1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/mpc85xx.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
103 
104 #include "gianfar.h"
105 
106 #define TX_TIMEOUT      (1*HZ)
107 
108 const char gfar_driver_version[] = "1.3";
109 
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 			   struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 static int gfar_poll_sq(struct napi_struct *napi, int budget);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device *dev);
136 #endif
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
138 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
139 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
140 			       int amount_pull, struct napi_struct *napi);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 				  const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148 
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152 
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 			    dma_addr_t buf)
155 {
156 	u32 lstatus;
157 
158 	bdp->bufPtr = buf;
159 
160 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 		lstatus |= BD_LFLAG(RXBD_WRAP);
163 
164 	eieio();
165 
166 	bdp->lstatus = lstatus;
167 }
168 
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171 	struct gfar_private *priv = netdev_priv(ndev);
172 	struct gfar_priv_tx_q *tx_queue = NULL;
173 	struct gfar_priv_rx_q *rx_queue = NULL;
174 	struct txbd8 *txbdp;
175 	struct rxbd8 *rxbdp;
176 	int i, j;
177 
178 	for (i = 0; i < priv->num_tx_queues; i++) {
179 		tx_queue = priv->tx_queue[i];
180 		/* Initialize some variables in our dev structure */
181 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
183 		tx_queue->cur_tx = tx_queue->tx_bd_base;
184 		tx_queue->skb_curtx = 0;
185 		tx_queue->skb_dirtytx = 0;
186 
187 		/* Initialize Transmit Descriptor Ring */
188 		txbdp = tx_queue->tx_bd_base;
189 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
190 			txbdp->lstatus = 0;
191 			txbdp->bufPtr = 0;
192 			txbdp++;
193 		}
194 
195 		/* Set the last descriptor in the ring to indicate wrap */
196 		txbdp--;
197 		txbdp->status |= TXBD_WRAP;
198 	}
199 
200 	for (i = 0; i < priv->num_rx_queues; i++) {
201 		rx_queue = priv->rx_queue[i];
202 		rx_queue->cur_rx = rx_queue->rx_bd_base;
203 		rx_queue->skb_currx = 0;
204 		rxbdp = rx_queue->rx_bd_base;
205 
206 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
207 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
208 
209 			if (skb) {
210 				gfar_init_rxbdp(rx_queue, rxbdp,
211 						rxbdp->bufPtr);
212 			} else {
213 				skb = gfar_new_skb(ndev);
214 				if (!skb) {
215 					netdev_err(ndev, "Can't allocate RX buffers\n");
216 					return -ENOMEM;
217 				}
218 				rx_queue->rx_skbuff[j] = skb;
219 
220 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 			}
222 
223 			rxbdp++;
224 		}
225 
226 	}
227 
228 	return 0;
229 }
230 
231 static int gfar_alloc_skb_resources(struct net_device *ndev)
232 {
233 	void *vaddr;
234 	dma_addr_t addr;
235 	int i, j, k;
236 	struct gfar_private *priv = netdev_priv(ndev);
237 	struct device *dev = priv->dev;
238 	struct gfar_priv_tx_q *tx_queue = NULL;
239 	struct gfar_priv_rx_q *rx_queue = NULL;
240 
241 	priv->total_tx_ring_size = 0;
242 	for (i = 0; i < priv->num_tx_queues; i++)
243 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
244 
245 	priv->total_rx_ring_size = 0;
246 	for (i = 0; i < priv->num_rx_queues; i++)
247 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
248 
249 	/* Allocate memory for the buffer descriptors */
250 	vaddr = dma_alloc_coherent(dev,
251 				   (priv->total_tx_ring_size *
252 				    sizeof(struct txbd8)) +
253 				   (priv->total_rx_ring_size *
254 				    sizeof(struct rxbd8)),
255 				   &addr, GFP_KERNEL);
256 	if (!vaddr)
257 		return -ENOMEM;
258 
259 	for (i = 0; i < priv->num_tx_queues; i++) {
260 		tx_queue = priv->tx_queue[i];
261 		tx_queue->tx_bd_base = vaddr;
262 		tx_queue->tx_bd_dma_base = addr;
263 		tx_queue->dev = ndev;
264 		/* enet DMA only understands physical addresses */
265 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
267 	}
268 
269 	/* Start the rx descriptor ring where the tx ring leaves off */
270 	for (i = 0; i < priv->num_rx_queues; i++) {
271 		rx_queue = priv->rx_queue[i];
272 		rx_queue->rx_bd_base = vaddr;
273 		rx_queue->rx_bd_dma_base = addr;
274 		rx_queue->dev = ndev;
275 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
277 	}
278 
279 	/* Setup the skbuff rings */
280 	for (i = 0; i < priv->num_tx_queues; i++) {
281 		tx_queue = priv->tx_queue[i];
282 		tx_queue->tx_skbuff =
283 			kmalloc_array(tx_queue->tx_ring_size,
284 				      sizeof(*tx_queue->tx_skbuff),
285 				      GFP_KERNEL);
286 		if (!tx_queue->tx_skbuff)
287 			goto cleanup;
288 
289 		for (k = 0; k < tx_queue->tx_ring_size; k++)
290 			tx_queue->tx_skbuff[k] = NULL;
291 	}
292 
293 	for (i = 0; i < priv->num_rx_queues; i++) {
294 		rx_queue = priv->rx_queue[i];
295 		rx_queue->rx_skbuff =
296 			kmalloc_array(rx_queue->rx_ring_size,
297 				      sizeof(*rx_queue->rx_skbuff),
298 				      GFP_KERNEL);
299 		if (!rx_queue->rx_skbuff)
300 			goto cleanup;
301 
302 		for (j = 0; j < rx_queue->rx_ring_size; j++)
303 			rx_queue->rx_skbuff[j] = NULL;
304 	}
305 
306 	if (gfar_init_bds(ndev))
307 		goto cleanup;
308 
309 	return 0;
310 
311 cleanup:
312 	free_skb_resources(priv);
313 	return -ENOMEM;
314 }
315 
316 static void gfar_init_tx_rx_base(struct gfar_private *priv)
317 {
318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 	u32 __iomem *baddr;
320 	int i;
321 
322 	baddr = &regs->tbase0;
323 	for (i = 0; i < priv->num_tx_queues; i++) {
324 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
325 		baddr += 2;
326 	}
327 
328 	baddr = &regs->rbase0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
331 		baddr += 2;
332 	}
333 }
334 
335 static void gfar_init_mac(struct net_device *ndev)
336 {
337 	struct gfar_private *priv = netdev_priv(ndev);
338 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
339 	u32 rctrl = 0;
340 	u32 tctrl = 0;
341 	u32 attrs = 0;
342 
343 	/* write the tx/rx base registers */
344 	gfar_init_tx_rx_base(priv);
345 
346 	/* Configure the coalescing support */
347 	gfar_configure_coalescing_all(priv);
348 
349 	/* set this when rx hw offload (TOE) functions are being used */
350 	priv->uses_rxfcb = 0;
351 
352 	if (priv->rx_filer_enable) {
353 		rctrl |= RCTRL_FILREN;
354 		/* Program the RIR0 reg with the required distribution */
355 		gfar_write(&regs->rir0, DEFAULT_RIR0);
356 	}
357 
358 	/* Restore PROMISC mode */
359 	if (ndev->flags & IFF_PROMISC)
360 		rctrl |= RCTRL_PROM;
361 
362 	if (ndev->features & NETIF_F_RXCSUM) {
363 		rctrl |= RCTRL_CHECKSUMMING;
364 		priv->uses_rxfcb = 1;
365 	}
366 
367 	if (priv->extended_hash) {
368 		rctrl |= RCTRL_EXTHASH;
369 
370 		gfar_clear_exact_match(ndev);
371 		rctrl |= RCTRL_EMEN;
372 	}
373 
374 	if (priv->padding) {
375 		rctrl &= ~RCTRL_PAL_MASK;
376 		rctrl |= RCTRL_PADDING(priv->padding);
377 	}
378 
379 	/* Insert receive time stamps into padding alignment bytes */
380 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
381 		rctrl &= ~RCTRL_PAL_MASK;
382 		rctrl |= RCTRL_PADDING(8);
383 		priv->padding = 8;
384 	}
385 
386 	/* Enable HW time stamping if requested from user space */
387 	if (priv->hwts_rx_en) {
388 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
389 		priv->uses_rxfcb = 1;
390 	}
391 
392 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
393 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394 		priv->uses_rxfcb = 1;
395 	}
396 
397 	/* Init rctrl based on our settings */
398 	gfar_write(&regs->rctrl, rctrl);
399 
400 	if (ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	gfar_write(&regs->tctrl, tctrl);
412 
413 	/* Set the extraction length and index */
414 	attrs = ATTRELI_EL(priv->rx_stash_size) |
415 		ATTRELI_EI(priv->rx_stash_index);
416 
417 	gfar_write(&regs->attreli, attrs);
418 
419 	/* Start with defaults, and add stashing or locking
420 	 * depending on the approprate variables
421 	 */
422 	attrs = ATTR_INIT_SETTINGS;
423 
424 	if (priv->bd_stash_en)
425 		attrs |= ATTR_BDSTASH;
426 
427 	if (priv->rx_stash_size != 0)
428 		attrs |= ATTR_BUFSTASH;
429 
430 	gfar_write(&regs->attr, attrs);
431 
432 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
433 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
434 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
435 }
436 
437 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
438 {
439 	struct gfar_private *priv = netdev_priv(dev);
440 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
441 	unsigned long tx_packets = 0, tx_bytes = 0;
442 	int i;
443 
444 	for (i = 0; i < priv->num_rx_queues; i++) {
445 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
446 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
447 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
448 	}
449 
450 	dev->stats.rx_packets = rx_packets;
451 	dev->stats.rx_bytes   = rx_bytes;
452 	dev->stats.rx_dropped = rx_dropped;
453 
454 	for (i = 0; i < priv->num_tx_queues; i++) {
455 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
456 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
457 	}
458 
459 	dev->stats.tx_bytes   = tx_bytes;
460 	dev->stats.tx_packets = tx_packets;
461 
462 	return &dev->stats;
463 }
464 
465 static const struct net_device_ops gfar_netdev_ops = {
466 	.ndo_open = gfar_enet_open,
467 	.ndo_start_xmit = gfar_start_xmit,
468 	.ndo_stop = gfar_close,
469 	.ndo_change_mtu = gfar_change_mtu,
470 	.ndo_set_features = gfar_set_features,
471 	.ndo_set_rx_mode = gfar_set_multi,
472 	.ndo_tx_timeout = gfar_timeout,
473 	.ndo_do_ioctl = gfar_ioctl,
474 	.ndo_get_stats = gfar_get_stats,
475 	.ndo_set_mac_address = eth_mac_addr,
476 	.ndo_validate_addr = eth_validate_addr,
477 #ifdef CONFIG_NET_POLL_CONTROLLER
478 	.ndo_poll_controller = gfar_netpoll,
479 #endif
480 };
481 
482 void lock_rx_qs(struct gfar_private *priv)
483 {
484 	int i;
485 
486 	for (i = 0; i < priv->num_rx_queues; i++)
487 		spin_lock(&priv->rx_queue[i]->rxlock);
488 }
489 
490 void lock_tx_qs(struct gfar_private *priv)
491 {
492 	int i;
493 
494 	for (i = 0; i < priv->num_tx_queues; i++)
495 		spin_lock(&priv->tx_queue[i]->txlock);
496 }
497 
498 void unlock_rx_qs(struct gfar_private *priv)
499 {
500 	int i;
501 
502 	for (i = 0; i < priv->num_rx_queues; i++)
503 		spin_unlock(&priv->rx_queue[i]->rxlock);
504 }
505 
506 void unlock_tx_qs(struct gfar_private *priv)
507 {
508 	int i;
509 
510 	for (i = 0; i < priv->num_tx_queues; i++)
511 		spin_unlock(&priv->tx_queue[i]->txlock);
512 }
513 
514 static void free_tx_pointers(struct gfar_private *priv)
515 {
516 	int i;
517 
518 	for (i = 0; i < priv->num_tx_queues; i++)
519 		kfree(priv->tx_queue[i]);
520 }
521 
522 static void free_rx_pointers(struct gfar_private *priv)
523 {
524 	int i;
525 
526 	for (i = 0; i < priv->num_rx_queues; i++)
527 		kfree(priv->rx_queue[i]);
528 }
529 
530 static void unmap_group_regs(struct gfar_private *priv)
531 {
532 	int i;
533 
534 	for (i = 0; i < MAXGROUPS; i++)
535 		if (priv->gfargrp[i].regs)
536 			iounmap(priv->gfargrp[i].regs);
537 }
538 
539 static void free_gfar_dev(struct gfar_private *priv)
540 {
541 	int i, j;
542 
543 	for (i = 0; i < priv->num_grps; i++)
544 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
545 			kfree(priv->gfargrp[i].irqinfo[j]);
546 			priv->gfargrp[i].irqinfo[j] = NULL;
547 		}
548 
549 	free_netdev(priv->ndev);
550 }
551 
552 static void disable_napi(struct gfar_private *priv)
553 {
554 	int i;
555 
556 	for (i = 0; i < priv->num_grps; i++)
557 		napi_disable(&priv->gfargrp[i].napi);
558 }
559 
560 static void enable_napi(struct gfar_private *priv)
561 {
562 	int i;
563 
564 	for (i = 0; i < priv->num_grps; i++)
565 		napi_enable(&priv->gfargrp[i].napi);
566 }
567 
568 static int gfar_parse_group(struct device_node *np,
569 			    struct gfar_private *priv, const char *model)
570 {
571 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
572 	u32 *queue_mask;
573 	int i;
574 
575 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
576 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
577 					  GFP_KERNEL);
578 		if (!grp->irqinfo[i])
579 			return -ENOMEM;
580 	}
581 
582 	grp->regs = of_iomap(np, 0);
583 	if (!grp->regs)
584 		return -ENOMEM;
585 
586 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
587 
588 	/* If we aren't the FEC we have multiple interrupts */
589 	if (model && strcasecmp(model, "FEC")) {
590 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
591 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
592 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
593 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
594 		    gfar_irq(grp, ER)->irq == NO_IRQ)
595 			return -EINVAL;
596 	}
597 
598 	grp->priv = priv;
599 	spin_lock_init(&grp->grplock);
600 	if (priv->mode == MQ_MG_MODE) {
601 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
602 		grp->rx_bit_map = queue_mask ?
