 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3229 	u32 tempval;
3230 
3231 	if (dev->flags & IFF_PROMISC) {
3232 		/* Set RCTRL to PROM */
3233 		tempval = gfar_read(&regs->rctrl);
3234 		tempval |= RCTRL_PROM;
3235 		gfar_write(&regs->rctrl, tempval);
3236 	} else {
3237 		/* Set RCTRL to not PROM */
3238 		tempval = gfar_read(&regs->rctrl);
3239 		tempval &= ~(RCTRL_PROM);
3240 		gfar_write(&regs->rctrl, tempval);
3241 	}
3242 
3243 	if (dev->flags & IFF_ALLMULTI) {
3244 		/* Set the hash to rx all multicast frames */
3245 		gfar_write(&regs->igaddr0, 0xffffffff);
3246 		gfar_write(&regs->igaddr1, 0xffffffff);
3247 		gfar_write(&regs->igaddr2, 0xffffffff);
3248 		gfar_write(&regs->igaddr3, 0xffffffff);
3249 		gfar_write(&regs->igaddr4, 0xffffffff);
3250 		gfar_write(&regs->igaddr5, 0xffffffff);
3251 		gfar_write(&regs->igaddr6, 0xffffffff);
3252 		gfar_write(&regs->igaddr7, 0xffffffff);
3253 		gfar_write(&regs->gaddr0, 0xffffffff);
3254 		gfar_write(&regs->gaddr1, 0xffffffff);
3255 		gfar_write(&regs->gaddr2, 0xffffffff);
3256 		gfar_write(&regs->gaddr3, 0xffffffff);
3257 		gfar_write(&regs->gaddr4, 0xffffffff);
3258 		gfar_write(&regs->gaddr5, 0xffffffff);
3259 		gfar_write(&regs->gaddr6, 0xffffffff);
3260 		gfar_write(&regs->gaddr7, 0xffffffff);
3261 	} else {
3262 		int em_num;
3263 		int idx;
3264 
3265 		/* zero out the hash */
3266 		gfar_write(&regs->igaddr0, 0x0);
3267 		gfar_write(&regs->igaddr1, 0x0);
3268 		gfar_write(&regs->igaddr2, 0x0);
3269 		gfar_write(&regs->igaddr3, 0x0);
3270 		gfar_write(&regs->igaddr4, 0x0);
3271 		gfar_write(&regs->igaddr5, 0x0);
3272 		gfar_write(&regs->igaddr6, 0x0);
3273 		gfar_write(&regs->igaddr7, 0x0);
3274 		gfar_write(&regs->gaddr0, 0x0);
3275 		gfar_write(&regs->gaddr1, 0x0);
3276 		gfar_write(&regs->gaddr2, 0x0);
3277 		gfar_write(&regs->gaddr3, 0x0);
3278 		gfar_write(&regs->gaddr4, 0x0);
3279 		gfar_write(&regs->gaddr5, 0x0);
3280 		gfar_write(&regs->gaddr6, 0x0);
3281 		gfar_write(&regs->gaddr7, 0x0);
3282 
3283 		/* If we have extended hash tables, we need to
3284 		 * clear the exact match registers to prepare for
3285 		 * setting them
3286 		 */
3287 		if (priv->extended_hash) {
3288 			em_num = GFAR_EM_NUM + 1;
3289 			gfar_clear_exact_match(dev);
3290 			idx = 1;
3291 		} else {
3292 			idx = 0;
3293 			em_num = 0;
3294 		}
3295 
3296 		if (netdev_mc_empty(dev))
3297 			return;
3298 
3299 		/* Parse the list, and set the appropriate bits */
3300 		netdev_for_each_mc_addr(ha, dev) {
3301 			if (idx < em_num) {
3302 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3303 				idx++;
3304 			} else
3305 				gfar_set_hash_for_addr(dev, ha->addr);
3306 		}
3307 	}
3308 }
3309 
3310 
3311 /* Clears each of the exact match registers to zero, so they
3312  * don't interfere with normal reception
3313  */
3314 static void gfar_clear_exact_match(struct net_device *dev)
3315 {
3316 	int idx;
3317 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3318 
3319 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3320 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3321 }
3322 
3323 /* Set the appropriate hash bit for the given addr */
3324 /* The algorithm works like so:
3325  * 1) Take the Destination Address (ie the multicast address), and
3326  * do a CRC on it (little endian), and reverse the bits of the
3327  * result.
3328  * 2) Use the 8 most significant bits as a hash into a 256-entry
3329  * table.  The table is controlled through 8 32-bit registers:
3330  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3331  * gaddr7.  This means that the 3 most significant bits in the
3332  * hash index which gaddr register to use, and the 5 other bits
3333  * indicate which bit (assuming an IBM numbering scheme, which
3334  * for PowerPC (tm) is usually the case) in the register holds
3335  * the entry.
