1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 #define DEBUG 62 63 #include <linux/kernel.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/of_platform.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/udp.h> 83 #include <linux/in.h> 84 #include <linux/net_tstamp.h> 85 86 #include <asm/io.h> 87 #ifdef CONFIG_PPC 88 #include <asm/reg.h> 89 #include <asm/mpc85xx.h> 90 #endif 91 #include <asm/irq.h> 92 #include <linux/uaccess.h> 93 #include <linux/module.h> 94 #include <linux/dma-mapping.h> 95 #include <linux/crc32.h> 96 #include <linux/mii.h> 97 #include <linux/phy.h> 98 #include <linux/phy_fixed.h> 99 #include <linux/of.h> 100 #include <linux/of_net.h> 101 102 #include "gianfar.h" 103 104 #define TX_TIMEOUT (5*HZ) 105 106 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 107 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 108 MODULE_LICENSE("GPL"); 109 110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 111 dma_addr_t buf) 112 { 113 u32 lstatus; 114 115 bdp->bufPtr = cpu_to_be32(buf); 116 117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 119 lstatus |= BD_LFLAG(RXBD_WRAP); 120 121 gfar_wmb(); 122 123 bdp->lstatus = cpu_to_be32(lstatus); 124 } 125 126 static void gfar_init_tx_rx_base(struct gfar_private *priv) 127 { 128 struct gfar __iomem *regs = priv->gfargrp[0].regs; 129 u32 __iomem *baddr; 130 int i; 131 132 baddr = ®s->tbase0; 133 for (i = 0; i < priv->num_tx_queues; i++) { 134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 135 baddr += 2; 136 } 137 138 baddr = ®s->rbase0; 139 for (i = 0; i < priv->num_rx_queues; i++) { 140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 141 baddr += 2; 142 } 143 } 144 145 static void gfar_init_rqprm(struct gfar_private *priv) 146 { 147 struct gfar __iomem *regs = priv->gfargrp[0].regs; 148 u32 __iomem *baddr; 149 int i; 150 151 baddr = ®s->rqprm0; 152 for (i = 0; i < priv->num_rx_queues; i++) { 153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 155 baddr++; 156 } 157 } 158 159 static void gfar_rx_offload_en(struct gfar_private *priv) 160 { 161 /* set this when rx hw offload (TOE) functions are being used */ 162 priv->uses_rxfcb = 0; 163 164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 165 priv->uses_rxfcb = 1; 166 167 if (priv->hwts_rx_en || priv->rx_filer_enable) 168 priv->uses_rxfcb = 1; 169 } 170 171 static void gfar_mac_rx_config(struct gfar_private *priv) 172 { 173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 174 u32 rctrl = 0; 175 176 if (priv->rx_filer_enable) { 177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 178 /* Program the RIR0 reg with the required distribution */ 179 if (priv->poll_mode == GFAR_SQ_POLLING) 180 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 181 else /* GFAR_MQ_POLLING */ 182 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 183 } 184 185 /* Restore PROMISC mode */ 186 if (priv->ndev->flags & IFF_PROMISC) 187 rctrl |= RCTRL_PROM; 188 189 if (priv->ndev->features & NETIF_F_RXCSUM) 190 rctrl |= RCTRL_CHECKSUMMING; 191 192 if (priv->extended_hash) 193 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 194 195 if (priv->padding) { 196 rctrl &= ~RCTRL_PAL_MASK; 197 rctrl |= RCTRL_PADDING(priv->padding); 198 } 199 200 /* Enable HW time stamping if requested from user space */ 201 if (priv->hwts_rx_en) 202 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 203 204 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 205 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 206 207 /* Clear the LFC bit */ 208 gfar_write(®s->rctrl, rctrl); 209 /* Init flow control threshold values */ 210 gfar_init_rqprm(priv); 211 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 212 rctrl |= RCTRL_LFC; 213 214 /* Init rctrl based on our settings */ 215 gfar_write(®s->rctrl, rctrl); 216 } 217 218 static void gfar_mac_tx_config(struct gfar_private *priv) 219 { 220 struct gfar __iomem *regs = priv->gfargrp[0].regs; 221 u32 tctrl = 0; 222 223 if (priv->ndev->features & NETIF_F_IP_CSUM) 224 tctrl |= TCTRL_INIT_CSUM; 225 226 if (priv->prio_sched_en) 227 tctrl |= TCTRL_TXSCHED_PRIO; 228 else { 229 tctrl |= TCTRL_TXSCHED_WRRS; 230 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 231 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 232 } 233 234 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 235 tctrl |= TCTRL_VLINS; 236 237 gfar_write(®s->tctrl, tctrl); 238 } 239 240 static void gfar_configure_coalescing(struct gfar_private *priv, 241 unsigned long tx_mask, unsigned long rx_mask) 242 { 243 struct gfar __iomem *regs = priv->gfargrp[0].regs; 244 u32 __iomem *baddr; 245 246 if (priv->mode == MQ_MG_MODE) { 247 int i = 0; 248 249 baddr = ®s->txic0; 250 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 251 gfar_write(baddr + i, 0); 252 if (likely(priv->tx_queue[i]->txcoalescing)) 253 gfar_write(baddr + i, priv->tx_queue[i]->txic); 254 } 255 256 baddr = ®s->rxic0; 257 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 258 gfar_write(baddr + i, 0); 259 if (likely(priv->rx_queue[i]->rxcoalescing)) 260 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 261 } 262 } else { 263 /* Backward compatible case -- even if we enable 264 * multiple queues, there's only single reg to program 265 */ 266 gfar_write(®s->txic, 0); 267 if (likely(priv->tx_queue[0]->txcoalescing)) 268 gfar_write(®s->txic, priv->tx_queue[0]->txic); 269 270 gfar_write(®s->rxic, 0); 271 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 272 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 273 } 274 } 275 276 static void gfar_configure_coalescing_all(struct gfar_private *priv) 277 { 278 gfar_configure_coalescing(priv, 0xFF, 0xFF); 279 } 280 281 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 282 { 283 struct gfar_private *priv = netdev_priv(dev); 284 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 285 unsigned long tx_packets = 0, tx_bytes = 0; 286 int i; 287 288 for (i = 0; i < priv->num_rx_queues; i++) { 289 rx_packets += priv->rx_queue[i]->stats.rx_packets; 290 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 291 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 292 } 293 294 dev->stats.rx_packets = rx_packets; 295 dev->stats.rx_bytes = rx_bytes; 296 dev->stats.rx_dropped = rx_dropped; 297 298 for (i = 0; i < priv->num_tx_queues; i++) { 299 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 300 tx_packets += priv->tx_queue[i]->stats.tx_packets; 301 } 302 303 dev->stats.tx_bytes = tx_bytes; 304 dev->stats.tx_packets = tx_packets; 305 306 return &dev->stats; 307 } 308 309 /* Set the appropriate hash bit for the given addr */ 310 /* The algorithm works like so: 311 * 1) Take the Destination Address (ie the multicast address), and 312 * do a CRC on it (little endian), and reverse the bits of the 313 * result. 314 * 2) Use the 8 most significant bits as a hash into a 256-entry 315 * table. The table is controlled through 8 32-bit registers: 316 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 317 * gaddr7. This means that the 3 most significant bits in the 318 * hash index which gaddr register to use, and the 5 other bits 319 * indicate which bit (assuming an IBM numbering scheme, which 320 * for PowerPC (tm) is usually the case) in the register holds 321 * the entry. 322 */ 323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 324 { 325 u32 tempval; 326 struct gfar_private *priv = netdev_priv(dev); 327 u32 result = ether_crc(ETH_ALEN, addr); 328 int width = priv->hash_width; 329 u8 whichbit = (result >> (32 - width)) & 0x1f; 330 u8 whichreg = result >> (32 - width + 5); 331 u32 value = (1 << (31-whichbit)); 332 333 tempval = gfar_read(priv->hash_regs[whichreg]); 334 tempval |= value; 335 gfar_write(priv->hash_regs[whichreg], tempval); 336 } 337 338 /* There are multiple MAC Address register pairs on some controllers 339 * This function sets the numth pair to a given address 340 */ 341 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 342 const u8 *addr) 343 { 344 struct gfar_private *priv = netdev_priv(dev); 345 struct gfar __iomem *regs = priv->gfargrp[0].regs; 346 u32 tempval; 347 u32 __iomem *macptr = ®s->macstnaddr1; 348 349 macptr += num*2; 350 351 /* For a station address of 0x12345678ABCD in transmission 352 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 353 * MACnADDR2 is set to 0x34120000. 354 */ 355 tempval = (addr[5] << 24) | (addr[4] << 16) | 356 (addr[3] << 8) | addr[2]; 357 358 gfar_write(macptr, tempval); 359 360 tempval = (addr[1] << 24) | (addr[0] << 16); 361 362 gfar_write(macptr+1, tempval); 363 } 364 365 static int gfar_set_mac_addr(struct net_device *dev, void *p) 366 { 367 eth_mac_addr(dev, p); 368 369 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 370 371 return 0; 372 } 373 374 static void gfar_ints_disable(struct gfar_private *priv) 375 { 376 int i; 377 for (i = 0; i < priv->num_grps; i++) { 378 struct gfar __iomem *regs = priv->gfargrp[i].regs; 379 /* Clear IEVENT */ 380 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 381 382 /* Initialize IMASK */ 383 gfar_write(®s->imask, IMASK_INIT_CLEAR); 384 } 385 } 386 387 static void gfar_ints_enable(struct gfar_private *priv) 388 { 389 int i; 390 for (i = 0; i < priv->num_grps; i++) { 391 struct gfar __iomem *regs = priv->gfargrp[i].regs; 392 /* Unmask the interrupts we look for */ 393 gfar_write(®s->imask, IMASK_DEFAULT); 394 } 395 } 396 397 static int gfar_alloc_tx_queues(struct gfar_private *priv) 398 { 399 int i; 400 401 for (i = 0; i < priv->num_tx_queues; i++) { 402 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 403 GFP_KERNEL); 404 if (!priv->tx_queue[i]) 405 return -ENOMEM; 406 407 priv->tx_queue[i]->tx_skbuff = NULL; 408 priv->tx_queue[i]->qindex = i; 409 priv->tx_queue[i]->dev = priv->ndev; 410 spin_lock_init(&(priv->tx_queue[i]->txlock)); 411 } 412 return 0; 413 } 414 415 static int gfar_alloc_rx_queues(struct gfar_private *priv) 416 { 417 int i; 418 419 for (i = 0; i < priv->num_rx_queues; i++) { 420 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 421 GFP_KERNEL); 422 if (!priv->rx_queue[i]) 423 return -ENOMEM; 424 425 priv->rx_queue[i]->qindex = i; 426 priv->rx_queue[i]->ndev = priv->ndev; 427 } 428 return 0; 429 } 430 431 static void gfar_free_tx_queues(struct gfar_private *priv) 432 { 433 int i; 434 435 for (i = 0; i < priv->num_tx_queues; i++) 436 kfree(priv->tx_queue[i]); 437 } 438 439 static void gfar_free_rx_queues(struct gfar_private *priv) 440 { 441 int i; 442 443 for (i = 0; i < priv->num_rx_queues; i++) 444 kfree(priv->rx_queue[i]); 445 } 446 447 static void unmap_group_regs(struct gfar_private *priv) 448 { 449 int i; 450 451 for (i = 0; i < MAXGROUPS; i++) 452 if (priv->gfargrp[i].regs) 453 iounmap(priv->gfargrp[i].regs); 454 } 455 456 static void free_gfar_dev(struct gfar_private *priv) 457 { 458 int i, j; 459 460 for (i = 0; i < priv->num_grps; i++) 461 for (j = 0; j < GFAR_NUM_IRQS; j++) { 462 kfree(priv->gfargrp[i].irqinfo[j]); 463 priv->gfargrp[i].irqinfo[j] = NULL; 464 } 465 466 free_netdev(priv->ndev); 467 } 468 469 static void disable_napi(struct gfar_private *priv) 470 { 471 int i; 472 473 for (i = 0; i < priv->num_grps; i++) { 474 napi_disable(&priv->gfargrp[i].napi_rx); 475 napi_disable(&priv->gfargrp[i].napi_tx); 476 } 477 } 478 479 static void enable_napi(struct gfar_private *priv) 480 { 481 int i; 482 483 for (i = 0; i < priv->num_grps; i++) { 484 napi_enable(&priv->gfargrp[i].napi_rx); 485 napi_enable(&priv->gfargrp[i].napi_tx); 486 } 487 } 488 489 static int gfar_parse_group(struct device_node *np, 490 struct gfar_private *priv, const char *model) 491 { 492 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 493 int i; 494 495 for (i = 0; i < GFAR_NUM_IRQS; i++) { 496 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 497 GFP_KERNEL); 498 if (!grp->irqinfo[i]) 499 return -ENOMEM; 500 } 501 502 grp->regs = of_iomap(np, 0); 503 if (!grp->regs) 504 return -ENOMEM; 505 506 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 507 508 /* If we aren't the FEC we have multiple interrupts */ 509 if (model && strcasecmp(model, "FEC")) { 510 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 511 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 512 if (!gfar_irq(grp, TX)->irq || 513 !gfar_irq(grp, RX)->irq || 514 !gfar_irq(grp, ER)->irq) 515 return -EINVAL; 516 } 517 518 grp->priv = priv; 519 spin_lock_init(&grp->grplock); 520 if (priv->mode == MQ_MG_MODE) { 521 u32 rxq_mask, txq_mask; 522 int ret; 523 524 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 525 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 526 527 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 528 if (!ret) { 529 grp->rx_bit_map = rxq_mask ? 530 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 531 } 532 533 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 534 if (!ret) { 535 grp->tx_bit_map = txq_mask ? 