1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/mpc85xx.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
103 
104 #include "gianfar.h"
105 
106 #define TX_TIMEOUT      (1*HZ)
107 
108 const char gfar_driver_version[] = "1.3";
109 
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 			   struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static noinline void gfar_update_link_state(struct gfar_private *priv);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll_rx(struct napi_struct *napi, int budget);
133 static int gfar_poll_tx(struct napi_struct *napi, int budget);
134 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
135 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142 			       int amount_pull, struct napi_struct *napi);
143 static void gfar_halt_nodisable(struct gfar_private *priv);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 				  const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148 
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152 
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 			    dma_addr_t buf)
155 {
156 	u32 lstatus;
157 
158 	bdp->bufPtr = buf;
159 
160 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 		lstatus |= BD_LFLAG(RXBD_WRAP);
163 
164 	eieio();
165 
166 	bdp->lstatus = lstatus;
167 }
168 
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171 	struct gfar_private *priv = netdev_priv(ndev);
172 	struct gfar_priv_tx_q *tx_queue = NULL;
173 	struct gfar_priv_rx_q *rx_queue = NULL;
174 	struct txbd8 *txbdp;
175 	struct rxbd8 *rxbdp;
176 	int i, j;
177 
178 	for (i = 0; i < priv->num_tx_queues; i++) {
179 		tx_queue = priv->tx_queue[i];
180 		/* Initialize some variables in our dev structure */
181 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
183 		tx_queue->cur_tx = tx_queue->tx_bd_base;
184 		tx_queue->skb_curtx = 0;
185 		tx_queue->skb_dirtytx = 0;
186 
187 		/* Initialize Transmit Descriptor Ring */
188 		txbdp = tx_queue->tx_bd_base;
189 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
190 			txbdp->lstatus = 0;
191 			txbdp->bufPtr = 0;
192 			txbdp++;
193 		}
194 
195 		/* Set the last descriptor in the ring to indicate wrap */
196 		txbdp--;
197 		txbdp->status |= TXBD_WRAP;
198 	}
199 
200 	for (i = 0; i < priv->num_rx_queues; i++) {
201 		rx_queue = priv->rx_queue[i];
202 		rx_queue->cur_rx = rx_queue->rx_bd_base;
203 		rx_queue->skb_currx = 0;
204 		rxbdp = rx_queue->rx_bd_base;
205 
206 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
207 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
208 
209 			if (skb) {
210 				gfar_init_rxbdp(rx_queue, rxbdp,
211 						rxbdp->bufPtr);
212 			} else {
213 				skb = gfar_new_skb(ndev);
214 				if (!skb) {
215 					netdev_err(ndev, "Can't allocate RX buffers\n");
216 					return -ENOMEM;
217 				}
218 				rx_queue->rx_skbuff[j] = skb;
219 
220 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 			}
222 
223 			rxbdp++;
224 		}
225 
226 	}
227 
228 	return 0;
229 }
230 
231 static int gfar_alloc_skb_resources(struct net_device *ndev)
232 {
233 	void *vaddr;
234 	dma_addr_t addr;
235 	int i, j, k;
236 	struct gfar_private *priv = netdev_priv(ndev);
237 	struct device *dev = priv->dev;
238 	struct gfar_priv_tx_q *tx_queue = NULL;
239 	struct gfar_priv_rx_q *rx_queue = NULL;
240 
241 	priv->total_tx_ring_size = 0;
242 	for (i = 0; i < priv->num_tx_queues; i++)
243 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
244 
245 	priv->total_rx_ring_size = 0;
246 	for (i = 0; i < priv->num_rx_queues; i++)
247 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
248 
249 	/* Allocate memory for the buffer descriptors */
250 	vaddr = dma_alloc_coherent(dev,
251 				   (priv->total_tx_ring_size *
252 				    sizeof(struct txbd8)) +
253 				   (priv->total_rx_ring_size *
254 				    sizeof(struct rxbd8)),
255 				   &addr, GFP_KERNEL);
256 	if (!vaddr)
257 		return -ENOMEM;
258 
259 	for (i = 0; i < priv->num_tx_queues; i++) {
260 		tx_queue = priv->tx_queue[i];
261 		tx_queue->tx_bd_base = vaddr;
262 		tx_queue->tx_bd_dma_base = addr;
263 		tx_queue->dev = ndev;
264 		/* enet DMA only understands physical addresses */
265 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
267 	}
268 
269 	/* Start the rx descriptor ring where the tx ring leaves off */
270 	for (i = 0; i < priv->num_rx_queues; i++) {
271 		rx_queue = priv->rx_queue[i];
272 		rx_queue->rx_bd_base = vaddr;
273 		rx_queue->rx_bd_dma_base = addr;
274 		rx_queue->dev = ndev;
275 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
277 	}
278 
279 	/* Setup the skbuff rings */
280 	for (i = 0; i < priv->num_tx_queues; i++) {
281 		tx_queue = priv->tx_queue[i];
282 		tx_queue->tx_skbuff =
283 			kmalloc_array(tx_queue->tx_ring_size,
284 				      sizeof(*tx_queue->tx_skbuff),
285 				      GFP_KERNEL);
286 		if (!tx_queue->tx_skbuff)
287 			goto cleanup;
288 
289 		for (k = 0; k < tx_queue->tx_ring_size; k++)
290 			tx_queue->tx_skbuff[k] = NULL;
291 	}
292 
293 	for (i = 0; i < priv->num_rx_queues; i++) {
294 		rx_queue = priv->rx_queue[i];
295 		rx_queue->rx_skbuff =
296 			kmalloc_array(rx_queue->rx_ring_size,
297 				      sizeof(*rx_queue->rx_skbuff),
298 				      GFP_KERNEL);
299 		if (!rx_queue->rx_skbuff)
300 			goto cleanup;
301 
302 		for (j = 0; j < rx_queue->rx_ring_size; j++)
303 			rx_queue->rx_skbuff[j] = NULL;
304 	}
305 
306 	if (gfar_init_bds(ndev))
307 		goto cleanup;
308 
309 	return 0;
310 
311 cleanup:
312 	free_skb_resources(priv);
313 	return -ENOMEM;
314 }
315 
316 static void gfar_init_tx_rx_base(struct gfar_private *priv)
317 {
318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 	u32 __iomem *baddr;
320 	int i;
321 
322 	baddr = &regs->tbase0;
323 	for (i = 0; i < priv->num_tx_queues; i++) {
324 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
325 		baddr += 2;
326 	}
327 
328 	baddr = &regs->rbase0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
331 		baddr += 2;
332 	}
333 }
334 
335 static void gfar_rx_buff_size_config(struct gfar_private *priv)
336 {
337 	int frame_size = priv->ndev->mtu + ETH_HLEN;
338 
339 	/* set this when rx hw offload (TOE) functions are being used */
340 	priv->uses_rxfcb = 0;
341 
342 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
343 		priv->uses_rxfcb = 1;
344 
345 	if (priv->hwts_rx_en)
346 		priv->uses_rxfcb = 1;
347 
348 	if (priv->uses_rxfcb)
349 		frame_size += GMAC_FCB_LEN;
350 
351 	frame_size += priv->padding;
352 
353 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
354 		     INCREMENTAL_BUFFER_SIZE;
355 
356 	priv->rx_buffer_size = frame_size;
357 }
358 
359 static void gfar_mac_rx_config(struct gfar_private *priv)
360 {
361 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
362 	u32 rctrl = 0;
363 
364 	if (priv->rx_filer_enable) {
365 		rctrl |= RCTRL_FILREN;
366 		/* Program the RIR0 reg with the required distribution */
367 		if (priv->poll_mode == GFAR_SQ_POLLING)
368 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
369 		else /* GFAR_MQ_POLLING */
370 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
371 	}
372 
373 	/* Restore PROMISC mode */
374 	if (priv->ndev->flags & IFF_PROMISC)
375 		rctrl |= RCTRL_PROM;
376 
377 	if (priv->ndev->features & NETIF_F_RXCSUM)
378 		rctrl |= RCTRL_CHECKSUMMING;
379 
380 	if (priv->extended_hash)
381 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
382 
383 	if (priv->padding) {
384 		rctrl &= ~RCTRL_PAL_MASK;
385 		rctrl |= RCTRL_PADDING(priv->padding);
386 	}
387 
388 	/* Enable HW time stamping if requested from user space */
389 	if (priv->hwts_rx_en)
390 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
391 
392 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
393 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394 
395 	/* Init rctrl based on our settings */
396 	gfar_write(&regs->rctrl, rctrl);
397 }
398 
399 static void gfar_mac_tx_config(struct gfar_private *priv)
400 {
401 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
402 	u32 tctrl = 0;
403 
404 	if (priv->ndev->features & NETIF_F_IP_CSUM)
405 		tctrl |= TCTRL_INIT_CSUM;
406 
407 	if (priv->prio_sched_en)
408 		tctrl |= TCTRL_TXSCHED_PRIO;
409 	else {
410 		tctrl |= TCTRL_TXSCHED_WRRS;
411 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
412 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
413 	}
414 
415 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
416 		tctrl |= TCTRL_VLINS;
417 
418 	gfar_write(&regs->tctrl, tctrl);
419 }
420 
421 static void gfar_configure_coalescing(struct gfar_private *priv,
422 			       unsigned long tx_mask, unsigned long rx_mask)
423 {
424 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
425 	u32 __iomem *baddr;
426 
427 	if (priv->mode == MQ_MG_MODE) {
428 		int i = 0;
429 
430 		baddr = &regs->txic0;
431 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
432 			gfar_write(baddr + i, 0);
433 			if (likely(priv->tx_queue[i]->txcoalescing))
434 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
435 		}
436 
437 		baddr = &regs->rxic0;
438 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
439 			gfar_write(baddr + i, 0);
440 			if (likely(priv->rx_queue[i]->rxcoalescing))
441 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
442 		}
443 	} else {
444 		/* Backward compatible case -- even if we enable
445 		 * multiple queues, there's only single reg to program
446 		 */
447 		gfar_write(&regs->txic, 0);
448 		if (likely(priv->tx_queue[0]->txcoalescing))
449 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
450 
451 		gfar_write(&regs->rxic, 0);
452 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
453 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
454 	}
455 }
456 
457 void gfar_configure_coalescing_all(struct gfar_private *priv)
458 {
459 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
460 }
461 
462 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
463 {
464 	struct gfar_private *priv = netdev_priv(dev);
465 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
466 	unsigned long tx_packets = 0, tx_bytes = 0;
467 	int i;
468 
469 	for (i = 0; i < priv->num_rx_queues; i++) {
470 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
471 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
472 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
473 	}
474 
475 	dev->stats.rx_packets = rx_packets;
476 	dev->stats.rx_bytes   = rx_bytes;
477 	dev->stats.rx_dropped = rx_dropped;
478 
479 	for (i = 0; i < priv->num_tx_queues; i++) {
480 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
481 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
482 	}
483 
484 	dev->stats.tx_bytes   = tx_bytes;
485 	dev->stats.tx_packets = tx_packets;
486 
487 	return &dev->stats;
488 }
489 
490 static const struct net_device_ops gfar_netdev_ops = {
491 	.ndo_open = gfar_enet_open,
492 	.ndo_start_xmit = gfar_start_xmit,
493 	.ndo_stop = gfar_close,
494 	.ndo_change_mtu = gfar_change_mtu,
495 	.ndo_set_features = gfar_set_features,
496 	.ndo_set_rx_mode = gfar_set_multi,
497 	.ndo_tx_timeout = gfar_timeout,
498 	.ndo_do_ioctl = gfar_ioctl,
499 	.ndo_get_stats = gfar_get_stats,
500 	.ndo_set_mac_address = eth_mac_addr,
501 	.ndo_validate_addr = eth_validate_addr,
502 #ifdef CONFIG_NET_POLL_CONTROLLER
503 	.ndo_poll_controller = gfar_netpoll,
504 #endif
505 };
506 
507 static void gfar_ints_disable(struct gfar_private *priv)
508 {
509 	int i;
510 	for (i = 0; i < priv->num_grps; i++) {
511 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
512 		/* Clear IEVENT */
513 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
514 
515 		/* Initialize IMASK */
516 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
517 	}
518 }
519 
520 static void gfar_ints_enable(struct gfar_private *priv)
521 {
522 	int i;
523 	for (i = 0; i < priv->num_grps; i++) {
524 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
525 		/* Unmask the interrupts we look for */
526 		gfar_write(&regs->imask, IMASK_DEFAULT);
527 	}
528 }
529 
530 void lock_tx_qs(struct gfar_private *priv)
531 {
532 	int i;
533 
534 	for (i = 0; i < priv->num_tx_queues; i++)
535 		spin_lock(&priv->tx_queue[i]->txlock);
536 }
537 
538 void unlock_tx_qs(struct gfar_private *priv)
539 {
540 	int i;
541 
542 	for (i = 0; i < priv->num_tx_queues; i++)
543 		spin_unlock(&priv->tx_queue[i]->txlock);
544 }
545 
546 static int gfar_alloc_tx_queues(struct gfar_private *priv)
547 {
548 	int i;
549 
550 	for (i = 0; i < priv->num_tx_queues; i++) {
551 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
552 					    GFP_KERNEL);
553 		if (!priv->tx_queue[i])
554 			return -ENOMEM;
555 
556 		priv->tx_queue[i]->tx_skbuff = NULL;
557 		priv->tx_queue[i]->qindex = i;
558 		priv->tx_queue[i]->dev = priv->ndev;
559 		spin_lock_init(&(priv->tx_queue[i]->txlock));
560 	}
561 	return 0;
562 }
563 
564 static int gfar_alloc_rx_queues(struct gfar_private *priv)
565 {
566 	int i;
567 
568 	for (i = 0; i < priv->num_rx_queues; i++) {
569 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
570 					    GFP_KERNEL);
571 		if (!priv->rx_queue[i])
572 			return -ENOMEM;
573 
574 		priv->rx_queue[i]->rx_skbuff = NULL;
575 		priv->rx_queue[i]->qindex = i;
576 		priv->rx_queue[i]->dev = priv->ndev;
577 	}
578 	return 0;
579 }
580 
581 static void gfar_free_tx_queues(struct gfar_private *priv)
582 {
583 	int i;
584 
585 	for (i = 0; i < priv->num_tx_queues; i++)
586 		kfree(priv->tx_queue[i]);
587 }
588 
589 static void gfar_free_rx_queues(struct gfar_private *priv)
590 {
591 	int i;
592 
593 	for (i = 0; i < priv->num_rx_queues; i++)
594 		kfree(priv->rx_queue[i]);
595 }
596 
597 static void unmap_group_regs(struct gfar_private *priv)
598 {
599 	int i;
600 
601 	for (i = 0; i < MAXGROUPS; i++)
602 		if (priv->gfargrp[i].regs)
603 			iounmap(priv->gfargrp[i].regs);
604 }
605 
606 static void free_gfar_dev(struct gfar_private *priv)
607 {
608 	int i, j;
609 
610 	for (i = 0; i < priv->num_grps; i++)
611 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
612 			kfree(priv->gfargrp[i].irqinfo[j]);
613 			priv->gfargrp[i].irqinfo[j] = NULL;
614 		}
615 
616 	free_netdev(priv->ndev);
617 }
618 
619 static void disable_napi(struct gfar_private *priv)
620 {
621 	int i;
622 
623 	for (i = 0; i < priv->num_grps; i++) {
624 		napi_disable(&priv->gfargrp[i].napi_rx);
625 		napi_disable(&priv->gfargrp[i].napi_tx);
626 	}
627 }
628 
629 static void enable_napi(struct gfar_private *priv)
630 {
631 	int i;
632 
633 	for (i = 0; i < priv->num_grps; i++) {
634 		napi_enable(&priv->gfargrp[i].napi_rx);
635 		napi_enable(&priv->gfargrp[i].napi_tx);
636 	}
637 }
638 
639 static int gfar_parse_group(struct device_node *np,
640 			    struct gfar_private *priv, const char *model)
641 {
642 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
643 	int i;
644 
645 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
646 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
647 					  GFP_KERNEL);
648 		if (!grp->irqinfo[i])
649 			return -ENOMEM;
650 	}
651 
652 	grp->regs = of_iomap(np, 0);
653 	if (!grp->regs)
654 		return -ENOMEM;
655 
656 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
657 
658 	/* If we aren't the FEC we have multiple interrupts */
659 	if (model && strcasecmp(model, "FEC")) {
660 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
661 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
662 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
663 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
664 		    gfar_irq(grp, ER)->irq == NO_IRQ)
665 			return -EINVAL;
666 	}
667 
668 	grp->priv = priv;
669 	spin_lock_init(&grp->grplock);
670 	if (priv->mode == MQ_MG_MODE) {
671 		u32 *rxq_mask, *txq_mask;
672 		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
673 		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
674 
675 		if (priv->poll_mode == GFAR_SQ_POLLING) {
676 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
677 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
678 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
679 		} else { /* GFAR_MQ_POLLING */
680 			grp->rx_bit_map = rxq_mask ?