603 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
604 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
605 		grp->tx_bit_map = queue_mask ?
606 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
607 	} else {
608 		grp->rx_bit_map = 0xFF;
609 		grp->tx_bit_map = 0xFF;
610 	}
611 	priv->num_grps++;
612 
613 	return 0;
614 }
615 
616 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
617 {
618 	const char *model;
619 	const char *ctype;
620 	const void *mac_addr;
621 	int err = 0, i;
622 	struct net_device *dev = NULL;
623 	struct gfar_private *priv = NULL;
624 	struct device_node *np = ofdev->dev.of_node;
625 	struct device_node *child = NULL;
626 	const u32 *stash;
627 	const u32 *stash_len;
628 	const u32 *stash_idx;
629 	unsigned int num_tx_qs, num_rx_qs;
630 	u32 *tx_queues, *rx_queues;
631 
632 	if (!np || !of_device_is_available(np))
633 		return -ENODEV;
634 
635 	/* parse the num of tx and rx queues */
636 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
637 	num_tx_qs = tx_queues ? *tx_queues : 1;
638 
639 	if (num_tx_qs > MAX_TX_QS) {
640 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
641 		       num_tx_qs, MAX_TX_QS);
642 		pr_err("Cannot do alloc_etherdev, aborting\n");
643 		return -EINVAL;
644 	}
645 
646 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
647 	num_rx_qs = rx_queues ? *rx_queues : 1;
648 
649 	if (num_rx_qs > MAX_RX_QS) {
650 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
651 		       num_rx_qs, MAX_RX_QS);
652 		pr_err("Cannot do alloc_etherdev, aborting\n");
653 		return -EINVAL;
654 	}
655 
656 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
657 	dev = *pdev;
658 	if (NULL == dev)
659 		return -ENOMEM;
660 
661 	priv = netdev_priv(dev);
662 	priv->ndev = dev;
663 
664 	priv->num_tx_queues = num_tx_qs;
665 	netif_set_real_num_rx_queues(dev, num_rx_qs);
666 	priv->num_rx_queues = num_rx_qs;
667 	priv->num_grps = 0x0;
668 
669 	/* Init Rx queue filer rule set linked list */
670 	INIT_LIST_HEAD(&priv->rx_list.list);
671 	priv->rx_list.count = 0;
672 	mutex_init(&priv->rx_queue_access);
673 
674 	model = of_get_property(np, "model", NULL);
675 
676 	for (i = 0; i < MAXGROUPS; i++)
677 		priv->gfargrp[i].regs = NULL;
678 
679 	/* Parse and initialize group specific information */
680 	if (of_device_is_compatible(np, "fsl,etsec2")) {
681 		priv->mode = MQ_MG_MODE;
682 		for_each_child_of_node(np, child) {
683 			err = gfar_parse_group(child, priv, model);
684 			if (err)
685 				goto err_grp_init;
686 		}
687 	} else {
688 		priv->mode = SQ_SG_MODE;
689 		err = gfar_parse_group(np, priv, model);
690 		if (err)
691 			goto err_grp_init;
692 	}
693 
694 	for (i = 0; i < priv->num_tx_queues; i++)
695 		priv->tx_queue[i] = NULL;
696 	for (i = 0; i < priv->num_rx_queues; i++)
697 		priv->rx_queue[i] = NULL;
698 
699 	for (i = 0; i < priv->num_tx_queues; i++) {
700 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
701 					    GFP_KERNEL);
702 		if (!priv->tx_queue[i]) {
703 			err = -ENOMEM;
704 			goto tx_alloc_failed;
705 		}
706 		priv->tx_queue[i]->tx_skbuff = NULL;
707 		priv->tx_queue[i]->qindex = i;
708 		priv->tx_queue[i]->dev = dev;
709 		spin_lock_init(&(priv->tx_queue[i]->txlock));
710 	}
711 
712 	for (i = 0; i < priv->num_rx_queues; i++) {
713 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
714 					    GFP_KERNEL);
715 		if (!priv->rx_queue[i]) {
716 			err = -ENOMEM;
717 			goto rx_alloc_failed;
718 		}
719 		priv->rx_queue[i]->rx_skbuff = NULL;
720 		priv->rx_queue[i]->qindex = i;
721 		priv->rx_queue[i]->dev = dev;
722 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
723 	}
724 
725 
726 	stash = of_get_property(np, "bd-stash", NULL);
727 
728 	if (stash) {
729 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
730 		priv->bd_stash_en = 1;
731 	}
732 
733 	stash_len = of_get_property(np, "rx-stash-len", NULL);
734 
735 	if (stash_len)
736 		priv->rx_stash_size = *stash_len;
737 
738 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
739 
740 	if (stash_idx)
741 		priv->rx_stash_index = *stash_idx;
742 
743 	if (stash_len || stash_idx)
744 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
745 
746 	mac_addr = of_get_mac_address(np);
747 
748 	if (mac_addr)
749 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
750 
751 	if (model && !strcasecmp(model, "TSEC"))
752 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
753 				     FSL_GIANFAR_DEV_HAS_COALESCE |
754 				     FSL_GIANFAR_DEV_HAS_RMON |
755 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
756 
757 	if (model && !strcasecmp(model, "eTSEC"))
758 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
759 				     FSL_GIANFAR_DEV_HAS_COALESCE |
760 				     FSL_GIANFAR_DEV_HAS_RMON |
761 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
762 				     FSL_GIANFAR_DEV_HAS_PADDING |
763 				     FSL_GIANFAR_DEV_HAS_CSUM |
764 				     FSL_GIANFAR_DEV_HAS_VLAN |
765 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
766 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
767 				     FSL_GIANFAR_DEV_HAS_TIMER;
768 
769 	ctype = of_get_property(np, "phy-connection-type", NULL);
770 
771 	/* We only care about rgmii-id.  The rest are autodetected */
772 	if (ctype && !strcmp(ctype, "rgmii-id"))
773 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
774 	else
775 		priv->interface = PHY_INTERFACE_MODE_MII;
776 
777 	if (of_get_property(np, "fsl,magic-packet", NULL))
778 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
779 
780 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
781 
782 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
783 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
784 
785 	return 0;
786 
787 rx_alloc_failed:
788 	free_rx_pointers(priv);
789 tx_alloc_failed:
790 	free_tx_pointers(priv);
791 err_grp_init:
792 	unmap_group_regs(priv);
793 	free_gfar_dev(priv);
794 	return err;
795 }
796 
797 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
798 {
799 	struct hwtstamp_config config;
800 	struct gfar_private *priv = netdev_priv(netdev);
801 
802 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
803 		return -EFAULT;
804 
805 	/* reserved for future extensions */
806 	if (config.flags)
807 		return -EINVAL;
808 
809 	switch (config.tx_type) {
810 	case HWTSTAMP_TX_OFF:
811 		priv->hwts_tx_en = 0;
812 		break;
813 	case HWTSTAMP_TX_ON:
814 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
815 			return -ERANGE;
816 		priv->hwts_tx_en = 1;
817 		break;
818 	default:
819 		return -ERANGE;
820 	}
821 
822 	switch (config.rx_filter) {
823 	case HWTSTAMP_FILTER_NONE:
824 		if (priv->hwts_rx_en) {
825 			stop_gfar(netdev);
826 			priv->hwts_rx_en = 0;
827 			startup_gfar(netdev);
828 		}
829 		break;
830 	default:
831 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
832 			return -ERANGE;
833 		if (!priv->hwts_rx_en) {
834 			stop_gfar(netdev);
835 			priv->hwts_rx_en = 1;
836 			startup_gfar(netdev);
837 		}
838 		config.rx_filter = HWTSTAMP_FILTER_ALL;
839 		break;
840 	}
841 
842 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
843 		-EFAULT : 0;
844 }
845 
846 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
847 {
848 	struct hwtstamp_config config;
849 	struct gfar_private *priv = netdev_priv(netdev);
850 
851 	config.flags = 0;
852 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
853 	config.rx_filter = (priv->hwts_rx_en ?
854 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
855 
856 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
857 		-EFAULT : 0;
858 }
859 
860 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
861 {
862 	struct gfar_private *priv = netdev_priv(dev);
863 
864 	if (!netif_running(dev))
865 		return -EINVAL;
866 
867 	if (cmd == SIOCSHWTSTAMP)
868 		return gfar_hwtstamp_set(dev, rq);
869 	if (cmd == SIOCGHWTSTAMP)
870 		return gfar_hwtstamp_get(dev, rq);
871 
872 	if (!priv->phydev)
873 		return -ENODEV;
874 
875 	return phy_mii_ioctl(priv->phydev, rq, cmd);
876 }
877 
878 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
879 {
880 	unsigned int new_bit_map = 0x0;
881 	int mask = 0x1 << (max_qs - 1), i;
882 
883 	for (i = 0; i < max_qs; i++) {
884 		if (bit_map & mask)
885 			new_bit_map = new_bit_map + (1 << i);
886 		mask = mask >> 0x1;
887 	}
888 	return new_bit_map;
889 }
890 
891 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
892 				   u32 class)
893 {
894 	u32 rqfpr = FPR_FILER_MASK;
895 	u32 rqfcr = 0x0;
896 
897 	rqfar--;
898 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
899 	priv->ftp_rqfpr[rqfar] = rqfpr;
900 	priv->ftp_rqfcr[rqfar] = rqfcr;
901 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
902 
903 	rqfar--;
904 	rqfcr = RQFCR_CMP_NOMATCH;
905 	priv->ftp_rqfpr[rqfar] = rqfpr;
906 	priv->ftp_rqfcr[rqfar] = rqfcr;
907 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
908 
909 	rqfar--;
910 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
911 	rqfpr = class;
912 	priv->ftp_rqfcr[rqfar] = rqfcr;
913 	priv->ftp_rqfpr[rqfar] = rqfpr;
914 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
915 
916 	rqfar--;
917 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
918 	rqfpr = class;
919 	priv->ftp_rqfcr[rqfar] = rqfcr;
920 	priv->ftp_rqfpr[rqfar] = rqfpr;
921 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922 
923 	return rqfar;
924 }
925 
926 static void gfar_init_filer_table(struct gfar_private *priv)
927 {
928 	int i = 0x0;
929 	u32 rqfar = MAX_FILER_IDX;
930 	u32 rqfcr = 0x0;
931 	u32 rqfpr = FPR_FILER_MASK;
932 
933 	/* Default rule */
934 	rqfcr = RQFCR_CMP_MATCH;
935 	priv->ftp_rqfcr[rqfar] = rqfcr;
936 	priv->ftp_rqfpr[rqfar] = rqfpr;
937 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
938 
939 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
940 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
941 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
942 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
943 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
944 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
945 
946 	/* cur_filer_idx indicated the first non-masked rule */
947 	priv->cur_filer_idx = rqfar;
948 
949 	/* Rest are masked rules */
950 	rqfcr = RQFCR_CMP_NOMATCH;
951 	for (i = 0; i < rqfar; i++) {
952 		priv->ftp_rqfcr[i] = rqfcr;
953 		priv->ftp_rqfpr[i] = rqfpr;
954 		gfar_write_filer(priv, i, rqfcr, rqfpr);
955 	}
956 }
957 
958 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
959 {
960 	unsigned int pvr = mfspr(SPRN_PVR);
961 	unsigned int svr = mfspr(SPRN_SVR);
962 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
963 	unsigned int rev = svr & 0xffff;
964 
965 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
966 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
967 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
968 		priv->errata |= GFAR_ERRATA_74;
969 
970 	/* MPC8313 and MPC837x all rev */
971 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
972 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
973 		priv->errata |= GFAR_ERRATA_76;
974 
975 	/* MPC8313 Rev < 2.0 */
976 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
977 		priv->errata |= GFAR_ERRATA_12;
978 }
979 
980 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
981 {
982 	unsigned int svr = mfspr(SPRN_SVR);
983 
984 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
985 		priv->errata |= GFAR_ERRATA_12;
986 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
987 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
988 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
989 }
990 
991 static void gfar_detect_errata(struct gfar_private *priv)
992 {
993 	struct device *dev = &priv->ofdev->dev;
994 
995 	/* no plans to fix */
996 	priv->errata |= GFAR_ERRATA_A002;
997 
998 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
999 		__gfar_detect_errata_85xx(priv);
1000 	else /* non-mpc85xx parts, i.e. e300 core based */
1001 		__gfar_detect_errata_83xx(priv);
1002 
1003 	if (priv->errata)
1004 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1005 			 priv->errata);
1006 }
1007 
1008 /* Set up the ethernet device structure, private data,
1009  * and anything else we need before we start
1010  */
1011 static int gfar_probe(struct platform_device *ofdev)
1012 {
1013 	u32 tempval;
1014 	struct net_device *dev = NULL;
1015 	struct gfar_private *priv = NULL;
1016 	struct gfar __iomem *regs = NULL;
1017 	int err = 0, i, grp_idx = 0;
1018 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
1019 	u32 isrg = 0;
1020 	u32 __iomem *baddr;
1021 
1022 	err = gfar_of_init(ofdev, &dev);
1023 
1024 	if (err)
1025 		return err;
1026 
1027 	priv = netdev_priv(dev);
1028 	priv->ndev = dev;
1029 	priv->ofdev = ofdev;
1030 	priv->dev = &ofdev->dev;
1031 	SET_NETDEV_DEV(dev, &ofdev->dev);
1032 
1033 	spin_lock_init(&priv->bflock);
1034 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1035 
1036 	platform_set_drvdata(ofdev, priv);
1037 	regs = priv->gfargrp[0].regs;
1038 
1039 	gfar_detect_errata(priv);
1040 
1041 	/* Stop the DMA engine now, in case it was running before
1042 	 * (The firmware could have used it, and left it running).