536 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 537 } 538 539 if (priv->poll_mode == GFAR_SQ_POLLING) { 540 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 541 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 542 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 543 } 544 } else { 545 grp->rx_bit_map = 0xFF; 546 grp->tx_bit_map = 0xFF; 547 } 548 549 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 550 * right to left, so we need to revert the 8 bits to get the q index 551 */ 552 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 553 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 554 555 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 556 * also assign queues to groups 557 */ 558 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 559 if (!grp->rx_queue) 560 grp->rx_queue = priv->rx_queue[i]; 561 grp->num_rx_queues++; 562 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 563 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 564 priv->rx_queue[i]->grp = grp; 565 } 566 567 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 568 if (!grp->tx_queue) 569 grp->tx_queue = priv->tx_queue[i]; 570 grp->num_tx_queues++; 571 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 572 priv->tqueue |= (TQUEUE_EN0 >> i); 573 priv->tx_queue[i]->grp = grp; 574 } 575 576 priv->num_grps++; 577 578 return 0; 579 } 580 581 static int gfar_of_group_count(struct device_node *np) 582 { 583 struct device_node *child; 584 int num = 0; 585 586 for_each_available_child_of_node(np, child) 587 if (of_node_name_eq(child, "queue-group")) 588 num++; 589 590 return num; 591 } 592 593 /* Reads the controller's registers to determine what interface 594 * connects it to the PHY. 595 */ 596 static phy_interface_t gfar_get_interface(struct net_device *dev) 597 { 598 struct gfar_private *priv = netdev_priv(dev); 599 struct gfar __iomem *regs = priv->gfargrp[0].regs; 600 u32 ecntrl; 601 602 ecntrl = gfar_read(®s->ecntrl); 603 604 if (ecntrl & ECNTRL_SGMII_MODE) 605 return PHY_INTERFACE_MODE_SGMII; 606 607 if (ecntrl & ECNTRL_TBI_MODE) { 608 if (ecntrl & ECNTRL_REDUCED_MODE) 609 return PHY_INTERFACE_MODE_RTBI; 610 else 611 return PHY_INTERFACE_MODE_TBI; 612 } 613 614 if (ecntrl & ECNTRL_REDUCED_MODE) { 615 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 616 return PHY_INTERFACE_MODE_RMII; 617 } 618 else { 619 phy_interface_t interface = priv->interface; 620 621 /* This isn't autodetected right now, so it must 622 * be set by the device tree or platform code. 623 */ 624 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 625 return PHY_INTERFACE_MODE_RGMII_ID; 626 627 return PHY_INTERFACE_MODE_RGMII; 628 } 629 } 630 631 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 632 return PHY_INTERFACE_MODE_GMII; 633 634 return PHY_INTERFACE_MODE_MII; 635 } 636 637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 638 { 639 const char *model; 640 const void *mac_addr; 641 int err = 0, i; 642 phy_interface_t interface; 643 struct net_device *dev = NULL; 644 struct gfar_private *priv = NULL; 645 struct device_node *np = ofdev->dev.of_node; 646 struct device_node *child = NULL; 647 u32 stash_len = 0; 648 u32 stash_idx = 0; 649 unsigned int num_tx_qs, num_rx_qs; 650 unsigned short mode, poll_mode; 651 652 if (!np) 653 return -ENODEV; 654 655 if (of_device_is_compatible(np, "fsl,etsec2")) { 656 mode = MQ_MG_MODE; 657 poll_mode = GFAR_SQ_POLLING; 658 } else { 659 mode = SQ_SG_MODE; 660 poll_mode = GFAR_SQ_POLLING; 661 } 662 663 if (mode == SQ_SG_MODE) { 664 num_tx_qs = 1; 665 num_rx_qs = 1; 666 } else { /* MQ_MG_MODE */ 667 /* get the actual number of supported groups */ 668 unsigned int num_grps = gfar_of_group_count(np); 669 670 if (num_grps == 0 || num_grps > MAXGROUPS) { 671 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 672 num_grps); 673 pr_err("Cannot do alloc_etherdev, aborting\n"); 674 return -EINVAL; 675 } 676 677 if (poll_mode == GFAR_SQ_POLLING) { 678 num_tx_qs = num_grps; /* one txq per int group */ 679 num_rx_qs = num_grps; /* one rxq per int group */ 680 } else { /* GFAR_MQ_POLLING */ 681 u32 tx_queues, rx_queues; 682 int ret; 683 684 /* parse the num of HW tx and rx queues */ 685 ret = of_property_read_u32(np, "fsl,num_tx_queues", 686 &tx_queues); 687 num_tx_qs = ret ? 1 : tx_queues; 688 689 ret = of_property_read_u32(np, "fsl,num_rx_queues", 690 &rx_queues); 691 num_rx_qs = ret ? 1 : rx_queues; 692 } 693 } 694 695 if (num_tx_qs > MAX_TX_QS) { 696 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 697 num_tx_qs, MAX_TX_QS); 698 pr_err("Cannot do alloc_etherdev, aborting\n"); 699 return -EINVAL; 700 } 701 702 if (num_rx_qs > MAX_RX_QS) { 703 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 704 num_rx_qs, MAX_RX_QS); 705 pr_err("Cannot do alloc_etherdev, aborting\n"); 706 return -EINVAL; 707 } 708 709 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 710 dev = *pdev; 711 if (NULL == dev) 712 return -ENOMEM; 713 714 priv = netdev_priv(dev); 715 priv->ndev = dev; 716 717 priv->mode = mode; 718 priv->poll_mode = poll_mode; 719 720 priv->num_tx_queues = num_tx_qs; 721 netif_set_real_num_rx_queues(dev, num_rx_qs); 722 priv->num_rx_queues = num_rx_qs; 723 724 err = gfar_alloc_tx_queues(priv); 725 if (err) 726 goto tx_alloc_failed; 727 728 err = gfar_alloc_rx_queues(priv); 729 if (err) 730 goto rx_alloc_failed; 731 732 err = of_property_read_string(np, "model", &model); 733 if (err) { 734 pr_err("Device model property missing, aborting\n"); 735 goto rx_alloc_failed; 736 } 737 738 /* Init Rx queue filer rule set linked list */ 739 INIT_LIST_HEAD(&priv->rx_list.list); 740 priv->rx_list.count = 0; 741 mutex_init(&priv->rx_queue_access); 742 743 for (i = 0; i < MAXGROUPS; i++) 744 priv->gfargrp[i].regs = NULL; 745 746 /* Parse and initialize group specific information */ 747 if (priv->mode == MQ_MG_MODE) { 748 for_each_available_child_of_node(np, child) { 749 if (!of_node_name_eq(child, "queue-group")) 750 continue; 751 752 err = gfar_parse_group(child, priv, model); 753 if (err) 754 goto err_grp_init; 755 } 756 } else { /* SQ_SG_MODE */ 757 err = gfar_parse_group(np, priv, model); 758 if (err) 759 goto err_grp_init; 760 } 761 762 if (of_property_read_bool(np, "bd-stash")) { 763 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 764 priv->bd_stash_en = 1; 765 } 766 767 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 768 769 if (err == 0) 770 priv->rx_stash_size = stash_len; 771 772 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 773 774 if (err == 0) 775 priv->rx_stash_index = stash_idx; 776 777 if (stash_len || stash_idx) 778 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 779 780 mac_addr = of_get_mac_address(np); 781 782 if (!IS_ERR(mac_addr)) { 783 ether_addr_copy(dev->dev_addr, mac_addr); 784 } else { 785 eth_hw_addr_random(dev); 786 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 787 } 788 789 if (model && !strcasecmp(model, "TSEC")) 790 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 791 FSL_GIANFAR_DEV_HAS_COALESCE | 792 FSL_GIANFAR_DEV_HAS_RMON | 793 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 794 795 if (model && !strcasecmp(model, "eTSEC")) 796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 797 FSL_GIANFAR_DEV_HAS_COALESCE | 798 FSL_GIANFAR_DEV_HAS_RMON | 799 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 800 FSL_GIANFAR_DEV_HAS_CSUM | 801 FSL_GIANFAR_DEV_HAS_VLAN | 802 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 803 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 804 FSL_GIANFAR_DEV_HAS_TIMER | 805 FSL_GIANFAR_DEV_HAS_RX_FILER; 806 807 /* Use PHY connection type from the DT node if one is specified there. 808 * rgmii-id really needs to be specified. Other types can be 809 * detected by hardware 810 */ 811 err = of_get_phy_mode(np, &interface); 812 if (!err) 813 priv->interface = interface; 814 else 815 priv->interface = gfar_get_interface(dev); 816 817 if (of_find_property(np, "fsl,magic-packet", NULL)) 818 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 819 820 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 821 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 822 823 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 824 825 /* In the case of a fixed PHY, the DT node associated 826 * to the PHY is the Ethernet MAC DT node. 827 */ 828 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 829 err = of_phy_register_fixed_link(np); 830 if (err) 831 goto err_grp_init; 832 833 priv->phy_node = of_node_get(np); 834 } 835 836 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 837 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 838 839 return 0; 840 841 err_grp_init: 842 unmap_group_regs(priv); 843 rx_alloc_failed: 844 gfar_free_rx_queues(priv); 845 tx_alloc_failed: 846 gfar_free_tx_queues(priv); 847 free_gfar_dev(priv); 848 return err; 849 } 850 851 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 852 u32 class) 853 { 854 u32 rqfpr = FPR_FILER_MASK; 855 u32 rqfcr = 0x0; 856 857 rqfar--; 858 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 859 priv->ftp_rqfpr[rqfar] = rqfpr; 860 priv->ftp_rqfcr[rqfar] = rqfcr; 861 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 862 863 rqfar--; 864 rqfcr = RQFCR_CMP_NOMATCH; 865 priv->ftp_rqfpr[rqfar] = rqfpr; 866 priv->ftp_rqfcr[rqfar] = rqfcr; 867 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 868 869 rqfar--; 870 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 871 rqfpr = class; 872 priv->ftp_rqfcr[rqfar] = rqfcr; 873 priv->ftp_rqfpr[rqfar] = rqfpr; 874 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 875 876 rqfar--; 877 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 878 rqfpr = class; 879 priv->ftp_rqfcr[rqfar] = rqfcr; 880 priv->ftp_rqfpr[rqfar] = rqfpr; 881 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 882 883 return rqfar; 884 } 885 886 static void gfar_init_filer_table(struct gfar_private *priv) 887 { 888 int i = 0x0; 889 u32 rqfar = MAX_FILER_IDX; 890 u32 rqfcr = 0x0; 891 u32 rqfpr = FPR_FILER_MASK; 892 893 /* Default rule */ 894 rqfcr = RQFCR_CMP_MATCH; 895 priv->ftp_rqfcr[rqfar] = rqfcr; 896 priv->ftp_rqfpr[rqfar] = rqfpr; 897 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 898 899 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 900 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 901 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 902 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 903 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 905 906 /* cur_filer_idx indicated the first non-masked rule */ 907 priv->cur_filer_idx = rqfar; 908 909 /* Rest are masked rules */ 910 rqfcr = RQFCR_CMP_NOMATCH; 911 for (i = 0; i < rqfar; i++) { 912 priv->ftp_rqfcr[i] = rqfcr; 913 priv->ftp_rqfpr[i] = rqfpr; 914 gfar_write_filer(priv, i, rqfcr, rqfpr); 915 } 916 } 917 918 #ifdef CONFIG_PPC 919 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 920 { 921 unsigned int pvr = mfspr(SPRN_PVR); 922 unsigned int svr = mfspr(SPRN_SVR); 923 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 924 unsigned int rev = svr & 0xffff; 925 926 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 927 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 928 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 929 priv->errata |= GFAR_ERRATA_74; 930 931 /* MPC8313 and MPC837x all rev */ 932 if ((pvr == 0x80850010 && mod == 0x80b0) || 933 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 934 priv->errata |= GFAR_ERRATA_76; 935 936 /* MPC8313 Rev < 2.0 */ 937 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 938 priv->errata |= GFAR_ERRATA_12; 939 } 940 941 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 942 { 943 unsigned int svr = mfspr(SPRN_SVR); 944 945 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 946 priv->errata |= GFAR_ERRATA_12; 947 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 948 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 949 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 950 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 951 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 952 } 953 #endif 954 955 static void gfar_detect_errata(struct gfar_private *priv) 956 { 957 struct device *dev = &priv->ofdev->dev; 958 959 /* no plans to fix */ 960 priv->errata |= GFAR_ERRATA_A002; 961 962 #ifdef CONFIG_PPC 963 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 964 __gfar_detect_errata_85xx(priv); 965 else /* non-mpc85xx parts, i.e. e300 core based */ 966 __gfar_detect_errata_83xx(priv); 967 #endif 968 969 if (priv->errata) 970 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 971 priv->errata); 972 } 973 974 static void gfar_init_addr_hash_table(struct gfar_private *priv) 975 { 976 struct gfar __iomem *regs = priv->gfargrp[0].regs; 977 978 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 979 priv->extended_hash = 1; 980 priv->hash_width = 9; 981 982 priv->hash_regs[0] = ®s->igaddr0; 983 priv->hash_regs[1] = ®s->igaddr1; 984 priv->hash_regs[2] = ®s->igaddr2; 985 priv->hash_regs[3] = ®s->igaddr3; 986 priv->hash_regs[4] = ®s->igaddr4; 987 priv->hash_regs[5] = ®s->igaddr5; 988 priv->hash_regs[6] = ®s->igaddr6; 989 priv->hash_regs[7] = ®s->igaddr7; 990 priv->hash_regs[8] = ®s->gaddr0; 991 priv->hash_regs[9] = ®s->gaddr1; 992 priv->hash_regs[10] = ®s->gaddr2; 993 priv->hash_regs[11] = ®s->gaddr3; 994 priv->hash_regs[12] = ®s->gaddr4; 995 priv->hash_regs[13] = ®s->gaddr5; 996 priv->hash_regs[14] = ®s->gaddr6; 997 priv->hash_regs[15] = ®s->gaddr7; 998 999 } else { 1000 priv->extended_hash = 0; 1001 priv->hash_width = 8; 1002 1003 priv->hash_regs[0] = ®s->gaddr0; 1004 priv->hash_regs[1] = ®s->gaddr1; 1005 priv->hash_regs[2] = ®s->gaddr2; 1006 priv->hash_regs[3] = ®s->gaddr3; 1007 priv->hash_regs[4] = ®s->gaddr4; 1008 priv->hash_regs[5] = ®s->gaddr5; 1009 priv->hash_regs[6] = ®s->gaddr6; 1010 priv->hash_regs[7] = ®s->gaddr7; 1011 } 1012 } 1013 1014 static int __gfar_is_rx_idle(struct gfar_private *priv) 1015 { 1016 u32 res; 1017 1018 /* Normaly TSEC should not hang on GRS commands, so we should 1019 * actually wait for IEVENT_GRSC flag. 1020 */ 1021 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1022 return 0; 1023 1024 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1025 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1026 * and the Rx can be safely reset. 