681 			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
682 			grp->tx_bit_map = txq_mask ?
683 			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
684 		}
685 	} else {
686 		grp->rx_bit_map = 0xFF;
687 		grp->tx_bit_map = 0xFF;
688 	}
689 
690 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
691 	 * right to left, so we need to revert the 8 bits to get the q index
692 	 */
693 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
694 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
695 
696 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
697 	 * also assign queues to groups
698 	 */
699 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
700 		if (!grp->rx_queue)
701 			grp->rx_queue = priv->rx_queue[i];
702 		grp->num_rx_queues++;
703 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
704 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
705 		priv->rx_queue[i]->grp = grp;
706 	}
707 
708 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
709 		if (!grp->tx_queue)
710 			grp->tx_queue = priv->tx_queue[i];
711 		grp->num_tx_queues++;
712 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
713 		priv->tqueue |= (TQUEUE_EN0 >> i);
714 		priv->tx_queue[i]->grp = grp;
715 	}
716 
717 	priv->num_grps++;
718 
719 	return 0;
720 }
721 
722 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
723 {
724 	const char *model;
725 	const char *ctype;
726 	const void *mac_addr;
727 	int err = 0, i;
728 	struct net_device *dev = NULL;
729 	struct gfar_private *priv = NULL;
730 	struct device_node *np = ofdev->dev.of_node;
731 	struct device_node *child = NULL;
732 	const u32 *stash;
733 	const u32 *stash_len;
734 	const u32 *stash_idx;
735 	unsigned int num_tx_qs, num_rx_qs;
736 	u32 *tx_queues, *rx_queues;
737 	unsigned short mode, poll_mode;
738 
739 	if (!np || !of_device_is_available(np))
740 		return -ENODEV;
741 
742 	if (of_device_is_compatible(np, "fsl,etsec2")) {
743 		mode = MQ_MG_MODE;
744 		poll_mode = GFAR_SQ_POLLING;
745 	} else {
746 		mode = SQ_SG_MODE;
747 		poll_mode = GFAR_SQ_POLLING;
748 	}
749 
750 	/* parse the num of HW tx and rx queues */
751 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
752 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
753 
754 	if (mode == SQ_SG_MODE) {
755 		num_tx_qs = 1;
756 		num_rx_qs = 1;
757 	} else { /* MQ_MG_MODE */
758 		/* get the actual number of supported groups */
759 		unsigned int num_grps = of_get_available_child_count(np);
760 
761 		if (num_grps == 0 || num_grps > MAXGROUPS) {
762 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
763 				num_grps);
764 			pr_err("Cannot do alloc_etherdev, aborting\n");
765 			return -EINVAL;
766 		}
767 
768 		if (poll_mode == GFAR_SQ_POLLING) {
769 			num_tx_qs = num_grps; /* one txq per int group */
770 			num_rx_qs = num_grps; /* one rxq per int group */
771 		} else { /* GFAR_MQ_POLLING */
772 			num_tx_qs = tx_queues ? *tx_queues : 1;
773 			num_rx_qs = rx_queues ? *rx_queues : 1;
774 		}
775 	}
776 
777 	if (num_tx_qs > MAX_TX_QS) {
778 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
779 		       num_tx_qs, MAX_TX_QS);
780 		pr_err("Cannot do alloc_etherdev, aborting\n");
781 		return -EINVAL;
782 	}
783 
784 	if (num_rx_qs > MAX_RX_QS) {
785 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
786 		       num_rx_qs, MAX_RX_QS);
787 		pr_err("Cannot do alloc_etherdev, aborting\n");
788 		return -EINVAL;
789 	}
790 
791 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
792 	dev = *pdev;
793 	if (NULL == dev)
794 		return -ENOMEM;
795 
796 	priv = netdev_priv(dev);
797 	priv->ndev = dev;
798 
799 	priv->mode = mode;
800 	priv->poll_mode = poll_mode;
801 
802 	priv->num_tx_queues = num_tx_qs;
803 	netif_set_real_num_rx_queues(dev, num_rx_qs);
804 	priv->num_rx_queues = num_rx_qs;
805 
806 	err = gfar_alloc_tx_queues(priv);
807 	if (err)
808 		goto tx_alloc_failed;
809 
810 	err = gfar_alloc_rx_queues(priv);
811 	if (err)
812 		goto rx_alloc_failed;
813 
814 	/* Init Rx queue filer rule set linked list */
815 	INIT_LIST_HEAD(&priv->rx_list.list);
816 	priv->rx_list.count = 0;
817 	mutex_init(&priv->rx_queue_access);
818 
819 	model = of_get_property(np, "model", NULL);
820 
821 	for (i = 0; i < MAXGROUPS; i++)
822 		priv->gfargrp[i].regs = NULL;
823 
824 	/* Parse and initialize group specific information */
825 	if (priv->mode == MQ_MG_MODE) {
826 		for_each_child_of_node(np, child) {
827 			err = gfar_parse_group(child, priv, model);
828 			if (err)
829 				goto err_grp_init;
830 		}
831 	} else { /* SQ_SG_MODE */
832 		err = gfar_parse_group(np, priv, model);
833 		if (err)
834 			goto err_grp_init;
835 	}
836 
837 	stash = of_get_property(np, "bd-stash", NULL);
838 
839 	if (stash) {
840 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
841 		priv->bd_stash_en = 1;
842 	}
843 
844 	stash_len = of_get_property(np, "rx-stash-len", NULL);
845 
846 	if (stash_len)
847 		priv->rx_stash_size = *stash_len;
848 
849 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
850 
851 	if (stash_idx)
852 		priv->rx_stash_index = *stash_idx;
853 
854 	if (stash_len || stash_idx)
855 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
856 
857 	mac_addr = of_get_mac_address(np);
858 
859 	if (mac_addr)
860 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
861 
862 	if (model && !strcasecmp(model, "TSEC"))
863 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
864 				     FSL_GIANFAR_DEV_HAS_COALESCE |
865 				     FSL_GIANFAR_DEV_HAS_RMON |
866 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
867 
868 	if (model && !strcasecmp(model, "eTSEC"))
869 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
870 				     FSL_GIANFAR_DEV_HAS_COALESCE |
871 				     FSL_GIANFAR_DEV_HAS_RMON |
872 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
873 				     FSL_GIANFAR_DEV_HAS_CSUM |
874 				     FSL_GIANFAR_DEV_HAS_VLAN |
875 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
876 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
877 				     FSL_GIANFAR_DEV_HAS_TIMER;
878 
879 	ctype = of_get_property(np, "phy-connection-type", NULL);
880 
881 	/* We only care about rgmii-id.  The rest are autodetected */
882 	if (ctype && !strcmp(ctype, "rgmii-id"))
883 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
884 	else
885 		priv->interface = PHY_INTERFACE_MODE_MII;
886 
887 	if (of_get_property(np, "fsl,magic-packet", NULL))
888 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
889 
890 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
891 
892 	/* In the case of a fixed PHY, the DT node associated
893 	 * to the PHY is the Ethernet MAC DT node.
894 	 */
895 	if (of_phy_is_fixed_link(np)) {
896 		err = of_phy_register_fixed_link(np);
897 		if (err)
898 			goto err_grp_init;
899 
900 		priv->phy_node = np;
901 	}
902 
903 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
904 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
905 
906 	return 0;
907 
908 err_grp_init:
909 	unmap_group_regs(priv);
910 rx_alloc_failed:
911 	gfar_free_rx_queues(priv);
912 tx_alloc_failed:
913 	gfar_free_tx_queues(priv);
914 	free_gfar_dev(priv);
915 	return err;
916 }
917 
918 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
919 {
920 	struct hwtstamp_config config;
921 	struct gfar_private *priv = netdev_priv(netdev);
922 
923 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
924 		return -EFAULT;
925 
926 	/* reserved for future extensions */
927 	if (config.flags)
928 		return -EINVAL;
929 
930 	switch (config.tx_type) {
931 	case HWTSTAMP_TX_OFF:
932 		priv->hwts_tx_en = 0;
933 		break;
934 	case HWTSTAMP_TX_ON:
935 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
936 			return -ERANGE;
937 		priv->hwts_tx_en = 1;
938 		break;
939 	default:
940 		return -ERANGE;
941 	}
942 
943 	switch (config.rx_filter) {
944 	case HWTSTAMP_FILTER_NONE:
945 		if (priv->hwts_rx_en) {
946 			priv->hwts_rx_en = 0;
947 			reset_gfar(netdev);
948 		}
949 		break;
950 	default:
951 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
952 			return -ERANGE;
953 		if (!priv->hwts_rx_en) {
954 			priv->hwts_rx_en = 1;
955 			reset_gfar(netdev);
956 		}
957 		config.rx_filter = HWTSTAMP_FILTER_ALL;
958 		break;
959 	}
960 
961 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
962 		-EFAULT : 0;
963 }
964 
965 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
966 {
967 	struct hwtstamp_config config;
968 	struct gfar_private *priv = netdev_priv(netdev);
969 
970 	config.flags = 0;
971 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
972 	config.rx_filter = (priv->hwts_rx_en ?