1043 	 */
1044 	gfar_halt(dev);
1045 
1046 	/* Reset MAC layer */
1047 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1048 
1049 	/* We need to delay at least 3 TX clocks */
1050 	udelay(2);
1051 
1052 	tempval = 0;
1053 	if (!priv->pause_aneg_en && priv->tx_pause_en)
1054 		tempval |= MACCFG1_TX_FLOW;
1055 	if (!priv->pause_aneg_en && priv->rx_pause_en)
1056 		tempval |= MACCFG1_RX_FLOW;
1057 	/* the soft reset bit is not self-resetting, so we need to
1058 	 * clear it before resuming normal operation
1059 	 */
1060 	gfar_write(&regs->maccfg1, tempval);
1061 
1062 	/* Initialize MACCFG2. */
1063 	tempval = MACCFG2_INIT_SETTINGS;
1064 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1065 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1066 	gfar_write(&regs->maccfg2, tempval);
1067 
1068 	/* Initialize ECNTRL */
1069 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1070 
1071 	/* Set the dev->base_addr to the gfar reg region */
1072 	dev->base_addr = (unsigned long) regs;
1073 
1074 	/* Fill in the dev structure */
1075 	dev->watchdog_timeo = TX_TIMEOUT;
1076 	dev->mtu = 1500;
1077 	dev->netdev_ops = &gfar_netdev_ops;
1078 	dev->ethtool_ops = &gfar_ethtool_ops;
1079 
1080 	/* Register for napi ...We are registering NAPI for each grp */
1081 	if (priv->mode == SQ_SG_MODE)
1082 		netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1083 			       GFAR_DEV_WEIGHT);
1084 	else
1085 		for (i = 0; i < priv->num_grps; i++)
1086 			netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1087 				       GFAR_DEV_WEIGHT);
1088 
1089 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1090 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1091 				   NETIF_F_RXCSUM;
1092 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1093 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1094 	}
1095 
1096 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1097 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1098 				    NETIF_F_HW_VLAN_CTAG_RX;
1099 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1100 	}
1101 
1102 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1103 		priv->extended_hash = 1;
1104 		priv->hash_width = 9;
1105 
1106 		priv->hash_regs[0] = &regs->igaddr0;
1107 		priv->hash_regs[1] = &regs->igaddr1;
1108 		priv->hash_regs[2] = &regs->igaddr2;
1109 		priv->hash_regs[3] = &regs->igaddr3;
1110 		priv->hash_regs[4] = &regs->igaddr4;
1111 		priv->hash_regs[5] = &regs->igaddr5;
1112 		priv->hash_regs[6] = &regs->igaddr6;
1113 		priv->hash_regs[7] = &regs->igaddr7;
1114 		priv->hash_regs[8] = &regs->gaddr0;
1115 		priv->hash_regs[9] = &regs->gaddr1;
1116 		priv->hash_regs[10] = &regs->gaddr2;
1117 		priv->hash_regs[11] = &regs->gaddr3;
1118 		priv->hash_regs[12] = &regs->gaddr4;
1119 		priv->hash_regs[13] = &regs->gaddr5;
1120 		priv->hash_regs[14] = &regs->gaddr6;
1121 		priv->hash_regs[15] = &regs->gaddr7;
1122 
1123 	} else {
1124 		priv->extended_hash = 0;
1125 		priv->hash_width = 8;
1126 
1127 		priv->hash_regs[0] = &regs->gaddr0;
1128 		priv->hash_regs[1] = &regs->gaddr1;
1129 		priv->hash_regs[2] = &regs->gaddr2;
1130 		priv->hash_regs[3] = &regs->gaddr3;
1131 		priv->hash_regs[4] = &regs->gaddr4;
1132 		priv->hash_regs[5] = &regs->gaddr5;
1133 		priv->hash_regs[6] = &regs->gaddr6;
1134 		priv->hash_regs[7] = &regs->gaddr7;
1135 	}
1136 
1137 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1138 		priv->padding = DEFAULT_PADDING;
1139 	else
1140 		priv->padding = 0;
1141 
1142 	if (dev->features & NETIF_F_IP_CSUM ||
1143 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1144 		dev->needed_headroom = GMAC_FCB_LEN;
1145 
1146 	/* Program the isrg regs only if number of grps > 1 */
1147 	if (priv->num_grps > 1) {
1148 		baddr = &regs->isrg0;
1149 		for (i = 0; i < priv->num_grps; i++) {
1150 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1151 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1152 			gfar_write(baddr, isrg);
1153 			baddr++;
1154 			isrg = 0x0;
1155 		}
1156 	}
1157 
1158 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1159 	 * but, for_each_set_bit parses from right to left, which
1160 	 * basically reverses the queue numbers
1161 	 */
1162 	for (i = 0; i< priv->num_grps; i++) {
1163 		priv->gfargrp[i].tx_bit_map =
1164 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1165 		priv->gfargrp[i].rx_bit_map =
1166 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1167 	}
1168 
1169 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1170 	 * also assign queues to groups
1171 	 */
1172 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1173 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1174 
1175 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1176 				 priv->num_rx_queues) {
1177 			priv->gfargrp[grp_idx].num_rx_queues++;
1178 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1179 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1180 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1181 		}
1182 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1183 
1184 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1185 				 priv->num_tx_queues) {
1186 			priv->gfargrp[grp_idx].num_tx_queues++;
1187 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1188 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1189 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1190 		}
1191 		priv->gfargrp[grp_idx].rstat = rstat;
1192 		priv->gfargrp[grp_idx].tstat = tstat;
1193 		rstat = tstat =0;
1194 	}
1195 
1196 	gfar_write(&regs->rqueue, rqueue);
1197 	gfar_write(&regs->tqueue, tqueue);
1198 
1199 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1200 
1201 	/* Initializing some of the rx/tx queue level parameters */
1202 	for (i = 0; i < priv->num_tx_queues; i++) {
1203 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1204 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1205 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1206 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1207 	}
1208 
1209 	for (i = 0; i < priv->num_rx_queues; i++) {
1210 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1211 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1212 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1213 	}
1214 
1215 	/* always enable rx filer */
1216 	priv->rx_filer_enable = 1;
1217 	/* Enable most messages by default */
1218 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1219 	/* use pritority h/w tx queue scheduling for single queue devices */
1220 	if (priv->num_tx_queues == 1)
1221 		priv->prio_sched_en = 1;
1222 
1223 	/* Carrier starts down, phylib will bring it up */
1224 	netif_carrier_off(dev);
1225 
1226 	err = register_netdev(dev);
1227 
1228 	if (err) {
1229 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1230 		goto register_fail;
1231 	}
1232 
1233 	device_init_wakeup(&dev->dev,
1234 			   priv->device_flags &
1235 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1236 
1237 	/* fill out IRQ number and name fields */
1238 	for (i = 0; i < priv->num_grps; i++) {
1239 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1240 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1241 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1242 				dev->name, "_g", '0' + i, "_tx");
1243 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1244 				dev->name, "_g", '0' + i, "_rx");
1245 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1246 				dev->name, "_g", '0' + i, "_er");
1247 		} else
1248 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1249 	}
1250 
1251 	/* Initialize the filer table */
1252 	gfar_init_filer_table(priv);
1253 
1254 	/* Create all the sysfs files */
1255 	gfar_init_sysfs(dev);
1256 
1257 	/* Print out the device info */
1258 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1259 
1260 	/* Even more device info helps when determining which kernel
1261 	 * provided which set of benchmarks.
1262 	 */
1263 	netdev_info(dev, "Running with NAPI enabled\n");
1264 	for (i = 0; i < priv->num_rx_queues; i++)
1265 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1266 			    i, priv->rx_queue[i]->rx_ring_size);
1267 	for (i = 0; i < priv->num_tx_queues; i++)
1268 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1269 			    i, priv->tx_queue[i]->tx_ring_size);
1270 
1271 	return 0;
1272 
1273 register_fail:
1274 	unmap_group_regs(priv);
1275 	free_tx_pointers(priv);
1276 	free_rx_pointers(priv);
1277 	if (priv->phy_node)
1278 		of_node_put(priv->phy_node);
1279 	if (priv->tbi_node)
1280 		of_node_put(priv->tbi_node);
1281 	free_gfar_dev(priv);
1282 	return err;
1283 }
1284 
1285 static int gfar_remove(struct platform_device *ofdev)
1286 {
1287 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1288 
1289 	if (priv->phy_node)
1290 		of_node_put(priv->phy_node);
1291 	if (priv->tbi_node)
1292 		of_node_put(priv->tbi_node);
1293 
1294 	unregister_netdev(priv->ndev);
1295 	unmap_group_regs(priv);
1296 	free_gfar_dev(priv);
1297 
1298 	return 0;
1299 }
1300 
1301 #ifdef CONFIG_PM
1302 
1303 static int gfar_suspend(struct device *dev)
1304 {
1305 	struct gfar_private *priv = dev_get_drvdata(dev);
1306 	struct net_device *ndev = priv->ndev;
1307 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1308 	unsigned long flags;
1309 	u32 tempval;
1310 
1311 	int magic_packet = priv->wol_en &&
1312 			   (priv->device_flags &
1313 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1314 
1315 	netif_device_detach(ndev);
1316 
1317 	if (netif_running(ndev)) {
1318 
1319 		local_irq_save(flags);
1320 		lock_tx_qs(priv);
1321 		lock_rx_qs(priv);
1322 
1323 		gfar_halt_nodisable(ndev);
1324 
1325 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1326 		tempval = gfar_read(&regs->maccfg1);
1327 
1328 		tempval &= ~MACCFG1_TX_EN;
1329 
1330 		if (!magic_packet)
1331 			tempval &= ~MACCFG1_RX_EN;
1332 
1333 		gfar_write(&regs->maccfg1, tempval);
1334 
1335 		unlock_rx_qs(priv);
1336 		unlock_tx_qs(priv);
1337 		local_irq_restore(flags);
1338 
1339 		disable_napi(priv);
1340 
1341 		if (magic_packet) {
1342 			/* Enable interrupt on Magic Packet */
1343 			gfar_write(&regs->imask, IMASK_MAG);
1344 
1345 			/* Enable Magic Packet mode */
1346 			tempval = gfar_read(&regs->maccfg2);
1347 			tempval |= MACCFG2_MPEN;
1348 			gfar_write(&regs->maccfg2, tempval);
1349 		} else {
1350 			phy_stop(priv->phydev);
1351 		}
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int gfar_resume(struct device *dev)
1358 {
1359 	struct gfar_private *priv = dev_get_drvdata(dev);
1360 	struct net_device *ndev = priv->ndev;
1361 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1362 	unsigned long flags;
1363 	u32 tempval;
1364 	int magic_packet = priv->wol_en &&
1365 			   (priv->device_flags &
1366 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1367 
1368 	if (!netif_running(ndev)) {
1369 		netif_device_attach(ndev);
1370 		return 0;
1371 	}
1372 
1373 	if (!magic_packet && priv->phydev)
1374 		phy_start(priv->phydev);
1375 
1376 	/* Disable Magic Packet mode, in case something
1377 	 * else woke us up.