3336  */
3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3338 {
3339 	u32 tempval;
3340 	struct gfar_private *priv = netdev_priv(dev);
3341 	u32 result = ether_crc(ETH_ALEN, addr);
3342 	int width = priv->hash_width;
3343 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3344 	u8 whichreg = result >> (32 - width + 5);
3345 	u32 value = (1 << (31-whichbit));
3346 
3347 	tempval = gfar_read(priv->hash_regs[whichreg]);
3348 	tempval |= value;
3349 	gfar_write(priv->hash_regs[whichreg], tempval);
3350 }
3351 
3352 
3353 /* There are multiple MAC Address register pairs on some controllers
3354  * This function sets the numth pair to a given address
3355  */
3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3357 				  const u8 *addr)
3358 {
3359 	struct gfar_private *priv = netdev_priv(dev);
3360 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3361 	u32 tempval;
3362 	u32 __iomem *macptr = &regs->macstnaddr1;
3363 
3364 	macptr += num*2;
3365 
3366 	/* For a station address of 0x12345678ABCD in transmission
3367 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3368 	 * MACnADDR2 is set to 0x34120000.
3369 	 */
3370 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3371 		  (addr[3] << 8)  |  addr[2];
3372 
3373 	gfar_write(macptr, tempval);
3374 
3375 	tempval = (addr[1] << 24) | (addr[0] << 16);
3376 
3377 	gfar_write(macptr+1, tempval);
3378 }
3379 
3380 /* GFAR error interrupt handler */
3381 static irqreturn_t gfar_error(int irq, void *grp_id)
3382 {
3383 	struct gfar_priv_grp *gfargrp = grp_id;
3384 	struct gfar __iomem *regs = gfargrp->regs;
3385 	struct gfar_private *priv= gfargrp->priv;
3386 	struct net_device *dev = priv->ndev;
3387 
3388 	/* Save ievent for future reference */
3389 	u32 events = gfar_read(&regs->ievent);
3390 
3391 	/* Clear IEVENT */
3392 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3393 
3394 	/* Magic Packet is not an error. */
3395 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3396 	    (events & IEVENT_MAG))
3397 		events &= ~IEVENT_MAG;
3398 
3399 	/* Hmm... */
3400 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3401 		netdev_dbg(dev,
3402 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3403 			   events, gfar_read(&regs->imask));
3404 
3405 	/* Update the error counters */
3406 	if (events & IEVENT_TXE) {
3407 		dev->stats.tx_errors++;
3408 
3409 		if (events & IEVENT_LC)
3410 			dev->stats.tx_window_errors++;
3411 		if (events & IEVENT_CRL)
3412 			dev->stats.tx_aborted_errors++;
3413 		if (events & IEVENT_XFUN) {
3414 			unsigned long flags;
3415 
3416 			netif_dbg(priv, tx_err, dev,
3417 				  "TX FIFO underrun, packet dropped\n");
3418 			dev->stats.tx_dropped++;
3419 			atomic64_inc(&priv->extra_stats.tx_underrun);
3420 
3421 			local_irq_save(flags);
3422 			lock_tx_qs(priv);
3423 
3424 			/* Reactivate the Tx Queues */
3425 			gfar_write(&regs->tstat, gfargrp->tstat);
3426 
3427 			unlock_tx_qs(priv);
3428 			local_irq_restore(flags);
3429 		}
3430 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3431 	}
3432 	if (events & IEVENT_BSY) {
3433 		dev->stats.rx_errors++;
3434 		atomic64_inc(&priv->extra_stats.rx_bsy);
3435 
3436 		gfar_receive(irq, grp_id);
3437 
3438 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3439 			  gfar_read(&regs->rstat));
3440 	}
3441 	if (events & IEVENT_BABR) {
3442 		dev->stats.rx_errors++;
3443 		atomic64_inc(&priv->extra_stats.rx_babr);
3444 
3445 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3446 	}
3447 	if (events & IEVENT_EBERR) {
3448 		atomic64_inc(&priv->extra_stats.eberr);
3449 		netif_dbg(priv, rx_err, dev, "bus error\n");
3450 	}
3451 	if (events & IEVENT_RXC)
3452 		netif_dbg(priv, rx_status, dev, "control frame\n");
3453 
3454 	if (events & IEVENT_BABT) {
3455 		atomic64_inc(&priv->extra_stats.tx_babt);
3456 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3457 	}
3458 	return IRQ_HANDLED;
3459 }
3460 
3461 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3462 {
3463 	struct phy_device *phydev = priv->phydev;
3464 	u32 val = 0;
3465 
3466 	if (!phydev->duplex)
3467 		return val;
3468 
3469 	if (!priv->pause_aneg_en) {
3470 		if (priv->tx_pause_en)
3471 			val |= MACCFG1_TX_FLOW;