973 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
974 
975 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
976 		-EFAULT : 0;
977 }
978 
979 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
980 {
981 	struct gfar_private *priv = netdev_priv(dev);
982 
983 	if (!netif_running(dev))
984 		return -EINVAL;
985 
986 	if (cmd == SIOCSHWTSTAMP)
987 		return gfar_hwtstamp_set(dev, rq);
988 	if (cmd == SIOCGHWTSTAMP)
989 		return gfar_hwtstamp_get(dev, rq);
990 
991 	if (!priv->phydev)
992 		return -ENODEV;
993 
994 	return phy_mii_ioctl(priv->phydev, rq, cmd);
995 }
996 
997 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
998 				   u32 class)
999 {
1000 	u32 rqfpr = FPR_FILER_MASK;
1001 	u32 rqfcr = 0x0;
1002 
1003 	rqfar--;
1004 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1005 	priv->ftp_rqfpr[rqfar] = rqfpr;
1006 	priv->ftp_rqfcr[rqfar] = rqfcr;
1007 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1008 
1009 	rqfar--;
1010 	rqfcr = RQFCR_CMP_NOMATCH;
1011 	priv->ftp_rqfpr[rqfar] = rqfpr;
1012 	priv->ftp_rqfcr[rqfar] = rqfcr;
1013 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1014 
1015 	rqfar--;
1016 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1017 	rqfpr = class;
1018 	priv->ftp_rqfcr[rqfar] = rqfcr;
1019 	priv->ftp_rqfpr[rqfar] = rqfpr;
1020 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1021 
1022 	rqfar--;
1023 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1024 	rqfpr = class;
1025 	priv->ftp_rqfcr[rqfar] = rqfcr;
1026 	priv->ftp_rqfpr[rqfar] = rqfpr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	return rqfar;
1030 }
1031 
1032 static void gfar_init_filer_table(struct gfar_private *priv)
1033 {
1034 	int i = 0x0;
1035 	u32 rqfar = MAX_FILER_IDX;
1036 	u32 rqfcr = 0x0;
1037 	u32 rqfpr = FPR_FILER_MASK;
1038 
1039 	/* Default rule */
1040 	rqfcr = RQFCR_CMP_MATCH;
1041 	priv->ftp_rqfcr[rqfar] = rqfcr;
1042 	priv->ftp_rqfpr[rqfar] = rqfpr;
1043 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044 
1045 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1046 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1047 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1048 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1049 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1050 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1051 
1052 	/* cur_filer_idx indicated the first non-masked rule */
1053 	priv->cur_filer_idx = rqfar;
1054 
1055 	/* Rest are masked rules */
1056 	rqfcr = RQFCR_CMP_NOMATCH;
1057 	for (i = 0; i < rqfar; i++) {
1058 		priv->ftp_rqfcr[i] = rqfcr;
1059 		priv->ftp_rqfpr[i] = rqfpr;
1060 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1061 	}
1062 }
1063 
1064 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1065 {
1066 	unsigned int pvr = mfspr(SPRN_PVR);
1067 	unsigned int svr = mfspr(SPRN_SVR);
1068 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1069 	unsigned int rev = svr & 0xffff;
1070 
1071 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1072 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1073 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1074 		priv->errata |= GFAR_ERRATA_74;
1075 
1076 	/* MPC8313 and MPC837x all rev */
1077 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1078 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1079 		priv->errata |= GFAR_ERRATA_76;
1080 
1081 	/* MPC8313 Rev < 2.0 */
1082 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1083 		priv->errata |= GFAR_ERRATA_12;
1084 }
1085 
1086 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1087 {
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 
1090 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1091 		priv->errata |= GFAR_ERRATA_12;
1092 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1093 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1094 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1095 }
1096 
1097 static void gfar_detect_errata(struct gfar_private *priv)
1098 {
1099 	struct device *dev = &priv->ofdev->dev;
1100 
1101 	/* no plans to fix */
1102 	priv->errata |= GFAR_ERRATA_A002;
1103 
1104 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1105 		__gfar_detect_errata_85xx(priv);
1106 	else /* non-mpc85xx parts, i.e. e300 core based */
1107 		__gfar_detect_errata_83xx(priv);
1108 
1109 	if (priv->errata)
1110 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1111 			 priv->errata);
1112 }
1113 
1114 void gfar_mac_reset(struct gfar_private *priv)
1115 {
1116 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1117 	u32 tempval;
1118 
1119 	/* Reset MAC layer */
1120 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1121 
1122 	/* We need to delay at least 3 TX clocks */
1123 	udelay(3);
1124 
1125 	/* the soft reset bit is not self-resetting, so we need to
1126 	 * clear it before resuming normal operation
1127 	 */
1128 	gfar_write(&regs->maccfg1, 0);
1129 
1130 	udelay(3);
1131 
1132 	/* Compute rx_buff_size based on config flags */
1133 	gfar_rx_buff_size_config(priv);
1134 
1135 	/* Initialize the max receive frame/buffer lengths */
1136 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1137 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1138 
1139 	/* Initialize the Minimum Frame Length Register */
1140 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1141 
1142 	/* Initialize MACCFG2. */
1143 	tempval = MACCFG2_INIT_SETTINGS;
1144 
1145 	/* If the mtu is larger than the max size for standard
1146 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1147 	 * to allow huge frames, and to check the length
1148 	 */
1149 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1150 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1151 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1152 
1153 	gfar_write(&regs->maccfg2, tempval);
1154 
1155 	/* Clear mac addr hash registers */
1156 	gfar_write(&regs->igaddr0, 0);
1157 	gfar_write(&regs->igaddr1, 0);
1158 	gfar_write(&regs->igaddr2, 0);
1159 	gfar_write(&regs->igaddr3, 0);
1160 	gfar_write(&regs->igaddr4, 0);
1161 	gfar_write(&regs->igaddr5, 0);
1162 	gfar_write(&regs->igaddr6, 0);
1163 	gfar_write(&regs->igaddr7, 0);
1164 
1165 	gfar_write(&regs->gaddr0, 0);
1166 	gfar_write(&regs->gaddr1, 0);
1167 	gfar_write(&regs->gaddr2, 0);
1168 	gfar_write(&regs->gaddr3, 0);
1169 	gfar_write(&regs->gaddr4, 0);
1170 	gfar_write(&regs->gaddr5, 0);
1171 	gfar_write(&regs->gaddr6, 0);
1172 	gfar_write(&regs->gaddr7, 0);
1173 
1174 	if (priv->extended_hash)
1175 		gfar_clear_exact_match(priv->ndev);
1176 
1177 	gfar_mac_rx_config(priv);
1178 
1179 	gfar_mac_tx_config(priv);
1180 
1181 	gfar_set_mac_address(priv->ndev);
1182 
1183 	gfar_set_multi(priv->ndev);
1184 
1185 	/* clear ievent and imask before configuring coalescing */
1186 	gfar_ints_disable(priv);
1187 
1188 	/* Configure the coalescing support */
1189 	gfar_configure_coalescing_all(priv);
1190 }
1191 
1192 static void gfar_hw_init(struct gfar_private *priv)
1193 {
1194 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1195 	u32 attrs;
1196 
1197 	/* Stop the DMA engine now, in case it was running before
1198 	 * (The firmware could have used it, and left it running).
1199 	 */
1200 	gfar_halt(priv);
1201 
1202 	gfar_mac_reset(priv);
1203 
1204 	/* Zero out the rmon mib registers if it has them */
1205 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1206 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1207 
1208 		/* Mask off the CAM interrupts */
1209 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1210 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1211 	}
1212 
1213 	/* Initialize ECNTRL */
1214 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1215 
1216 	/* Set the extraction length and index */
1217 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1218 		ATTRELI_EI(priv->rx_stash_index);
1219 
1220 	gfar_write(&regs->attreli, attrs);
1221 
1222 	/* Start with defaults, and add stashing
1223 	 * depending on driver parameters
1224 	 */
1225 	attrs = ATTR_INIT_SETTINGS;
1226 
1227 	if (priv->bd_stash_en)
1228 		attrs |= ATTR_BDSTASH;
1229 
1230 	if (priv->rx_stash_size != 0)
1231 		attrs |= ATTR_BUFSTASH;
1232 
1233 	gfar_write(&regs->attr, attrs);
1234 
1235 	/* FIFO configs */
1236 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1237 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1238 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1239 
1240 	/* Program the interrupt steering regs, only for MG devices */
1241 	if (priv->num_grps > 1)
1242 		gfar_write_isrg(priv);
1243 }
1244 
1245 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1246 {
1247 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1248 
1249 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1250 		priv->extended_hash = 1;
1251 		priv->hash_width = 9;
1252 
1253 		priv->hash_regs[0] = &regs->igaddr0;
1254 		priv->hash_regs[1] = &regs->igaddr1;
1255 		priv->hash_regs[2] = &regs->igaddr2;
1256 		priv->hash_regs[3] = &regs->igaddr3;
1257 		priv->hash_regs[4] = &regs->igaddr4;
1258 		priv->hash_regs[5] = &regs->igaddr5;
1259 		priv->hash_regs[6] = &regs->igaddr6;
1260 		priv->hash_regs[7] = &regs->igaddr7;
1261 		priv->hash_regs[8] = &regs->gaddr0;
1262 		priv->hash_regs[9] = &regs->gaddr1;
1263 		priv->hash_regs[10] = &regs->gaddr2;
1264 		priv->hash_regs[11] = &regs->gaddr3;
1265 		priv->hash_regs[12] = &regs->gaddr4;
1266 		priv->hash_regs[13] = &regs->gaddr5;
1267 		priv->hash_regs[14] = &regs->gaddr6;
1268 		priv->hash_regs[15] = &regs->gaddr7;
1269 
1270 	} else {
1271 		priv->extended_hash = 0;
1272 		priv->hash_width = 8;
1273 
1274 		priv->hash_regs[0] = &regs->gaddr0;
1275 		priv->hash_regs[1] = &regs->gaddr1;
1276 		priv->hash_regs[2] = &regs->gaddr2;
1277 		priv->hash_regs[3] = &regs->gaddr3;
1278 		priv->hash_regs[4] = &regs->gaddr4;
1279 		priv->hash_regs[5] = &regs->gaddr5;
1280 		priv->hash_regs[6] = &regs->gaddr6;
1281 		priv->hash_regs[7] = &regs->gaddr7;
1282 	}
1283 }
1284 
1285 /* Set up the ethernet device structure, private data,
1286  * and anything else we need before we start
1287  */
1288 static int gfar_probe(struct platform_device *ofdev)
1289 {
1290 	struct net_device *dev = NULL;
1291 	struct gfar_private *priv = NULL;
1292 	int err = 0, i;
1293 
1294 	err = gfar_of_init(ofdev, &dev);
1295 
1296 	if (err)
1297 		return err;
1298 
1299 	priv = netdev_priv(dev);
1300 	priv->ndev = dev;
1301 	priv->ofdev = ofdev;
1302 	priv->dev = &ofdev->dev;
1303 	SET_NETDEV_DEV(dev, &ofdev->dev);
1304 
1305 	spin_lock_init(&priv->bflock);
1306 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1307 
1308 	platform_set_drvdata(ofdev, priv);
1309 
1310 	gfar_detect_errata(priv);
1311 
1312 	/* Set the dev->base_addr to the gfar reg region */
1313 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1314 
1315 	/* Fill in the dev structure */
1316 	dev->watchdog_timeo = TX_TIMEOUT;
1317 	dev->mtu = 1500;
1318 	dev->netdev_ops = &gfar_netdev_ops;
1319 	dev->ethtool_ops = &gfar_ethtool_ops;
1320 
1321 	/* Register for napi ...We are registering NAPI for each grp */
1322 	for (i = 0; i < priv->num_grps; i++) {
1323 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1324 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1325 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1326 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1327 				       gfar_poll_tx_sq, 2);
1328 		} else {
1329 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1330 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1331 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1332 				       gfar_poll_tx, 2);
1333 		}
1334 	}
1335 
1336 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1337 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1338 				   NETIF_F_RXCSUM;
1339 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1340 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1341 	}
1342 
1343 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1344 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1345 				    NETIF_F_HW_VLAN_CTAG_RX;
1346 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1347 	}
1348 
1349 	gfar_init_addr_hash_table(priv);
1350 
1351 	/* Insert receive time stamps into padding alignment bytes */
1352 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1353 		priv->padding = 8;
1354 
1355 	if (dev->features & NETIF_F_IP_CSUM ||
1356 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1357 		dev->needed_headroom = GMAC_FCB_LEN;
1358 
1359 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1360 
1361 	/* Initializing some of the rx/tx queue level parameters */
1362 	for (i = 0; i < priv->num_tx_queues; i++) {
1363 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1364 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1365 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1366 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1367 	}
1368 
1369 	for (i = 0; i < priv->num_rx_queues; i++) {
1370 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1371 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1372 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1373 	}
1374 
1375 	/* always enable rx filer */
1376 	priv->rx_filer_enable = 1;
1377 	/* Enable most messages by default */
1378 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1379 	/* use pritority h/w tx queue scheduling for single queue devices */
1380 	if (priv->num_tx_queues == 1)
1381 		priv->prio_sched_en = 1;
1382 
1383 	set_bit(GFAR_DOWN, &priv->state);
1384 
1385 	gfar_hw_init(priv);
1386 
1387 	/* Carrier starts down, phylib will bring it up */
1388 	netif_carrier_off(dev);
1389 
1390 	err = register_netdev(dev);
1391 
1392 	if (err) {
1393 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1394 		goto register_fail;
1395 	}
1396 
1397 	device_init_wakeup(&dev->dev,
1398 			   priv->device_flags &
1399 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1400 
1401 	/* fill out IRQ number and name fields */
1402 	for (i = 0; i < priv->num_grps; i++) {
1403 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1404 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1405 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1406 				dev->name, "_g", '0' + i, "_tx");
1407 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1408 				dev->name, "_g", '0' + i, "_rx");
1409 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1410 				dev->name, "_g", '0' + i, "_er");
1411 		} else
1412 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1413 	}
1414 
1415 	/* Initialize the filer table */
1416 	gfar_init_filer_table(priv);
1417 
1418 	/* Print out the device info */
1419 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1420 
1421 	/* Even more device info helps when determining which kernel
1422 	 * provided which set of benchmarks.