1027 */ 1028 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1029 res &= 0x7f807f80; 1030 if ((res & 0xffff) == (res >> 16)) 1031 return 1; 1032 1033 return 0; 1034 } 1035 1036 /* Halt the receive and transmit queues */ 1037 static void gfar_halt_nodisable(struct gfar_private *priv) 1038 { 1039 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1040 u32 tempval; 1041 unsigned int timeout; 1042 int stopped; 1043 1044 gfar_ints_disable(priv); 1045 1046 if (gfar_is_dma_stopped(priv)) 1047 return; 1048 1049 /* Stop the DMA, and wait for it to stop */ 1050 tempval = gfar_read(®s->dmactrl); 1051 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1052 gfar_write(®s->dmactrl, tempval); 1053 1054 retry: 1055 timeout = 1000; 1056 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1057 cpu_relax(); 1058 timeout--; 1059 } 1060 1061 if (!timeout) 1062 stopped = gfar_is_dma_stopped(priv); 1063 1064 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1065 !__gfar_is_rx_idle(priv)) 1066 goto retry; 1067 } 1068 1069 /* Halt the receive and transmit queues */ 1070 static void gfar_halt(struct gfar_private *priv) 1071 { 1072 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1073 u32 tempval; 1074 1075 /* Dissable the Rx/Tx hw queues */ 1076 gfar_write(®s->rqueue, 0); 1077 gfar_write(®s->tqueue, 0); 1078 1079 mdelay(10); 1080 1081 gfar_halt_nodisable(priv); 1082 1083 /* Disable Rx/Tx DMA */ 1084 tempval = gfar_read(®s->maccfg1); 1085 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1086 gfar_write(®s->maccfg1, tempval); 1087 } 1088 1089 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1090 { 1091 struct txbd8 *txbdp; 1092 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1093 int i, j; 1094 1095 txbdp = tx_queue->tx_bd_base; 1096 1097 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1098 if (!tx_queue->tx_skbuff[i]) 1099 continue; 1100 1101 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1102 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1103 txbdp->lstatus = 0; 1104 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1105 j++) { 1106 txbdp++; 1107 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1108 be16_to_cpu(txbdp->length), 1109 DMA_TO_DEVICE); 1110 } 1111 txbdp++; 1112 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1113 tx_queue->tx_skbuff[i] = NULL; 1114 } 1115 kfree(tx_queue->tx_skbuff); 1116 tx_queue->tx_skbuff = NULL; 1117 } 1118 1119 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1120 { 1121 int i; 1122 1123 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1124 1125 dev_kfree_skb(rx_queue->skb); 1126 1127 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1128 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1129 1130 rxbdp->lstatus = 0; 1131 rxbdp->bufPtr = 0; 1132 rxbdp++; 1133 1134 if (!rxb->page) 1135 continue; 1136 1137 dma_unmap_page(rx_queue->dev, rxb->dma, 1138 PAGE_SIZE, DMA_FROM_DEVICE); 1139 __free_page(rxb->page); 1140 1141 rxb->page = NULL; 1142 } 1143 1144 kfree(rx_queue->rx_buff); 1145 rx_queue->rx_buff = NULL; 1146 } 1147 1148 /* If there are any tx skbs or rx skbs still around, free them. 1149 * Then free tx_skbuff and rx_skbuff 1150 */ 1151 static void free_skb_resources(struct gfar_private *priv) 1152 { 1153 struct gfar_priv_tx_q *tx_queue = NULL; 1154 struct gfar_priv_rx_q *rx_queue = NULL; 1155 int i; 1156 1157 /* Go through all the buffer descriptors and free their data buffers */ 1158 for (i = 0; i < priv->num_tx_queues; i++) { 1159 struct netdev_queue *txq; 1160 1161 tx_queue = priv->tx_queue[i]; 1162 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1163 if (tx_queue->tx_skbuff) 1164 free_skb_tx_queue(tx_queue); 1165 netdev_tx_reset_queue(txq); 1166 } 1167 1168 for (i = 0; i < priv->num_rx_queues; i++) { 1169 rx_queue = priv->rx_queue[i]; 1170 if (rx_queue->rx_buff) 1171 free_skb_rx_queue(rx_queue); 1172 } 1173 1174 dma_free_coherent(priv->dev, 1175 sizeof(struct txbd8) * priv->total_tx_ring_size + 1176 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1177 priv->tx_queue[0]->tx_bd_base, 1178 priv->tx_queue[0]->tx_bd_dma_base); 1179 } 1180 1181 void stop_gfar(struct net_device *dev) 1182 { 1183 struct gfar_private *priv = netdev_priv(dev); 1184 1185 netif_tx_stop_all_queues(dev); 1186 1187 smp_mb__before_atomic(); 1188 set_bit(GFAR_DOWN, &priv->state); 1189 smp_mb__after_atomic(); 1190 1191 disable_napi(priv); 1192 1193 /* disable ints and gracefully shut down Rx/Tx DMA */ 1194 gfar_halt(priv); 1195 1196 phy_stop(dev->phydev); 1197 1198 free_skb_resources(priv); 1199 } 1200 1201 static void gfar_start(struct gfar_private *priv) 1202 { 1203 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1204 u32 tempval; 1205 int i = 0; 1206 1207 /* Enable Rx/Tx hw queues */ 1208 gfar_write(®s->rqueue, priv->rqueue); 1209 gfar_write(®s->tqueue, priv->tqueue); 1210 1211 /* Initialize DMACTRL to have WWR and WOP */ 1212 tempval = gfar_read(®s->dmactrl); 1213 tempval |= DMACTRL_INIT_SETTINGS; 1214 gfar_write(®s->dmactrl, tempval); 1215 1216 /* Make sure we aren't stopped */ 1217 tempval = gfar_read(®s->dmactrl); 1218 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1219 gfar_write(®s->dmactrl, tempval); 1220 1221 for (i = 0; i < priv->num_grps; i++) { 1222 regs = priv->gfargrp[i].regs; 1223 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1224 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1225 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1226 } 1227 1228 /* Enable Rx/Tx DMA */ 1229 tempval = gfar_read(®s->maccfg1); 1230 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1231 gfar_write(®s->maccfg1, tempval); 1232 1233 gfar_ints_enable(priv); 1234 1235 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1236 } 1237 1238 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1239 { 1240 struct page *page; 1241 dma_addr_t addr; 1242 1243 page = dev_alloc_page(); 1244 if (unlikely(!page)) 1245 return false; 1246 1247 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1248 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1249 __free_page(page); 1250 1251 return false; 1252 } 1253 1254 rxb->dma = addr; 1255 rxb->page = page; 1256 rxb->page_offset = 0; 1257 1258 return true; 1259 } 1260 1261 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1262 { 1263 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1264 struct gfar_extra_stats *estats = &priv->extra_stats; 1265 1266 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1267 atomic64_inc(&estats->rx_alloc_err); 1268 } 1269 1270 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1271 int alloc_cnt) 1272 { 1273 struct rxbd8 *bdp; 1274 struct gfar_rx_buff *rxb; 1275 int i; 1276 1277 i = rx_queue->next_to_use; 1278 bdp = &rx_queue->rx_bd_base[i]; 1279 rxb = &rx_queue->rx_buff[i]; 1280 1281 while (alloc_cnt--) { 1282 /* try reuse page */ 1283 if (unlikely(!rxb->page)) { 1284 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1285 gfar_rx_alloc_err(rx_queue); 1286 break; 1287 } 1288 } 1289 1290 /* Setup the new RxBD */ 1291 gfar_init_rxbdp(rx_queue, bdp, 1292 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1293 1294 /* Update to the next pointer */ 1295 bdp++; 1296 rxb++; 1297 1298 if (unlikely(++i == rx_queue->rx_ring_size)) { 1299 i = 0; 1300 bdp = rx_queue->rx_bd_base; 1301 rxb = rx_queue->rx_buff; 1302 } 1303 } 1304 1305 rx_queue->next_to_use = i; 1306 rx_queue->next_to_alloc = i; 1307 } 1308 1309 static void gfar_init_bds(struct net_device *ndev) 1310 { 1311 struct gfar_private *priv = netdev_priv(ndev); 1312 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1313 struct gfar_priv_tx_q *tx_queue = NULL; 1314 struct gfar_priv_rx_q *rx_queue = NULL; 1315 struct txbd8 *txbdp; 1316 u32 __iomem *rfbptr; 1317 int i, j; 1318 1319 for (i = 0; i < priv->num_tx_queues; i++) { 1320 tx_queue = priv->tx_queue[i]; 1321 /* Initialize some variables in our dev structure */ 1322 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1323 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1324 tx_queue->cur_tx = tx_queue->tx_bd_base; 1325 tx_queue->skb_curtx = 0; 1326 tx_queue->skb_dirtytx = 0; 1327 1328 /* Initialize Transmit Descriptor Ring */ 1329 txbdp = tx_queue->tx_bd_base; 1330 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1331 txbdp->lstatus = 0; 1332 txbdp->bufPtr = 0; 1333 txbdp++; 1334 } 1335 1336 /* Set the last descriptor in the ring to indicate wrap */ 1337 txbdp--; 1338 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1339 TXBD_WRAP); 1340 } 1341 1342 rfbptr = ®s->rfbptr0; 1343 for (i = 0; i < priv->num_rx_queues; i++) { 1344 rx_queue = priv->rx_queue[i]; 1345 1346 rx_queue->next_to_clean = 0; 1347 rx_queue->next_to_use = 0; 1348 rx_queue->next_to_alloc = 0; 1349 1350 /* make sure next_to_clean != next_to_use after this 1351 * by leaving at least 1 unused descriptor 1352 */ 1353 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1354 1355 rx_queue->rfbptr = rfbptr; 1356 rfbptr += 2; 1357 } 1358 } 1359 1360 static int gfar_alloc_skb_resources(struct net_device *ndev) 1361 { 1362 void *vaddr; 1363 dma_addr_t addr; 1364 int i, j; 1365 struct gfar_private *priv = netdev_priv(ndev); 1366 struct device *dev = priv->dev; 1367 struct gfar_priv_tx_q *tx_queue = NULL; 1368 struct gfar_priv_rx_q *rx_queue = NULL; 1369 1370 priv->total_tx_ring_size = 0; 1371 for (i = 0; i < priv->num_tx_queues; i++) 1372 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1373 1374 priv->total_rx_ring_size = 0; 1375 for (i = 0; i < priv->num_rx_queues; i++) 1376 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1377 1378 /* Allocate memory for the buffer descriptors */ 1379 vaddr = dma_alloc_coherent(dev, 1380 (priv->total_tx_ring_size * 1381 sizeof(struct txbd8)) + 1382 (priv->total_rx_ring_size * 1383 sizeof(struct rxbd8)), 1384 &addr, GFP_KERNEL); 1385 if (!vaddr) 1386 return -ENOMEM; 1387 1388 for (i = 0; i < priv->num_tx_queues; i++) { 1389 tx_queue = priv->tx_queue[i]; 1390 tx_queue->tx_bd_base = vaddr; 1391 tx_queue->tx_bd_dma_base = addr; 1392 tx_queue->dev = ndev; 1393 /* enet DMA only understands physical addresses */ 1394 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1395 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1396 } 1397 1398 /* Start the rx descriptor ring where the tx ring leaves off */ 1399 for (i = 0; i < priv->num_rx_queues; i++) { 1400 rx_queue = priv->rx_queue[i]; 1401 rx_queue->rx_bd_base = vaddr; 1402 rx_queue->rx_bd_dma_base = addr; 1403 rx_queue->ndev = ndev; 1404 rx_queue->dev = dev; 1405 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1406 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1407 } 1408 1409 /* Setup the skbuff rings */ 1410 for (i = 0; i < priv->num_tx_queues; i++) { 1411 tx_queue = priv->tx_queue[i]; 1412 tx_queue->tx_skbuff = 1413 kmalloc_array(tx_queue->tx_ring_size, 1414 sizeof(*tx_queue->tx_skbuff), 1415 GFP_KERNEL); 1416 if (!tx_queue->tx_skbuff) 1417 goto cleanup; 1418 1419 for (j = 0; j < tx_queue->tx_ring_size; j++) 1420 tx_queue->tx_skbuff[j] = NULL; 1421 } 1422 1423 for (i = 0; i < priv->num_rx_queues; i++) { 1424 rx_queue = priv->rx_queue[i]; 1425 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1426 sizeof(*rx_queue->rx_buff), 1427 GFP_KERNEL); 1428 if (!rx_queue->rx_buff) 1429 goto cleanup; 1430 } 1431 1432 gfar_init_bds(ndev); 1433 1434 return 0; 1435 1436 cleanup: 1437 free_skb_resources(priv); 1438 return -ENOMEM; 1439 } 1440 1441 /* Bring the controller up and running */ 1442 int startup_gfar(struct net_device *ndev) 1443 { 1444 struct gfar_private *priv = netdev_priv(ndev); 1445 int err; 1446 1447 gfar_mac_reset(priv); 1448 1449 err = gfar_alloc_skb_resources(ndev); 1450 if (err) 1451 return err; 1452 1453 gfar_init_tx_rx_base(priv); 1454 1455 smp_mb__before_atomic(); 1456 clear_bit(GFAR_DOWN, &priv->state); 1457 smp_mb__after_atomic(); 1458 1459 /* Start Rx/Tx DMA and enable the interrupts */ 1460 gfar_start(priv); 1461 1462 /* force link state update after mac reset */ 1463 priv->oldlink = 0; 1464 priv->oldspeed = 0; 1465 priv->oldduplex = -1; 1466 1467 phy_start(ndev->phydev); 1468 1469 enable_napi(priv); 1470 1471 netif_tx_wake_all_queues(ndev); 1472 1473 return 0; 1474 } 1475 1476 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1477 { 1478 struct net_device *ndev = priv->ndev; 1479 struct phy_device *phydev = ndev->phydev; 1480 u32 val = 0; 1481 1482 if (!phydev->duplex) 1483 return val; 1484 1485 if (!priv->pause_aneg_en) { 1486 if (priv->tx_pause_en) 1487 val |= MACCFG1_TX_FLOW; 1488 if (priv->rx_pause_en) 1489 val |= MACCFG1_RX_FLOW; 1490 } else { 1491 u16 lcl_adv, rmt_adv; 1492 u8 flowctrl; 1493 /* get link partner capabilities */ 1494 rmt_adv = 0; 1495 if (phydev->pause) 1496 rmt_adv = LPA_PAUSE_CAP; 1497 if (phydev->asym_pause) 1498 rmt_adv |= LPA_PAUSE_ASYM; 1499 1500 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1501 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1502 if (flowctrl & FLOW_CTRL_TX) 1503 val |= MACCFG1_TX_FLOW; 1504 if (flowctrl & FLOW_CTRL_RX) 1505 val |= MACCFG1_RX_FLOW; 1506 } 1507 1508 return val; 1509 } 1510 1511 static noinline void gfar_update_link_state(struct gfar_private *priv) 1512 { 1513 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1514 struct net_device *ndev = priv->ndev; 1515 struct phy_device *phydev = ndev->phydev; 1516 struct gfar_priv_rx_q *rx_queue = NULL; 1517 int i; 1518 1519 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1520 return; 1521 1522 if (phydev->link) { 1523 u32 tempval1 = gfar_read(®s->maccfg1); 1524 u32 tempval = gfar_read(®s->maccfg2); 1525 u32 ecntrl = gfar_read(®s->ecntrl); 1526 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1527 1528 if (phydev->duplex != priv->oldduplex) { 1529 if (!