3472 		if (priv->rx_pause_en)
3473 			val |= MACCFG1_RX_FLOW;
3474 	} else {
3475 		u16 lcl_adv, rmt_adv;
3476 		u8 flowctrl;
3477 		/* get link partner capabilities */
3478 		rmt_adv = 0;
3479 		if (phydev->pause)
3480 			rmt_adv = LPA_PAUSE_CAP;
3481 		if (phydev->asym_pause)
3482 			rmt_adv |= LPA_PAUSE_ASYM;
3483 
3484 		lcl_adv = 0;
3485 		if (phydev->advertising & ADVERTISED_Pause)
3486 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3487 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3488 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3489 
3490 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3491 		if (flowctrl & FLOW_CTRL_TX)
3492 			val |= MACCFG1_TX_FLOW;
3493 		if (flowctrl & FLOW_CTRL_RX)
3494 			val |= MACCFG1_RX_FLOW;
3495 	}
3496 
3497 	return val;
3498 }
3499 
3500 static noinline void gfar_update_link_state(struct gfar_private *priv)
3501 {
3502 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503 	struct phy_device *phydev = priv->phydev;
3504 	struct gfar_priv_rx_q *rx_queue = NULL;
3505 	int i;
3506 	struct rxbd8 *bdp;
3507 
3508 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3509 		return;
3510 
3511 	if (phydev->link) {
3512 		u32 tempval1 = gfar_read(&regs->maccfg1);
3513 		u32 tempval = gfar_read(&regs->maccfg2);
3514 		u32 ecntrl = gfar_read(&regs->ecntrl);
3515 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3516 
3517 		if (phydev->duplex != priv->oldduplex) {
3518 			if (!(phydev->duplex))
3519 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3520 			else
3521 				tempval |= MACCFG2_FULL_DUPLEX;
3522 
3523 			priv->oldduplex = phydev->duplex;
3524 		}
3525 
3526 		if (phydev->speed != priv->oldspeed) {
3527 			switch (phydev->speed) {
3528 			case 1000:
3529 				tempval =
3530 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3531 
3532 				ecntrl &= ~(ECNTRL_R100);
3533 				break;
3534 			case 100:
3535 			case 10:
3536 				tempval =
3537 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3538 
3539 				/* Reduced mode distinguishes
3540 				 * between 10 and 100
3541 				 */
3542 				if (phydev->speed == SPEED_100)
3543 					ecntrl |= ECNTRL_R100;
3544 				else
3545 					ecntrl &= ~(ECNTRL_R100);
3546 				break;
3547 			default:
3548 				netif_warn(priv, link, priv->ndev,
3549 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3550 					   phydev->speed);
3551 				break;
3552 			}
3553 
3554 			priv->oldspeed = phydev->speed;
3555 		}
3556 
3557 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3558 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3559 
3560 		/* Turn last free buffer recording on */
3561 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3562 			for (i = 0; i < priv->num_rx_queues; i++) {
3563 				rx_queue = priv->rx_queue[i];
3564 				bdp = rx_queue->cur_rx;
3565 				/* skip to previous bd */
3566 				bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3567 					      rx_queue->rx_bd_base,
3568 					      rx_queue->rx_ring_size);
3569 
3570 				if (rx_queue->rfbptr)
3571 					gfar_write(rx_queue->rfbptr, (u32)bdp);
3572 			}
3573 
3574 			priv->tx_actual_en = 1;
3575 		}
3576 
3577 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3578 			priv->tx_actual_en = 0;
3579 
3580 		gfar_write(&regs->maccfg1, tempval1);
3581 		gfar_write(&regs->maccfg2, tempval);
3582 		gfar_write(&regs->ecntrl, ecntrl);
3583 
3584 		if (!priv->oldlink)
3585 			priv->oldlink = 1;
3586 
3587 	} else if (priv->oldlink) {
3588 		priv->oldlink = 0;
3589 		priv->oldspeed = 0;
3590 		priv->oldduplex = -1;
3591 	}
3592 
3593 	if (netif_msg_link(priv))
3594 		phy_print_status(phydev);
3595 }
3596 
3597 static const struct of_device_id gfar_match[] =
3598 {
3599 	{
3600 		.type = "network",
3601 		.compatible = "gianfar",
3602 	},
3603 	{
3604 		.compatible = "fsl,etsec2",
3605 	},
3606 	{},
3607 };
3608 MODULE_DEVICE_TABLE(of, gfar_match);
3609 
3610 /* Structure for a device driver */
3611 static struct platform_driver gfar_driver = {
3612 	.driver = {
3613 		.name = "fsl-gianfar",
3614 		.pm = GFAR_PM_OPS,
3615 		.of_match_table = gfar_match,
3616 	},
3617 	.probe = gfar_probe,
3618 	.remove = gfar_remove,
3619 };
3620 
3621 module_platform_driver(gfar_driver);
3622