1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109 
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 			    dma_addr_t buf)
112 {
113 	u32 lstatus;
114 
115 	bdp->bufPtr = cpu_to_be32(buf);
116 
117 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 		lstatus |= BD_LFLAG(RXBD_WRAP);
120 
121 	gfar_wmb();
122 
123 	bdp->lstatus = cpu_to_be32(lstatus);
124 }
125 
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 	u32 __iomem *baddr;
130 	int i;
131 
132 	baddr = &regs->tbase0;
133 	for (i = 0; i < priv->num_tx_queues; i++) {
134 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 		baddr += 2;
136 	}
137 
138 	baddr = &regs->rbase0;
139 	for (i = 0; i < priv->num_rx_queues; i++) {
140 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 		baddr += 2;
142 	}
143 }
144 
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 	u32 __iomem *baddr;
149 	int i;
150 
151 	baddr = &regs->rqprm0;
152 	for (i = 0; i < priv->num_rx_queues; i++) {
153 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 		baddr++;
156 	}
157 }
158 
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 	/* set this when rx hw offload (TOE) functions are being used */
162 	priv->uses_rxfcb = 0;
163 
164 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 		priv->uses_rxfcb = 1;
166 
167 	if (priv->hwts_rx_en || priv->rx_filer_enable)
168 		priv->uses_rxfcb = 1;
169 }
170 
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 	u32 rctrl = 0;
175 
176 	if (priv->rx_filer_enable) {
177 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 		/* Program the RIR0 reg with the required distribution */
179 		if (priv->poll_mode == GFAR_SQ_POLLING)
180 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181 		else /* GFAR_MQ_POLLING */
182 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183 	}
184 
185 	/* Restore PROMISC mode */
186 	if (priv->ndev->flags & IFF_PROMISC)
187 		rctrl |= RCTRL_PROM;
188 
189 	if (priv->ndev->features & NETIF_F_RXCSUM)
190 		rctrl |= RCTRL_CHECKSUMMING;
191 
192 	if (priv->extended_hash)
193 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194 
195 	if (priv->padding) {
196 		rctrl &= ~RCTRL_PAL_MASK;
197 		rctrl |= RCTRL_PADDING(priv->padding);
198 	}
199 
200 	/* Enable HW time stamping if requested from user space */
201 	if (priv->hwts_rx_en)
202 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203 
204 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206 
207 	/* Clear the LFC bit */
208 	gfar_write(&regs->rctrl, rctrl);
209 	/* Init flow control threshold values */
210 	gfar_init_rqprm(priv);
211 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212 	rctrl |= RCTRL_LFC;
213 
214 	/* Init rctrl based on our settings */
215 	gfar_write(&regs->rctrl, rctrl);
216 }
217 
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 	u32 tctrl = 0;
222 
223 	if (priv->ndev->features & NETIF_F_IP_CSUM)
224 		tctrl |= TCTRL_INIT_CSUM;
225 
226 	if (priv->prio_sched_en)
227 		tctrl |= TCTRL_TXSCHED_PRIO;
228 	else {
229 		tctrl |= TCTRL_TXSCHED_WRRS;
230 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232 	}
233 
234 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 		tctrl |= TCTRL_VLINS;
236 
237 	gfar_write(&regs->tctrl, tctrl);
238 }
239 
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 			       unsigned long tx_mask, unsigned long rx_mask)
242 {
243 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 	u32 __iomem *baddr;
245 
246 	if (priv->mode == MQ_MG_MODE) {
247 		int i = 0;
248 
249 		baddr = &regs->txic0;
250 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 			gfar_write(baddr + i, 0);
252 			if (likely(priv->tx_queue[i]->txcoalescing))
253 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 		}
255 
256 		baddr = &regs->rxic0;
257 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 			gfar_write(baddr + i, 0);
259 			if (likely(priv->rx_queue[i]->rxcoalescing))
260 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 		}
262 	} else {
263 		/* Backward compatible case -- even if we enable
264 		 * multiple queues, there's only single reg to program
265 		 */
266 		gfar_write(&regs->txic, 0);
267 		if (likely(priv->tx_queue[0]->txcoalescing))
268 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269 