1423 	 */
1424 	netdev_info(dev, "Running with NAPI enabled\n");
1425 	for (i = 0; i < priv->num_rx_queues; i++)
1426 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1427 			    i, priv->rx_queue[i]->rx_ring_size);
1428 	for (i = 0; i < priv->num_tx_queues; i++)
1429 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1430 			    i, priv->tx_queue[i]->tx_ring_size);
1431 
1432 	return 0;
1433 
1434 register_fail:
1435 	unmap_group_regs(priv);
1436 	gfar_free_rx_queues(priv);
1437 	gfar_free_tx_queues(priv);
1438 	if (priv->phy_node)
1439 		of_node_put(priv->phy_node);
1440 	if (priv->tbi_node)
1441 		of_node_put(priv->tbi_node);
1442 	free_gfar_dev(priv);
1443 	return err;
1444 }
1445 
1446 static int gfar_remove(struct platform_device *ofdev)
1447 {
1448 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1449 
1450 	if (priv->phy_node)
1451 		of_node_put(priv->phy_node);
1452 	if (priv->tbi_node)
1453 		of_node_put(priv->tbi_node);
1454 
1455 	unregister_netdev(priv->ndev);
1456 	unmap_group_regs(priv);
1457 	gfar_free_rx_queues(priv);
1458 	gfar_free_tx_queues(priv);
1459 	free_gfar_dev(priv);
1460 
1461 	return 0;
1462 }
1463 
1464 #ifdef CONFIG_PM
1465 
1466 static int gfar_suspend(struct device *dev)
1467 {
1468 	struct gfar_private *priv = dev_get_drvdata(dev);
1469 	struct net_device *ndev = priv->ndev;
1470 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1471 	unsigned long flags;
1472 	u32 tempval;
1473 
1474 	int magic_packet = priv->wol_en &&
1475 			   (priv->device_flags &
1476 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1477 
1478 	netif_device_detach(ndev);
1479 
1480 	if (netif_running(ndev)) {
1481 
1482 		local_irq_save(flags);
1483 		lock_tx_qs(priv);
1484 
1485 		gfar_halt_nodisable(priv);
1486 
1487 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1488 		tempval = gfar_read(&regs->maccfg1);
1489 
1490 		tempval &= ~MACCFG1_TX_EN;
1491 
1492 		if (!magic_packet)
1493 			tempval &= ~MACCFG1_RX_EN;
1494 
1495 		gfar_write(&regs->maccfg1, tempval);
1496 
1497 		unlock_tx_qs(priv);
1498 		local_irq_restore(flags);
1499 
1500 		disable_napi(priv);
1501 
1502 		if (magic_packet) {
1503 			/* Enable interrupt on Magic Packet */
1504 			gfar_write(&regs->imask, IMASK_MAG);
1505 
1506 			/* Enable Magic Packet mode */
1507 			tempval = gfar_read(&regs->maccfg2);
1508 			tempval |= MACCFG2_MPEN;
1509 			gfar_write(&regs->maccfg2, tempval);
1510 		} else {
1511 			phy_stop(priv->phydev);
1512 		}
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int gfar_resume(struct device *dev)
1519 {
1520 	struct gfar_private *priv = dev_get_drvdata(dev);
1521 	struct net_device *ndev = priv->ndev;
1522 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1523 	unsigned long flags;
1524 	u32 tempval;
1525 	int magic_packet = priv->wol_en &&
1526 			   (priv->device_flags &
1527 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1528 
1529 	if (!netif_running(ndev)) {
1530 		netif_device_attach(ndev);
1531 		return 0;
1532 	}
1533 
1534 	if (!magic_packet && priv->phydev)
1535 		phy_start(priv->phydev);
1536 
1537 	/* Disable Magic Packet mode, in case something
1538 	 * else woke us up.
1539 	 */
1540 	local_irq_save(flags);
1541 	lock_tx_qs(priv);
1542 
1543 	tempval = gfar_read(&regs->maccfg2);
1544 	tempval &= ~MACCFG2_MPEN;
1545 	gfar_write(&regs->maccfg2, tempval);
1546 
1547 	gfar_start(priv);
1548 
1549 	unlock_tx_qs(priv);
1550 	local_irq_restore(flags);
1551 
1552 	netif_device_attach(ndev);
1553 
1554 	enable_napi(priv);
1555 
1556 	return 0;
1557 }
1558 
1559 static int gfar_restore(struct device *dev)
1560 {
1561 	struct gfar_private *priv = dev_get_drvdata(dev);
1562 	struct net_device *ndev = priv->ndev;
1563 
1564 	if (!netif_running(ndev)) {
1565 		netif_device_attach(ndev);
1566 
1567 		return 0;
1568 	}
1569 
1570 	if (gfar_init_bds(ndev)) {
1571 		free_skb_resources(priv);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	gfar_mac_reset(priv);
1576 
1577 	gfar_init_tx_rx_base(priv);
1578 
1579 	gfar_start(priv);
1580 
1581 	priv->oldlink = 0;
1582 	priv->oldspeed = 0;
1583 	priv->oldduplex = -1;
1584 
1585 	if (priv->phydev)
1586 		phy_start(priv->phydev);
1587 
1588 	netif_device_attach(ndev);
1589 	enable_napi(priv);
1590 
1591 	return 0;
1592 }
1593 
1594 static struct dev_pm_ops gfar_pm_ops = {
1595 	.suspend = gfar_suspend,
1596 	.resume = gfar_resume,
1597 	.freeze = gfar_suspend,
1598 	.thaw = gfar_resume,
1599 	.restore = gfar_restore,
1600 };
1601 
1602 #define GFAR_PM_OPS (&gfar_pm_ops)
1603 
1604 #else
1605 
1606 #define GFAR_PM_OPS NULL
1607 
1608 #endif
1609 
1610 /* Reads the controller's registers to determine what interface
1611  * connects it to the PHY.
1612  */
1613 static phy_interface_t gfar_get_interface(struct net_device *dev)
1614 {
1615 	struct gfar_private *priv = netdev_priv(dev);
1616 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1617 	u32 ecntrl;
1618 
1619 	ecntrl = gfar_read(&regs->ecntrl);
1620 
1621 	if (ecntrl & ECNTRL_SGMII_MODE)
1622 		return PHY_INTERFACE_MODE_SGMII;
1623 
1624 	if (ecntrl & ECNTRL_TBI_MODE) {
1625 		if (ecntrl & ECNTRL_REDUCED_MODE)
1626 			return PHY_INTERFACE_MODE_RTBI;
1627 		else
1628 			return PHY_INTERFACE_MODE_TBI;
1629 	}
1630 
1631 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1632 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1633 			return PHY_INTERFACE_MODE_RMII;
1634 		}
1635 		else {
1636 			phy_interface_t interface = priv->interface;
1637 
1638 			/* This isn't autodetected right now, so it must
1639 			 * be set by the device tree or platform code.
1640 			 */
1641 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1642 				return PHY_INTERFACE_MODE_RGMII_ID;
1643 
1644 			return PHY_INTERFACE_MODE_RGMII;
1645 		}
1646 	}
1647 
1648 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1649 		return PHY_INTERFACE_MODE_GMII;
1650 
1651 	return PHY_INTERFACE_MODE_MII;
1652 }
1653 
1654 
1655 /* Initializes driver's PHY state, and attaches to the PHY.
1656  * Returns 0 on success.
1657  */
1658 static int init_phy(struct net_device *dev)
1659 {
1660 	struct gfar_private *priv = netdev_priv(dev);
1661 	uint gigabit_support =
1662 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1663 		GFAR_SUPPORTED_GBIT : 0;
1664 	phy_interface_t interface;
1665 
1666 	priv->oldlink = 0;
1667 	priv->oldspeed = 0;
1668 	priv->oldduplex = -1;
1669 
1670 	interface = gfar_get_interface(dev);
1671 
1672 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1673 				      interface);
1674 	if (!priv->phydev) {
1675 		dev_err(&dev->dev, "could not attach to PHY\n");
1676 		return -ENODEV;
1677 	}
1678 
1679 	if (interface == PHY_INTERFACE_MODE_SGMII)
1680 		gfar_configure_serdes(dev);
1681 
1682 	/* Remove any features not supported by the controller */
1683 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1684 	priv->phydev->advertising = priv->phydev->supported;
1685 
1686 	return 0;
1687 }
1688 
1689 /* Initialize TBI PHY interface for communicating with the
1690  * SERDES lynx PHY on the chip.  We communicate with this PHY
1691  * through the MDIO bus on each controller, treating it as a
1692  * "normal" PHY at the address found in the TBIPA register.  We assume
1693  * that the TBIPA register is valid.  Either the MDIO bus code will set
1694  * it to a value that doesn't conflict with other PHYs on the bus, or the
1695  * value doesn't matter, as there are no other PHYs on the bus.
1696  */
1697 static void gfar_configure_serdes(struct net_device *dev)
1698 {
1699 	struct gfar_private *priv = netdev_priv(dev);
1700 	struct phy_device *tbiphy;
1701 
1702 	if (!priv->tbi_node) {
1703 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1704 				    "device tree specify a tbi-handle\n");
1705 		return;
1706 	}
1707 
1708 	tbiphy = of_phy_find_device(priv->tbi_node);
1709 	if (!tbiphy) {
1710 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1711 		return;
1712 	}
1713 
1714 	/* If the link is already up, we must already be ok, and don't need to
1715 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1716 	 * everything for us?  Resetting it takes the link down and requires
1717 	 * several seconds for it to come back.
1718 	 */
1719 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1720 		return;
1721 
1722 	/* Single clk mode, mii mode off(for serdes communication) */
1723 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1724 
1725 	phy_write(tbiphy, MII_ADVERTISE,
1726 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1727 		  ADVERTISE_1000XPSE_ASYM);
1728 
1729 	phy_write(tbiphy, MII_BMCR,
1730 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1731 		  BMCR_SPEED1000);
1732 }
1733 
1734 static int __gfar_is_rx_idle(struct gfar_private *priv)
1735 {
1736 	u32 res;
1737 
1738 	/* Normaly TSEC should not hang on GRS commands, so we should
1739 	 * actually wait for IEVENT_GRSC flag.
1740 	 */
1741 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1742 		return 0;
1743 
1744 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1745 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1746 	 * and the Rx can be safely reset.
1747 	 */
1748 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1749 	res &= 0x7f807f80;
1750 	if ((res & 0xffff) == (res >> 16))
1751 		return 1;
1752 
1753 	return 0;
1754 }
1755 
1756 /* Halt the receive and transmit queues */
1757 static void gfar_halt_nodisable(struct gfar_private *priv)
1758 {
1759 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1760 	u32 tempval;
1761 
1762 	gfar_ints_disable(priv);
1763 
1764 	/* Stop the DMA, and wait for it to stop */
1765 	tempval = gfar_read(&regs->dmactrl);
1766 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1767 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1768 		int ret;
1769 
1770 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1771 		gfar_write(&regs->dmactrl, tempval);
1772 
1773 		do {
1774 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1775 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1776 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1777 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1778 				ret = __gfar_is_rx_idle(priv);
1779 		} while (!ret);
1780 	}
1781 }
1782 
1783 /* Halt the receive and transmit queues */
1784 void gfar_halt(struct gfar_private *priv)
1785 {
1786 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1787 	u32 tempval;
1788 
1789 	/* Dissable the Rx/Tx hw queues */
1790 	gfar_write(&regs->rqueue, 0);
1791 	gfar_write(&regs->tqueue, 0);
1792 
1793 	mdelay(10);
1794 
1795 	gfar_halt_nodisable(priv);
1796 
1797 	/* Disable Rx/Tx DMA */
1798 	tempval = gfar_read(&regs->maccfg1);
1799 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1800 	gfar_write(&regs->maccfg1, tempval);
1801 }
1802 
1803 void stop_gfar(struct net_device *dev)
1804 {
1805 	struct gfar_private *priv = netdev_priv(dev);
1806 
1807 	netif_tx_stop_all_queues(dev);
1808 
1809 	smp_mb__before_atomic();
1810 	set_bit(GFAR_DOWN, &priv->state);
1811 	smp_mb__after_atomic();
1812 
1813 	disable_napi(priv);
1814 
1815 	/* disable ints and gracefully shut down Rx/Tx DMA */
1816 	gfar_halt(priv);
1817 
1818 	phy_stop(priv->phydev);
1819 
1820 	free_skb_resources(priv);
1821 }
1822 
1823 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1824 {
1825 	struct txbd8 *txbdp;
1826 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1827 	int i, j;
1828 
1829 	txbdp = tx_queue->tx_bd_base;
1830 
1831 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1832 		if (!tx_queue->tx_skbuff[i])
1833 			continue;
1834 
1835 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1836 				 txbdp->length, DMA_TO_DEVICE);
1837 		txbdp->lstatus = 0;
1838 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1839 		     j++) {
1840 			txbdp++;
1841 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1842 				       txbdp->length, DMA_TO_DEVICE);
1843 		}
1844 		txbdp++;
1845 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1846 		tx_queue->tx_skbuff[i] = NULL;
1847 	}
1848 	kfree(tx_queue->tx_skbuff);
1849 	tx_queue->tx_skbuff = NULL;
1850 }
1851 
1852 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1853 {
1854 	struct rxbd8 *rxbdp;
1855 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1856 	int i;
1857 
1858 	rxbdp = rx_queue->rx_bd_base;
1859 
1860 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1861 		if (rx_queue->rx_skbuff[i]) {
1862 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1863 					 priv->rx_buffer_size,
1864 					 DMA_FROM_DEVICE);
1865 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1866 			rx_queue->rx_skbuff[i] = NULL;
1867 		}
1868 		rxbdp->lstatus = 0;
1869 		rxbdp->bufPtr = 0;
1870 		rxbdp++;
1871 	}
1872 	kfree(rx_queue->rx_skbuff);
1873 	rx_queue->rx_skbuff = NULL;
1874 }
1875 
1876 /* If there are any tx skbs or rx skbs still around, free them.