1378 	 */
1379 	local_irq_save(flags);
1380 	lock_tx_qs(priv);
1381 	lock_rx_qs(priv);
1382 
1383 	tempval = gfar_read(&regs->maccfg2);
1384 	tempval &= ~MACCFG2_MPEN;
1385 	gfar_write(&regs->maccfg2, tempval);
1386 
1387 	gfar_start(ndev);
1388 
1389 	unlock_rx_qs(priv);
1390 	unlock_tx_qs(priv);
1391 	local_irq_restore(flags);
1392 
1393 	netif_device_attach(ndev);
1394 
1395 	enable_napi(priv);
1396 
1397 	return 0;
1398 }
1399 
1400 static int gfar_restore(struct device *dev)
1401 {
1402 	struct gfar_private *priv = dev_get_drvdata(dev);
1403 	struct net_device *ndev = priv->ndev;
1404 
1405 	if (!netif_running(ndev)) {
1406 		netif_device_attach(ndev);
1407 
1408 		return 0;
1409 	}
1410 
1411 	if (gfar_init_bds(ndev)) {
1412 		free_skb_resources(priv);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	init_registers(ndev);
1417 	gfar_set_mac_address(ndev);
1418 	gfar_init_mac(ndev);
1419 	gfar_start(ndev);
1420 
1421 	priv->oldlink = 0;
1422 	priv->oldspeed = 0;
1423 	priv->oldduplex = -1;
1424 
1425 	if (priv->phydev)
1426 		phy_start(priv->phydev);
1427 
1428 	netif_device_attach(ndev);
1429 	enable_napi(priv);
1430 
1431 	return 0;
1432 }
1433 
1434 static struct dev_pm_ops gfar_pm_ops = {
1435 	.suspend = gfar_suspend,
1436 	.resume = gfar_resume,
1437 	.freeze = gfar_suspend,
1438 	.thaw = gfar_resume,
1439 	.restore = gfar_restore,
1440 };
1441 
1442 #define GFAR_PM_OPS (&gfar_pm_ops)
1443 
1444 #else
1445 
1446 #define GFAR_PM_OPS NULL
1447 
1448 #endif
1449 
1450 /* Reads the controller's registers to determine what interface
1451  * connects it to the PHY.
1452  */
1453 static phy_interface_t gfar_get_interface(struct net_device *dev)
1454 {
1455 	struct gfar_private *priv = netdev_priv(dev);
1456 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1457 	u32 ecntrl;
1458 
1459 	ecntrl = gfar_read(&regs->ecntrl);
1460 
1461 	if (ecntrl & ECNTRL_SGMII_MODE)
1462 		return PHY_INTERFACE_MODE_SGMII;
1463 
1464 	if (ecntrl & ECNTRL_TBI_MODE) {
1465 		if (ecntrl & ECNTRL_REDUCED_MODE)
1466 			return PHY_INTERFACE_MODE_RTBI;
1467 		else
1468 			return PHY_INTERFACE_MODE_TBI;
1469 	}
1470 
1471 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1472 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1473 			return PHY_INTERFACE_MODE_RMII;
1474 		}
1475 		else {
1476 			phy_interface_t interface = priv->interface;
1477 
1478 			/* This isn't autodetected right now, so it must
1479 			 * be set by the device tree or platform code.
1480 			 */
1481 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1482 				return PHY_INTERFACE_MODE_RGMII_ID;
1483 
1484 			return PHY_INTERFACE_MODE_RGMII;
1485 		}
1486 	}
1487 
1488 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1489 		return PHY_INTERFACE_MODE_GMII;
1490 
1491 	return PHY_INTERFACE_MODE_MII;
1492 }
1493 
1494 
1495 /* Initializes driver's PHY state, and attaches to the PHY.
1496  * Returns 0 on success.
1497  */
1498 static int init_phy(struct net_device *dev)
1499 {
1500 	struct gfar_private *priv = netdev_priv(dev);
1501 	uint gigabit_support =
1502 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1503 		GFAR_SUPPORTED_GBIT : 0;
1504 	phy_interface_t interface;
1505 
1506 	priv->oldlink = 0;
1507 	priv->oldspeed = 0;
1508 	priv->oldduplex = -1;
1509 
1510 	interface = gfar_get_interface(dev);
1511 
1512 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1513 				      interface);
1514 	if (!priv->phydev)
1515 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1516 							 interface);
1517 	if (!priv->phydev) {
1518 		dev_err(&dev->dev, "could not attach to PHY\n");
1519 		return -ENODEV;
1520 	}
1521 
1522 	if (interface == PHY_INTERFACE_MODE_SGMII)
1523 		gfar_configure_serdes(dev);
1524 
1525 	/* Remove any features not supported by the controller */
1526 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1527 	priv->phydev->advertising = priv->phydev->supported;
1528 
1529 	return 0;
1530 }
1531 
1532 /* Initialize TBI PHY interface for communicating with the
1533  * SERDES lynx PHY on the chip.  We communicate with this PHY
1534  * through the MDIO bus on each controller, treating it as a
1535  * "normal" PHY at the address found in the TBIPA register.  We assume
1536  * that the TBIPA register is valid.  Either the MDIO bus code will set
1537  * it to a value that doesn't conflict with other PHYs on the bus, or the
1538  * value doesn't matter, as there are no other PHYs on the bus.
1539  */
1540 static void gfar_configure_serdes(struct net_device *dev)
1541 {
1542 	struct gfar_private *priv = netdev_priv(dev);
1543 	struct phy_device *tbiphy;
1544 
1545 	if (!priv->tbi_node) {
1546 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1547 				    "device tree specify a tbi-handle\n");
1548 		return;
1549 	}
1550 
1551 	tbiphy = of_phy_find_device(priv->tbi_node);
1552 	if (!tbiphy) {
1553 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1554 		return;
1555 	}
1556 
1557 	/* If the link is already up, we must already be ok, and don't need to
1558 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1559 	 * everything for us?  Resetting it takes the link down and requires
1560 	 * several seconds for it to come back.
1561 	 */
1562 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1563 		return;
1564 
1565 	/* Single clk mode, mii mode off(for serdes communication) */
1566 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1567 
1568 	phy_write(tbiphy, MII_ADVERTISE,
1569 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1570 		  ADVERTISE_1000XPSE_ASYM);
1571 
1572 	phy_write(tbiphy, MII_BMCR,
1573 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1574 		  BMCR_SPEED1000);
1575 }
1576 
1577 static void init_registers(struct net_device *dev)
1578 {
1579 	struct gfar_private *priv = netdev_priv(dev);
1580 	struct gfar __iomem *regs = NULL;
1581 	int i;
1582 
1583 	for (i = 0; i < priv->num_grps; i++) {
1584 		regs = priv->gfargrp[i].regs;
1585 		/* Clear IEVENT */
1586 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1587 
1588 		/* Initialize IMASK */
1589 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1590 	}
1591 
1592 	regs = priv->gfargrp[0].regs;
1593 	/* Init hash registers to zero */
1594 	gfar_write(&regs->igaddr0, 0);
1595 	gfar_write(&regs->igaddr1, 0);
1596 	gfar_write(&regs->igaddr2, 0);
1597 	gfar_write(&regs->igaddr3, 0);
1598 	gfar_write(&regs->igaddr4, 0);
1599 	gfar_write(&regs->igaddr5, 0);
1600 	gfar_write(&regs->igaddr6, 0);
1601 	gfar_write(&regs->igaddr7, 0);
1602 
1603 	gfar_write(&regs->gaddr0, 0);
1604 	gfar_write(&regs->gaddr1, 0);
1605 	gfar_write(&regs->gaddr2, 0);
1606 	gfar_write(&regs->gaddr3, 0);
1607 	gfar_write(&regs->gaddr4, 0);
1608 	gfar_write(&regs->gaddr5, 0);
1609 	gfar_write(&regs->gaddr6, 0);
1610 	gfar_write(&regs->gaddr7, 0);
1611 
1612 	/* Zero out the rmon mib registers if it has them */
1613 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1614 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1615 
1616 		/* Mask off the CAM interrupts */
1617 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1618 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1619 	}
1620 
1621 	/* Initialize the max receive buffer length */
1622 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1623 
1624 	/* Initialize the Minimum Frame Length Register */
1625 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1626 }
1627 
1628 static int __gfar_is_rx_idle(struct gfar_private *priv)
1629 {
1630 	u32 res;
1631 
1632 	/* Normaly TSEC should not hang on GRS commands, so we should
1633 	 * actually wait for IEVENT_GRSC flag.
1634 	 */
1635 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1636 		return 0;
1637 
1638 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1639 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1640 	 * and the Rx can be safely reset.
1641 	 */
1642 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1643 	res &= 0x7f807f80;
1644 	if ((res & 0xffff) == (res >> 16))
1645 		return 1;
1646 
1647 	return 0;
1648 }
1649 
1650 /* Halt the receive and transmit queues */
1651 static void gfar_halt_nodisable(struct net_device *dev)
1652 {
1653 	struct gfar_private *priv = netdev_priv(dev);
1654 	struct gfar __iomem *regs = NULL;
1655 	u32 tempval;
1656 	int i;
1657 
1658 	for (i = 0; i < priv->num_grps; i++) {
1659 		regs = priv->gfargrp[i].regs;
1660 		/* Mask all interrupts */
1661 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1662 
1663 		/* Clear all interrupts */
1664 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1665 	}
1666 
1667 	regs = priv->gfargrp[0].regs;
1668 	/* Stop the DMA, and wait for it to stop */
1669 	tempval = gfar_read(&regs->dmactrl);
1670 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1671 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1672 		int ret;
1673 
1674 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1675 		gfar_write(&regs->dmactrl, tempval);
1676 
1677 		do {
1678 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1679 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1680 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1681 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1682 				ret = __gfar_is_rx_idle(priv);
1683 		} while (!ret);
1684 	}
1685 }
1686 
1687 /* Halt the receive and transmit queues */
1688 void gfar_halt(struct net_device *dev)
1689 {
1690 	struct gfar_private *priv = netdev_priv(dev);
1691 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1692 	u32 tempval;
1693 
1694 	gfar_halt_nodisable(dev);
1695 
1696 	/* Disable Rx and Tx */
1697 	tempval = gfar_read(&regs->maccfg1);
1698 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1699 	gfar_write(&regs->maccfg1, tempval);
1700 }
1701 
1702 static void free_grp_irqs(struct gfar_priv_grp *grp)
1703 {
1704 	free_irq(gfar_irq(grp, TX)->irq, grp);
1705 	free_irq(gfar_irq(grp, RX)->irq, grp);
1706 	free_irq(gfar_irq(grp, ER)->irq, grp);
1707 }
1708 
1709 void stop_gfar(struct net_device *dev)
1710 {
1711 	struct gfar_private *priv = netdev_priv(dev);
1712 	unsigned long flags;
1713 	int i;
1714 
1715 	phy_stop(priv->phydev);
1716 
1717 
1718 	/* Lock it down */
1719 	local_irq_save(flags);
1720 	lock_tx_qs(priv);
1721 	lock_rx_qs(priv);
1722 
1723 	gfar_halt(dev);
1724 
1725 	unlock_rx_qs(priv);
1726 	unlock_tx_qs(priv);
1727 	local_irq_restore(flags);
1728 
1729 	/* Free the IRQs */
1730 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1731 		for (i = 0; i < priv->num_grps; i++)
1732 			free_grp_irqs(&priv->gfargrp[i]);
1733 	} else {
1734 		for (i = 0; i < priv->num_grps; i++)
1735 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1736 				 &priv->gfargrp[i]);
1737 	}
1738 
1739 	free_skb_resources(priv);
1740 }
1741 
1742 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1743 {
1744 	struct txbd8 *txbdp;
1745 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1746 	int i, j;
1747 
1748 	txbdp = tx_queue->tx_bd_base;
1749 
1750 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1751 		if (!tx_queue->tx_skbuff[i])
1752 			continue;
1753 
1754 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1755 				 txbdp->length, DMA_TO_DEVICE);
1756 		txbdp->lstatus = 0;
1757 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1758 		     j++) {
1759 			txbdp++;
1760 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1761 				       txbdp->length, DMA_TO_DEVICE);
1762 		}
1763 		txbdp++;
1764 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1765 		tx_queue->tx_skbuff[i] = NULL;
1766 	}
1767 	kfree(tx_queue->tx_skbuff);
1768 	tx_queue->tx_skbuff = NULL;
1769 }
1770 
1771 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1772 {
1773 	struct rxbd8 *rxbdp;
1774 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1775 	int i;
1776 
1777 	rxbdp = rx_queue->rx_bd_base;
1778 
1779 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1780 		if (rx_queue->rx_skbuff[i]) {
1781 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1782 					 priv->rx_buffer_size,
1783 					 DMA_FROM_DEVICE);
1784 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1785 			rx_queue->rx_skbuff[i] = NULL;
1786 		}
1787 		rxbdp->lstatus = 0;
1788 		rxbdp->bufPtr = 0;
1789 		rxbdp++;
1790 	}
1791 	kfree(rx_queue->rx_skbuff);
1792 	rx_queue->rx_skbuff = NULL;
1793 }
1794 
1795 /* If there are any tx skbs or rx skbs still around, free them.