270 		gfar_write(&regs->rxic, 0);
271 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273 	}
274 }
275 
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280 
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 	struct gfar_private *priv = netdev_priv(dev);
284 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 	unsigned long tx_packets = 0, tx_bytes = 0;
286 	int i;
287 
288 	for (i = 0; i < priv->num_rx_queues; i++) {
289 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 	}
293 
294 	dev->stats.rx_packets = rx_packets;
295 	dev->stats.rx_bytes   = rx_bytes;
296 	dev->stats.rx_dropped = rx_dropped;
297 
298 	for (i = 0; i < priv->num_tx_queues; i++) {
299 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 	}
302 
303 	dev->stats.tx_bytes   = tx_bytes;
304 	dev->stats.tx_packets = tx_packets;
305 
306 	return &dev->stats;
307 }
308 
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 	u32 tempval;
326 	struct gfar_private *priv = netdev_priv(dev);
327 	u32 result = ether_crc(ETH_ALEN, addr);
328 	int width = priv->hash_width;
329 	u8 whichbit = (result >> (32 - width)) & 0x1f;
330 	u8 whichreg = result >> (32 - width + 5);
331 	u32 value = (1 << (31-whichbit));
332 
333 	tempval = gfar_read(priv->hash_regs[whichreg]);
334 	tempval |= value;
335 	gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337 
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 				  const u8 *addr)
343 {
344 	struct gfar_private *priv = netdev_priv(dev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 tempval;
347 	u32 __iomem *macptr = &regs->macstnaddr1;
348 
349 	macptr += num*2;
350 
351 	/* For a station address of 0x12345678ABCD in transmission
352 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 	 * MACnADDR2 is set to 0x34120000.
354 	 */
355 	tempval = (addr[5] << 24) | (addr[4] << 16) |
356 		  (addr[3] << 8)  |  addr[2];
357 
358 	gfar_write(macptr, tempval);
359 
360 	tempval = (addr[1] << 24) | (addr[0] << 16);
361 
362 	gfar_write(macptr+1, tempval);
363 }
364 
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 	eth_mac_addr(dev, p);
368 
369 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370 
371 	return 0;
372 }
373 
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376 	int i;
377 	for (i = 0; i < priv->num_grps; i++) {
378 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
379 		/* Clear IEVENT */
380 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381 
382 		/* Initialize IMASK */
383 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384 	}
385 }
386 
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389 	int i;
390 	for (i = 0; i < priv->num_grps; i++) {
391 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 		/* Unmask the interrupts we look for */
393 		gfar_write(&regs->imask, IMASK_DEFAULT);
394 	}
395 }
396 
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399 	int i;
400 
401 	for (i = 0; i < priv->num_tx_queues; i++) {
402 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403 					    GFP_KERNEL);
404 		if (!priv->tx_queue[i])
405 			return -ENOMEM;
406 
407 		priv->tx_queue[i]->tx_skbuff = NULL;
408 		priv->tx_queue[i]->qindex = i;
409 		priv->tx_queue[i]->dev = priv->ndev;
410 		spin_lock_init(&(priv->tx_queue[i]->txlock));
411 	}
412 	return 0;
413 }
414 
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417 	int i;
418 
419 	for (i = 0; i < priv->num_rx_queues; i++) {
420 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421 					    GFP_KERNEL);
422 		if (!priv->rx_queue[i])
423 			return -ENOMEM;
424 
425 		priv->rx_queue[i]->qindex = i;
426 		priv->rx_queue[i]->ndev = priv->ndev;
427 	}
428 	return 0;
429 }
430 
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433 	int i;
434 
435 	for (i = 0; i < priv->num_tx_queues; i++)
436 		kfree(priv->tx_queue[i]);
437 }
438 
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++)
444 		kfree(priv->rx_queue[i]);
445 }
446 
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAXGROUPS; i++)
452 		if (priv->gfargrp[i].regs)
453 			iounmap(priv->gfargrp[i].regs);
454 }
455 
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458 	int i, j;
459 
460 	for (i = 0; i < priv->num_grps; i++)