1877  * Then free tx_skbuff and rx_skbuff
1878  */
1879 static void free_skb_resources(struct gfar_private *priv)
1880 {
1881 	struct gfar_priv_tx_q *tx_queue = NULL;
1882 	struct gfar_priv_rx_q *rx_queue = NULL;
1883 	int i;
1884 
1885 	/* Go through all the buffer descriptors and free their data buffers */
1886 	for (i = 0; i < priv->num_tx_queues; i++) {
1887 		struct netdev_queue *txq;
1888 
1889 		tx_queue = priv->tx_queue[i];
1890 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1891 		if (tx_queue->tx_skbuff)
1892 			free_skb_tx_queue(tx_queue);
1893 		netdev_tx_reset_queue(txq);
1894 	}
1895 
1896 	for (i = 0; i < priv->num_rx_queues; i++) {
1897 		rx_queue = priv->rx_queue[i];
1898 		if (rx_queue->rx_skbuff)
1899 			free_skb_rx_queue(rx_queue);
1900 	}
1901 
1902 	dma_free_coherent(priv->dev,
1903 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1904 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1905 			  priv->tx_queue[0]->tx_bd_base,
1906 			  priv->tx_queue[0]->tx_bd_dma_base);
1907 }
1908 
1909 void gfar_start(struct gfar_private *priv)
1910 {
1911 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1912 	u32 tempval;
1913 	int i = 0;
1914 
1915 	/* Enable Rx/Tx hw queues */
1916 	gfar_write(&regs->rqueue, priv->rqueue);
1917 	gfar_write(&regs->tqueue, priv->tqueue);
1918 
1919 	/* Initialize DMACTRL to have WWR and WOP */
1920 	tempval = gfar_read(&regs->dmactrl);
1921 	tempval |= DMACTRL_INIT_SETTINGS;
1922 	gfar_write(&regs->dmactrl, tempval);
1923 
1924 	/* Make sure we aren't stopped */
1925 	tempval = gfar_read(&regs->dmactrl);
1926 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1927 	gfar_write(&regs->dmactrl, tempval);
1928 
1929 	for (i = 0; i < priv->num_grps; i++) {
1930 		regs = priv->gfargrp[i].regs;
1931 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1932 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1933 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1934 	}
1935 
1936 	/* Enable Rx/Tx DMA */
1937 	tempval = gfar_read(&regs->maccfg1);
1938 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1939 	gfar_write(&regs->maccfg1, tempval);
1940 
1941 	gfar_ints_enable(priv);
1942 
1943 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1944 }
1945 
1946 static void free_grp_irqs(struct gfar_priv_grp *grp)
1947 {
1948 	free_irq(gfar_irq(grp, TX)->irq, grp);
1949 	free_irq(gfar_irq(grp, RX)->irq, grp);
1950 	free_irq(gfar_irq(grp, ER)->irq, grp);
1951 }
1952 
1953 static int register_grp_irqs(struct gfar_priv_grp *grp)
1954 {
1955 	struct gfar_private *priv = grp->priv;
1956 	struct net_device *dev = priv->ndev;
1957 	int err;
1958 
1959 	/* If the device has multiple interrupts, register for
1960 	 * them.  Otherwise, only register for the one
1961 	 */
1962 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1963 		/* Install our interrupt handlers for Error,
1964 		 * Transmit, and Receive
1965 		 */
1966 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1967 				  gfar_irq(grp, ER)->name, grp);
1968 		if (err < 0) {
1969 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1970 				  gfar_irq(grp, ER)->irq);
1971 
1972 			goto err_irq_fail;
1973 		}
1974 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1975 				  gfar_irq(grp, TX)->name, grp);
1976 		if (err < 0) {
1977 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1978 				  gfar_irq(grp, TX)->irq);
1979 			goto tx_irq_fail;
1980 		}
1981 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1982 				  gfar_irq(grp, RX)->name, grp);
1983 		if (err < 0) {
1984 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1985 				  gfar_irq(grp, RX)->irq);
1986 			goto rx_irq_fail;
1987 		}
1988 	} else {
1989 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1990 				  gfar_irq(grp, TX)->name, grp);
1991 		if (err < 0) {
1992 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1993 				  gfar_irq(grp, TX)->irq);
1994 			goto err_irq_fail;
1995 		}
1996 	}
1997 
1998 	return 0;
1999 
2000 rx_irq_fail:
2001 	free_irq(gfar_irq(grp, TX)->irq, grp);
2002 tx_irq_fail:
2003 	free_irq(gfar_irq(grp, ER)->irq, grp);
2004 err_irq_fail:
2005 	return err;
2006 
2007 }
2008 
2009 static void gfar_free_irq(struct gfar_private *priv)
2010 {
2011 	int i;
2012 
2013 	/* Free the IRQs */
2014 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2015 		for (i = 0; i < priv->num_grps; i++)
2016 			free_grp_irqs(&priv->gfargrp[i]);
2017 	} else {
2018 		for (i = 0; i < priv->num_grps; i++)
2019 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2020 				 &priv->gfargrp[i]);
2021 	}
2022 }
2023 
2024 static int gfar_request_irq(struct gfar_private *priv)
2025 {
2026 	int err, i, j;
2027 
2028 	for (i = 0; i < priv->num_grps; i++) {
2029 		err = register_grp_irqs(&priv->gfargrp[i]);
2030 		if (err) {
2031 			for (j = 0; j < i; j++)
2032 				free_grp_irqs(&priv->gfargrp[j]);
2033 			return err;
2034 		}
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 /* Bring the controller up and running */
2041 int startup_gfar(struct net_device *ndev)
2042 {
2043 	struct gfar_private *priv = netdev_priv(ndev);
2044 	int err;
2045 
2046 	gfar_mac_reset(priv);
2047 
2048 	err = gfar_alloc_skb_resources(ndev);
2049 	if (err)
2050 		return err;
2051 
2052 	gfar_init_tx_rx_base(priv);
2053 
2054 	smp_mb__before_atomic();
2055 	clear_bit(GFAR_DOWN, &priv->state);
2056 	smp_mb__after_atomic();
2057 
2058 	/* Start Rx/Tx DMA and enable the interrupts */
2059 	gfar_start(priv);
2060 
2061 	phy_start(priv->phydev);
2062 
2063 	enable_napi(priv);
2064 
2065 	netif_tx_wake_all_queues(ndev);
2066 
2067 	return 0;
2068 }
2069 
2070 /* Called when something needs to use the ethernet device
2071  * Returns 0 for success.
2072  */
2073 static int gfar_enet_open(struct net_device *dev)
2074 {
2075 	struct gfar_private *priv = netdev_priv(dev);
2076 	int err;
2077 
2078 	err = init_phy(dev);
2079 	if (err)
2080 		return err;
2081 
2082 	err = gfar_request_irq(priv);
2083 	if (err)
2084 		return err;
2085 
2086 	err = startup_gfar(dev);
2087 	if (err)
2088 		return err;
2089 
2090 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2091 
2092 	return err;
2093 }
2094 
2095 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2096 {
2097 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2098 
2099 	memset(fcb, 0, GMAC_FCB_LEN);
2100 
2101 	return fcb;
2102 }
2103 
2104 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2105 				    int fcb_length)
2106 {
2107 	/* If we're here, it's a IP packet with a TCP or UDP
2108 	 * payload.  We set it to checksum, using a pseudo-header
2109 	 * we provide
2110 	 */
2111 	u8 flags = TXFCB_DEFAULT;
2112 
2113 	/* Tell the controller what the protocol is
2114 	 * And provide the already calculated phcs
2115 	 */
2116 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2117 		flags |= TXFCB_UDP;
2118 		fcb->phcs = udp_hdr(skb)->check;
2119 	} else
2120 		fcb->phcs = tcp_hdr(skb)->check;
2121 
2122 	/* l3os is the distance between the start of the
2123 	 * frame (skb->data) and the start of the IP hdr.
2124 	 * l4os is the distance between the start of the
2125 	 * l3 hdr and the l4 hdr
2126 	 */
2127 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2128 	fcb->l4os = skb_network_header_len(skb);
2129 
2130 	fcb->flags = flags;
2131 }
2132 
2133 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2134 {
2135 	fcb->flags |= TXFCB_VLN;
2136 	fcb->vlctl = vlan_tx_tag_get(skb);
2137 }
2138 
2139 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2140 				      struct txbd8 *base, int ring_size)
2141 {
2142 	struct txbd8 *new_bd = bdp + stride;
2143 
2144 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2145 }
2146 
2147 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2148 				      int ring_size)
2149 {
2150 	return skip_txbd(bdp, 1, base, ring_size);
2151 }
2152 
2153 /* eTSEC12: csum generation not supported for some fcb offsets */
2154 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2155 				       unsigned long fcb_addr)
2156 {
2157 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2158 	       (fcb_addr % 0x20) > 0x18);
2159 }
2160 
2161 /* eTSEC76: csum generation for frames larger than 2500 may
2162  * cause excess delays before start of transmission
2163  */
2164 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2165 				       unsigned int len)
2166 {
2167 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2168 	       (len > 2500));
2169 }
2170 
2171 /* This is called by the kernel when a frame is ready for transmission.
2172  * It is pointed to by the dev->hard_start_xmit function pointer
2173  */
2174 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2175 {
2176 	struct gfar_private *priv = netdev_priv(dev);
2177 	struct gfar_priv_tx_q *tx_queue = NULL;
2178 	struct netdev_queue *txq;
2179 	struct gfar __iomem *regs = NULL;
2180 	struct txfcb *fcb = NULL;
2181 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2182 	u32 lstatus;
2183 	int i, rq = 0;
2184 	int do_tstamp, do_csum, do_vlan;
2185 	u32 bufaddr;
2186 	unsigned long flags;
2187 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2188 
2189 	rq = skb->queue_mapping;
2190 	tx_queue = priv->tx_queue[rq];
2191 	txq = netdev_get_tx_queue(dev, rq);
2192 	base = tx_queue->tx_bd_base;
2193 	regs = tx_queue->grp->regs;
2194 
2195 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2196 	do_vlan = vlan_tx_tag_present(skb);
2197 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2198 		    priv->hwts_tx_en;
2199 
2200 	if (do_csum || do_vlan)
2201 		fcb_len = GMAC_FCB_LEN;
2202 
2203 	/* check if time stamp should be generated */
2204 	if (unlikely(do_tstamp))
2205 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2206 
2207 	/* make space for additional header when fcb is needed */
2208 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2209 		struct sk_buff *skb_new;
2210 
2211 		skb_new = skb_realloc_headroom(skb, fcb_len);
2212 		if (!skb_new) {
2213 			dev->stats.tx_errors++;
2214 			dev_kfree_skb_any(skb);
2215 			return NETDEV_TX_OK;
2216 		}
2217 
2218 		if (skb->sk)
2219 			skb_set_owner_w(skb_new, skb->sk);
2220 		dev_consume_skb_any(skb);
2221 		skb = skb_new;
2222 	}
2223 
2224 	/* total number of fragments in the SKB */
2225 	nr_frags = skb_shinfo(skb)->nr_frags;
2226 
2227 	/* calculate the required number of TxBDs for this skb */
2228 	if (unlikely(do_tstamp))
2229 		nr_txbds = nr_frags + 2;
2230 	else
2231 		nr_txbds = nr_frags + 1;
2232 
2233 	/* check if there is space to queue this packet */
2234 	if (nr_txbds > tx_queue->num_txbdfree) {
2235 		/* no space, stop the queue */
2236 		netif_tx_stop_queue(txq);
2237 		dev->stats.tx_fifo_errors++;
2238 		return NETDEV_TX_BUSY;
2239 	}
2240 
2241 	/* Update transmit stats */
2242 	bytes_sent = skb->len;
2243 	tx_queue->stats.tx_bytes += bytes_sent;
2244 	/* keep Tx bytes on wire for BQL accounting */
2245 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2246 	tx_queue->stats.tx_packets++;
2247 
2248 	txbdp = txbdp_start = tx_queue->cur_tx;
2249 	lstatus = txbdp->lstatus;
2250 
2251 	/* Time stamp insertion requires one additional TxBD */
2252 	if (unlikely(do_tstamp))
2253 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2254 						 tx_queue->tx_ring_size);
2255 
2256 	if (nr_frags == 0) {
2257 		if (unlikely(do_tstamp))
2258 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2259 							  TXBD_INTERRUPT);
2260 		else
2261 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2262 	} else {
2263 		/* Place the fragment addresses and lengths into the TxBDs */
2264 		for (i = 0; i < nr_frags; i++) {
2265 			unsigned int frag_len;
2266 			/* Point at the next BD, wrapping as needed */
2267 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2268 
2269 			frag_len = skb_shinfo(skb)->frags[i].size;
2270 
2271 			lstatus = txbdp->lstatus | frag_len |
2272 				  BD_LFLAG(TXBD_READY);
2273 
2274 			/* Handle the last BD specially */
2275 			if (i == nr_frags - 1)
2276 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2277 
2278 			bufaddr = skb_frag_dma_map(priv->dev,
2279 						   &skb_shinfo(skb)->frags[i],
2280 						   0,
2281 						   frag_len,
2282 						   DMA_TO_DEVICE);
2283 
2284 			/* set the TxBD length and buffer pointer */
2285 			txbdp->bufPtr = bufaddr;
2286 			txbdp->lstatus = lstatus;
2287 		}
2288 
2289 		lstatus = txbdp_start->lstatus;
2290 	}
2291 
2292 	/* Add TxPAL between FCB and frame if required */
2293 	if (unlikely(do_tstamp)) {
2294 		skb_push(skb, GMAC_TXPAL_LEN);
2295 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2296 	}
2297 
2298 	/* Add TxFCB if required */
2299 	if (fcb_len) {
2300 		fcb = gfar_add_fcb(skb);
2301 		lstatus |= BD_LFLAG(TXBD_TOE);
2302 	}
2303 
2304 	/* Set up checksumming */
2305 	if (do_csum) {
2306 		gfar_tx_checksum(skb, fcb, fcb_len);
2307 
2308 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2309 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2310 			__skb_pull(skb, GMAC_FCB_LEN);
2311 			skb_checksum_help(skb);
2312 			if (do_vlan || do_tstamp) {
2313 				/* put back a new fcb for vlan/tstamp TOE */
2314 				fcb = gfar_add_fcb(skb);
2315 			} else {
2316 				/* Tx TOE not used */
2317 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2318 				fcb = NULL;
2319 			}
2320 		}
2321 	}
2322 
2323 	if (do_vlan)
2324 		gfar_tx_vlan(skb, fcb);
2325 
2326 	/* Setup tx hardware time stamping if requested */
2327 	if (unlikely(do_tstamp)) {
2328 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2329 		fcb->ptp = 1;
2330 	}
2331 
2332 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2333 					     skb_headlen(skb), DMA_TO_DEVICE);
2334 
2335 	/* If time stamping is requested one additional TxBD must be set up. The
2336 	 * first TxBD points to the FCB and must have a data length of
2337 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2338 	 * the full frame length.