1796  * Then free tx_skbuff and rx_skbuff
1797  */
1798 static void free_skb_resources(struct gfar_private *priv)
1799 {
1800 	struct gfar_priv_tx_q *tx_queue = NULL;
1801 	struct gfar_priv_rx_q *rx_queue = NULL;
1802 	int i;
1803 
1804 	/* Go through all the buffer descriptors and free their data buffers */
1805 	for (i = 0; i < priv->num_tx_queues; i++) {
1806 		struct netdev_queue *txq;
1807 
1808 		tx_queue = priv->tx_queue[i];
1809 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1810 		if (tx_queue->tx_skbuff)
1811 			free_skb_tx_queue(tx_queue);
1812 		netdev_tx_reset_queue(txq);
1813 	}
1814 
1815 	for (i = 0; i < priv->num_rx_queues; i++) {
1816 		rx_queue = priv->rx_queue[i];
1817 		if (rx_queue->rx_skbuff)
1818 			free_skb_rx_queue(rx_queue);
1819 	}
1820 
1821 	dma_free_coherent(priv->dev,
1822 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1823 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1824 			  priv->tx_queue[0]->tx_bd_base,
1825 			  priv->tx_queue[0]->tx_bd_dma_base);
1826 }
1827 
1828 void gfar_start(struct net_device *dev)
1829 {
1830 	struct gfar_private *priv = netdev_priv(dev);
1831 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1832 	u32 tempval;
1833 	int i = 0;
1834 
1835 	/* Enable Rx and Tx in MACCFG1 */
1836 	tempval = gfar_read(&regs->maccfg1);
1837 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1838 	gfar_write(&regs->maccfg1, tempval);
1839 
1840 	/* Initialize DMACTRL to have WWR and WOP */
1841 	tempval = gfar_read(&regs->dmactrl);
1842 	tempval |= DMACTRL_INIT_SETTINGS;
1843 	gfar_write(&regs->dmactrl, tempval);
1844 
1845 	/* Make sure we aren't stopped */
1846 	tempval = gfar_read(&regs->dmactrl);
1847 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1848 	gfar_write(&regs->dmactrl, tempval);
1849 
1850 	for (i = 0; i < priv->num_grps; i++) {
1851 		regs = priv->gfargrp[i].regs;
1852 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1853 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1854 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1855 		/* Unmask the interrupts we look for */
1856 		gfar_write(&regs->imask, IMASK_DEFAULT);
1857 	}
1858 
1859 	dev->trans_start = jiffies; /* prevent tx timeout */
1860 }
1861 
1862 static void gfar_configure_coalescing(struct gfar_private *priv,
1863 			       unsigned long tx_mask, unsigned long rx_mask)
1864 {
1865 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1866 	u32 __iomem *baddr;
1867 
1868 	if (priv->mode == MQ_MG_MODE) {
1869 		int i = 0;
1870 
1871 		baddr = &regs->txic0;
1872 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1873 			gfar_write(baddr + i, 0);
1874 			if (likely(priv->tx_queue[i]->txcoalescing))
1875 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1876 		}
1877 
1878 		baddr = &regs->rxic0;
1879 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1880 			gfar_write(baddr + i, 0);
1881 			if (likely(priv->rx_queue[i]->rxcoalescing))
1882 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1883 		}
1884 	} else {
1885 		/* Backward compatible case -- even if we enable
1886 		 * multiple queues, there's only single reg to program
1887 		 */
1888 		gfar_write(&regs->txic, 0);
1889 		if (likely(priv->tx_queue[0]->txcoalescing))
1890 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1891 
1892 		gfar_write(&regs->rxic, 0);
1893 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
1894 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1895 	}
1896 }
1897 
1898 void gfar_configure_coalescing_all(struct gfar_private *priv)
1899 {
1900 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1901 }
1902 
1903 static int register_grp_irqs(struct gfar_priv_grp *grp)
1904 {
1905 	struct gfar_private *priv = grp->priv;
1906 	struct net_device *dev = priv->ndev;
1907 	int err;
1908 
1909 	/* If the device has multiple interrupts, register for
1910 	 * them.  Otherwise, only register for the one
1911 	 */
1912 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1913 		/* Install our interrupt handlers for Error,
1914 		 * Transmit, and Receive
1915 		 */
1916 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1917 				  gfar_irq(grp, ER)->name, grp);
1918 		if (err < 0) {
1919 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1920 				  gfar_irq(grp, ER)->irq);
1921 
1922 			goto err_irq_fail;
1923 		}
1924 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1925 				  gfar_irq(grp, TX)->name, grp);
1926 		if (err < 0) {
1927 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1928 				  gfar_irq(grp, TX)->irq);
1929 			goto tx_irq_fail;
1930 		}
1931 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1932 				  gfar_irq(grp, RX)->name, grp);
1933 		if (err < 0) {
1934 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1935 				  gfar_irq(grp, RX)->irq);
1936 			goto rx_irq_fail;
1937 		}
1938 	} else {
1939 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1940 				  gfar_irq(grp, TX)->name, grp);
1941 		if (err < 0) {
1942 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1943 				  gfar_irq(grp, TX)->irq);
1944 			goto err_irq_fail;
1945 		}
1946 	}
1947 
1948 	return 0;
1949 
1950 rx_irq_fail:
1951 	free_irq(gfar_irq(grp, TX)->irq, grp);
1952 tx_irq_fail:
1953 	free_irq(gfar_irq(grp, ER)->irq, grp);
1954 err_irq_fail:
1955 	return err;
1956 
1957 }
1958 
1959 /* Bring the controller up and running */
1960 int startup_gfar(struct net_device *ndev)
1961 {
1962 	struct gfar_private *priv = netdev_priv(ndev);
1963 	struct gfar __iomem *regs = NULL;
1964 	int err, i, j;
1965 
1966 	for (i = 0; i < priv->num_grps; i++) {
1967 		regs= priv->gfargrp[i].regs;
1968 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1969 	}
1970 
1971 	regs= priv->gfargrp[0].regs;
1972 	err = gfar_alloc_skb_resources(ndev);
1973 	if (err)
1974 		return err;
1975 
1976 	gfar_init_mac(ndev);
1977 
1978 	for (i = 0; i < priv->num_grps; i++) {
1979 		err = register_grp_irqs(&priv->gfargrp[i]);
1980 		if (err) {
1981 			for (j = 0; j < i; j++)
1982 				free_grp_irqs(&priv->gfargrp[j]);
1983 			goto irq_fail;
1984 		}
1985 	}
1986 
1987 	/* Start the controller */
1988 	gfar_start(ndev);
1989 
1990 	phy_start(priv->phydev);
1991 
1992 	gfar_configure_coalescing_all(priv);
1993 
1994 	return 0;
1995 
1996 irq_fail:
1997 	free_skb_resources(priv);
1998 	return err;
1999 }
2000 
2001 /* Called when something needs to use the ethernet device
2002  * Returns 0 for success.
2003  */
2004 static int gfar_enet_open(struct net_device *dev)
2005 {
2006 	struct gfar_private *priv = netdev_priv(dev);
2007 	int err;
2008 
2009 	enable_napi(priv);
2010 
2011 	/* Initialize a bunch of registers */
2012 	init_registers(dev);
2013 
2014 	gfar_set_mac_address(dev);
2015 
2016 	err = init_phy(dev);
2017 
2018 	if (err) {
2019 		disable_napi(priv);
2020 		return err;
2021 	}
2022 
2023 	err = startup_gfar(dev);
2024 	if (err) {
2025 		disable_napi(priv);
2026 		return err;
2027 	}
2028 
2029 	netif_tx_start_all_queues(dev);
2030 
2031 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2032 
2033 	return err;
2034 }
2035 
2036 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2037 {
2038 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2039 
2040 	memset(fcb, 0, GMAC_FCB_LEN);
2041 
2042 	return fcb;
2043 }
2044 
2045 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2046 				    int fcb_length)
2047 {
2048 	/* If we're here, it's a IP packet with a TCP or UDP
2049 	 * payload.  We set it to checksum, using a pseudo-header
2050 	 * we provide
2051 	 */
2052 	u8 flags = TXFCB_DEFAULT;
2053 
2054 	/* Tell the controller what the protocol is
2055 	 * And provide the already calculated phcs
2056 	 */
2057 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2058 		flags |= TXFCB_UDP;
2059 		fcb->phcs = udp_hdr(skb)->check;
2060 	} else
2061 		fcb->phcs = tcp_hdr(skb)->check;
2062 
2063 	/* l3os is the distance between the start of the
2064 	 * frame (skb->data) and the start of the IP hdr.
2065 	 * l4os is the distance between the start of the
2066 	 * l3 hdr and the l4 hdr
2067 	 */
2068 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2069 	fcb->l4os = skb_network_header_len(skb);
2070 
2071 	fcb->flags = flags;
2072 }
2073 
2074 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2075 {
2076 	fcb->flags |= TXFCB_VLN;
2077 	fcb->vlctl = vlan_tx_tag_get(skb);
2078 }
2079 
2080 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2081 				      struct txbd8 *base, int ring_size)
2082 {
2083 	struct txbd8 *new_bd = bdp + stride;
2084 
2085 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2086 }
2087 
2088 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2089 				      int ring_size)
2090 {
2091 	return skip_txbd(bdp, 1, base, ring_size);
2092 }
2093 
2094 /* eTSEC12: csum generation not supported for some fcb offsets */
2095 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2096 				       unsigned long fcb_addr)
2097 {
2098 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2099 	       (fcb_addr % 0x20) > 0x18);
2100 }
2101 
2102 /* eTSEC76: csum generation for frames larger than 2500 may
2103  * cause excess delays before start of transmission
2104  */
2105 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2106 				       unsigned int len)
2107 {
2108 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2109 	       (len > 2500));
2110 }
2111 
2112 /* This is called by the kernel when a frame is ready for transmission.
2113  * It is pointed to by the dev->hard_start_xmit function pointer
2114  */
2115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2116 {
2117 	struct gfar_private *priv = netdev_priv(dev);
2118 	struct gfar_priv_tx_q *tx_queue = NULL;
2119 	struct netdev_queue *txq;
2120 	struct gfar __iomem *regs = NULL;
2121 	struct txfcb *fcb = NULL;
2122 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2123 	u32 lstatus;
2124 	int i, rq = 0;
2125 	int do_tstamp, do_csum, do_vlan;
2126 	u32 bufaddr;
2127 	unsigned long flags;
2128 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2129 
2130 	rq = skb->queue_mapping;
2131 	tx_queue = priv->tx_queue[rq];
2132 	txq = netdev_get_tx_queue(dev, rq);
2133 	base = tx_queue->tx_bd_base;
2134 	regs = tx_queue->grp->regs;
2135 
2136 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2137 	do_vlan = vlan_tx_tag_present(skb);
2138 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2139 		    priv->hwts_tx_en;
2140 
2141 	if (do_csum || do_vlan)
2142 		fcb_len = GMAC_FCB_LEN;
2143 
2144 	/* check if time stamp should be generated */
2145 	if (unlikely(do_tstamp))
2146 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2147 
2148 	/* make space for additional header when fcb is needed */
2149 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2150 		struct sk_buff *skb_new;
2151 
2152 		skb_new = skb_realloc_headroom(skb, fcb_len);
2153 		if (!skb_new) {
2154 			dev->stats.tx_errors++;
2155 			kfree_skb(skb);
2156 			return NETDEV_TX_OK;
2157 		}
2158 
2159 		if (skb->sk)
2160 			skb_set_owner_w(skb_new, skb->sk);
2161 		consume_skb(skb);
2162 		skb = skb_new;
2163 	}
2164 
2165 	/* total number of fragments in the SKB */
2166 	nr_frags = skb_shinfo(skb)->nr_frags;
2167 
2168 	/* calculate the required number of TxBDs for this skb */
2169 	if (unlikely(do_tstamp))
2170 		nr_txbds = nr_frags + 2;
2171 	else
2172 		nr_txbds = nr_frags + 1;
2173 
2174 	/* check if there is space to queue this packet */
2175 	if (nr_txbds > tx_queue->num_txbdfree) {
2176 		/* no space, stop the queue */
2177 		netif_tx_stop_queue(txq);
2178 		dev->stats.tx_fifo_errors++;
2179 		return NETDEV_TX_BUSY;
2180 	}
2181 
2182 	/* Update transmit stats */
2183 	bytes_sent = skb->len;
2184 	tx_queue->stats.tx_bytes += bytes_sent;
2185 	/* keep Tx bytes on wire for BQL accounting */
2186 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2187 	tx_queue->stats.tx_packets++;
2188 
2189 	txbdp = txbdp_start = tx_queue->cur_tx;
2190 	lstatus = txbdp->lstatus;
2191 
2192 	/* Time stamp insertion requires one additional TxBD */
2193 	if (unlikely(do_tstamp))
2194 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2195 						 tx_queue->tx_ring_size);
2196 
2197 	if (nr_frags == 0) {
2198 		if (unlikely(do_tstamp))
2199 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2200 							  TXBD_INTERRUPT);
2201 		else
2202 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2203 	} else {
2204 		/* Place the fragment addresses and lengths into the TxBDs */
2205 		for (i = 0; i < nr_frags; i++) {
2206 			unsigned int frag_len;
2207 			/* Point at the next BD, wrapping as needed */
2208 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2209 
2210 			frag_len = skb_shinfo(skb)->frags[i].size;
2211 
2212 			lstatus = txbdp->lstatus | frag_len |
2213 				  BD_LFLAG(TXBD_READY);
2214 
2215 			/* Handle the last BD specially */
2216 			if (i == nr_frags - 1)
2217 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2218 
2219 			bufaddr = skb_frag_dma_map(priv->dev,
2220 						   &skb_shinfo(skb)->frags[i],
2221 						   0,
2222 						   frag_len,
2223 						   DMA_TO_DEVICE);
2224 
2225 			/* set the TxBD length and buffer pointer */
2226 			txbdp->bufPtr = bufaddr;
2227 			txbdp->lstatus = lstatus;
2228 		}
2229 
2230 		lstatus = txbdp_start->lstatus;
2231 	}
2232 
2233 	/* Add TxPAL between FCB and frame if required */
2234 	if (unlikely(do_tstamp)) {
2235 		skb_push(skb, GMAC_TXPAL_LEN);
2236 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2237 	}
2238 
2239 	/* Add TxFCB if required */
2240 	if (fcb_len) {
2241 		fcb = gfar_add_fcb(skb);
2242 		lstatus |= BD_LFLAG(TXBD_TOE);
2243 	}
2244 
2245 	/* Set up checksumming */
2246 	if (do_csum) {
2247 		gfar_tx_checksum(skb, fcb, fcb_len);
2248 
2249 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2250 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2251 			__skb_pull(skb, GMAC_FCB_LEN);
2252 			skb_checksum_help(skb);
2253 			if (do_vlan || do_tstamp) {
2254 				/* put back a new fcb for vlan/tstamp TOE */
2255 				fcb = gfar_add_fcb(skb);
2256 			} else {
2257 				/* Tx TOE not used */
2258 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2259 				fcb = NULL;
2260 			}
2261 		}
2262 	}
2263 
2264 	if (do_vlan)
2265 		gfar_tx_vlan(skb, fcb);
2266 
2267 	/* Setup tx hardware time stamping if requested */
2268 	if (unlikely(do_tstamp)) {
2269 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2270 		fcb->ptp = 1;
2271 	}
2272 
2273 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2274 					     skb_headlen(skb), DMA_TO_DEVICE);
2275 
2276 	/* If time stamping is requested one additional TxBD must be set up. The
2277 	 * first TxBD points to the FCB and must have a data length of
2278 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2279 	 * the full frame length.