461 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
462 			kfree(priv->gfargrp[i].irqinfo[j]);
463 			priv->gfargrp[i].irqinfo[j] = NULL;
464 		}
465 
466 	free_netdev(priv->ndev);
467 }
468 
469 static void disable_napi(struct gfar_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < priv->num_grps; i++) {
474 		napi_disable(&priv->gfargrp[i].napi_rx);
475 		napi_disable(&priv->gfargrp[i].napi_tx);
476 	}
477 }
478 
479 static void enable_napi(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_grps; i++) {
484 		napi_enable(&priv->gfargrp[i].napi_rx);
485 		napi_enable(&priv->gfargrp[i].napi_tx);
486 	}
487 }
488 
489 static int gfar_parse_group(struct device_node *np,
490 			    struct gfar_private *priv, const char *model)
491 {
492 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493 	int i;
494 
495 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
496 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497 					  GFP_KERNEL);
498 		if (!grp->irqinfo[i])
499 			return -ENOMEM;
500 	}
501 
502 	grp->regs = of_iomap(np, 0);
503 	if (!grp->regs)
504 		return -ENOMEM;
505 
506 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507 
508 	/* If we aren't the FEC we have multiple interrupts */
509 	if (model && strcasecmp(model, "FEC")) {
510 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512 		if (!gfar_irq(grp, TX)->irq ||
513 		    !gfar_irq(grp, RX)->irq ||
514 		    !gfar_irq(grp, ER)->irq)
515 			return -EINVAL;
516 	}
517 
518 	grp->priv = priv;
519 	spin_lock_init(&grp->grplock);
520 	if (priv->mode == MQ_MG_MODE) {
521 		u32 rxq_mask, txq_mask;
522 		int ret;
523 
524 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526 
527 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528 		if (!ret) {
529 			grp->rx_bit_map = rxq_mask ?
530 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531 		}
532 
533 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534 		if (!ret) {
535 			grp->tx_bit_map = txq_mask ?
536 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537 		}
538 
539 		if (priv->poll_mode == GFAR_SQ_POLLING) {
540 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543 		}
544 	} else {
545 		grp->rx_bit_map = 0xFF;
546 		grp->tx_bit_map = 0xFF;
547 	}
548 
549 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550 	 * right to left, so we need to revert the 8 bits to get the q index
551 	 */
552 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554 
555 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556 	 * also assign queues to groups
557 	 */
558 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559 		if (!grp->rx_queue)
560 			grp->rx_queue = priv->rx_queue[i];
561 		grp->num_rx_queues++;
562 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564 		priv->rx_queue[i]->grp = grp;
565 	}
566 
567 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568 		if (!grp->tx_queue)
569 			grp->tx_queue = priv->tx_queue[i];
570 		grp->num_tx_queues++;
571 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572 		priv->tqueue |= (TQUEUE_EN0 >> i);
573 		priv->tx_queue[i]->grp = grp;
574 	}
575 
576 	priv->num_grps++;
577 
578 	return 0;
579 }
580 
581 static int gfar_of_group_count(struct device_node *np)
582 {
583 	struct device_node *child;
584 	int num = 0;
585 
586 	for_each_available_child_of_node(np, child)
587 		if (of_node_name_eq(child, "queue-group"))
588 			num++;
589 
590 	return num;
591 }
592 
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598 	struct gfar_private *priv = netdev_priv(dev);
599 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
600 	u32 ecntrl;
601 
602 	ecntrl = gfar_read(&regs->ecntrl);
603 
604 	if (ecntrl & ECNTRL_SGMII_MODE)
605 		return PHY_INTERFACE_MODE_SGMII;
606 
607 	if (ecntrl & ECNTRL_TBI_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MODE)
609 			return PHY_INTERFACE_MODE_RTBI;
610 		else
611 			return PHY_INTERFACE_MODE_TBI;
612 	}
613 
614 	if (ecntrl & ECNTRL_REDUCED_MODE) {
615 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616 			return PHY_INTERFACE_MODE_RMII;
617 		}
618 		else {
619 			phy_interface_t interface = priv->interface;
620 
621 			/* This isn't autodetected right now, so it must
622 			 * be set by the device tree or platform code.