(phydev->duplex)) 1530 tempval &= ~(MACCFG2_FULL_DUPLEX); 1531 else 1532 tempval |= MACCFG2_FULL_DUPLEX; 1533 1534 priv->oldduplex = phydev->duplex; 1535 } 1536 1537 if (phydev->speed != priv->oldspeed) { 1538 switch (phydev->speed) { 1539 case 1000: 1540 tempval = 1541 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1542 1543 ecntrl &= ~(ECNTRL_R100); 1544 break; 1545 case 100: 1546 case 10: 1547 tempval = 1548 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1549 1550 /* Reduced mode distinguishes 1551 * between 10 and 100 1552 */ 1553 if (phydev->speed == SPEED_100) 1554 ecntrl |= ECNTRL_R100; 1555 else 1556 ecntrl &= ~(ECNTRL_R100); 1557 break; 1558 default: 1559 netif_warn(priv, link, priv->ndev, 1560 "Ack! Speed (%d) is not 10/100/1000!\n", 1561 phydev->speed); 1562 break; 1563 } 1564 1565 priv->oldspeed = phydev->speed; 1566 } 1567 1568 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1569 tempval1 |= gfar_get_flowctrl_cfg(priv); 1570 1571 /* Turn last free buffer recording on */ 1572 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1573 for (i = 0; i < priv->num_rx_queues; i++) { 1574 u32 bdp_dma; 1575 1576 rx_queue = priv->rx_queue[i]; 1577 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1578 gfar_write(rx_queue->rfbptr, bdp_dma); 1579 } 1580 1581 priv->tx_actual_en = 1; 1582 } 1583 1584 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1585 priv->tx_actual_en = 0; 1586 1587 gfar_write(®s->maccfg1, tempval1); 1588 gfar_write(®s->maccfg2, tempval); 1589 gfar_write(®s->ecntrl, ecntrl); 1590 1591 if (!priv->oldlink) 1592 priv->oldlink = 1; 1593 1594 } else if (priv->oldlink) { 1595 priv->oldlink = 0; 1596 priv->oldspeed = 0; 1597 priv->oldduplex = -1; 1598 } 1599 1600 if (netif_msg_link(priv)) 1601 phy_print_status(phydev); 1602 } 1603 1604 /* Called every time the controller might need to be made 1605 * aware of new link state. The PHY code conveys this 1606 * information through variables in the phydev structure, and this 1607 * function converts those variables into the appropriate 1608 * register values, and can bring down the device if needed. 1609 */ 1610 static void adjust_link(struct net_device *dev) 1611 { 1612 struct gfar_private *priv = netdev_priv(dev); 1613 struct phy_device *phydev = dev->phydev; 1614 1615 if (unlikely(phydev->link != priv->oldlink || 1616 (phydev->link && (phydev->duplex != priv->oldduplex || 1617 phydev->speed != priv->oldspeed)))) 1618 gfar_update_link_state(priv); 1619 } 1620 1621 /* Initialize TBI PHY interface for communicating with the 1622 * SERDES lynx PHY on the chip. We communicate with this PHY 1623 * through the MDIO bus on each controller, treating it as a 1624 * "normal" PHY at the address found in the TBIPA register. We assume 1625 * that the TBIPA register is valid. Either the MDIO bus code will set 1626 * it to a value that doesn't conflict with other PHYs on the bus, or the 1627 * value doesn't matter, as there are no other PHYs on the bus. 1628 */ 1629 static void gfar_configure_serdes(struct net_device *dev) 1630 { 1631 struct gfar_private *priv = netdev_priv(dev); 1632 struct phy_device *tbiphy; 1633 1634 if (!priv->tbi_node) { 1635 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1636 "device tree specify a tbi-handle\n"); 1637 return; 1638 } 1639 1640 tbiphy = of_phy_find_device(priv->tbi_node); 1641 if (!tbiphy) { 1642 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1643 return; 1644 } 1645 1646 /* If the link is already up, we must already be ok, and don't need to 1647 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1648 * everything for us? Resetting it takes the link down and requires 1649 * several seconds for it to come back. 1650 */ 1651 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1652 put_device(&tbiphy->mdio.dev); 1653 return; 1654 } 1655 1656 /* Single clk mode, mii mode off(for serdes communication) */ 1657 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1658 1659 phy_write(tbiphy, MII_ADVERTISE, 1660 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1661 ADVERTISE_1000XPSE_ASYM); 1662 1663 phy_write(tbiphy, MII_BMCR, 1664 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1665 BMCR_SPEED1000); 1666 1667 put_device(&tbiphy->mdio.dev); 1668 } 1669 1670 /* Initializes driver's PHY state, and attaches to the PHY. 1671 * Returns 0 on success. 1672 */ 1673 static int init_phy(struct net_device *dev) 1674 { 1675 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1676 struct gfar_private *priv = netdev_priv(dev); 1677 phy_interface_t interface = priv->interface; 1678 struct phy_device *phydev; 1679 struct ethtool_eee edata; 1680 1681 linkmode_set_bit_array(phy_10_100_features_array, 1682 ARRAY_SIZE(phy_10_100_features_array), 1683 mask); 1684 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1685 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1686 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1687 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1688 1689 priv->oldlink = 0; 1690 priv->oldspeed = 0; 1691 priv->oldduplex = -1; 1692 1693 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1694 interface); 1695 if (!phydev) { 1696 dev_err(&dev->dev, "could not attach to PHY\n"); 1697 return -ENODEV; 1698 } 1699 1700 if (interface == PHY_INTERFACE_MODE_SGMII) 1701 gfar_configure_serdes(dev); 1702 1703 /* Remove any features not supported by the controller */ 1704 linkmode_and(phydev->supported, phydev->supported, mask); 1705 linkmode_copy(phydev->advertising, phydev->supported); 1706 1707 /* Add support for flow control */ 1708 phy_support_asym_pause(phydev); 1709 1710 /* disable EEE autoneg, EEE not supported by eTSEC */ 1711 memset(&edata, 0, sizeof(struct ethtool_eee)); 1712 phy_ethtool_set_eee(phydev, &edata); 1713 1714 return 0; 1715 } 1716 1717 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1718 { 1719 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1720 1721 memset(fcb, 0, GMAC_FCB_LEN); 1722 1723 return fcb; 1724 } 1725 1726 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1727 int fcb_length) 1728 { 1729 /* If we're here, it's a IP packet with a TCP or UDP 1730 * payload. We set it to checksum, using a pseudo-header 1731 * we provide 1732 */ 1733 u8 flags = TXFCB_DEFAULT; 1734 1735 /* Tell the controller what the protocol is 1736 * And provide the already calculated phcs 1737 */ 1738 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1739 flags |= TXFCB_UDP; 1740 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1741 } else 1742 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1743 1744 /* l3os is the distance between the start of the 1745 * frame (skb->data) and the start of the IP hdr. 1746 * l4os is the distance between the start of the 1747 * l3 hdr and the l4 hdr 1748 */ 1749 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1750 fcb->l4os = skb_network_header_len(skb); 1751 1752 fcb->flags = flags; 1753 } 1754 1755 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1756 { 1757 fcb->flags |= TXFCB_VLN; 1758 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1759 } 1760 1761 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1762 struct txbd8 *base, int ring_size) 1763 { 1764 struct txbd8 *new_bd = bdp + stride; 1765 1766 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1767 } 1768 1769 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1770 int ring_size) 1771 { 1772 return skip_txbd(bdp, 1, base, ring_size); 1773 } 1774 1775 /* eTSEC12: csum generation not supported for some fcb offsets */ 1776 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1777 unsigned long fcb_addr) 1778 { 1779 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1780 (fcb_addr % 0x20) > 0x18); 1781 } 1782 1783 /* eTSEC76: csum generation for frames larger than 2500 may 1784 * cause excess delays before start of transmission 1785 */ 1786 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1787 unsigned int len) 1788 { 1789 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1790 (len > 2500)); 1791 } 1792 1793 /* This is called by the kernel when a frame is ready for transmission. 1794 * It is pointed to by the dev->hard_start_xmit function pointer 1795 */ 1796 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1797 { 1798 struct gfar_private *priv = netdev_priv(dev); 1799 struct gfar_priv_tx_q *tx_queue = NULL; 1800 struct netdev_queue *txq; 1801 struct gfar __iomem *regs = NULL; 1802 struct txfcb *fcb = NULL; 1803 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1804 u32 lstatus; 1805 skb_frag_t *frag; 1806 int i, rq = 0; 1807 int do_tstamp, do_csum, do_vlan; 1808 u32 bufaddr; 1809 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1810 1811 rq = skb->queue_mapping; 1812 tx_queue = priv->tx_queue[rq]; 1813 txq = netdev_get_tx_queue(dev, rq); 1814 base = tx_queue->tx_bd_base; 1815 regs = tx_queue->grp->regs; 1816 1817 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1818 do_vlan = skb_vlan_tag_present(skb); 1819 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1820 priv->hwts_tx_en; 1821 1822 if (do_csum || do_vlan) 1823 fcb_len = GMAC_FCB_LEN; 1824 1825 /* check if time stamp should be generated */ 1826 if (unlikely(do_tstamp)) 1827 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1828 1829 /* make space for additional header when fcb is needed */ 1830 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 1831 struct sk_buff *skb_new; 1832 1833 skb_new = skb_realloc_headroom(skb, fcb_len); 1834 if (!skb_new) { 1835 dev->stats.tx_errors++; 1836 dev_kfree_skb_any(skb); 1837 return NETDEV_TX_OK; 1838 } 1839 1840 if (skb->sk) 1841 skb_set_owner_w(skb_new, skb->sk); 1842 dev_consume_skb_any(skb); 1843 skb = skb_new; 1844 } 1845 1846 /* total number of fragments in the SKB */ 1847 nr_frags = skb_shinfo(skb)->nr_frags; 1848 1849 /* calculate the required number of TxBDs for this skb */ 1850 if (unlikely(do_tstamp)) 1851 nr_txbds = nr_frags + 2; 1852 else 1853 nr_txbds = nr_frags + 1; 1854 1855 /* check if there is space to queue this packet */ 1856 if (nr_txbds > tx_queue->num_txbdfree) { 1857 /* no space, stop the queue */ 1858 netif_tx_stop_queue(txq); 1859 dev->stats.tx_fifo_errors++; 1860 return NETDEV_TX_BUSY; 1861 } 1862 1863 /* Update transmit stats */ 1864 bytes_sent = skb->len; 1865 tx_queue->stats.tx_bytes += bytes_sent; 1866 /* keep Tx bytes on wire for BQL accounting */ 1867 GFAR_CB(skb)->bytes_sent = bytes_sent; 1868 tx_queue->stats.tx_packets++; 1869 1870 txbdp = txbdp_start = tx_queue->cur_tx; 1871 lstatus = be32_to_cpu(txbdp->lstatus); 1872 1873 /* Add TxPAL between FCB and frame if required */ 1874 if (unlikely(do_tstamp)) { 1875 skb_push(skb, GMAC_TXPAL_LEN); 1876 memset(skb->data, 0, GMAC_TXPAL_LEN); 1877 } 1878 1879 /* Add TxFCB if required */ 1880 if (fcb_len) { 1881 fcb = gfar_add_fcb(skb); 1882 lstatus |= BD_LFLAG(TXBD_TOE); 1883 } 1884 1885 /* Set up checksumming */ 1886 if (do_csum) { 1887 gfar_tx_checksum(skb, fcb, fcb_len); 1888 1889 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1890 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1891 __skb_pull(skb, GMAC_FCB_LEN); 1892 skb_checksum_help(skb); 1893 if (do_vlan || do_tstamp) { 1894 /* put back a new fcb for vlan/tstamp TOE */ 1895 fcb = gfar_add_fcb(skb); 1896 } else { 1897 /* Tx TOE not used */ 1898 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1899 fcb = NULL; 1900 } 1901 } 1902 } 1903 1904 if (do_vlan) 1905 gfar_tx_vlan(skb, fcb); 1906 1907 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1908 DMA_TO_DEVICE); 1909 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1910 goto dma_map_err; 1911 1912 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1913 1914 /* Time stamp insertion requires one additional TxBD */ 1915 if (unlikely(do_tstamp)) 1916 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1917 tx_queue->tx_ring_size); 1918 1919 if (likely(!nr_frags)) { 1920 if (likely(!do_tstamp)) 1921 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1922 } else { 1923 u32 lstatus_start = lstatus; 1924 1925 /* Place the fragment addresses and lengths into the TxBDs */ 1926 frag = &skb_shinfo(skb)->frags[0]; 1927 for (i = 0; i < nr_frags; i++, frag++) { 1928 unsigned int size; 1929 1930 /* Point at the next BD, wrapping as needed */ 1931 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1932 1933 size = skb_frag_size(frag); 1934 1935 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1936 BD_LFLAG(TXBD_READY); 1937 1938 /* Handle the last BD specially */ 1939 if (i == nr_frags - 1) 1940 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1941 1942 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1943 size, DMA_TO_DEVICE); 1944 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1945 goto dma_map_err; 1946 1947 /* set the TxBD length and buffer pointer */ 1948 txbdp->bufPtr = cpu_to_be32(bufaddr); 1949 txbdp->lstatus = cpu_to_be32(lstatus); 1950 } 1951 1952 lstatus = lstatus_start; 1953 } 1954 1955 /* If time stamping is requested one additional TxBD must be set up. The 1956 * first TxBD points to the FCB and must have a data length of 1957 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1958 * the full frame length. 