2280 	 */
2281 	if (unlikely(do_tstamp)) {
2282 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2283 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2284 					 (skb_headlen(skb) - fcb_len);
2285 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2286 	} else {
2287 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2288 	}
2289 
2290 	netdev_tx_sent_queue(txq, bytes_sent);
2291 
2292 	/* We can work in parallel with gfar_clean_tx_ring(), except
2293 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2294 	 * when we were reading the num_txbdfree and checking for available
2295 	 * space, that's because outside of this function it can only grow,
2296 	 * and once we've got needed space, it cannot suddenly disappear.
2297 	 *
2298 	 * The lock also protects us from gfar_error(), which can modify
2299 	 * regs->tstat and thus retrigger the transfers, which is why we
2300 	 * also must grab the lock before setting ready bit for the first
2301 	 * to be transmitted BD.
2302 	 */
2303 	spin_lock_irqsave(&tx_queue->txlock, flags);
2304 
2305 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2306 	 * semantics (it requires synchronization between cacheable and
2307 	 * uncacheable mappings, which eieio doesn't provide and which we
2308 	 * don't need), thus requiring a more expensive sync instruction.  At
2309 	 * some point, the set of architecture-independent barrier functions
2310 	 * should be expanded to include weaker barriers.
2311 	 */
2312 	eieio();
2313 
2314 	txbdp_start->lstatus = lstatus;
2315 
2316 	eieio(); /* force lstatus write before tx_skbuff */
2317 
2318 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2319 
2320 	/* Update the current skb pointer to the next entry we will use
2321 	 * (wrapping if necessary)
2322 	 */
2323 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2324 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2325 
2326 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2327 
2328 	/* reduce TxBD free count */
2329 	tx_queue->num_txbdfree -= (nr_txbds);
2330 
2331 	/* If the next BD still needs to be cleaned up, then the bds
2332 	 * are full.  We need to tell the kernel to stop sending us stuff.
2333 	 */
2334 	if (!tx_queue->num_txbdfree) {
2335 		netif_tx_stop_queue(txq);
2336 
2337 		dev->stats.tx_fifo_errors++;
2338 	}
2339 
2340 	/* Tell the DMA to go go go */
2341 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2342 
2343 	/* Unlock priv */
2344 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2345 
2346 	return NETDEV_TX_OK;
2347 }
2348 
2349 /* Stops the kernel queue, and halts the controller */
2350 static int gfar_close(struct net_device *dev)
2351 {
2352 	struct gfar_private *priv = netdev_priv(dev);
2353 
2354 	disable_napi(priv);
2355 
2356 	cancel_work_sync(&priv->reset_task);
2357 	stop_gfar(dev);
2358 
2359 	/* Disconnect from the PHY */
2360 	phy_disconnect(priv->phydev);
2361 	priv->phydev = NULL;
2362 
2363 	netif_tx_stop_all_queues(dev);
2364 
2365 	return 0;
2366 }
2367 
2368 /* Changes the mac address if the controller is not running. */
2369 static int gfar_set_mac_address(struct net_device *dev)
2370 {
2371 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2372 
2373 	return 0;
2374 }
2375 
2376 /* Check if rx parser should be activated */
2377 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2378 {
2379 	struct gfar __iomem *regs;
2380 	u32 tempval;
2381 
2382 	regs = priv->gfargrp[0].regs;
2383 
2384 	tempval = gfar_read(&regs->rctrl);
2385 	/* If parse is no longer required, then disable parser */
2386 	if (tempval & RCTRL_REQ_PARSER) {
2387 		tempval |= RCTRL_PRSDEP_INIT;
2388 		priv->uses_rxfcb = 1;
2389 	} else {
2390 		tempval &= ~RCTRL_PRSDEP_INIT;
2391 		priv->uses_rxfcb = 0;
2392 	}
2393 	gfar_write(&regs->rctrl, tempval);
2394 }
2395 
2396 /* Enables and disables VLAN insertion/extraction */
2397 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2398 {
2399 	struct gfar_private *priv = netdev_priv(dev);
2400 	struct gfar __iomem *regs = NULL;
2401 	unsigned long flags;
2402 	u32 tempval;
2403 
2404 	regs = priv->gfargrp[0].regs;
2405 	local_irq_save(flags);
2406 	lock_rx_qs(priv);
2407 
2408 	if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2409 		/* Enable VLAN tag insertion */
2410 		tempval = gfar_read(&regs->tctrl);
2411 		tempval |= TCTRL_VLINS;
2412 		gfar_write(&regs->tctrl, tempval);
2413 	} else {
2414 		/* Disable VLAN tag insertion */
2415 		tempval = gfar_read(&regs->tctrl);
2416 		tempval &= ~TCTRL_VLINS;
2417 		gfar_write(&regs->tctrl, tempval);
2418 	}
2419 
2420 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2421 		/* Enable VLAN tag extraction */
2422 		tempval = gfar_read(&regs->rctrl);
2423 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2424 		gfar_write(&regs->rctrl, tempval);
2425 		priv->uses_rxfcb = 1;
2426 	} else {
2427 		/* Disable VLAN tag extraction */
2428 		tempval = gfar_read(&regs->rctrl);
2429 		tempval &= ~RCTRL_VLEX;
2430 		gfar_write(&regs->rctrl, tempval);
2431 
2432 		gfar_check_rx_parser_mode(priv);
2433 	}
2434 
2435 	gfar_change_mtu(dev, dev->mtu);
2436 
2437 	unlock_rx_qs(priv);
2438 	local_irq_restore(flags);
2439 }
2440 
2441 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2442 {
2443 	int tempsize, tempval;
2444 	struct gfar_private *priv = netdev_priv(dev);
2445 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2446 	int oldsize = priv->rx_buffer_size;
2447 	int frame_size = new_mtu + ETH_HLEN;
2448 
2449 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2450 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2451 		return -EINVAL;
2452 	}
2453 
2454 	if (priv->uses_rxfcb)
2455 		frame_size += GMAC_FCB_LEN;
2456 
2457 	frame_size += priv->padding;
2458 
2459 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2460 		   INCREMENTAL_BUFFER_SIZE;
2461 
2462 	/* Only stop and start the controller if it isn't already
2463 	 * stopped, and we changed something
2464 	 */
2465 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2466 		stop_gfar(dev);
2467 
2468 	priv->rx_buffer_size = tempsize;
2469 
2470 	dev->mtu = new_mtu;
2471 
2472 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2473 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2474 
2475 	/* If the mtu is larger than the max size for standard
2476 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2477 	 * to allow huge frames, and to check the length
2478 	 */
2479 	tempval = gfar_read(&regs->maccfg2);
2480 
2481 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2482 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2483 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2484 	else
2485 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2486 
2487 	gfar_write(&regs->maccfg2, tempval);
2488 
2489 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2490 		startup_gfar(dev);
2491 
2492 	return 0;
2493 }
2494 
2495 /* gfar_reset_task gets scheduled when a packet has not been
2496  * transmitted after a set amount of time.
2497  * For now, assume that clearing out all the structures, and
2498  * starting over will fix the problem.
2499  */
2500 static void gfar_reset_task(struct work_struct *work)
2501 {
2502 	struct gfar_private *priv = container_of(work, struct gfar_private,
2503 						 reset_task);
2504 	struct net_device *dev = priv->ndev;
2505 
2506 	if (dev->flags & IFF_UP) {
2507 		netif_tx_stop_all_queues(dev);
2508 		stop_gfar(dev);
2509 		startup_gfar(dev);
2510 		netif_tx_start_all_queues(dev);
2511 	}
2512 
2513 	netif_tx_schedule_all(dev);
2514 }
2515 
2516 static void gfar_timeout(struct net_device *dev)
2517 {
2518 	struct gfar_private *priv = netdev_priv(dev);
2519 
2520 	dev->stats.tx_errors++;
2521 	schedule_work(&priv->reset_task);
2522 }
2523 
2524 static void gfar_align_skb(struct sk_buff *skb)
2525 {
2526 	/* We need the data buffer to be aligned properly.  We will reserve
2527 	 * as many bytes as needed to align the data properly
2528 	 */
2529 	skb_reserve(skb, RXBUF_ALIGNMENT -
2530 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2531 }
2532 
2533 /* Interrupt Handler for Transmit complete */
2534 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2535 {
2536 	struct net_device *dev = tx_queue->dev;
2537 	struct netdev_queue *txq;
2538 	struct gfar_private *priv = netdev_priv(dev);
2539 	struct txbd8 *bdp, *next = NULL;
2540 	struct txbd8 *lbdp = NULL;
2541 	struct txbd8 *base = tx_queue->tx_bd_base;
2542 	struct sk_buff *skb;
2543 	int skb_dirtytx;
2544 	int tx_ring_size = tx_queue->tx_ring_size;
2545 	int frags = 0, nr_txbds = 0;
2546 	int i;
2547 	int howmany = 0;
2548 	int tqi = tx_queue->qindex;
2549 	unsigned int bytes_sent = 0;
2550 	u32 lstatus;
2551 	size_t buflen;
2552 
2553 	txq = netdev_get_tx_queue(dev, tqi);
2554 	bdp = tx_queue->dirty_tx;
2555 	skb_dirtytx = tx_queue->skb_dirtytx;
2556 
2557 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2558 		unsigned long flags;
2559 
2560 		frags = skb_shinfo(skb)->nr_frags;
2561 
2562 		/* When time stamping, one additional TxBD must be freed.
2563 		 * Also, we need to dma_unmap_single() the TxPAL.
2564 		 */
2565 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2566 			nr_txbds = frags + 2;
2567 		else
2568 			nr_txbds = frags + 1;
2569 
2570 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2571 
2572 		lstatus = lbdp->lstatus;
2573 
2574 		/* Only clean completed frames */
2575 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2576 		    (lstatus & BD_LENGTH_MASK))
2577 			break;
2578 
2579 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2580 			next = next_txbd(bdp, base, tx_ring_size);
2581 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2582 		} else
2583 			buflen = bdp->length;
2584 
2585 		dma_unmap_single(priv->dev, bdp->bufPtr,
2586 				 buflen, DMA_TO_DEVICE);
2587 
2588 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2589 			struct skb_shared_hwtstamps shhwtstamps;
2590 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2591 
2592 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2593 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2594 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2595 			skb_tstamp_tx(skb, &shhwtstamps);
2596 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2597 			bdp = next;
2598 		}
2599 
2600 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2601 		bdp = next_txbd(bdp, base, tx_ring_size);
2602 
2603 		for (i = 0; i < frags; i++) {
2604 			dma_unmap_page(priv->dev, bdp->bufPtr,
2605 				       bdp->length, DMA_TO_DEVICE);
2606 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2607 			bdp = next_txbd(bdp, base, tx_ring_size);
2608 		}
2609 
2610 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2611 
2612 		dev_kfree_skb_any(skb);
2613 
2614 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2615 
2616 		skb_dirtytx = (skb_dirtytx + 1) &
2617 			      TX_RING_MOD_MASK(tx_ring_size);
2618 
2619 		howmany++;
2620 		spin_lock_irqsave(&tx_queue->txlock, flags);
2621 		tx_queue->num_txbdfree += nr_txbds;
2622 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2623 	}
2624 
2625 	/* If we freed a buffer, we can restart transmission, if necessary */
2626 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2627 		netif_wake_subqueue(dev, tqi);
2628 
2629 	/* Update dirty indicators */
2630 	tx_queue->skb_dirtytx = skb_dirtytx;
2631 	tx_queue->dirty_tx = bdp;
2632 
2633 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2634 }
2635 
2636 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2637 {
2638 	unsigned long flags;
2639 
2640 	spin_lock_irqsave(&gfargrp->grplock, flags);
2641 	if (napi_schedule_prep(&gfargrp->napi)) {
2642 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2643 		__napi_schedule(&gfargrp->napi);
2644 	} else {
2645 		/* Clear IEVENT, so interrupts aren't called again
2646 		 * because of the packets that have already arrived.