623 			 */
624 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625 				return PHY_INTERFACE_MODE_RGMII_ID;
626 
627 			return PHY_INTERFACE_MODE_RGMII;
628 		}
629 	}
630 
631 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632 		return PHY_INTERFACE_MODE_GMII;
633 
634 	return PHY_INTERFACE_MODE_MII;
635 }
636 
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639 	const char *model;
640 	const void *mac_addr;
641 	int err = 0, i;
642 	phy_interface_t interface;
643 	struct net_device *dev = NULL;
644 	struct gfar_private *priv = NULL;
645 	struct device_node *np = ofdev->dev.of_node;
646 	struct device_node *child = NULL;
647 	u32 stash_len = 0;
648 	u32 stash_idx = 0;
649 	unsigned int num_tx_qs, num_rx_qs;
650 	unsigned short mode, poll_mode;
651 
652 	if (!np)
653 		return -ENODEV;
654 
655 	if (of_device_is_compatible(np, "fsl,etsec2")) {
656 		mode = MQ_MG_MODE;
657 		poll_mode = GFAR_SQ_POLLING;
658 	} else {
659 		mode = SQ_SG_MODE;
660 		poll_mode = GFAR_SQ_POLLING;
661 	}
662 
663 	if (mode == SQ_SG_MODE) {
664 		num_tx_qs = 1;
665 		num_rx_qs = 1;
666 	} else { /* MQ_MG_MODE */
667 		/* get the actual number of supported groups */
668 		unsigned int num_grps = gfar_of_group_count(np);
669 
670 		if (num_grps == 0 || num_grps > MAXGROUPS) {
671 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672 				num_grps);
673 			pr_err("Cannot do alloc_etherdev, aborting\n");
674 			return -EINVAL;
675 		}
676 
677 		if (poll_mode == GFAR_SQ_POLLING) {
678 			num_tx_qs = num_grps; /* one txq per int group */
679 			num_rx_qs = num_grps; /* one rxq per int group */
680 		} else { /* GFAR_MQ_POLLING */
681 			u32 tx_queues, rx_queues;
682 			int ret;
683 
684 			/* parse the num of HW tx and rx queues */
685 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
686 						   &tx_queues);
687 			num_tx_qs = ret ? 1 : tx_queues;
688 
689 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
690 						   &rx_queues);
691 			num_rx_qs = ret ? 1 : rx_queues;
692 		}
693 	}
694 
695 	if (num_tx_qs > MAX_TX_QS) {
696 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697 		       num_tx_qs, MAX_TX_QS);
698 		pr_err("Cannot do alloc_etherdev, aborting\n");
699 		return -EINVAL;
700 	}
701 
702 	if (num_rx_qs > MAX_RX_QS) {
703 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704 		       num_rx_qs, MAX_RX_QS);
705 		pr_err("Cannot do alloc_etherdev, aborting\n");
706 		return -EINVAL;
707 	}
708 
709 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710 	dev = *pdev;
711 	if (NULL == dev)
712 		return -ENOMEM;
713 
714 	priv = netdev_priv(dev);
715 	priv->ndev = dev;
716 
717 	priv->mode = mode;
718 	priv->poll_mode = poll_mode;
719 
720 	priv->num_tx_queues = num_tx_qs;
721 	netif_set_real_num_rx_queues(dev, num_rx_qs);
722 	priv->num_rx_queues = num_rx_qs;
723 
724 	err = gfar_alloc_tx_queues(priv);
725 	if (err)
726 		goto tx_alloc_failed;
727 
728 	err = gfar_alloc_rx_queues(priv);
729 	if (err)
730 		goto rx_alloc_failed;
731 
732 	err = of_property_read_string(np, "model", &model);
733 	if (err) {
734 		pr_err("Device model property missing, aborting\n");
735 		goto rx_alloc_failed;
736 	}
737 
738 	/* Init Rx queue filer rule set linked list */
739 	INIT_LIST_HEAD(&priv->rx_list.list);
740 	priv->rx_list.count = 0;
741 	mutex_init(&priv->rx_queue_access);
742 
743 	for (i = 0; i < MAXGROUPS; i++)
744 		priv->gfargrp[i].regs = NULL;
745 
746 	/* Parse and initialize group specific information */
747 	if (priv->mode == MQ_MG_MODE) {
748 		for_each_available_child_of_node(np, child) {
749 			if (!of_node_name_eq(child, "queue-group"))
750 				continue;
751 
752 			err = gfar_parse_group(child, priv, model);
753 			if (err)
754 				goto err_grp_init;
755 		}
756 	} else { /* SQ_SG_MODE */
757 		err = gfar_parse_group(np, priv, model);
758 		if (err)
759 			goto err_grp_init;
760 	}
761 
762 	if (of_property_read_bool(np, "bd-stash")) {
763 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
764 		priv->bd_stash_en = 1;
765 	}
766 
767 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
768 
769 	if (err == 0)
770 		priv->rx_stash_size = stash_len;
771 