1959 */ 1960 if (unlikely(do_tstamp)) { 1961 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1962 1963 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1964 bufaddr += fcb_len; 1965 1966 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1967 (skb_headlen(skb) - fcb_len); 1968 if (!nr_frags) 1969 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1970 1971 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1972 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1973 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1974 1975 /* Setup tx hardware time stamping */ 1976 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1977 fcb->ptp = 1; 1978 } else { 1979 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1980 } 1981 1982 netdev_tx_sent_queue(txq, bytes_sent); 1983 1984 gfar_wmb(); 1985 1986 txbdp_start->lstatus = cpu_to_be32(lstatus); 1987 1988 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1989 1990 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1991 1992 /* Update the current skb pointer to the next entry we will use 1993 * (wrapping if necessary) 1994 */ 1995 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1996 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1997 1998 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1999 2000 /* We can work in parallel with gfar_clean_tx_ring(), except 2001 * when modifying num_txbdfree. Note that we didn't grab the lock 2002 * when we were reading the num_txbdfree and checking for available 2003 * space, that's because outside of this function it can only grow. 2004 */ 2005 spin_lock_bh(&tx_queue->txlock); 2006 /* reduce TxBD free count */ 2007 tx_queue->num_txbdfree -= (nr_txbds); 2008 spin_unlock_bh(&tx_queue->txlock); 2009 2010 /* If the next BD still needs to be cleaned up, then the bds 2011 * are full. We need to tell the kernel to stop sending us stuff. 2012 */ 2013 if (!tx_queue->num_txbdfree) { 2014 netif_tx_stop_queue(txq); 2015 2016 dev->stats.tx_fifo_errors++; 2017 } 2018 2019 /* Tell the DMA to go go go */ 2020 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2021 2022 return NETDEV_TX_OK; 2023 2024 dma_map_err: 2025 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2026 if (do_tstamp) 2027 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2028 for (i = 0; i < nr_frags; i++) { 2029 lstatus = be32_to_cpu(txbdp->lstatus); 2030 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2031 break; 2032 2033 lstatus &= ~BD_LFLAG(TXBD_READY); 2034 txbdp->lstatus = cpu_to_be32(lstatus); 2035 bufaddr = be32_to_cpu(txbdp->bufPtr); 2036 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2037 DMA_TO_DEVICE); 2038 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2039 } 2040 gfar_wmb(); 2041 dev_kfree_skb_any(skb); 2042 return NETDEV_TX_OK; 2043 } 2044 2045 /* Changes the mac address if the controller is not running. */ 2046 static int gfar_set_mac_address(struct net_device *dev) 2047 { 2048 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2049 2050 return 0; 2051 } 2052 2053 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2054 { 2055 struct gfar_private *priv = netdev_priv(dev); 2056 2057 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2058 cpu_relax(); 2059 2060 if (dev->flags & IFF_UP) 2061 stop_gfar(dev); 2062 2063 dev->mtu = new_mtu; 2064 2065 if (dev->flags & IFF_UP) 2066 startup_gfar(dev); 2067 2068 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2069 2070 return 0; 2071 } 2072 2073 static void reset_gfar(struct net_device *ndev) 2074 { 2075 struct gfar_private *priv = netdev_priv(ndev); 2076 2077 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2078 cpu_relax(); 2079 2080 stop_gfar(ndev); 2081 startup_gfar(ndev); 2082 2083 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2084 } 2085 2086 /* gfar_reset_task gets scheduled when a packet has not been 2087 * transmitted after a set amount of time. 2088 * For now, assume that clearing out all the structures, and 2089 * starting over will fix the problem. 2090 */ 2091 static void gfar_reset_task(struct work_struct *work) 2092 { 2093 struct gfar_private *priv = container_of(work, struct gfar_private, 2094 reset_task); 2095 reset_gfar(priv->ndev); 2096 } 2097 2098 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2099 { 2100 struct gfar_private *priv = netdev_priv(dev); 2101 2102 dev->stats.tx_errors++; 2103 schedule_work(&priv->reset_task); 2104 } 2105 2106 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2107 { 2108 struct hwtstamp_config config; 2109 struct gfar_private *priv = netdev_priv(netdev); 2110 2111 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2112 return -EFAULT; 2113 2114 /* reserved for future extensions */ 2115 if (config.flags) 2116 return -EINVAL; 2117 2118 switch (config.tx_type) { 2119 case HWTSTAMP_TX_OFF: 2120 priv->hwts_tx_en = 0; 2121 break; 2122 case HWTSTAMP_TX_ON: 2123 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2124 return -ERANGE; 2125 priv->hwts_tx_en = 1; 2126 break; 2127 default: 2128 return -ERANGE; 2129 } 2130 2131 switch (config.rx_filter) { 2132 case HWTSTAMP_FILTER_NONE: 2133 if (priv->hwts_rx_en) { 2134 priv->hwts_rx_en = 0; 2135 reset_gfar(netdev); 2136 } 2137 break; 2138 default: 2139 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2140 return -ERANGE; 2141 if (!priv->hwts_rx_en) { 2142 priv->hwts_rx_en = 1; 2143 reset_gfar(netdev); 2144 } 2145 config.rx_filter = HWTSTAMP_FILTER_ALL; 2146 break; 2147 } 2148 2149 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2150 -EFAULT : 0; 2151 } 2152 2153 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2154 { 2155 struct hwtstamp_config config; 2156 struct gfar_private *priv = netdev_priv(netdev); 2157 2158 config.flags = 0; 2159 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2160 config.rx_filter = (priv->hwts_rx_en ? 2161 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2162 2163 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2164 -EFAULT : 0; 2165 } 2166 2167 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2168 { 2169 struct phy_device *phydev = dev->phydev; 2170 2171 if (!netif_running(dev)) 2172 return -EINVAL; 2173 2174 if (cmd == SIOCSHWTSTAMP) 2175 return gfar_hwtstamp_set(dev, rq); 2176 if (cmd == SIOCGHWTSTAMP) 2177 return gfar_hwtstamp_get(dev, rq); 2178 2179 if (!phydev) 2180 return -ENODEV; 2181 2182 return phy_mii_ioctl(phydev, rq, cmd); 2183 } 2184 2185 /* Interrupt Handler for Transmit complete */ 2186 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2187 { 2188 struct net_device *dev = tx_queue->dev; 2189 struct netdev_queue *txq; 2190 struct gfar_private *priv = netdev_priv(dev); 2191 struct txbd8 *bdp, *next = NULL; 2192 struct txbd8 *lbdp = NULL; 2193 struct txbd8 *base = tx_queue->tx_bd_base; 2194 struct sk_buff *skb; 2195 int skb_dirtytx; 2196 int tx_ring_size = tx_queue->tx_ring_size; 2197 int frags = 0, nr_txbds = 0; 2198 int i; 2199 int howmany = 0; 2200 int tqi = tx_queue->qindex; 2201 unsigned int bytes_sent = 0; 2202 u32 lstatus; 2203 size_t buflen; 2204 2205 txq = netdev_get_tx_queue(dev, tqi); 2206 bdp = tx_queue->dirty_tx; 2207 skb_dirtytx = tx_queue->skb_dirtytx; 2208 2209 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2210 bool do_tstamp; 2211 2212 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2213 priv->hwts_tx_en; 2214 2215 frags = skb_shinfo(skb)->nr_frags; 2216 2217 /* When time stamping, one additional TxBD must be freed. 2218 * Also, we need to dma_unmap_single() the TxPAL. 2219 */ 2220 if (unlikely(do_tstamp)) 2221 nr_txbds = frags + 2; 2222 else 2223 nr_txbds = frags + 1; 2224 2225 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2226 2227 lstatus = be32_to_cpu(lbdp->lstatus); 2228 2229 /* Only clean completed frames */ 2230 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2231 (lstatus & BD_LENGTH_MASK)) 2232 break; 2233 2234 if (unlikely(do_tstamp)) { 2235 next = next_txbd(bdp, base, tx_ring_size); 2236 buflen = be16_to_cpu(next->length) + 2237 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2238 } else 2239 buflen = be16_to_cpu(bdp->length); 2240 2241 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2242 buflen, DMA_TO_DEVICE); 2243 2244 if (unlikely(do_tstamp)) { 2245 struct skb_shared_hwtstamps shhwtstamps; 2246 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2247 ~0x7UL); 2248 2249 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2250 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2251 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2252 skb_tstamp_tx(skb, &shhwtstamps); 2253 gfar_clear_txbd_status(bdp); 2254 bdp = next; 2255 } 2256 2257 gfar_clear_txbd_status(bdp); 2258 bdp = next_txbd(bdp, base, tx_ring_size); 2259 2260 for (i = 0; i < frags; i++) { 2261 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2262 be16_to_cpu(bdp->length), 2263 DMA_TO_DEVICE); 2264 gfar_clear_txbd_status(bdp); 2265 bdp = next_txbd(bdp, base, tx_ring_size); 2266 } 2267 2268 bytes_sent += GFAR_CB(skb)->bytes_sent; 2269 2270 dev_kfree_skb_any(skb); 2271 2272 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2273 2274 skb_dirtytx = (skb_dirtytx + 1) & 2275 TX_RING_MOD_MASK(tx_ring_size); 2276 2277 howmany++; 2278 spin_lock(&tx_queue->txlock); 2279 tx_queue->num_txbdfree += nr_txbds; 2280 spin_unlock(&tx_queue->txlock); 2281 } 2282 2283 /* If we freed a buffer, we can restart transmission, if necessary */ 2284 if (tx_queue->num_txbdfree && 2285 netif_tx_queue_stopped(txq) && 2286 !(test_bit(GFAR_DOWN, &priv->state))) 2287 netif_wake_subqueue(priv->ndev, tqi); 2288 2289 /* Update dirty indicators */ 2290 tx_queue->skb_dirtytx = skb_dirtytx; 2291 tx_queue->dirty_tx = bdp; 2292 2293 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2294 } 2295 2296 static void count_errors(u32 lstatus, struct net_device *ndev) 2297 { 2298 struct gfar_private *priv = netdev_priv(ndev); 2299 struct net_device_stats *stats = &ndev->stats; 2300 struct gfar_extra_stats *estats = &priv->extra_stats; 2301 2302 /* If the packet was truncated, none of the other errors matter */ 2303 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2304 stats->rx_length_errors++; 2305 2306 atomic64_inc(&estats->rx_trunc); 2307 2308 return; 2309 } 2310 /* Count the errors, if there were any */ 2311 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2312 stats->rx_length_errors++; 2313 2314 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2315 atomic64_inc(&estats->rx_large); 2316 else 2317 atomic64_inc(&estats->rx_short); 2318 } 2319 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2320 stats->rx_frame_errors++; 2321 atomic64_inc(&estats->rx_nonoctet); 2322 } 2323 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2324 atomic64_inc(&estats->rx_crcerr); 2325 stats->rx_crc_errors++; 2326 } 2327 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2328 atomic64_inc(&estats->rx_overrun); 2329 stats->rx_over_errors++; 2330 } 2331 } 2332 2333 static irqreturn_t gfar_receive(int irq, void *grp_id) 2334 { 2335 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2336 unsigned long flags; 2337 u32 imask, ievent; 2338 2339 ievent = gfar_read(&grp->regs->ievent); 2340 2341 if (unlikely(ievent & IEVENT_FGPI)) { 2342 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2343 return IRQ_HANDLED; 2344 } 2345 2346 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2347 spin_lock_irqsave(&grp->grplock, flags); 2348 imask = gfar_read(&grp->regs->imask); 2349 imask &= IMASK_RX_DISABLED; 2350 gfar_write(&grp->regs->imask, imask); 2351 spin_unlock_irqrestore(&grp->grplock, flags); 2352 __napi_schedule(&grp->napi_rx); 2353 } else { 2354 /* Clear IEVENT, so interrupts aren't called again 2355 * because of the packets that have already arrived. 2356 */ 2357 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2358 } 2359 2360 return IRQ_HANDLED; 2361 } 2362 2363 /* Interrupt Handler for Transmit complete */ 2364 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2365 { 2366 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2367 unsigned long flags; 2368 u32 imask; 2369 2370 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2371 spin_lock_irqsave(&grp->grplock, flags); 2372 imask = gfar_read(&grp->regs->imask); 2373 imask &= IMASK_TX_DISABLED; 2374 gfar_write(&grp->regs->imask, imask); 2375 spin_unlock_irqrestore(&grp->grplock, flags); 2376 __napi_schedule(&grp->napi_tx); 2377 } else { 2378 /* Clear IEVENT, so interrupts aren't called again 2379 * because of the packets that have already arrived. 