2339 	 */
2340 	if (unlikely(do_tstamp)) {
2341 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2342 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2343 					 (skb_headlen(skb) - fcb_len);
2344 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2345 	} else {
2346 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2347 	}
2348 
2349 	netdev_tx_sent_queue(txq, bytes_sent);
2350 
2351 	/* We can work in parallel with gfar_clean_tx_ring(), except
2352 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2353 	 * when we were reading the num_txbdfree and checking for available
2354 	 * space, that's because outside of this function it can only grow,
2355 	 * and once we've got needed space, it cannot suddenly disappear.
2356 	 *
2357 	 * The lock also protects us from gfar_error(), which can modify
2358 	 * regs->tstat and thus retrigger the transfers, which is why we
2359 	 * also must grab the lock before setting ready bit for the first
2360 	 * to be transmitted BD.
2361 	 */
2362 	spin_lock_irqsave(&tx_queue->txlock, flags);
2363 
2364 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2365 	 * semantics (it requires synchronization between cacheable and
2366 	 * uncacheable mappings, which eieio doesn't provide and which we
2367 	 * don't need), thus requiring a more expensive sync instruction.  At
2368 	 * some point, the set of architecture-independent barrier functions
2369 	 * should be expanded to include weaker barriers.
2370 	 */
2371 	eieio();
2372 
2373 	txbdp_start->lstatus = lstatus;
2374 
2375 	eieio(); /* force lstatus write before tx_skbuff */
2376 
2377 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2378 
2379 	/* Update the current skb pointer to the next entry we will use
2380 	 * (wrapping if necessary)
2381 	 */
2382 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2383 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2384 
2385 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2386 
2387 	/* reduce TxBD free count */
2388 	tx_queue->num_txbdfree -= (nr_txbds);
2389 
2390 	/* If the next BD still needs to be cleaned up, then the bds
2391 	 * are full.  We need to tell the kernel to stop sending us stuff.
2392 	 */
2393 	if (!tx_queue->num_txbdfree) {
2394 		netif_tx_stop_queue(txq);
2395 
2396 		dev->stats.tx_fifo_errors++;
2397 	}
2398 
2399 	/* Tell the DMA to go go go */
2400 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2401 
2402 	/* Unlock priv */
2403 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2404 
2405 	return NETDEV_TX_OK;
2406 }
2407 
2408 /* Stops the kernel queue, and halts the controller */
2409 static int gfar_close(struct net_device *dev)
2410 {
2411 	struct gfar_private *priv = netdev_priv(dev);
2412 
2413 	cancel_work_sync(&priv->reset_task);
2414 	stop_gfar(dev);
2415 
2416 	/* Disconnect from the PHY */
2417 	phy_disconnect(priv->phydev);
2418 	priv->phydev = NULL;
2419 
2420 	gfar_free_irq(priv);
2421 
2422 	return 0;
2423 }
2424 
2425 /* Changes the mac address if the controller is not running. */
2426 static int gfar_set_mac_address(struct net_device *dev)
2427 {
2428 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2429 
2430 	return 0;
2431 }
2432 
2433 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2434 {
2435 	struct gfar_private *priv = netdev_priv(dev);
2436 	int frame_size = new_mtu + ETH_HLEN;
2437 
2438 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2439 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2440 		return -EINVAL;
2441 	}
2442 
2443 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2444 		cpu_relax();
2445 
2446 	if (dev->flags & IFF_UP)
2447 		stop_gfar(dev);
2448 
2449 	dev->mtu = new_mtu;
2450 
2451 	if (dev->flags & IFF_UP)
2452 		startup_gfar(dev);
2453 
2454 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2455 
2456 	return 0;
2457 }
2458 
2459 void reset_gfar(struct net_device *ndev)
2460 {
2461 	struct gfar_private *priv = netdev_priv(ndev);
2462 
2463 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2464 		cpu_relax();
2465 
2466 	stop_gfar(ndev);
2467 	startup_gfar(ndev);
2468 
2469 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2470 }
2471 
2472 /* gfar_reset_task gets scheduled when a packet has not been
2473  * transmitted after a set amount of time.
2474  * For now, assume that clearing out all the structures, and
2475  * starting over will fix the problem.
2476  */
2477 static void gfar_reset_task(struct work_struct *work)
2478 {
2479 	struct gfar_private *priv = container_of(work, struct gfar_private,
2480 						 reset_task);
2481 	reset_gfar(priv->ndev);
2482 }
2483 
2484 static void gfar_timeout(struct net_device *dev)
2485 {
2486 	struct gfar_private *priv = netdev_priv(dev);
2487 
2488 	dev->stats.tx_errors++;
2489 	schedule_work(&priv->reset_task);
2490 }
2491 
2492 static void gfar_align_skb(struct sk_buff *skb)
2493 {
2494 	/* We need the data buffer to be aligned properly.  We will reserve
2495 	 * as many bytes as needed to align the data properly
2496 	 */
2497 	skb_reserve(skb, RXBUF_ALIGNMENT -
2498 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2499 }
2500 
2501 /* Interrupt Handler for Transmit complete */
2502 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2503 {
2504 	struct net_device *dev = tx_queue->dev;
2505 	struct netdev_queue *txq;
2506 	struct gfar_private *priv = netdev_priv(dev);
2507 	struct txbd8 *bdp, *next = NULL;
2508 	struct txbd8 *lbdp = NULL;
2509 	struct txbd8 *base = tx_queue->tx_bd_base;
2510 	struct sk_buff *skb;
2511 	int skb_dirtytx;
2512 	int tx_ring_size = tx_queue->tx_ring_size;
2513 	int frags = 0, nr_txbds = 0;
2514 	int i;
2515 	int howmany = 0;
2516 	int tqi = tx_queue->qindex;
2517 	unsigned int bytes_sent = 0;
2518 	u32 lstatus;
2519 	size_t buflen;
2520 
2521 	txq = netdev_get_tx_queue(dev, tqi);
2522 	bdp = tx_queue->dirty_tx;
2523 	skb_dirtytx = tx_queue->skb_dirtytx;
2524 
2525 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2526 		unsigned long flags;
2527 
2528 		frags = skb_shinfo(skb)->nr_frags;
2529 
2530 		/* When time stamping, one additional TxBD must be freed.
2531 		 * Also, we need to dma_unmap_single() the TxPAL.
2532 		 */
2533 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2534 			nr_txbds = frags + 2;
2535 		else
2536 			nr_txbds = frags + 1;
2537 
2538 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2539 
2540 		lstatus = lbdp->lstatus;
2541 
2542 		/* Only clean completed frames */
2543 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2544 		    (lstatus & BD_LENGTH_MASK))
2545 			break;
2546 
2547 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2548 			next = next_txbd(bdp, base, tx_ring_size);
2549 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2550 		} else
2551 			buflen = bdp->length;
2552 
2553 		dma_unmap_single(priv->dev, bdp->bufPtr,
2554 				 buflen, DMA_TO_DEVICE);
2555 
2556 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2557 			struct skb_shared_hwtstamps shhwtstamps;
2558 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2559 
2560 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2561 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2562 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2563 			skb_tstamp_tx(skb, &shhwtstamps);
2564 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2565 			bdp = next;
2566 		}
2567 
2568 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2569 		bdp = next_txbd(bdp, base, tx_ring_size);
2570 
2571 		for (i = 0; i < frags; i++) {
2572 			dma_unmap_page(priv->dev, bdp->bufPtr,
2573 				       bdp->length, DMA_TO_DEVICE);
2574 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2575 			bdp = next_txbd(bdp, base, tx_ring_size);
2576 		}
2577 
2578 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2579 
2580 		dev_kfree_skb_any(skb);
2581 
2582 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2583 
2584 		skb_dirtytx = (skb_dirtytx + 1) &
2585 			      TX_RING_MOD_MASK(tx_ring_size);
2586 
2587 		howmany++;
2588 		spin_lock_irqsave(&tx_queue->txlock, flags);
2589 		tx_queue->num_txbdfree += nr_txbds;
2590 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2591 	}
2592 
2593 	/* If we freed a buffer, we can restart transmission, if necessary */
2594 	if (tx_queue->num_txbdfree &&
2595 	    netif_tx_queue_stopped(txq) &&
2596 	    !(test_bit(GFAR_DOWN, &priv->state)))
2597 		netif_wake_subqueue(priv->ndev, tqi);
2598 
2599 	/* Update dirty indicators */
2600 	tx_queue->skb_dirtytx = skb_dirtytx;
2601 	tx_queue->dirty_tx = bdp;
2602 
2603 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2604 }
2605 
2606 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2607 			   struct sk_buff *skb)
2608 {
2609 	struct net_device *dev = rx_queue->dev;
2610 	struct gfar_private *priv = netdev_priv(dev);
2611 	dma_addr_t buf;
2612 
2613 	buf = dma_map_single(priv->dev, skb->data,
2614 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2615 	gfar_init_rxbdp(rx_queue, bdp, buf);
2616 }
2617 
2618 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2619 {
2620 	struct gfar_private *priv = netdev_priv(dev);
2621 	struct sk_buff *skb;
2622 
2623 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2624 	if (!skb)
2625 		return NULL;
2626 
2627 	gfar_align_skb(skb);
2628 
2629 	return skb;
2630 }
2631 
2632 struct sk_buff *gfar_new_skb(struct net_device *dev)
2633 {
2634 	return gfar_alloc_skb(dev);
2635 }
2636 
2637 static inline void count_errors(unsigned short status, struct net_device *dev)
2638 {
2639 	struct gfar_private *priv = netdev_priv(dev);
2640 	struct net_device_stats *stats = &dev->stats;
2641 	struct gfar_extra_stats *estats = &priv->extra_stats;
2642 
2643 	/* If the packet was truncated, none of the other errors matter */
2644 	if (status & RXBD_TRUNCATED) {
2645 		stats->rx_length_errors++;
2646 
2647 		atomic64_inc(&estats->rx_trunc);
2648 
2649 		return;
2650 	}
2651 	/* Count the errors, if there were any */
2652 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2653 		stats->rx_length_errors++;
2654 
2655 		if (status & RXBD_LARGE)
2656 			atomic64_inc(&estats->rx_large);
2657 		else
2658 			atomic64_inc(&estats->rx_short);
2659 	}
2660 	if (status & RXBD_NONOCTET) {
2661 		stats->rx_frame_errors++;
2662 		atomic64_inc(&estats->rx_nonoctet);
2663 	}
2664 	if (status & RXBD_CRCERR) {
2665 		atomic64_inc(&estats->rx_crcerr);
2666 		stats->rx_crc_errors++;
2667 	}
2668 	if (status & RXBD_OVERRUN) {
2669 		atomic64_inc(&estats->rx_overrun);
2670 		stats->rx_crc_errors++;
2671 	}
2672 }
2673 
2674 irqreturn_t gfar_receive(int irq, void *grp_id)
2675 {
2676 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2677 	unsigned long flags;
2678 	u32 imask;
2679 
2680 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2681 		spin_lock_irqsave(&grp->grplock, flags);
2682 		imask = gfar_read(&grp->regs->imask);
2683 		imask &= IMASK_RX_DISABLED;
2684 		gfar_write(&grp->regs->imask, imask);
2685 		spin_unlock_irqrestore(&grp->grplock, flags);
2686 		__napi_schedule(&grp->napi_rx);
2687 	} else {
2688 		/* Clear IEVENT, so interrupts aren't called again
2689 		 * because of the packets that have already arrived.