772 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
773 
774 	if (err == 0)
775 		priv->rx_stash_index = stash_idx;
776 
777 	if (stash_len || stash_idx)
778 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
779 
780 	mac_addr = of_get_mac_address(np);
781 
782 	if (!IS_ERR(mac_addr)) {
783 		ether_addr_copy(dev->dev_addr, mac_addr);
784 	} else {
785 		eth_hw_addr_random(dev);
786 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
787 	}
788 
789 	if (model && !strcasecmp(model, "TSEC"))
790 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
791 				     FSL_GIANFAR_DEV_HAS_COALESCE |
792 				     FSL_GIANFAR_DEV_HAS_RMON |
793 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
794 
795 	if (model && !strcasecmp(model, "eTSEC"))
796 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
797 				     FSL_GIANFAR_DEV_HAS_COALESCE |
798 				     FSL_GIANFAR_DEV_HAS_RMON |
799 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
800 				     FSL_GIANFAR_DEV_HAS_CSUM |
801 				     FSL_GIANFAR_DEV_HAS_VLAN |
802 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
803 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
804 				     FSL_GIANFAR_DEV_HAS_TIMER |
805 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
806 
807 	/* Use PHY connection type from the DT node if one is specified there.
808 	 * rgmii-id really needs to be specified. Other types can be
809 	 * detected by hardware
810 	 */
811 	err = of_get_phy_mode(np, &interface);
812 	if (!err)
813 		priv->interface = interface;
814 	else
815 		priv->interface = gfar_get_interface(dev);
816 
817 	if (of_find_property(np, "fsl,magic-packet", NULL))
818 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
819 
820 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
821 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
822 
823 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
824 
825 	/* In the case of a fixed PHY, the DT node associated
826 	 * to the PHY is the Ethernet MAC DT node.
827 	 */
828 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
829 		err = of_phy_register_fixed_link(np);
830 		if (err)
831 			goto err_grp_init;
832 
833 		priv->phy_node = of_node_get(np);
834 	}
835 
836 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
837 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
838 
839 	return 0;
840 
841 err_grp_init:
842 	unmap_group_regs(priv);
843 rx_alloc_failed:
844 	gfar_free_rx_queues(priv);
845 tx_alloc_failed:
846 	gfar_free_tx_queues(priv);
847 	free_gfar_dev(priv);
848 	return err;
849 }
850 
851 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
852 				   u32 class)
853 {
854 	u32 rqfpr = FPR_FILER_MASK;
855 	u32 rqfcr = 0x0;
856 
857 	rqfar--;
858 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
859 	priv->ftp_rqfpr[rqfar] = rqfpr;
860 	priv->ftp_rqfcr[rqfar] = rqfcr;
861 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
862 
863 	rqfar--;
864 	rqfcr = RQFCR_CMP_NOMATCH;
865 	priv->ftp_rqfpr[rqfar] = rqfpr;
866 	priv->ftp_rqfcr[rqfar] = rqfcr;
867 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
868 
869 	rqfar--;
870 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
871 	rqfpr = class;
872 	priv->ftp_rqfcr[rqfar] = rqfcr;
873 	priv->ftp_rqfpr[rqfar] = rqfpr;
874 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875 
876 	rqfar--;
877 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
878 	rqfpr = class;
879 	priv->ftp_rqfcr[rqfar] = rqfcr;
880 	priv->ftp_rqfpr[rqfar] = rqfpr;
881 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882 
883 	return rqfar;
884 }
885 
886 static void gfar_init_filer_table(struct gfar_private *priv)
887 {
888 	int i = 0x0;
889 	u32 rqfar = MAX_FILER_IDX;
890 	u32 rqfcr = 0x0;
891 	u32 rqfpr = FPR_FILER_MASK;
892 
893 	/* Default rule */
894 	rqfcr = RQFCR_CMP_MATCH;
895 	priv->ftp_rqfcr[rqfar] = rqfcr;
896 	priv->ftp_rqfpr[rqfar] = rqfpr;
897 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
898 
899 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
900 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
901 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
902 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