2380 */ 2381 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2382 } 2383 2384 return IRQ_HANDLED; 2385 } 2386 2387 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2388 struct sk_buff *skb, bool first) 2389 { 2390 int size = lstatus & BD_LENGTH_MASK; 2391 struct page *page = rxb->page; 2392 2393 if (likely(first)) { 2394 skb_put(skb, size); 2395 } else { 2396 /* the last fragments' length contains the full frame length */ 2397 if (lstatus & BD_LFLAG(RXBD_LAST)) 2398 size -= skb->len; 2399 2400 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2401 rxb->page_offset + RXBUF_ALIGNMENT, 2402 size, GFAR_RXB_TRUESIZE); 2403 } 2404 2405 /* try reuse page */ 2406 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2407 return false; 2408 2409 /* change offset to the other half */ 2410 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2411 2412 page_ref_inc(page); 2413 2414 return true; 2415 } 2416 2417 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2418 struct gfar_rx_buff *old_rxb) 2419 { 2420 struct gfar_rx_buff *new_rxb; 2421 u16 nta = rxq->next_to_alloc; 2422 2423 new_rxb = &rxq->rx_buff[nta]; 2424 2425 /* find next buf that can reuse a page */ 2426 nta++; 2427 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2428 2429 /* copy page reference */ 2430 *new_rxb = *old_rxb; 2431 2432 /* sync for use by the device */ 2433 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2434 old_rxb->page_offset, 2435 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2436 } 2437 2438 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2439 u32 lstatus, struct sk_buff *skb) 2440 { 2441 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2442 struct page *page = rxb->page; 2443 bool first = false; 2444 2445 if (likely(!skb)) { 2446 void *buff_addr = page_address(page) + rxb->page_offset; 2447 2448 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2449 if (unlikely(!skb)) { 2450 gfar_rx_alloc_err(rx_queue); 2451 return NULL; 2452 } 2453 skb_reserve(skb, RXBUF_ALIGNMENT); 2454 first = true; 2455 } 2456 2457 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2458 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2459 2460 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2461 /* reuse the free half of the page */ 2462 gfar_reuse_rx_page(rx_queue, rxb); 2463 } else { 2464 /* page cannot be reused, unmap it */ 2465 dma_unmap_page(rx_queue->dev, rxb->dma, 2466 PAGE_SIZE, DMA_FROM_DEVICE); 2467 } 2468 2469 /* clear rxb content */ 2470 rxb->page = NULL; 2471 2472 return skb; 2473 } 2474 2475 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2476 { 2477 /* If valid headers were found, and valid sums 2478 * were verified, then we tell the kernel that no 2479 * checksumming is necessary. Otherwise, it is [FIXME] 2480 */ 2481 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2482 (RXFCB_CIP | RXFCB_CTU)) 2483 skb->ip_summed = CHECKSUM_UNNECESSARY; 2484 else 2485 skb_checksum_none_assert(skb); 2486 } 2487 2488 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2489 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2490 { 2491 struct gfar_private *priv = netdev_priv(ndev); 2492 struct rxfcb *fcb = NULL; 2493 2494 /* fcb is at the beginning if exists */ 2495 fcb = (struct rxfcb *)skb->data; 2496 2497 /* Remove the FCB from the skb 2498 * Remove the padded bytes, if there are any 2499 */ 2500 if (priv->uses_rxfcb) 2501 skb_pull(skb, GMAC_FCB_LEN); 2502 2503 /* Get receive timestamp from the skb */ 2504 if (priv->hwts_rx_en) { 2505 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2506 u64 *ns = (u64 *) skb->data; 2507 2508 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2509 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2510 } 2511 2512 if (priv->padding) 2513 skb_pull(skb, priv->padding); 2514 2515 /* Trim off the FCS */ 2516 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2517 2518 if (ndev->features & NETIF_F_RXCSUM) 2519 gfar_rx_checksum(skb, fcb); 2520 2521 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2522 * Even if vlan rx accel is disabled, on some chips 2523 * RXFCB_VLN is pseudo randomly set. 2524 */ 2525 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2526 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2527 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2528 be16_to_cpu(fcb->vlctl)); 2529 } 2530 2531 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2532 * until the budget/quota has been reached. Returns the number 2533 * of frames handled 2534 */ 2535 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2536 int rx_work_limit) 2537 { 2538 struct net_device *ndev = rx_queue->ndev; 2539 struct gfar_private *priv = netdev_priv(ndev); 2540 struct rxbd8 *bdp; 2541 int i, howmany = 0; 2542 struct sk_buff *skb = rx_queue->skb; 2543 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2544 unsigned int total_bytes = 0, total_pkts = 0; 2545 2546 /* Get the first full descriptor */ 2547 i = rx_queue->next_to_clean; 2548 2549 while (rx_work_limit--) { 2550 u32 lstatus; 2551 2552 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2553 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2554 cleaned_cnt = 0; 2555 } 2556 2557 bdp = &rx_queue->rx_bd_base[i]; 2558 lstatus = be32_to_cpu(bdp->lstatus); 2559 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2560 break; 2561 2562 /* order rx buffer descriptor reads */ 2563 rmb(); 2564 2565 /* fetch next to clean buffer from the ring */ 2566 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2567 if (unlikely(!skb)) 2568 break; 2569 2570 cleaned_cnt++; 2571 howmany++; 2572 2573 if (unlikely(++i == rx_queue->rx_ring_size)) 2574 i = 0; 2575 2576 rx_queue->next_to_clean = i; 2577 2578 /* fetch next buffer if not the last in frame */ 2579 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2580 continue; 2581 2582 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2583 count_errors(lstatus, ndev); 2584 2585 /* discard faulty buffer */ 2586 dev_kfree_skb(skb); 2587 skb = NULL; 2588 rx_queue->stats.rx_dropped++; 2589 continue; 2590 } 2591 2592 gfar_process_frame(ndev, skb); 2593 2594 /* Increment the number of packets */ 2595 total_pkts++; 2596 total_bytes += skb->len; 2597 2598 skb_record_rx_queue(skb, rx_queue->qindex); 2599 2600 skb->protocol = eth_type_trans(skb, ndev); 2601 2602 /* Send the packet up the stack */ 2603 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2604 2605 skb = NULL; 2606 } 2607 2608 /* Store incomplete frames for completion */ 2609 rx_queue->skb = skb; 2610 2611 rx_queue->stats.rx_packets += total_pkts; 2612 rx_queue->stats.rx_bytes += total_bytes; 2613 2614 if (cleaned_cnt) 2615 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2616 2617 /* Update Last Free RxBD pointer for LFC */ 2618 if (unlikely(priv->tx_actual_en)) { 2619 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2620 2621 gfar_write(rx_queue->rfbptr, bdp_dma); 2622 } 2623 2624 return howmany; 2625 } 2626 2627 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2628 { 2629 struct gfar_priv_grp *gfargrp = 2630 container_of(napi, struct gfar_priv_grp, napi_rx); 2631 struct gfar __iomem *regs = gfargrp->regs; 2632 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2633 int work_done = 0; 2634 2635 /* Clear IEVENT, so interrupts aren't called again 2636 * because of the packets that have already arrived 2637 */ 2638 gfar_write(®s->ievent, IEVENT_RX_MASK); 2639 2640 work_done = gfar_clean_rx_ring(rx_queue, budget); 2641 2642 if (work_done < budget) { 2643 u32 imask; 2644 napi_complete_done(napi, work_done); 2645 /* Clear the halt bit in RSTAT */ 2646 gfar_write(®s->rstat, gfargrp->rstat); 2647 2648 spin_lock_irq(&gfargrp->grplock); 2649 imask = gfar_read(®s->imask); 2650 imask |= IMASK_RX_DEFAULT; 2651 gfar_write(®s->imask, imask); 2652 spin_unlock_irq(&gfargrp->grplock); 2653 } 2654 2655 return work_done; 2656 } 2657 2658 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2659 { 2660 struct gfar_priv_grp *gfargrp = 2661 container_of(napi, struct gfar_priv_grp, napi_tx); 2662 struct gfar __iomem *regs = gfargrp->regs; 2663 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2664 u32 imask; 2665 2666 /* Clear IEVENT, so interrupts aren't called again 2667 * because of the packets that have already arrived 2668 */ 2669 gfar_write(®s->ievent, IEVENT_TX_MASK); 2670 2671 /* run Tx cleanup to completion */ 2672 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2673 gfar_clean_tx_ring(tx_queue); 2674 2675 napi_complete(napi); 2676 2677 spin_lock_irq(&gfargrp->grplock); 2678 imask = gfar_read(®s->imask); 2679 imask |= IMASK_TX_DEFAULT; 2680 gfar_write(®s->imask, imask); 2681 spin_unlock_irq(&gfargrp->grplock); 2682 2683 return 0; 2684 } 2685 2686 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2687 { 2688 struct gfar_priv_grp *gfargrp = 2689 container_of(napi, struct gfar_priv_grp, napi_rx); 2690 struct gfar_private *priv = gfargrp->priv; 2691 struct gfar __iomem *regs = gfargrp->regs; 2692 struct gfar_priv_rx_q *rx_queue = NULL; 2693 int work_done = 0, work_done_per_q = 0; 2694 int i, budget_per_q = 0; 2695 unsigned long rstat_rxf; 2696 int num_act_queues; 2697 2698 /* Clear IEVENT, so interrupts aren't called again 2699 * because of the packets that have already arrived 2700 */ 2701 gfar_write(®s->ievent, IEVENT_RX_MASK); 2702 2703 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2704 2705 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2706 if (num_act_queues) 2707 budget_per_q = budget/num_act_queues; 2708 2709 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2710 /* skip queue if not active */ 2711 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2712 continue; 2713 2714 rx_queue = priv->rx_queue[i]; 2715 work_done_per_q = 2716 gfar_clean_rx_ring(rx_queue, budget_per_q); 2717 work_done += work_done_per_q; 2718 2719 /* finished processing this queue */ 2720 if (work_done_per_q < budget_per_q) { 2721 /* clear active queue hw indication */ 2722 gfar_write(®s->rstat, 2723 RSTAT_CLEAR_RXF0 >> i); 2724 num_act_queues--; 2725 2726 if (!num_act_queues) 2727 break; 2728 } 2729 } 2730 2731 if (!num_act_queues) { 2732 u32 imask; 2733 napi_complete_done(napi, work_done); 2734 2735 /* Clear the halt bit in RSTAT */ 2736 gfar_write(®s->rstat, gfargrp->rstat); 2737 2738 spin_lock_irq(&gfargrp->grplock); 2739 imask = gfar_read(®s->imask); 2740 imask |= IMASK_RX_DEFAULT; 2741 gfar_write(®s->imask, imask); 2742 spin_unlock_irq(&gfargrp->grplock); 2743 } 2744 2745 return work_done; 2746 } 2747 2748 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2749 { 2750 struct gfar_priv_grp *gfargrp = 2751 container_of(napi, struct gfar_priv_grp, napi_tx); 2752 struct gfar_private *priv = gfargrp->priv; 2753 struct gfar __iomem *regs = gfargrp->regs; 2754 struct gfar_priv_tx_q *tx_queue = NULL; 2755 int has_tx_work = 0; 2756 int i; 2757 2758 /* Clear IEVENT, so interrupts aren't called again 2759 * because of the packets that have already arrived 2760 */ 2761 gfar_write(®s->ievent, IEVENT_TX_MASK); 2762 2763 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2764 tx_queue = priv->tx_queue[i]; 2765 /* run Tx cleanup to completion */ 2766 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2767 gfar_clean_tx_ring(tx_queue); 2768 has_tx_work = 1; 2769 } 2770 } 2771 2772 if (!has_tx_work) { 2773 u32 imask; 2774 napi_complete(napi); 2775 2776 spin_lock_irq(&gfargrp->grplock); 2777 imask = gfar_read(®s->imask); 2778 imask |= IMASK_TX_DEFAULT; 2779 gfar_write(®s->imask, imask); 2780 spin_unlock_irq(&gfargrp->grplock); 2781 } 2782 2783 return 0; 2784 } 2785 2786 /* GFAR error interrupt handler */ 2787 static irqreturn_t gfar_error(int irq, void *grp_id) 2788 { 2789 struct gfar_priv_grp *gfargrp = grp_id; 2790 struct gfar __iomem *regs = gfargrp->regs; 2791 struct gfar_private *priv= gfargrp->priv; 2792 struct net_device *dev = priv->ndev; 2793 2794 /* Save ievent for future reference */ 2795 u32 events = gfar_read(®s->ievent); 2796 2797 /* Clear IEVENT */ 2798 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2799 2800 /* Magic Packet is not an error. */ 2801 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2802 (events & IEVENT_MAG)) 2803 events &= ~IEVENT_MAG; 2804 2805 /* Hmm... */ 2806 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2807 netdev_dbg(dev, 2808 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2809 events, gfar_read(®s->imask)); 2810 2811 /* Update the error counters */ 2812 if (events & IEVENT_TXE) { 2813 dev->stats.tx_errors++; 2814 2815 if (events & IEVENT_LC) 2816 dev->stats.tx_window_errors++; 2817 if (events & IEVENT_CRL) 2818 dev->stats.tx_aborted_errors++; 2819 if (events & IEVENT_XFUN) { 2820 netif_dbg(priv, tx_err, dev, 2821 "TX FIFO underrun, packet dropped\n"); 2822 dev->stats.tx_dropped++; 2823 atomic64_inc(&priv->extra_stats.tx_underrun); 2824 2825 schedule_work(&priv->reset_task); 2826 } 2827 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2828 } 2829 if (events & IEVENT_BSY) { 2830 dev->stats.rx_over_errors++; 2831 atomic64_inc(&priv->extra_stats.rx_bsy); 2832 2833 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2834 gfar_read(®s->rstat)); 2835 } 2836 if (events & IEVENT_BABR) { 2837 dev->stats.rx_errors++; 2838 atomic64_inc(&priv->extra_stats.rx_babr); 2839 2840 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2841 } 2842 if (events & IEVENT_EBERR) { 2843 atomic64_inc(&priv->extra_stats.eberr); 2844 netif_dbg(priv, rx_err, dev, "bus error\n"); 2845 } 2846 if (events & IEVENT_RXC) 2847 netif_dbg(priv, rx_status, dev, "control frame\n"); 2848 2849 if (events & IEVENT_BABT) { 2850 atomic64_inc(&priv->extra_stats.tx_babt); 2851 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2852 } 2853 return IRQ_HANDLED; 2854 } 2855 2856 /* The interrupt handler for devices with one interrupt */ 2857 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2858 { 2859 struct gfar_priv_grp *gfargrp = grp_id; 2860 2861 /* Save ievent for future reference */ 2862 u32 events = gfar_read(&gfargrp->regs->ievent); 2863 2864 /* Check for reception */ 2865 if (events & IEVENT_RX_MASK) 2866 gfar_receive(irq, grp_id); 2867 2868 /* Check for transmit completion */ 2869 if (events & IEVENT_TX_MASK) 2870 gfar_transmit(irq, grp_id); 2871 2872 /* Check for errors */ 2873 if (events & IEVENT_ERR_MASK) 2874 gfar_error(irq, grp_id); 2875 2876 return IRQ_HANDLED; 2877 } 2878 2879 #ifdef CONFIG_NET_POLL_CONTROLLER 2880 /* Polling 'interrupt' - used by things like netconsole to send skbs 2881 * without having to re-enable interrupts. It's not called while 2882 * the interrupt routine is executing. 