2647 		 */
2648 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2649 	}
2650 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2651 
2652 }
2653 
2654 /* Interrupt Handler for Transmit complete */
2655 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2656 {
2657 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2658 	return IRQ_HANDLED;
2659 }
2660 
2661 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2662 			   struct sk_buff *skb)
2663 {
2664 	struct net_device *dev = rx_queue->dev;
2665 	struct gfar_private *priv = netdev_priv(dev);
2666 	dma_addr_t buf;
2667 
2668 	buf = dma_map_single(priv->dev, skb->data,
2669 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2670 	gfar_init_rxbdp(rx_queue, bdp, buf);
2671 }
2672 
2673 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2674 {
2675 	struct gfar_private *priv = netdev_priv(dev);
2676 	struct sk_buff *skb;
2677 
2678 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2679 	if (!skb)
2680 		return NULL;
2681 
2682 	gfar_align_skb(skb);
2683 
2684 	return skb;
2685 }
2686 
2687 struct sk_buff *gfar_new_skb(struct net_device *dev)
2688 {
2689 	return gfar_alloc_skb(dev);
2690 }
2691 
2692 static inline void count_errors(unsigned short status, struct net_device *dev)
2693 {
2694 	struct gfar_private *priv = netdev_priv(dev);
2695 	struct net_device_stats *stats = &dev->stats;
2696 	struct gfar_extra_stats *estats = &priv->extra_stats;
2697 
2698 	/* If the packet was truncated, none of the other errors matter */
2699 	if (status & RXBD_TRUNCATED) {
2700 		stats->rx_length_errors++;
2701 
2702 		atomic64_inc(&estats->rx_trunc);
2703 
2704 		return;
2705 	}
2706 	/* Count the errors, if there were any */
2707 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2708 		stats->rx_length_errors++;
2709 
2710 		if (status & RXBD_LARGE)
2711 			atomic64_inc(&estats->rx_large);
2712 		else
2713 			atomic64_inc(&estats->rx_short);
2714 	}
2715 	if (status & RXBD_NONOCTET) {
2716 		stats->rx_frame_errors++;
2717 		atomic64_inc(&estats->rx_nonoctet);
2718 	}
2719 	if (status & RXBD_CRCERR) {
2720 		atomic64_inc(&estats->rx_crcerr);
2721 		stats->rx_crc_errors++;
2722 	}
2723 	if (status & RXBD_OVERRUN) {
2724 		atomic64_inc(&estats->rx_overrun);
2725 		stats->rx_crc_errors++;
2726 	}
2727 }
2728 
2729 irqreturn_t gfar_receive(int irq, void *grp_id)
2730 {
2731 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2732 	return IRQ_HANDLED;
2733 }
2734 
2735 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2736 {
2737 	/* If valid headers were found, and valid sums
2738 	 * were verified, then we tell the kernel that no
2739 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2740 	 */
2741 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2742 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2743 	else
2744 		skb_checksum_none_assert(skb);
2745 }
2746 
2747 
2748 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2749 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2750 			       int amount_pull, struct napi_struct *napi)
2751 {
2752 	struct gfar_private *priv = netdev_priv(dev);
2753 	struct rxfcb *fcb = NULL;
2754 
2755 	/* fcb is at the beginning if exists */
2756 	fcb = (struct rxfcb *)skb->data;
2757 
2758 	/* Remove the FCB from the skb
2759 	 * Remove the padded bytes, if there are any
2760 	 */
2761 	if (amount_pull) {
2762 		skb_record_rx_queue(skb, fcb->rq);
2763 		skb_pull(skb, amount_pull);
2764 	}
2765 
2766 	/* Get receive timestamp from the skb */
2767 	if (priv->hwts_rx_en) {
2768 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2769 		u64 *ns = (u64 *) skb->data;
2770 
2771 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2772 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2773 	}
2774 
2775 	if (priv->padding)
2776 		skb_pull(skb, priv->padding);
2777 
2778 	if (dev->features & NETIF_F_RXCSUM)
2779 		gfar_rx_checksum(skb, fcb);
2780 
2781 	/* Tell the skb what kind of packet this is */
2782 	skb->protocol = eth_type_trans(skb, dev);
2783 
2784 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2785 	 * Even if vlan rx accel is disabled, on some chips
2786 	 * RXFCB_VLN is pseudo randomly set.
2787 	 */
2788 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2789 	    fcb->flags & RXFCB_VLN)
2790 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2791 
2792 	/* Send the packet up the stack */
2793 	napi_gro_receive(napi, skb);
2794 
2795 }
2796 
2797 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2798  * until the budget/quota has been reached. Returns the number
2799  * of frames handled
2800  */
2801 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2802 {
2803 	struct net_device *dev = rx_queue->dev;
2804 	struct rxbd8 *bdp, *base;
2805 	struct sk_buff *skb;
2806 	int pkt_len;
2807 	int amount_pull;
2808 	int howmany = 0;
2809 	struct gfar_private *priv = netdev_priv(dev);
2810 
2811 	/* Get the first full descriptor */
2812 	bdp = rx_queue->cur_rx;
2813 	base = rx_queue->rx_bd_base;
2814 
2815 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2816 
2817 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2818 		struct sk_buff *newskb;
2819 
2820 		rmb();
2821 
2822 		/* Add another skb for the future */
2823 		newskb = gfar_new_skb(dev);
2824 
2825 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2826 
2827 		dma_unmap_single(priv->dev, bdp->bufPtr,
2828 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2829 
2830 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2831 			     bdp->length > priv->rx_buffer_size))
2832 			bdp->status = RXBD_LARGE;
2833 
2834 		/* We drop the frame if we failed to allocate a new buffer */
2835 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2836 			     bdp->status & RXBD_ERR)) {
2837 			count_errors(bdp->status, dev);
2838 
2839 			if (unlikely(!newskb))
2840 				newskb = skb;
2841 			else if (skb)
2842 				dev_kfree_skb(skb);
2843 		} else {
2844 			/* Increment the number of packets */
2845 			rx_queue->stats.rx_packets++;
2846 			howmany++;
2847 
2848 			if (likely(skb)) {
2849 				pkt_len = bdp->length - ETH_FCS_LEN;
2850 				/* Remove the FCS from the packet length */
2851 				skb_put(skb, pkt_len);
2852 				rx_queue->stats.rx_bytes += pkt_len;
2853 				skb_record_rx_queue(skb, rx_queue->qindex);
2854 				gfar_process_frame(dev, skb, amount_pull,
2855 						   &rx_queue->grp->napi);
2856 
2857 			} else {
2858 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2859 				rx_queue->stats.rx_dropped++;
2860 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2861 			}
2862 
2863 		}
2864 
2865 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2866 
2867 		/* Setup the new bdp */
2868 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2869 
2870 		/* Update to the next pointer */
2871 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2872 
2873 		/* update to point at the next skb */
2874 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2875 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2876 	}
2877 
2878 	/* Update the current rxbd pointer to be the next one */
2879 	rx_queue->cur_rx = bdp;
2880 
2881 	return howmany;
2882 }
2883 
2884 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2885 {
2886 	struct gfar_priv_grp *gfargrp =
2887 		container_of(napi, struct gfar_priv_grp, napi);
2888 	struct gfar __iomem *regs = gfargrp->regs;
2889 	struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2890 	struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2891 	int work_done = 0;
2892 
2893 	/* Clear IEVENT, so interrupts aren't called again
2894 	 * because of the packets that have already arrived
2895 	 */
2896 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2897 
2898 	/* run Tx cleanup to completion */
2899 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2900 		gfar_clean_tx_ring(tx_queue);
2901 
2902 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2903 
2904 	if (work_done < budget) {
2905 		napi_complete(napi);
2906 		/* Clear the halt bit in RSTAT */
2907 		gfar_write(&regs->rstat, gfargrp->rstat);
2908 
2909 		gfar_write(&regs->imask, IMASK_DEFAULT);
2910 
2911 		/* If we are coalescing interrupts, update the timer
2912 		 * Otherwise, clear it
2913 		 */
2914 		gfar_write(&regs->txic, 0);
2915 		if (likely(tx_queue->txcoalescing))
2916 			gfar_write(&regs->txic, tx_queue->txic);
2917 
2918 		gfar_write(&regs->rxic, 0);
2919 		if (unlikely(rx_queue->rxcoalescing))
2920 			gfar_write(&regs->rxic, rx_queue->rxic);
2921 	}
2922 
2923 	return work_done;
2924 }
2925 
2926 static int gfar_poll(struct napi_struct *napi, int budget)
2927 {
2928 	struct gfar_priv_grp *gfargrp =
2929 		container_of(napi, struct gfar_priv_grp, napi);
2930 	struct gfar_private *priv = gfargrp->priv;
2931 	struct gfar __iomem *regs = gfargrp->regs;
2932 	struct gfar_priv_tx_q *tx_queue = NULL;
2933 	struct gfar_priv_rx_q *rx_queue = NULL;
2934 	int work_done = 0, work_done_per_q = 0;
2935 	int i, budget_per_q = 0;
2936 	int has_tx_work = 0;
2937 	unsigned long rstat_rxf;
2938 	int num_act_queues;
2939 
2940 	/* Clear IEVENT, so interrupts aren't called again
2941 	 * because of the packets that have already arrived
2942 	 */
2943 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2944 
2945 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2946 
2947 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2948 	if (num_act_queues)
2949 		budget_per_q = budget/num_act_queues;
2950 
2951 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2952 		tx_queue = priv->tx_queue[i];
2953 		/* run Tx cleanup to completion */
2954 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2955 			gfar_clean_tx_ring(tx_queue);
2956 			has_tx_work = 1;
2957 		}
2958 	}
2959 
2960 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2961 		/* skip queue if not active */
2962 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2963 			continue;
2964 
2965 		rx_queue = priv->rx_queue[i];
2966 		work_done_per_q =
2967 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2968 		work_done += work_done_per_q;
2969 
2970 		/* finished processing this queue */
2971 		if (work_done_per_q < budget_per_q) {
2972 			/* clear active queue hw indication */
2973 			gfar_write(&regs->rstat,
2974 				   RSTAT_CLEAR_RXF0 >> i);
2975 			num_act_queues--;
2976 
2977 			if (!num_act_queues)
2978 				break;
2979 		}
2980 	}
2981 
2982 	if (!num_act_queues && !has_tx_work) {
2983 
2984 		napi_complete(napi);
2985 
2986 		/* Clear the halt bit in RSTAT */
2987 		gfar_write(&regs->rstat, gfargrp->rstat);
2988 
2989 		gfar_write(&regs->imask, IMASK_DEFAULT);
2990 
2991 		/* If we are coalescing interrupts, update the timer
2992 		 * Otherwise, clear it
2993 		 */
2994 		gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2995 					  gfargrp->tx_bit_map);
2996 	}
2997 
2998 	return work_done;
2999 }
3000 
3001 #ifdef CONFIG_NET_POLL_CONTROLLER
3002 /* Polling 'interrupt' - used by things like netconsole to send skbs
3003  * without having to re-enable interrupts. It's not called while
3004  * the interrupt routine is executing.
3005  */
3006 static void gfar_netpoll(struct net_device *dev)
3007 {
3008 	struct gfar_private *priv = netdev_priv(dev);
3009 	int i;
3010 
3011 	/* If the device has multiple interrupts, run tx/rx */
3012 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3013 		for (i = 0; i < priv->num_grps; i++) {
3014 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3015 
3016 			disable_irq(gfar_irq(grp, TX)->irq);
3017 			disable_irq(gfar_irq(grp, RX)->irq);
3018 			disable_irq(gfar_irq(grp, ER)->irq);
3019 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3020 			enable_irq(gfar_irq(grp, ER)->irq);
3021 			enable_irq(gfar_irq(grp, RX)->irq);
3022 			enable_irq(gfar_irq(grp, TX)->irq);
3023 		}
3024 	} else {
3025 		for (i = 0; i < priv->num_grps; i++) {
3026 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3027 
3028 			disable_irq(gfar_irq(grp, TX)->irq);
3029 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3030 			enable_irq(gfar_irq(grp, TX)->irq);
3031 		}
3032 	}
3033 }
3034 #endif
3035 
3036 /* The interrupt handler for devices with one interrupt */
3037 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3038 {
3039 	struct gfar_priv_grp *gfargrp = grp_id;
3040 
3041 	/* Save ievent for future reference */
3042 	u32 events = gfar_read(&gfargrp->regs->ievent);
3043 
3044 	/* Check for reception */
3045 	if (events & IEVENT_RX_MASK)
3046 		gfar_receive(irq, grp_id);
3047 
3048 	/* Check for transmit completion */
3049 	if (events & IEVENT_TX_MASK)
3050 		gfar_transmit(irq, grp_id);
3051 
3052 	/* Check for errors */
3053 	if (events & IEVENT_ERR_MASK)
3054 		gfar_error(irq, grp_id);
3055 
3056 	return IRQ_HANDLED;
3057 }
3058 
3059 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3060 {
3061 	struct phy_device *phydev = priv->phydev;
3062 	u32 val = 0;
3063 
3064 	if (!phydev->duplex)
3065 		return val;
3066 
3067 	if (!priv->pause_aneg_en) {
3068 		if (priv->tx_pause_en)
3069 			val |= MACCFG1_TX_FLOW;
3070 		if (priv->rx_pause_en)
3071 			val |= MACCFG1_RX_FLOW;
3072 	} else {
3073 		u16 lcl_adv, rmt_adv;
3074 		u8 flowctrl;
3075 		/* get link partner capabilities */
3076 		rmt_adv = 0;
3077 		if (phydev->pause)
3078 			rmt_adv = LPA_PAUSE_CAP;
3079 		if (phydev->asym_pause)
3080 			rmt_adv |= LPA_PAUSE_ASYM;
3081 
3082 		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3083 
3084 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3085 		if (flowctrl & FLOW_CTRL_TX)
3086 			val |= MACCFG1_TX_FLOW;
3087 		if (flowctrl & FLOW_CTRL_RX)
3088 			val |= MACCFG1_RX_FLOW;
3089 	}
3090 
3091 	return val;
3092 }
3093 
3094 /* Called every time the controller might need to be made
3095  * aware of new link state.  The PHY code conveys this
3096  * information through variables in the phydev structure, and this
3097  * function converts those variables into the appropriate
3098  * register values, and can bring down the device if needed.