903 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
904 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
905 
906 	/* cur_filer_idx indicated the first non-masked rule */
907 	priv->cur_filer_idx = rqfar;
908 
909 	/* Rest are masked rules */
910 	rqfcr = RQFCR_CMP_NOMATCH;
911 	for (i = 0; i < rqfar; i++) {
912 		priv->ftp_rqfcr[i] = rqfcr;
913 		priv->ftp_rqfpr[i] = rqfpr;
914 		gfar_write_filer(priv, i, rqfcr, rqfpr);
915 	}
916 }
917 
918 #ifdef CONFIG_PPC
919 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
920 {
921 	unsigned int pvr = mfspr(SPRN_PVR);
922 	unsigned int svr = mfspr(SPRN_SVR);
923 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
924 	unsigned int rev = svr & 0xffff;
925 
926 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
927 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
928 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
929 		priv->errata |= GFAR_ERRATA_74;
930 
931 	/* MPC8313 and MPC837x all rev */
932 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
933 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
934 		priv->errata |= GFAR_ERRATA_76;
935 
936 	/* MPC8313 Rev < 2.0 */
937 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
938 		priv->errata |= GFAR_ERRATA_12;
939 }
940 
941 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
942 {
943 	unsigned int svr = mfspr(SPRN_SVR);
944 
945 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
946 		priv->errata |= GFAR_ERRATA_12;
947 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
948 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
949 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
950 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
951 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
952 }
953 #endif
954 
955 static void gfar_detect_errata(struct gfar_private *priv)
956 {
957 	struct device *dev = &priv->ofdev->dev;
958 
959 	/* no plans to fix */
960 	priv->errata |= GFAR_ERRATA_A002;
961 
962 #ifdef CONFIG_PPC
963 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
964 		__gfar_detect_errata_85xx(priv);
965 	else /* non-mpc85xx parts, i.e. e300 core based */
966 		__gfar_detect_errata_83xx(priv);
967 #endif
968 
969 	if (priv->errata)
970 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
971 			 priv->errata);
972 }
973 
974 static void gfar_init_addr_hash_table(struct gfar_private *priv)
975 {
976 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
977 
978 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
979 		priv->extended_hash = 1;
980 		priv->hash_width = 9;
981 
982 		priv->hash_regs[0] = &regs->igaddr0;
983 		priv->hash_regs[1] = &regs->igaddr1;
984 		priv->hash_regs[2] = &regs->igaddr2;
985 		priv->hash_regs[3] = &regs->igaddr3;
986 		priv->hash_regs[4] = &regs->igaddr4;
987 		priv->hash_regs[5] = &regs->igaddr5;
988 		priv->hash_regs[6] = &regs->igaddr6;
989 		priv->hash_regs[7] = &regs->igaddr7;
990 		priv->hash_regs[8] = &regs->gaddr0;
991 		priv->hash_regs[9] = &regs->gaddr1;
992 		priv->hash_regs[10] = &regs->gaddr2;
993 		priv->hash_regs[11] = &regs->gaddr3;
994 		priv->hash_regs[12] = &regs->gaddr4;
995 		priv->hash_regs[13] = &regs->gaddr5;
996 		priv->hash_regs[14] = &regs->gaddr6;
997 		priv->hash_regs[15] = &regs->gaddr7;
998 
999 	} else {
1000 		priv->extended_hash = 0;
1001 		priv->hash_width = 8;
1002 
1003 		priv->hash_regs[0] = &regs->gaddr0;
1004 		priv->hash_regs[1] = &regs->gaddr1;
1005 		priv->hash_regs[2] = &regs->gaddr2;
1006 		priv->hash_regs[3] = &regs->gaddr3;
1007 		priv->hash_regs[4] = &regs->gaddr4;
1008 		priv->hash_regs[5] = &regs->gaddr5;
1009 		priv->hash_regs[6] = &regs->gaddr6;
1010 		priv->hash_regs[7] = &regs->gaddr7;
1011 	}
1012 }
1013 
1014 static int __gfar_is_rx_idle(struct gfar_private *priv)
1015 {
1016 	u32 res;
1017 
1018 	/* Normaly TSEC should not hang on GRS commands, so we should
1019 	 * actually wait for IEVENT_GRSC flag.
1020 	 */
1021 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1022 		return 0;
1023 
1024 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1025 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1026 	 * and the Rx can be safely reset.