2883 */ 2884 static void gfar_netpoll(struct net_device *dev) 2885 { 2886 struct gfar_private *priv = netdev_priv(dev); 2887 int i; 2888 2889 /* If the device has multiple interrupts, run tx/rx */ 2890 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2891 for (i = 0; i < priv->num_grps; i++) { 2892 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2893 2894 disable_irq(gfar_irq(grp, TX)->irq); 2895 disable_irq(gfar_irq(grp, RX)->irq); 2896 disable_irq(gfar_irq(grp, ER)->irq); 2897 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2898 enable_irq(gfar_irq(grp, ER)->irq); 2899 enable_irq(gfar_irq(grp, RX)->irq); 2900 enable_irq(gfar_irq(grp, TX)->irq); 2901 } 2902 } else { 2903 for (i = 0; i < priv->num_grps; i++) { 2904 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2905 2906 disable_irq(gfar_irq(grp, TX)->irq); 2907 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2908 enable_irq(gfar_irq(grp, TX)->irq); 2909 } 2910 } 2911 } 2912 #endif 2913 2914 static void free_grp_irqs(struct gfar_priv_grp *grp) 2915 { 2916 free_irq(gfar_irq(grp, TX)->irq, grp); 2917 free_irq(gfar_irq(grp, RX)->irq, grp); 2918 free_irq(gfar_irq(grp, ER)->irq, grp); 2919 } 2920 2921 static int register_grp_irqs(struct gfar_priv_grp *grp) 2922 { 2923 struct gfar_private *priv = grp->priv; 2924 struct net_device *dev = priv->ndev; 2925 int err; 2926 2927 /* If the device has multiple interrupts, register for 2928 * them. Otherwise, only register for the one 2929 */ 2930 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2931 /* Install our interrupt handlers for Error, 2932 * Transmit, and Receive 2933 */ 2934 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2935 gfar_irq(grp, ER)->name, grp); 2936 if (err < 0) { 2937 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2938 gfar_irq(grp, ER)->irq); 2939 2940 goto err_irq_fail; 2941 } 2942 enable_irq_wake(gfar_irq(grp, ER)->irq); 2943 2944 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2945 gfar_irq(grp, TX)->name, grp); 2946 if (err < 0) { 2947 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2948 gfar_irq(grp, TX)->irq); 2949 goto tx_irq_fail; 2950 } 2951 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2952 gfar_irq(grp, RX)->name, grp); 2953 if (err < 0) { 2954 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2955 gfar_irq(grp, RX)->irq); 2956 goto rx_irq_fail; 2957 } 2958 enable_irq_wake(gfar_irq(grp, RX)->irq); 2959 2960 } else { 2961 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2962 gfar_irq(grp, TX)->name, grp); 2963 if (err < 0) { 2964 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2965 gfar_irq(grp, TX)->irq); 2966 goto err_irq_fail; 2967 } 2968 enable_irq_wake(gfar_irq(grp, TX)->irq); 2969 } 2970 2971 return 0; 2972 2973 rx_irq_fail: 2974 free_irq(gfar_irq(grp, TX)->irq, grp); 2975 tx_irq_fail: 2976 free_irq(gfar_irq(grp, ER)->irq, grp); 2977 err_irq_fail: 2978 return err; 2979 2980 } 2981 2982 static void gfar_free_irq(struct gfar_private *priv) 2983 { 2984 int i; 2985 2986 /* Free the IRQs */ 2987 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2988 for (i = 0; i < priv->num_grps; i++) 2989 free_grp_irqs(&priv->gfargrp[i]); 2990 } else { 2991 for (i = 0; i < priv->num_grps; i++) 2992 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2993 &priv->gfargrp[i]); 2994 } 2995 } 2996 2997 static int gfar_request_irq(struct gfar_private *priv) 2998 { 2999 int err, i, j; 3000 3001 for (i = 0; i < priv->num_grps; i++) { 3002 err = register_grp_irqs(&priv->gfargrp[i]); 3003 if (err) { 3004 for (j = 0; j < i; j++) 3005 free_grp_irqs(&priv->gfargrp[j]); 3006 return err; 3007 } 3008 } 3009 3010 return 0; 3011 } 3012 3013 /* Called when something needs to use the ethernet device 3014 * Returns 0 for success. 3015 */ 3016 static int gfar_enet_open(struct net_device *dev) 3017 { 3018 struct gfar_private *priv = netdev_priv(dev); 3019 int err; 3020 3021 err = init_phy(dev); 3022 if (err) 3023 return err; 3024 3025 err = gfar_request_irq(priv); 3026 if (err) 3027 return err; 3028 3029 err = startup_gfar(dev); 3030 if (err) 3031 return err; 3032 3033 return err; 3034 } 3035 3036 /* Stops the kernel queue, and halts the controller */ 3037 static int gfar_close(struct net_device *dev) 3038 { 3039 struct gfar_private *priv = netdev_priv(dev); 3040 3041 cancel_work_sync(&priv->reset_task); 3042 stop_gfar(dev); 3043 3044 /* Disconnect from the PHY */ 3045 phy_disconnect(dev->phydev); 3046 3047 gfar_free_irq(priv); 3048 3049 return 0; 3050 } 3051 3052 /* Clears each of the exact match registers to zero, so they 3053 * don't interfere with normal reception 3054 */ 3055 static void gfar_clear_exact_match(struct net_device *dev) 3056 { 3057 int idx; 3058 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3059 3060 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3061 gfar_set_mac_for_addr(dev, idx, zero_arr); 3062 } 3063 3064 /* Update the hash table based on the current list of multicast 3065 * addresses we subscribe to. Also, change the promiscuity of 3066 * the device based on the flags (this function is called 3067 * whenever dev->flags is changed 3068 */ 3069 static void gfar_set_multi(struct net_device *dev) 3070 { 3071 struct netdev_hw_addr *ha; 3072 struct gfar_private *priv = netdev_priv(dev); 3073 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3074 u32 tempval; 3075 3076 if (dev->flags & IFF_PROMISC) { 3077 /* Set RCTRL to PROM */ 3078 tempval = gfar_read(®s->rctrl); 3079 tempval |= RCTRL_PROM; 3080 gfar_write(®s->rctrl, tempval); 3081 } else { 3082 /* Set RCTRL to not PROM */ 3083 tempval = gfar_read(®s->rctrl); 3084 tempval &= ~(RCTRL_PROM); 3085 gfar_write(®s->rctrl, tempval); 3086 } 3087 3088 if (dev->flags & IFF_ALLMULTI) { 3089 /* Set the hash to rx all multicast frames */ 3090 gfar_write(®s->igaddr0, 0xffffffff); 3091 gfar_write(®s->igaddr1, 0xffffffff); 3092 gfar_write(®s->igaddr2, 0xffffffff); 3093 gfar_write(®s->igaddr3, 0xffffffff); 3094 gfar_write(®s->igaddr4, 0xffffffff); 3095 gfar_write(®s->igaddr5, 0xffffffff); 3096 gfar_write(®s->igaddr6, 0xffffffff); 3097 gfar_write(®s->igaddr7, 0xffffffff); 3098 gfar_write(®s->gaddr0, 0xffffffff); 3099 gfar_write(®s->gaddr1, 0xffffffff); 3100 gfar_write(®s->gaddr2, 0xffffffff); 3101 gfar_write(®s->gaddr3, 0xffffffff); 3102 gfar_write(®s->gaddr4, 0xffffffff); 3103 gfar_write(®s->gaddr5, 0xffffffff); 3104 gfar_write(®s->gaddr6, 0xffffffff); 3105 gfar_write(®s->gaddr7, 0xffffffff); 3106 } else { 3107 int em_num; 3108 int idx; 3109 3110 /* zero out the hash */ 3111 gfar_write(®s->igaddr0, 0x0); 3112 gfar_write(®s->igaddr1, 0x0); 3113 gfar_write(®s->igaddr2, 0x0); 3114 gfar_write(®s->igaddr3, 0x0); 3115 gfar_write(®s->igaddr4, 0x0); 3116 gfar_write(®s->igaddr5, 0x0); 3117 gfar_write(®s->igaddr6, 0x0); 3118 gfar_write(®s->igaddr7, 0x0); 3119 gfar_write(®s->gaddr0, 0x0); 3120 gfar_write(®s->gaddr1, 0x0); 3121 gfar_write(®s->gaddr2, 0x0); 3122 gfar_write(®s->gaddr3, 0x0); 3123 gfar_write(®s->gaddr4, 0x0); 3124 gfar_write(®s->gaddr5, 0x0); 3125 gfar_write(®s->gaddr6, 0x0); 3126 gfar_write(®s->gaddr7, 0x0); 3127 3128 /* If we have extended hash tables, we need to 3129 * clear the exact match registers to prepare for 3130 * setting them 3131 */ 3132 if (priv->extended_hash) { 3133 em_num = GFAR_EM_NUM + 1; 3134 gfar_clear_exact_match(dev); 3135 idx = 1; 3136 } else { 3137 idx = 0; 3138 em_num = 0; 3139 } 3140 3141 if (netdev_mc_empty(dev)) 3142 return; 3143 3144 /* Parse the list, and set the appropriate bits */ 3145 netdev_for_each_mc_addr(ha, dev) { 3146 if (idx < em_num) { 3147 gfar_set_mac_for_addr(dev, idx, ha->addr); 3148 idx++; 3149 } else 3150 gfar_set_hash_for_addr(dev, ha->addr); 3151 } 3152 } 3153 } 3154 3155 void gfar_mac_reset(struct gfar_private *priv) 3156 { 3157 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3158 u32 tempval; 3159 3160 /* Reset MAC layer */ 3161 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3162 3163 /* We need to delay at least 3 TX clocks */ 3164 udelay(3); 3165 3166 /* the soft reset bit is not self-resetting, so we need to 3167 * clear it before resuming normal operation 3168 */ 3169 gfar_write(®s->maccfg1, 0); 3170 3171 udelay(3); 3172 3173 gfar_rx_offload_en(priv); 3174 3175 /* Initialize the max receive frame/buffer lengths */ 3176 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3177 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3178 3179 /* Initialize the Minimum Frame Length Register */ 3180 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3181 3182 /* Initialize MACCFG2. */ 3183 tempval = MACCFG2_INIT_SETTINGS; 3184 3185 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3186 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3187 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3188 */ 3189 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3190 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3191 3192 gfar_write(®s->maccfg2, tempval); 3193 3194 /* Clear mac addr hash registers */ 3195 gfar_write(®s->igaddr0, 0); 3196 gfar_write(®s->igaddr1, 0); 3197 gfar_write(®s->igaddr2, 0); 3198 gfar_write(®s->igaddr3, 0); 3199 gfar_write(®s->igaddr4, 0); 3200 gfar_write(®s->igaddr5, 0); 3201 gfar_write(®s->igaddr6, 0); 3202 gfar_write(®s->igaddr7, 0); 3203 3204 gfar_write(®s->gaddr0, 0); 3205 gfar_write(®s->gaddr1, 0); 3206 gfar_write(®s->gaddr2, 0); 3207 gfar_write(®s->gaddr3, 0); 3208 gfar_write(®s->gaddr4, 0); 3209 gfar_write(®s->gaddr5, 0); 3210 gfar_write(®s->gaddr6, 0); 3211 gfar_write(®s->gaddr7, 0); 3212 3213 if (priv->extended_hash) 3214 gfar_clear_exact_match(priv->ndev); 3215 3216 gfar_mac_rx_config(priv); 3217 3218 gfar_mac_tx_config(priv); 3219 3220 gfar_set_mac_address(priv->ndev); 3221 3222 gfar_set_multi(priv->ndev); 3223 3224 /* clear ievent and imask before configuring coalescing */ 3225 gfar_ints_disable(priv); 3226 3227 /* Configure the coalescing support */ 3228 gfar_configure_coalescing_all(priv); 3229 } 3230 3231 static void gfar_hw_init(struct gfar_private *priv) 3232 { 3233 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3234 u32 attrs; 3235 3236 /* Stop the DMA engine now, in case it was running before 3237 * (The firmware could have used it, and left it running). 