2690 		 */
2691 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2692 	}
2693 
2694 	return IRQ_HANDLED;
2695 }
2696 
2697 /* Interrupt Handler for Transmit complete */
2698 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2699 {
2700 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2701 	unsigned long flags;
2702 	u32 imask;
2703 
2704 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2705 		spin_lock_irqsave(&grp->grplock, flags);
2706 		imask = gfar_read(&grp->regs->imask);
2707 		imask &= IMASK_TX_DISABLED;
2708 		gfar_write(&grp->regs->imask, imask);
2709 		spin_unlock_irqrestore(&grp->grplock, flags);
2710 		__napi_schedule(&grp->napi_tx);
2711 	} else {
2712 		/* Clear IEVENT, so interrupts aren't called again
2713 		 * because of the packets that have already arrived.
2714 		 */
2715 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2716 	}
2717 
2718 	return IRQ_HANDLED;
2719 }
2720 
2721 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2722 {
2723 	/* If valid headers were found, and valid sums
2724 	 * were verified, then we tell the kernel that no
2725 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2726 	 */
2727 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2728 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2729 	else
2730 		skb_checksum_none_assert(skb);
2731 }
2732 
2733 
2734 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2735 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2736 			       int amount_pull, struct napi_struct *napi)
2737 {
2738 	struct gfar_private *priv = netdev_priv(dev);
2739 	struct rxfcb *fcb = NULL;
2740 
2741 	/* fcb is at the beginning if exists */
2742 	fcb = (struct rxfcb *)skb->data;
2743 
2744 	/* Remove the FCB from the skb
2745 	 * Remove the padded bytes, if there are any
2746 	 */
2747 	if (amount_pull) {
2748 		skb_record_rx_queue(skb, fcb->rq);
2749 		skb_pull(skb, amount_pull);
2750 	}
2751 
2752 	/* Get receive timestamp from the skb */
2753 	if (priv->hwts_rx_en) {
2754 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2755 		u64 *ns = (u64 *) skb->data;
2756 
2757 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2758 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2759 	}
2760 
2761 	if (priv->padding)
2762 		skb_pull(skb, priv->padding);
2763 
2764 	if (dev->features & NETIF_F_RXCSUM)
2765 		gfar_rx_checksum(skb, fcb);
2766 
2767 	/* Tell the skb what kind of packet this is */
2768 	skb->protocol = eth_type_trans(skb, dev);
2769 
2770 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2771 	 * Even if vlan rx accel is disabled, on some chips
2772 	 * RXFCB_VLN is pseudo randomly set.
2773 	 */
2774 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2775 	    fcb->flags & RXFCB_VLN)
2776 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2777 
2778 	/* Send the packet up the stack */
2779 	napi_gro_receive(napi, skb);
2780 
2781 }
2782 
2783 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2784  * until the budget/quota has been reached. Returns the number
2785  * of frames handled
2786  */
2787 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2788 {
2789 	struct net_device *dev = rx_queue->dev;
2790 	struct rxbd8 *bdp, *base;
2791 	struct sk_buff *skb;
2792 	int pkt_len;
2793 	int amount_pull;
2794 	int howmany = 0;
2795 	struct gfar_private *priv = netdev_priv(dev);
2796 
2797 	/* Get the first full descriptor */
2798 	bdp = rx_queue->cur_rx;
2799 	base = rx_queue->rx_bd_base;
2800 
2801 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2802 
2803 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2804 		struct sk_buff *newskb;
2805 
2806 		rmb();
2807 
2808 		/* Add another skb for the future */
2809 		newskb = gfar_new_skb(dev);
2810 
2811 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2812 
2813 		dma_unmap_single(priv->dev, bdp->bufPtr,
2814 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2815 
2816 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2817 			     bdp->length > priv->rx_buffer_size))
2818 			bdp->status = RXBD_LARGE;
2819 
2820 		/* We drop the frame if we failed to allocate a new buffer */
2821 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2822 			     bdp->status & RXBD_ERR)) {
2823 			count_errors(bdp->status, dev);
2824 
2825 			if (unlikely(!newskb))
2826 				newskb = skb;
2827 			else if (skb)
2828 				dev_kfree_skb(skb);
2829 		} else {
2830 			/* Increment the number of packets */
2831 			rx_queue->stats.rx_packets++;
2832 			howmany++;
2833 
2834 			if (likely(skb)) {
2835 				pkt_len = bdp->length - ETH_FCS_LEN;
2836 				/* Remove the FCS from the packet length */
2837 				skb_put(skb, pkt_len);
2838 				rx_queue->stats.rx_bytes += pkt_len;
2839 				skb_record_rx_queue(skb, rx_queue->qindex);
2840 				gfar_process_frame(dev, skb, amount_pull,
2841 						   &rx_queue->grp->napi_rx);
2842 
2843 			} else {
2844 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2845 				rx_queue->stats.rx_dropped++;
2846 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2847 			}
2848 
2849 		}
2850 
2851 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2852 
2853 		/* Setup the new bdp */
2854 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2855 
2856 		/* Update to the next pointer */
2857 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2858 
2859 		/* update to point at the next skb */
2860 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2861 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2862 	}
2863 
2864 	/* Update the current rxbd pointer to be the next one */
2865 	rx_queue->cur_rx = bdp;
2866 
2867 	return howmany;
2868 }
2869 
2870 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2871 {
2872 	struct gfar_priv_grp *gfargrp =
2873 		container_of(napi, struct gfar_priv_grp, napi_rx);
2874 	struct gfar __iomem *regs = gfargrp->regs;
2875 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2876 	int work_done = 0;
2877 
2878 	/* Clear IEVENT, so interrupts aren't called again
2879 	 * because of the packets that have already arrived
2880 	 */
2881 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2882 
2883 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2884 
2885 	if (work_done < budget) {
2886 		u32 imask;
2887 		napi_complete(napi);
2888 		/* Clear the halt bit in RSTAT */
2889 		gfar_write(&regs->rstat, gfargrp->rstat);
2890 
2891 		spin_lock_irq(&gfargrp->grplock);
2892 		imask = gfar_read(&regs->imask);
2893 		imask |= IMASK_RX_DEFAULT;
2894 		gfar_write(&regs->imask, imask);
2895 		spin_unlock_irq(&gfargrp->grplock);
2896 	}
2897 
2898 	return work_done;
2899 }
2900 
2901 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2902 {
2903 	struct gfar_priv_grp *gfargrp =
2904 		container_of(napi, struct gfar_priv_grp, napi_tx);
2905 	struct gfar __iomem *regs = gfargrp->regs;
2906 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2907 	u32 imask;
2908 
2909 	/* Clear IEVENT, so interrupts aren't called again
2910 	 * because of the packets that have already arrived
2911 	 */
2912 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2913 
2914 	/* run Tx cleanup to completion */
2915 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2916 		gfar_clean_tx_ring(tx_queue);
2917 
2918 	napi_complete(napi);
2919 
2920 	spin_lock_irq(&gfargrp->grplock);
2921 	imask = gfar_read(&regs->imask);
2922 	imask |= IMASK_TX_DEFAULT;
2923 	gfar_write(&regs->imask, imask);
2924 	spin_unlock_irq(&gfargrp->grplock);
2925 
2926 	return 0;
2927 }
2928 
2929 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2930 {
2931 	struct gfar_priv_grp *gfargrp =
2932 		container_of(napi, struct gfar_priv_grp, napi_rx);
2933 	struct gfar_private *priv = gfargrp->priv;
2934 	struct gfar __iomem *regs = gfargrp->regs;
2935 	struct gfar_priv_rx_q *rx_queue = NULL;
2936 	int work_done = 0, work_done_per_q = 0;
2937 	int i, budget_per_q = 0;
2938 	unsigned long rstat_rxf;
2939 	int num_act_queues;
2940 
2941 	/* Clear IEVENT, so interrupts aren't called again
2942 	 * because of the packets that have already arrived
2943 	 */
2944 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2945 
2946 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2947 
2948 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2949 	if (num_act_queues)
2950 		budget_per_q = budget/num_act_queues;
2951 
2952 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2953 		/* skip queue if not active */
2954 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2955 			continue;
2956 
2957 		rx_queue = priv->rx_queue[i];
2958 		work_done_per_q =
2959 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2960 		work_done += work_done_per_q;
2961 
2962 		/* finished processing this queue */
2963 		if (work_done_per_q < budget_per_q) {
2964 			/* clear active queue hw indication */
2965 			gfar_write(&regs->rstat,
2966 				   RSTAT_CLEAR_RXF0 >> i);
2967 			num_act_queues--;
2968 
2969 			if (!num_act_queues)
2970 				break;
2971 		}
2972 	}
2973 
2974 	if (!num_act_queues) {
2975 		u32 imask;
2976 		napi_complete(napi);
2977 
2978 		/* Clear the halt bit in RSTAT */
2979 		gfar_write(&regs->rstat, gfargrp->rstat);
2980 
2981 		spin_lock_irq(&gfargrp->grplock);
2982 		imask = gfar_read(&regs->imask);
2983 		imask |= IMASK_RX_DEFAULT;
2984 		gfar_write(&regs->imask, imask);
2985 		spin_unlock_irq(&gfargrp->grplock);
2986 	}
2987 
2988 	return work_done;
2989 }
2990 
2991 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2992 {
2993 	struct gfar_priv_grp *gfargrp =
2994 		container_of(napi, struct gfar_priv_grp, napi_tx);
2995 	struct gfar_private *priv = gfargrp->priv;
2996 	struct gfar __iomem *regs = gfargrp->regs;
2997 	struct gfar_priv_tx_q *tx_queue = NULL;
2998 	int has_tx_work = 0;
2999 	int i;
3000 
3001 	/* Clear IEVENT, so interrupts aren't called again
3002 	 * because of the packets that have already arrived
3003 	 */
3004 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3005 
3006 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3007 		tx_queue = priv->tx_queue[i];
3008 		/* run Tx cleanup to completion */
3009 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3010 			gfar_clean_tx_ring(tx_queue);
3011 			has_tx_work = 1;
3012 		}
3013 	}
3014 
3015 	if (!has_tx_work) {
3016 		u32 imask;
3017 		napi_complete(napi);
3018 
3019 		spin_lock_irq(&gfargrp->grplock);
3020 		imask = gfar_read(&regs->imask);
3021 		imask |= IMASK_TX_DEFAULT;
3022 		gfar_write(&regs->imask, imask);
3023 		spin_unlock_irq(&gfargrp->grplock);
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 
3030 #ifdef CONFIG_NET_POLL_CONTROLLER
3031 /* Polling 'interrupt' - used by things like netconsole to send skbs
3032  * without having to re-enable interrupts. It's not called while
3033  * the interrupt routine is executing.
3034  */
3035 static void gfar_netpoll(struct net_device *dev)
3036 {
3037 	struct gfar_private *priv = netdev_priv(dev);
3038 	int i;
3039 
3040 	/* If the device has multiple interrupts, run tx/rx */
3041 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3042 		for (i = 0; i < priv->num_grps; i++) {
3043 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3044 
3045 			disable_irq(gfar_irq(grp, TX)->irq);
3046 			disable_irq(gfar_irq(grp, RX)->irq);
3047 			disable_irq(gfar_irq(grp, ER)->irq);
3048 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3049 			enable_irq(gfar_irq(grp, ER)->irq);
3050 			enable_irq(gfar_irq(grp, RX)->irq);
3051 			enable_irq(gfar_irq(grp, TX)->irq);
3052 		}
3053 	} else {
3054 		for (i = 0; i < priv->num_grps; i++) {
3055 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3056 
3057 			disable_irq(gfar_irq(grp, TX)->irq);
3058 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3059 			enable_irq(gfar_irq(grp, TX)->irq);
3060 		}
3061 	}
3062 }
3063 #endif
3064 
3065 /* The interrupt handler for devices with one interrupt */
3066 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3067 {
3068 	struct gfar_priv_grp *gfargrp = grp_id;
3069 
3070 	/* Save ievent for future reference */
3071 	u32 events = gfar_read(&gfargrp->regs->ievent);
3072 
3073 	/* Check for reception */
3074 	if (events & IEVENT_RX_MASK)
3075 		gfar_receive(irq, grp_id);
3076 
3077 	/* Check for transmit completion */
3078 	if (events & IEVENT_TX_MASK)
3079 		gfar_transmit(irq, grp_id);
3080 
3081 	/* Check for errors */
3082 	if (events & IEVENT_ERR_MASK)
3083 		gfar_error(irq, grp_id);
3084 
3085 	return IRQ_HANDLED;
3086 }
3087 
3088 /* Called every time the controller might need to be made
3089  * aware of new link state.  The PHY code conveys this
3090  * information through variables in the phydev structure, and this
3091  * function converts those variables into the appropriate
3092  * register values, and can bring down the device if needed.