3099  */
3100 static void adjust_link(struct net_device *dev)
3101 {
3102 	struct gfar_private *priv = netdev_priv(dev);
3103 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3104 	unsigned long flags;
3105 	struct phy_device *phydev = priv->phydev;
3106 	int new_state = 0;
3107 
3108 	local_irq_save(flags);
3109 	lock_tx_qs(priv);
3110 
3111 	if (phydev->link) {
3112 		u32 tempval1 = gfar_read(&regs->maccfg1);
3113 		u32 tempval = gfar_read(&regs->maccfg2);
3114 		u32 ecntrl = gfar_read(&regs->ecntrl);
3115 
3116 		/* Now we make sure that we can be in full duplex mode.
3117 		 * If not, we operate in half-duplex mode.
3118 		 */
3119 		if (phydev->duplex != priv->oldduplex) {
3120 			new_state = 1;
3121 			if (!(phydev->duplex))
3122 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3123 			else
3124 				tempval |= MACCFG2_FULL_DUPLEX;
3125 
3126 			priv->oldduplex = phydev->duplex;
3127 		}
3128 
3129 		if (phydev->speed != priv->oldspeed) {
3130 			new_state = 1;
3131 			switch (phydev->speed) {
3132 			case 1000:
3133 				tempval =
3134 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3135 
3136 				ecntrl &= ~(ECNTRL_R100);
3137 				break;
3138 			case 100:
3139 			case 10:
3140 				tempval =
3141 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3142 
3143 				/* Reduced mode distinguishes
3144 				 * between 10 and 100
3145 				 */
3146 				if (phydev->speed == SPEED_100)
3147 					ecntrl |= ECNTRL_R100;
3148 				else
3149 					ecntrl &= ~(ECNTRL_R100);
3150 				break;
3151 			default:
3152 				netif_warn(priv, link, dev,
3153 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3154 					   phydev->speed);
3155 				break;
3156 			}
3157 
3158 			priv->oldspeed = phydev->speed;
3159 		}
3160 
3161 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3162 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3163 
3164 		gfar_write(&regs->maccfg1, tempval1);
3165 		gfar_write(&regs->maccfg2, tempval);
3166 		gfar_write(&regs->ecntrl, ecntrl);
3167 
3168 		if (!priv->oldlink) {
3169 			new_state = 1;
3170 			priv->oldlink = 1;
3171 		}
3172 	} else if (priv->oldlink) {
3173 		new_state = 1;
3174 		priv->oldlink = 0;
3175 		priv->oldspeed = 0;
3176 		priv->oldduplex = -1;
3177 	}
3178 
3179 	if (new_state && netif_msg_link(priv))
3180 		phy_print_status(phydev);
3181 	unlock_tx_qs(priv);
3182 	local_irq_restore(flags);
3183 }
3184 
3185 /* Update the hash table based on the current list of multicast
3186  * addresses we subscribe to.  Also, change the promiscuity of
3187  * the device based on the flags (this function is called
3188  * whenever dev->flags is changed
3189  */
3190 static void gfar_set_multi(struct net_device *dev)
3191 {
3192 	struct netdev_hw_addr *ha;
3193 	struct gfar_private *priv = netdev_priv(dev);
3194 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3195 	u32 tempval;
3196 
3197 	if (dev->flags & IFF_PROMISC) {
3198 		/* Set RCTRL to PROM */
3199 		tempval = gfar_read(&regs->rctrl);
3200 		tempval |= RCTRL_PROM;
3201 		gfar_write(&regs->rctrl, tempval);
3202 	} else {
3203 		/* Set RCTRL to not PROM */
3204 		tempval = gfar_read(&regs->rctrl);
3205 		tempval &= ~(RCTRL_PROM);
3206 		gfar_write(&regs->rctrl, tempval);
3207 	}
3208 
3209 	if (dev->flags & IFF_ALLMULTI) {
3210 		/* Set the hash to rx all multicast frames */
3211 		gfar_write(&regs->igaddr0, 0xffffffff);
3212 		gfar_write(&regs->igaddr1, 0xffffffff);
3213 		gfar_write(&regs->igaddr2, 0xffffffff);
3214 		gfar_write(&regs->igaddr3, 0xffffffff);
3215 		gfar_write(&regs->igaddr4, 0xffffffff);
3216 		gfar_write(&regs->igaddr5, 0xffffffff);
3217 		gfar_write(&regs->igaddr6, 0xffffffff);
3218 		gfar_write(&regs->igaddr7, 0xffffffff);
3219 		gfar_write(&regs->gaddr0, 0xffffffff);
3220 		gfar_write(&regs->gaddr1, 0xffffffff);
3221 		gfar_write(&regs->gaddr2, 0xffffffff);
3222 		gfar_write(&regs->gaddr3, 0xffffffff);
3223 		gfar_write(&regs->gaddr4, 0xffffffff);
3224 		gfar_write(&regs->gaddr5, 0xffffffff);
3225 		gfar_write(&regs->gaddr6, 0xffffffff);
3226 		gfar_write(&regs->gaddr7, 0xffffffff);
3227 	} else {
3228 		int em_num;
3229 		int idx;
3230 
3231 		/* zero out the hash */
3232 		gfar_write(&regs->igaddr0, 0x0);
3233 		gfar_write(&regs->igaddr1, 0x0);
3234 		gfar_write(&regs->igaddr2, 0x0);
3235 		gfar_write(&regs->igaddr3, 0x0);
3236 		gfar_write(&regs->igaddr4, 0x0);
3237 		gfar_write(&regs->igaddr5, 0x0);
3238 		gfar_write(&regs->igaddr6, 0x0);
3239 		gfar_write(&regs->igaddr7, 0x0);
3240 		gfar_write(&regs->gaddr0, 0x0);
3241 		gfar_write(&regs->gaddr1, 0x0);
3242 		gfar_write(&regs->gaddr2, 0x0);
3243 		gfar_write(&regs->gaddr3, 0x0);
3244 		gfar_write(&regs->gaddr4, 0x0);
3245 		gfar_write(&regs->gaddr5, 0x0);
3246 		gfar_write(&regs->gaddr6, 0x0);
3247 		gfar_write(&regs->gaddr7, 0x0);
3248 
3249 		/* If we have extended hash tables, we need to
3250 		 * clear the exact match registers to prepare for
3251 		 * setting them
3252 		 */
3253 		if (priv->extended_hash) {
3254 			em_num = GFAR_EM_NUM + 1;
3255 			gfar_clear_exact_match(dev);
3256 			idx = 1;
3257 		} else {
3258 			idx = 0;
3259 			em_num = 0;
3260 		}
3261 
3262 		if (netdev_mc_empty(dev))
3263 			return;
3264 
3265 		/* Parse the list, and set the appropriate bits */
3266 		netdev_for_each_mc_addr(ha, dev) {
3267 			if (idx < em_num) {
3268 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3269 				idx++;
3270 			} else
3271 				gfar_set_hash_for_addr(dev, ha->addr);
3272 		}
3273 	}
3274 }
3275 
3276 
3277 /* Clears each of the exact match registers to zero, so they
3278  * don't interfere with normal reception
3279  */
3280 static void gfar_clear_exact_match(struct net_device *dev)
3281 {
3282 	int idx;
3283 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3284 
3285 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3286 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3287 }
3288 
3289 /* Set the appropriate hash bit for the given addr */
3290 /* The algorithm works like so:
3291  * 1) Take the Destination Address (ie the multicast address), and
3292  * do a CRC on it (little endian), and reverse the bits of the
3293  * result.
3294  * 2) Use the 8 most significant bits as a hash into a 256-entry
3295  * table.  The table is controlled through 8 32-bit registers:
3296  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3297  * gaddr7.  This means that the 3 most significant bits in the
3298  * hash index which gaddr register to use, and the 5 other bits
3299  * indicate which bit (assuming an IBM numbering scheme, which
3300  * for PowerPC (tm) is usually the case) in the register holds
3301  * the entry.
3302  */
3303 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3304 {
3305 	u32 tempval;
3306 	struct gfar_private *priv = netdev_priv(dev);
3307 	u32 result = ether_crc(ETH_ALEN, addr);
3308 	int width = priv->hash_width;
3309 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3310 	u8 whichreg = result >> (32 - width + 5);
3311 	u32 value = (1 << (31-whichbit));
3312 
3313 	tempval = gfar_read(priv->hash_regs[whichreg]);
3314 	tempval |= value;
3315 	gfar_write(priv->hash_regs[whichreg], tempval);
3316 }
3317 
3318 
3319 /* There are multiple MAC Address register pairs on some controllers
3320  * This function sets the numth pair to a given address
3321  */
3322 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3323 				  const u8 *addr)
3324 {
3325 	struct gfar_private *priv = netdev_priv(dev);
3326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3327 	int idx;
3328 	char tmpbuf[ETH_ALEN];
3329 	u32 tempval;
3330 	u32 __iomem *macptr = &regs->macstnaddr1;
3331 
3332 	macptr += num*2;
3333 
3334 	/* Now copy it into the mac registers backwards, cuz
3335 	 * little endian is silly
3336 	 */
3337 	for (idx = 0; idx < ETH_ALEN; idx++)
3338 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3339 
3340 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3341 
3342 	tempval = *((u32 *) (tmpbuf + 4));
3343 
3344 	gfar_write(macptr+1, tempval);
3345 }
3346 
3347 /* GFAR error interrupt handler */
3348 static irqreturn_t gfar_error(int irq, void *grp_id)
3349 {
3350 	struct gfar_priv_grp *gfargrp = grp_id;
3351 	struct gfar __iomem *regs = gfargrp->regs;
3352 	struct gfar_private *priv= gfargrp->priv;
3353 	struct net_device *dev = priv->ndev;
3354 
3355 	/* Save ievent for future reference */
3356 	u32 events = gfar_read(&regs->ievent);
3357 
3358 	/* Clear IEVENT */
3359 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3360 
3361 	/* Magic Packet is not an error. */
3362 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3363 	    (events & IEVENT_MAG))
3364 		events &= ~IEVENT_MAG;
3365 
3366 	/* Hmm... */
3367 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3368 		netdev_dbg(dev,
3369 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3370 			   events, gfar_read(&regs->imask));
3371 
3372 	/* Update the error counters */
3373 	if (events & IEVENT_TXE) {
3374 		dev->stats.tx_errors++;
3375 
3376 		if (events & IEVENT_LC)
3377 			dev->stats.tx_window_errors++;
3378 		if (events & IEVENT_CRL)
3379 			dev->stats.tx_aborted_errors++;
3380 		if (events & IEVENT_XFUN) {
3381 			unsigned long flags;
3382 
3383 			netif_dbg(priv, tx_err, dev,
3384 				  "TX FIFO underrun, packet dropped\n");
3385 			dev->stats.tx_dropped++;
3386 			atomic64_inc(&priv->extra_stats.tx_underrun);
3387 
3388 			local_irq_save(flags);
3389 			lock_tx_qs(priv);
3390 
3391 			/* Reactivate the Tx Queues */
3392 			gfar_write(&regs->tstat, gfargrp->tstat);
3393 
3394 			unlock_tx_qs(priv);
3395 			local_irq_restore(flags);
3396 		}
3397 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3398 	}
3399 	if (events & IEVENT_BSY) {
3400 		dev->stats.rx_errors++;
3401 		atomic64_inc(&priv->extra_stats.rx_bsy);
3402 
3403 		gfar_receive(irq, grp_id);
3404 
3405 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3406 			  gfar_read(&regs->rstat));
3407 	}
3408 	if (events & IEVENT_BABR) {
3409 		dev->stats.rx_errors++;
3410 		atomic64_inc(&priv->extra_stats.rx_babr);
3411 
3412 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3413 	}
3414 	if (events & IEVENT_EBERR) {
3415 		atomic64_inc(&priv->extra_stats.eberr);
3416 		netif_dbg(priv, rx_err, dev, "bus error\n");
3417 	}
3418 	if (events & IEVENT_RXC)
3419 		netif_dbg(priv, rx_status, dev, "control frame\n");
3420 
3421 	if (events & IEVENT_BABT) {
3422 		atomic64_inc(&priv->extra_stats.tx_babt);
3423 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3424 	}
3425 	return IRQ_HANDLED;
3426 }
3427 
3428 static struct of_device_id gfar_match[] =
3429 {
3430 	{
3431 		.type = "network",
3432 		.compatible = "gianfar",
3433 	},
3434 	{
3435 		.compatible = "fsl,etsec2",
3436 	},
3437 	{},
3438 };
3439 MODULE_DEVICE_TABLE(of, gfar_match);
3440 
3441 /* Structure for a device driver */
3442 static struct platform_driver gfar_driver = {
3443 	.driver = {
3444 		.name = "fsl-gianfar",
3445 		.owner = THIS_MODULE,
3446 		.pm = GFAR_PM_OPS,
3447 		.of_match_table = gfar_match,
3448 	},
3449 	.probe = gfar_probe,
3450 	.remove = gfar_remove,
3451 };
3452 
3453 module_platform_driver(gfar_driver);
3454