3238 */ 3239 gfar_halt(priv); 3240 3241 gfar_mac_reset(priv); 3242 3243 /* Zero out the rmon mib registers if it has them */ 3244 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3245 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3246 3247 /* Mask off the CAM interrupts */ 3248 gfar_write(®s->rmon.cam1, 0xffffffff); 3249 gfar_write(®s->rmon.cam2, 0xffffffff); 3250 } 3251 3252 /* Initialize ECNTRL */ 3253 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3254 3255 /* Set the extraction length and index */ 3256 attrs = ATTRELI_EL(priv->rx_stash_size) | 3257 ATTRELI_EI(priv->rx_stash_index); 3258 3259 gfar_write(®s->attreli, attrs); 3260 3261 /* Start with defaults, and add stashing 3262 * depending on driver parameters 3263 */ 3264 attrs = ATTR_INIT_SETTINGS; 3265 3266 if (priv->bd_stash_en) 3267 attrs |= ATTR_BDSTASH; 3268 3269 if (priv->rx_stash_size != 0) 3270 attrs |= ATTR_BUFSTASH; 3271 3272 gfar_write(®s->attr, attrs); 3273 3274 /* FIFO configs */ 3275 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3276 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3277 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3278 3279 /* Program the interrupt steering regs, only for MG devices */ 3280 if (priv->num_grps > 1) 3281 gfar_write_isrg(priv); 3282 } 3283 3284 static const struct net_device_ops gfar_netdev_ops = { 3285 .ndo_open = gfar_enet_open, 3286 .ndo_start_xmit = gfar_start_xmit, 3287 .ndo_stop = gfar_close, 3288 .ndo_change_mtu = gfar_change_mtu, 3289 .ndo_set_features = gfar_set_features, 3290 .ndo_set_rx_mode = gfar_set_multi, 3291 .ndo_tx_timeout = gfar_timeout, 3292 .ndo_do_ioctl = gfar_ioctl, 3293 .ndo_get_stats = gfar_get_stats, 3294 .ndo_change_carrier = fixed_phy_change_carrier, 3295 .ndo_set_mac_address = gfar_set_mac_addr, 3296 .ndo_validate_addr = eth_validate_addr, 3297 #ifdef CONFIG_NET_POLL_CONTROLLER 3298 .ndo_poll_controller = gfar_netpoll, 3299 #endif 3300 }; 3301 3302 /* Set up the ethernet device structure, private data, 3303 * and anything else we need before we start 3304 */ 3305 static int gfar_probe(struct platform_device *ofdev) 3306 { 3307 struct device_node *np = ofdev->dev.of_node; 3308 struct net_device *dev = NULL; 3309 struct gfar_private *priv = NULL; 3310 int err = 0, i; 3311 3312 err = gfar_of_init(ofdev, &dev); 3313 3314 if (err) 3315 return err; 3316 3317 priv = netdev_priv(dev); 3318 priv->ndev = dev; 3319 priv->ofdev = ofdev; 3320 priv->dev = &ofdev->dev; 3321 SET_NETDEV_DEV(dev, &ofdev->dev); 3322 3323 INIT_WORK(&priv->reset_task, gfar_reset_task); 3324 3325 platform_set_drvdata(ofdev, priv); 3326 3327 gfar_detect_errata(priv); 3328 3329 /* Set the dev->base_addr to the gfar reg region */ 3330 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3331 3332 /* Fill in the dev structure */ 3333 dev->watchdog_timeo = TX_TIMEOUT; 3334 /* MTU range: 50 - 9586 */ 3335 dev->mtu = 1500; 3336 dev->min_mtu = 50; 3337 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3338 dev->netdev_ops = &gfar_netdev_ops; 3339 dev->ethtool_ops = &gfar_ethtool_ops; 3340 3341 /* Register for napi ...We are registering NAPI for each grp */ 3342 for (i = 0; i < priv->num_grps; i++) { 3343 if (priv->poll_mode == GFAR_SQ_POLLING) { 3344 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3345 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3346 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3347 gfar_poll_tx_sq, 2); 3348 } else { 3349 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3350 gfar_poll_rx, GFAR_DEV_WEIGHT); 3351 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3352 gfar_poll_tx, 2); 3353 } 3354 } 3355 3356 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3357 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3358 NETIF_F_RXCSUM; 3359 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3360 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3361 } 3362 3363 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3364 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3365 NETIF_F_HW_VLAN_CTAG_RX; 3366 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3367 } 3368 3369 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3370 3371 gfar_init_addr_hash_table(priv); 3372 3373 /* Insert receive time stamps into padding alignment bytes, and 3374 * plus 2 bytes padding to ensure the cpu alignment. 3375 */ 3376 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3377 priv->padding = 8 + DEFAULT_PADDING; 3378 3379 if (dev->features & NETIF_F_IP_CSUM || 3380 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3381 dev->needed_headroom = GMAC_FCB_LEN; 3382 3383 /* Initializing some of the rx/tx queue level parameters */ 3384 for (i = 0; i < priv->num_tx_queues; i++) { 3385 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3386 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3387 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3388 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3389 } 3390 3391 for (i = 0; i < priv->num_rx_queues; i++) { 3392 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3393 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3394 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3395 } 3396 3397 /* Always enable rx filer if available */ 3398 priv->rx_filer_enable = 3399 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3400 /* Enable most messages by default */ 3401 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3402 /* use pritority h/w tx queue scheduling for single queue devices */ 3403 if (priv->num_tx_queues == 1) 3404 priv->prio_sched_en = 1; 3405 3406 set_bit(GFAR_DOWN, &priv->state); 3407 3408 gfar_hw_init(priv); 3409 3410 /* Carrier starts down, phylib will bring it up */ 3411 netif_carrier_off(dev); 3412 3413 err = register_netdev(dev); 3414 3415 if (err) { 3416 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3417 goto register_fail; 3418 } 3419 3420 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3421 priv->wol_supported |= GFAR_WOL_MAGIC; 3422 3423 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3424 priv->rx_filer_enable) 3425 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3426 3427 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3428 3429 /* fill out IRQ number and name fields */ 3430 for (i = 0; i < priv->num_grps; i++) { 3431 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3432 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3433 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3434 dev->name, "_g", '0' + i, "_tx"); 3435 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3436 dev->name, "_g", '0' + i, "_rx"); 3437 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3438 dev->name, "_g", '0' + i, "_er"); 3439 } else 3440 strcpy(gfar_irq(grp, TX)->name, dev->name); 3441 } 3442 3443 /* Initialize the filer table */ 3444 gfar_init_filer_table(priv); 3445 3446 /* Print out the device info */ 3447 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3448 3449 /* Even more device info helps when determining which kernel 3450 * provided which set of benchmarks. 3451 */ 3452 netdev_info(dev, "Running with NAPI enabled\n"); 3453 for (i = 0; i < priv->num_rx_queues; i++) 3454 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3455 i, priv->rx_queue[i]->rx_ring_size); 3456 for (i = 0; i < priv->num_tx_queues; i++) 3457 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3458 i, priv->tx_queue[i]->tx_ring_size); 3459 3460 return 0; 3461 3462 register_fail: 3463 if (of_phy_is_fixed_link(np)) 3464 of_phy_deregister_fixed_link(np); 3465 unmap_group_regs(priv); 3466 gfar_free_rx_queues(priv); 3467 gfar_free_tx_queues(priv); 3468 of_node_put(priv->phy_node); 3469 of_node_put(priv->tbi_node); 3470 free_gfar_dev(priv); 3471 return err; 3472 } 3473 3474 static int gfar_remove(struct platform_device *ofdev) 3475 { 3476 struct gfar_private *priv = platform_get_drvdata(ofdev); 3477 struct device_node *np = ofdev->dev.of_node; 3478 3479 of_node_put(priv->phy_node); 3480 of_node_put(priv->tbi_node); 3481 3482 unregister_netdev(priv->ndev); 3483 3484 if (of_phy_is_fixed_link(np)) 3485 of_phy_deregister_fixed_link(np); 3486 3487 unmap_group_regs(priv); 3488 gfar_free_rx_queues(priv); 3489 gfar_free_tx_queues(priv); 3490 free_gfar_dev(priv); 3491 3492 return 0; 3493 } 3494 3495 #ifdef CONFIG_PM 3496 3497 static void __gfar_filer_disable(struct gfar_private *priv) 3498 { 3499 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3500 u32 temp; 3501 3502 temp = gfar_read(®s->rctrl); 3503 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3504 gfar_write(®s->rctrl, temp); 3505 } 3506 3507 static void __gfar_filer_enable(struct gfar_private *priv) 3508 { 3509 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3510 u32 temp; 3511 3512 temp = gfar_read(®s->rctrl); 3513 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3514 gfar_write(®s->rctrl, temp); 3515 } 3516 3517 /* Filer rules implementing wol capabilities */ 3518 static void gfar_filer_config_wol(struct gfar_private *priv) 3519 { 3520 unsigned int i; 3521 u32 rqfcr; 3522 3523 __gfar_filer_disable(priv); 3524 3525 /* clear the filer table, reject any packet by default */ 3526 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3527 for (i = 0; i <= MAX_FILER_IDX; i++) 3528 gfar_write_filer(priv, i, rqfcr, 0); 3529 3530 i = 0; 3531 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3532 /* unicast packet, accept it */ 3533 struct net_device *ndev = priv->ndev; 3534 /* get the default rx queue index */ 3535 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3536 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3537 (ndev->dev_addr[1] << 8) | 3538 ndev->dev_addr[2]; 3539 3540 rqfcr = (qindex << 10) | RQFCR_AND | 3541 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3542 3543 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3544 3545 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3546 (ndev->dev_addr[4] << 8) | 3547 ndev->dev_addr[5]; 3548 rqfcr = (qindex << 10) | RQFCR_GPI | 3549 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3550 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3551 } 3552 3553 __gfar_filer_enable(priv); 3554 } 3555 3556 static void gfar_filer_restore_table(struct gfar_private *priv) 3557 { 3558 u32 rqfcr, rqfpr; 3559 unsigned int i; 3560 3561 __gfar_filer_disable(priv); 3562 3563 for (i = 0; i <= MAX_FILER_IDX; i++) { 3564 rqfcr = priv->ftp_rqfcr[i]; 3565 rqfpr = priv->ftp_rqfpr[i]; 3566 gfar_write_filer(priv, i, rqfcr, rqfpr); 3567 } 3568 3569 __gfar_filer_enable(priv); 3570 } 3571 3572 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3573 static void gfar_start_wol_filer(struct gfar_private *priv) 3574 { 3575 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3576 u32 tempval; 3577 int i = 0; 3578 3579 /* Enable Rx hw queues */ 3580 gfar_write(®s->rqueue, priv->rqueue); 3581 3582 /* Initialize DMACTRL to have WWR and WOP */ 3583 tempval = gfar_read(®s->dmactrl); 3584 tempval |= DMACTRL_INIT_SETTINGS; 3585 gfar_write(®s->dmactrl, tempval); 3586 3587 /* Make sure we aren't stopped */ 3588 tempval = gfar_read(®s->dmactrl); 3589 tempval &= ~DMACTRL_GRS; 3590 gfar_write(®s->dmactrl, tempval); 3591 3592 for (i = 0; i < priv->num_grps; i++) { 3593 regs = priv->gfargrp[i].regs; 3594 /* Clear RHLT, so that the DMA starts polling now */ 3595 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3596 /* enable the Filer General Purpose Interrupt */ 3597 gfar_write(®s->imask, IMASK_FGPI); 3598 } 3599 3600 /* Enable Rx DMA */ 3601 tempval = gfar_read(®s->maccfg1); 3602 tempval |= MACCFG1_RX_EN; 3603 gfar_write(®s->maccfg1, tempval); 3604 } 3605 3606 static int gfar_suspend(struct device *dev) 3607 { 3608 struct gfar_private *priv = dev_get_drvdata(dev); 3609 struct net_device *ndev = priv->ndev; 3610 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3611 u32 tempval; 3612 u16 wol = priv->wol_opts; 3613 3614 if (!netif_running(ndev)) 3615 return 0; 3616 3617 disable_napi(priv); 3618 netif_tx_lock(ndev); 3619 netif_device_detach(ndev); 3620 netif_tx_unlock(ndev); 3621 3622 gfar_halt(priv); 3623 3624 if (wol & GFAR_WOL_MAGIC) { 3625 /* Enable interrupt on Magic Packet */ 3626 gfar_write(®s->imask, IMASK_MAG); 3627 3628 /* Enable Magic Packet mode */ 3629 tempval = gfar_read(®s->maccfg2); 3630 tempval |= MACCFG2_MPEN; 3631 gfar_write(®s->maccfg2, tempval); 3632 3633 /* re-enable the Rx block */ 3634 tempval = gfar_read(®s->maccfg1); 3635 tempval |= MACCFG1_RX_EN; 3636 gfar_write(®s->maccfg1, tempval); 3637 3638 } else if (wol & GFAR_WOL_FILER_UCAST) { 3639 gfar_filer_config_wol(priv); 3640 gfar_start_wol_filer(priv); 3641 3642 } else { 3643 phy_stop(ndev->phydev); 3644 } 3645 3646 return 0; 3647 } 3648 3649 static int gfar_resume(struct device *dev) 3650 { 3651 struct gfar_private *priv = dev_get_drvdata(dev); 3652 struct net_device *ndev = priv->ndev; 3653 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3654 u32 tempval; 3655 u16 wol = priv->wol_opts; 3656 3657 if (!netif_running(ndev)) 3658 return 0; 3659 3660 if (wol & GFAR_WOL_MAGIC) { 3661 /* Disable Magic Packet mode */ 3662 tempval = gfar_read(®s->maccfg2); 3663 tempval &= ~MACCFG2_MPEN; 3664 gfar_write(®s->maccfg2, tempval); 3665 3666 } else if (wol & GFAR_WOL_FILER_UCAST) { 3667 /* need to stop rx only, tx is already down */ 3668 gfar_halt(priv); 3669 gfar_filer_restore_table(priv); 3670 3671 } else { 3672 phy_start(ndev->phydev); 3673 } 3674 3675 gfar_start(priv); 3676 3677 netif_device_attach(ndev); 3678 enable_napi(priv); 3679 3680 return 0; 3681 } 3682 3683 static int gfar_restore(struct device *dev) 3684 { 3685 struct gfar_private *priv = dev_get_drvdata(dev); 3686 struct net_device *ndev = priv->ndev; 3687 3688 if (!netif_running(ndev)) { 3689 netif_device_attach(ndev); 3690 3691 return 0; 3692 } 3693 3694 gfar_init_bds(ndev); 3695 3696 gfar_mac_reset(priv); 3697 3698 gfar_init_tx_rx_base(priv); 3699 3700 gfar_start(priv); 3701 3702 priv->oldlink = 0; 3703 priv->oldspeed = 0; 3704 priv->oldduplex = -1; 3705 3706 if (ndev->phydev) 3707 phy_start(ndev->phydev); 3708 3709 netif_device_attach(ndev); 3710 enable_napi(priv); 3711 3712 return 0; 3713 } 3714 3715 static const struct dev_pm_ops gfar_pm_ops = { 3716 .suspend = gfar_suspend, 3717 .resume = gfar_resume, 3718 .freeze = gfar_suspend, 3719 .thaw = gfar_resume, 3720 .restore = gfar_restore, 3721 }; 3722 3723 #define GFAR_PM_OPS (&gfar_pm_ops) 3724 3725 #else 3726 3727 #define GFAR_PM_OPS NULL 3728 3729 #endif 3730 3731 static const struct of_device_id gfar_match[] = 3732 { 3733 { 3734 .type = "network", 3735 .compatible = "gianfar", 3736 }, 3737 { 3738 .compatible = "fsl,etsec2", 3739 }, 3740 {}, 3741 }; 3742 MODULE_DEVICE_TABLE(of, gfar_match); 3743 3744 /* Structure for a device driver */ 3745 static struct platform_driver gfar_driver = { 3746 .driver = { 3747 .name = "fsl-gianfar", 3748 .pm = GFAR_PM_OPS, 3749 .of_match_table = gfar_match, 3750 }, 3751 .probe = gfar_probe, 3752 .remove = gfar_remove, 3753 }; 3754 3755 module_platform_driver(gfar_driver); 3756