1027 	 */
1028 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1029 	res &= 0x7f807f80;
1030 	if ((res & 0xffff) == (res >> 16))
1031 		return 1;
1032 
1033 	return 0;
1034 }
1035 
1036 /* Halt the receive and transmit queues */
1037 static void gfar_halt_nodisable(struct gfar_private *priv)
1038 {
1039 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1040 	u32 tempval;
1041 	unsigned int timeout;
1042 	int stopped;
1043 
1044 	gfar_ints_disable(priv);
1045 
1046 	if (gfar_is_dma_stopped(priv))
1047 		return;
1048 
1049 	/* Stop the DMA, and wait for it to stop */
1050 	tempval = gfar_read(&regs->dmactrl);
1051 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1052 	gfar_write(&regs->dmactrl, tempval);
1053 
1054 retry:
1055 	timeout = 1000;
1056 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1057 		cpu_relax();
1058 		timeout--;
1059 	}
1060 
1061 	if (!timeout)
1062 		stopped = gfar_is_dma_stopped(priv);
1063 
1064 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1065 	    !__gfar_is_rx_idle(priv))
1066 		goto retry;
1067 }
1068 
1069 /* Halt the receive and transmit queues */
1070 static void gfar_halt(struct gfar_private *priv)
1071 {
1072 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1073 	u32 tempval;
1074 
1075 	/* Dissable the Rx/Tx hw queues */
1076 	gfar_write(&regs->rqueue, 0);
1077 	gfar_write(&regs->tqueue, 0);
1078 
1079 	mdelay(10);
1080 
1081 	gfar_halt_nodisable(priv);
1082 
1083 	/* Disable Rx/Tx DMA */
1084 	tempval = gfar_read(&regs->maccfg1);
1085 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1086 	gfar_write(&regs->maccfg1, tempval);
1087 }
1088 
1089 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1090 {
1091 	struct txbd8 *txbdp;
1092 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1093 	int i, j;
1094 
1095 	txbdp = tx_queue->tx_bd_base;
1096 
1097 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1098 		if (!tx_queue->tx_skbuff[i])
1099 			continue;
1100 
1101 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1102 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1103 		txbdp->lstatus = 0;
1104 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1105 		     j++) {
1106 			txbdp++;
1107 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1108 				       be16_to_cpu(txbdp->length),
1109 				       DMA_TO_DEVICE);
1110 		}
1111 		txbdp++;
1112 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1113 		tx_queue->tx_skbuff[i] = NULL;
1114 	}
1115 	kfree(tx_queue->tx_skbuff);
1116 	tx_queue->tx_skbuff = NULL;
1117 }
1118 
1119 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1120 {
1121 	int i;
1122 
1123 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1124 
1125 	dev_kfree_skb(rx_queue->skb);
1126 
1127 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1128 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1129 
1130 		rxbdp->lstatus = 0;
1131 		rxbdp->bufPtr = 0;
1132 		rxbdp++;
1133 
1134 		if (!rxb->page)
1135 			continue;
1136 
1137 		dma_unmap_page(rx_queue->dev, rxb->dma,
1138 			       PAGE_SIZE, DMA_FROM_DEVICE);
1139 		__free_page(rxb->page);
1140 
1141 		rxb->page = NULL;
1142 	}
1143 
1144 	kfree(rx_queue->rx_buff);
1145 	rx_queue->rx_buff = NULL;
1146 }
1147 
1148 /* If there are any tx skbs or rx skbs still around, free them.