3093  */
3094 static void adjust_link(struct net_device *dev)
3095 {
3096 	struct gfar_private *priv = netdev_priv(dev);
3097 	struct phy_device *phydev = priv->phydev;
3098 
3099 	if (unlikely(phydev->link != priv->oldlink ||
3100 		     phydev->duplex != priv->oldduplex ||
3101 		     phydev->speed != priv->oldspeed))
3102 		gfar_update_link_state(priv);
3103 }
3104 
3105 /* Update the hash table based on the current list of multicast
3106  * addresses we subscribe to.  Also, change the promiscuity of
3107  * the device based on the flags (this function is called
3108  * whenever dev->flags is changed
3109  */
3110 static void gfar_set_multi(struct net_device *dev)
3111 {
3112 	struct netdev_hw_addr *ha;
3113 	struct gfar_private *priv = netdev_priv(dev);
3114 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3115 	u32 tempval;
3116 
3117 	if (dev->flags & IFF_PROMISC) {
3118 		/* Set RCTRL to PROM */
3119 		tempval = gfar_read(&regs->rctrl);
3120 		tempval |= RCTRL_PROM;
3121 		gfar_write(&regs->rctrl, tempval);
3122 	} else {
3123 		/* Set RCTRL to not PROM */
3124 		tempval = gfar_read(&regs->rctrl);
3125 		tempval &= ~(RCTRL_PROM);
3126 		gfar_write(&regs->rctrl, tempval);
3127 	}
3128 
3129 	if (dev->flags & IFF_ALLMULTI) {
3130 		/* Set the hash to rx all multicast frames */
3131 		gfar_write(&regs->igaddr0, 0xffffffff);
3132 		gfar_write(&regs->igaddr1, 0xffffffff);
3133 		gfar_write(&regs->igaddr2, 0xffffffff);
3134 		gfar_write(&regs->igaddr3, 0xffffffff);
3135 		gfar_write(&regs->igaddr4, 0xffffffff);
3136 		gfar_write(&regs->igaddr5, 0xffffffff);
3137 		gfar_write(&regs->igaddr6, 0xffffffff);
3138 		gfar_write(&regs->igaddr7, 0xffffffff);
3139 		gfar_write(&regs->gaddr0, 0xffffffff);
3140 		gfar_write(&regs->gaddr1, 0xffffffff);
3141 		gfar_write(&regs->gaddr2, 0xffffffff);
3142 		gfar_write(&regs->gaddr3, 0xffffffff);
3143 		gfar_write(&regs->gaddr4, 0xffffffff);
3144 		gfar_write(&regs->gaddr5, 0xffffffff);
3145 		gfar_write(&regs->gaddr6, 0xffffffff);
3146 		gfar_write(&regs->gaddr7, 0xffffffff);
3147 	} else {
3148 		int em_num;
3149 		int idx;
3150 
3151 		/* zero out the hash */
3152 		gfar_write(&regs->igaddr0, 0x0);
3153 		gfar_write(&regs->igaddr1, 0x0);
3154 		gfar_write(&regs->igaddr2, 0x0);
3155 		gfar_write(&regs->igaddr3, 0x0);
3156 		gfar_write(&regs->igaddr4, 0x0);
3157 		gfar_write(&regs->igaddr5, 0x0);
3158 		gfar_write(&regs->igaddr6, 0x0);
3159 		gfar_write(&regs->igaddr7, 0x0);
3160 		gfar_write(&regs->gaddr0, 0x0);
3161 		gfar_write(&regs->gaddr1, 0x0);
3162 		gfar_write(&regs->gaddr2, 0x0);
3163 		gfar_write(&regs->gaddr3, 0x0);
3164 		gfar_write(&regs->gaddr4, 0x0);
3165 		gfar_write(&regs->gaddr5, 0x0);
3166 		gfar_write(&regs->gaddr6, 0x0);
3167 		gfar_write(&regs->gaddr7, 0x0);
3168 
3169 		/* If we have extended hash tables, we need to
3170 		 * clear the exact match registers to prepare for
3171 		 * setting them
3172 		 */
3173 		if (priv->extended_hash) {
3174 			em_num = GFAR_EM_NUM + 1;
3175 			gfar_clear_exact_match(dev);
3176 			idx = 1;
3177 		} else {
3178 			idx = 0;
3179 			em_num = 0;
3180 		}
3181 
3182 		if (netdev_mc_empty(dev))
3183 			return;
3184 
3185 		/* Parse the list, and set the appropriate bits */
3186 		netdev_for_each_mc_addr(ha, dev) {
3187 			if (idx < em_num) {
3188 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3189 				idx++;
3190 			} else
3191 				gfar_set_hash_for_addr(dev, ha->addr);
3192 		}
3193 	}
3194 }
3195 
3196 
3197 /* Clears each of the exact match registers to zero, so they
3198  * don't interfere with normal reception
3199  */
3200 static void gfar_clear_exact_match(struct net_device *dev)
3201 {
3202 	int idx;
3203 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3204 
3205 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3206 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3207 }
3208 
3209 /* Set the appropriate hash bit for the given addr */
3210 /* The algorithm works like so:
3211  * 1) Take the Destination Address (ie the multicast address), and
3212  * do a CRC on it (little endian), and reverse the bits of the
3213  * result.
3214  * 2) Use the 8 most significant bits as a hash into a 256-entry
3215  * table.  The table is controlled through 8 32-bit registers:
3216  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3217  * gaddr7.  This means that the 3 most significant bits in the
3218  * hash index which gaddr register to use, and the 5 other bits
3219  * indicate which bit (assuming an IBM numbering scheme, which
3220  * for PowerPC (tm) is usually the case) in the register holds
3221  * the entry.
3222  */
3223 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3224 {
3225 	u32 tempval;
3226 	struct gfar_private *priv = netdev_priv(dev);
3227 	u32 result = ether_crc(ETH_ALEN, addr);
3228 	int width = priv->hash_width;
3229 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3230 	u8 whichreg = result >> (32 - width + 5);
3231 	u32 value = (1 << (31-whichbit));
3232 
3233 	tempval = gfar_read(priv->hash_regs[whichreg]);
3234 	tempval |= value;
3235 	gfar_write(priv->hash_regs[whichreg], tempval);
3236 }
3237 
3238 
3239 /* There are multiple MAC Address register pairs on some controllers
3240  * This function sets the numth pair to a given address
3241  */
3242 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3243 				  const u8 *addr)
3244 {
3245 	struct gfar_private *priv = netdev_priv(dev);
3246 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3247 	int idx;
3248 	char tmpbuf[ETH_ALEN];
3249 	u32 tempval;
3250 	u32 __iomem *macptr = &regs->macstnaddr1;
3251 
3252 	macptr += num*2;
3253 
3254 	/* Now copy it into the mac registers backwards, cuz
3255 	 * little endian is silly
3256 	 */
3257 	for (idx = 0; idx < ETH_ALEN; idx++)
3258 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3259 
3260 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3261 
3262 	tempval = *((u32 *) (tmpbuf + 4));
3263 
3264 	gfar_write(macptr+1, tempval);
3265 }
3266 
3267 /* GFAR error interrupt handler */
3268 static irqreturn_t gfar_error(int irq, void *grp_id)
3269 {
3270 	struct gfar_priv_grp *gfargrp = grp_id;
3271 	struct gfar __iomem *regs = gfargrp->regs;
3272 	struct gfar_private *priv= gfargrp->priv;
3273 	struct net_device *dev = priv->ndev;
3274 
3275 	/* Save ievent for future reference */
3276 	u32 events = gfar_read(&regs->ievent);
3277 
3278 	/* Clear IEVENT */
3279 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3280 
3281 	/* Magic Packet is not an error. */
3282 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3283 	    (events & IEVENT_MAG))
3284 		events &= ~IEVENT_MAG;
3285 
3286 	/* Hmm... */
3287 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3288 		netdev_dbg(dev,
3289 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3290 			   events, gfar_read(&regs->imask));
3291 
3292 	/* Update the error counters */
3293 	if (events & IEVENT_TXE) {
3294 		dev->stats.tx_errors++;
3295 
3296 		if (events & IEVENT_LC)
3297 			dev->stats.tx_window_errors++;
3298 		if (events & IEVENT_CRL)
3299 			dev->stats.tx_aborted_errors++;
3300 		if (events & IEVENT_XFUN) {
3301 			unsigned long flags;
3302 
3303 			netif_dbg(priv, tx_err, dev,
3304 				  "TX FIFO underrun, packet dropped\n");
3305 			dev->stats.tx_dropped++;
3306 			atomic64_inc(&priv->extra_stats.tx_underrun);
3307 
3308 			local_irq_save(flags);
3309 			lock_tx_qs(priv);
3310 
3311 			/* Reactivate the Tx Queues */
3312 			gfar_write(&regs->tstat, gfargrp->tstat);
3313 
3314 			unlock_tx_qs(priv);
3315 			local_irq_restore(flags);
3316 		}
3317 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3318 	}
3319 	if (events & IEVENT_BSY) {
3320 		dev->stats.rx_errors++;
3321 		atomic64_inc(&priv->extra_stats.rx_bsy);
3322 
3323 		gfar_receive(irq, grp_id);
3324 
3325 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3326 			  gfar_read(&regs->rstat));
3327 	}
3328 	if (events & IEVENT_BABR) {
3329 		dev->stats.rx_errors++;
3330 		atomic64_inc(&priv->extra_stats.rx_babr);
3331 
3332 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3333 	}
3334 	if (events & IEVENT_EBERR) {
3335 		atomic64_inc(&priv->extra_stats.eberr);
3336 		netif_dbg(priv, rx_err, dev, "bus error\n");
3337 	}
3338 	if (events & IEVENT_RXC)
3339 		netif_dbg(priv, rx_status, dev, "control frame\n");
3340 
3341 	if (events & IEVENT_BABT) {
3342 		atomic64_inc(&priv->extra_stats.tx_babt);
3343 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3344 	}
3345 	return IRQ_HANDLED;
3346 }
3347 
3348 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3349 {
3350 	struct phy_device *phydev = priv->phydev;
3351 	u32 val = 0;
3352 
3353 	if (!phydev->duplex)
3354 		return val;
3355 
3356 	if (!priv->pause_aneg_en) {
3357 		if (priv->tx_pause_en)
3358 			val |= MACCFG1_TX_FLOW;
3359 		if (priv->rx_pause_en)
3360 			val |= MACCFG1_RX_FLOW;
3361 	} else {
3362 		u16 lcl_adv, rmt_adv;
3363 		u8 flowctrl;
3364 		/* get link partner capabilities */
3365 		rmt_adv = 0;
3366 		if (phydev->pause)
3367 			rmt_adv = LPA_PAUSE_CAP;
3368 		if (phydev->asym_pause)
3369 			rmt_adv |= LPA_PAUSE_ASYM;
3370 
3371 		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3372 
3373 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3374 		if (flowctrl & FLOW_CTRL_TX)
3375 			val |= MACCFG1_TX_FLOW;
3376 		if (flowctrl & FLOW_CTRL_RX)
3377 			val |= MACCFG1_RX_FLOW;
3378 	}
3379 
3380 	return val;
3381 }
3382 
3383 static noinline void gfar_update_link_state(struct gfar_private *priv)
3384 {
3385 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3386 	struct phy_device *phydev = priv->phydev;
3387 
3388 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3389 		return;
3390 
3391 	if (phydev->link) {
3392 		u32 tempval1 = gfar_read(&regs->maccfg1);
3393 		u32 tempval = gfar_read(&regs->maccfg2);
3394 		u32 ecntrl = gfar_read(&regs->ecntrl);
3395 
3396 		if (phydev->duplex != priv->oldduplex) {
3397 			if (!(phydev->duplex))
3398 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3399 			else
3400 				tempval |= MACCFG2_FULL_DUPLEX;
3401 
3402 			priv->oldduplex = phydev->duplex;
3403 		}
3404 
3405 		if (phydev->speed != priv->oldspeed) {
3406 			switch (phydev->speed) {
3407 			case 1000:
3408 				tempval =
3409 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3410 
3411 				ecntrl &= ~(ECNTRL_R100);
3412 				break;
3413 			case 100:
3414 			case 10:
3415 				tempval =
3416 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3417 
3418 				/* Reduced mode distinguishes
3419 				 * between 10 and 100
3420 				 */
3421 				if (phydev->speed == SPEED_100)
3422 					ecntrl |= ECNTRL_R100;
3423 				else
3424 					ecntrl &= ~(ECNTRL_R100);
3425 				break;
3426 			default:
3427 				netif_warn(priv, link, priv->ndev,
3428 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3429 					   phydev->speed);
3430 				break;
3431 			}
3432 
3433 			priv->oldspeed = phydev->speed;
3434 		}
3435 
3436 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3437 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3438 
3439 		gfar_write(&regs->maccfg1, tempval1);
3440 		gfar_write(&regs->maccfg2, tempval);
3441 		gfar_write(&regs->ecntrl, ecntrl);
3442 
3443 		if (!priv->oldlink)
3444 			priv->oldlink = 1;
3445 
3446 	} else if (priv->oldlink) {
3447 		priv->oldlink = 0;
3448 		priv->oldspeed = 0;
3449 		priv->oldduplex = -1;
3450 	}
3451 
3452 	if (netif_msg_link(priv))
3453 		phy_print_status(phydev);
3454 }
3455 
3456 static struct of_device_id gfar_match[] =
3457 {
3458 	{
3459 		.type = "network",
3460 		.compatible = "gianfar",
3461 	},
3462 	{
3463 		.compatible = "fsl,etsec2",
3464 	},
3465 	{},
3466 };
3467 MODULE_DEVICE_TABLE(of, gfar_match);
3468 
3469 /* Structure for a device driver */
3470 static struct platform_driver gfar_driver = {
3471 	.driver = {
3472 		.name = "fsl-gianfar",
3473 		.owner = THIS_MODULE,
3474 		.pm = GFAR_PM_OPS,
3475 		.of_match_table = gfar_match,
3476 	},
3477 	.probe = gfar_probe,
3478 	.remove = gfar_remove,
3479 };
3480 
3481 module_platform_driver(gfar_driver);
3482