1149  * Then free tx_skbuff and rx_skbuff
1150  */
1151 static void free_skb_resources(struct gfar_private *priv)
1152 {
1153 	struct gfar_priv_tx_q *tx_queue = NULL;
1154 	struct gfar_priv_rx_q *rx_queue = NULL;
1155 	int i;
1156 
1157 	/* Go through all the buffer descriptors and free their data buffers */
1158 	for (i = 0; i < priv->num_tx_queues; i++) {
1159 		struct netdev_queue *txq;
1160 
1161 		tx_queue = priv->tx_queue[i];
1162 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1163 		if (tx_queue->tx_skbuff)
1164 			free_skb_tx_queue(tx_queue);
1165 		netdev_tx_reset_queue(txq);
1166 	}
1167 
1168 	for (i = 0; i < priv->num_rx_queues; i++) {
1169 		rx_queue = priv->rx_queue[i];
1170 		if (rx_queue->rx_buff)
1171 			free_skb_rx_queue(rx_queue);
1172 	}
1173 
1174 	dma_free_coherent(priv->dev,
1175 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1176 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1177 			  priv->tx_queue[0]->tx_bd_base,
1178 			  priv->tx_queue[0]->tx_bd_dma_base);
1179 }
1180 
1181 void stop_gfar(struct net_device *dev)
1182 {
1183 	struct gfar_private *priv = netdev_priv(dev);
1184 
1185 	netif_tx_stop_all_queues(dev);
1186 
1187 	smp_mb__before_atomic();
1188 	set_bit(GFAR_DOWN, &priv->state);
1189 	smp_mb__after_atomic();
1190 
1191 	disable_napi(priv);
1192 
1193 	/* disable ints and gracefully shut down Rx/Tx DMA */
1194 	gfar_halt(priv);
1195 
1196 	phy_stop(dev->phydev);
1197 
1198 	free_skb_resources(priv);
1199 }
1200 
1201 static void gfar_start(struct gfar_private *priv)
1202 {
1203 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1204 	u32 tempval;
1205 	int i = 0;
1206 
1207 	/* Enable Rx/Tx hw queues */
1208 	gfar_write(&regs->rqueue, priv->rqueue);
1209 	gfar_write(&regs->tqueue, priv->tqueue);
1210 
1211 	/* Initialize DMACTRL to have WWR and WOP */
1212 	tempval = gfar_read(&regs->dmactrl);
1213 	tempval |= DMACTRL_INIT_SETTINGS;
1214 	gfar_write(&regs->dmactrl, tempval);
1215 
1216 	/* Make sure we aren't stopped */
1217 	tempval = gfar_read(&regs->dmactrl);
1218 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1219 	gfar_write(&regs->dmactrl, tempval);
1220 
1221 	for (i = 0; i < priv->num_grps; i++) {
1222 		regs = priv->gfargrp[i].regs;
1223 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1224 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1225 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1226 	}
1227 
1228 	/* Enable Rx/Tx DMA */
1229 	tempval = gfar_read(&regs->maccfg1);
1230 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1231 	gfar_write(&regs->maccfg1, tempval);
1232 
1233 	gfar_ints_enable(priv);
1234 
1235 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1236 }
1237 
1238 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1239 {
1240 	struct page *page;
1241 	dma_addr_t addr;
1242 
1243 	page = dev_alloc_page();
1244 	if (unlikely(!page))
1245 		return false;
1246 
1247 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1248 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1249 		__free_page(page);
1250 
1251 		return false;
1252 	}
1253 
1254 	rxb->dma = addr;
1255 	rxb->page = page;
1256 	rxb->page_offset = 0;
1257 
1258 	return true;
1259 }
1260 
1261 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1262 {
1263 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1264 	struct gfar_extra_stats *estats = &priv->extra_stats;
1265 
1266 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1267 	atomic64_inc(&estats->rx_alloc_err);
1268 }
1269 
1270 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1271 				int alloc_cnt)
1272 {
1273 	struct rxbd8 *bdp;
1274 	struct gfar_rx_buff *rxb;
1275 	int i;
1276 
1277 	i = rx_queue->next_to_use;
1278 	bdp = &rx_queue->rx_bd_base[i];
1279 	rxb = &rx_queue->rx_buff[i];
1280 
1281 	while (alloc_cnt--) {
1282 		/* try reuse page */
1283 		if (unlikely(!rxb->page)) {
1284 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1285 				gfar_rx_alloc_err(rx_queue);
1286 				break;
1287 			}
1288 		}
1289 
1290 		/* Setup the new RxBD */
1291 		gfar_init_rxbdp(rx_queue, bdp,
1292 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1293 
1294 		/* Update to the next pointer */
1295 		bdp++;
1296 		rxb++;
1297 
1298 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1299 			i = 0;
1300 			bdp = rx_queue->rx_bd_base;
1301 			rxb = rx_queue->rx_buff;
1302 		}
1303 	}
1304 
1305 	rx_queue->next_to_use = i;
1306 	rx_queue->next_to_alloc = i;
1307 }
1308 
1309 static void gfar_init_bds(struct net_device *ndev)
1310 {
1311 	struct gfar_private *priv = netdev_priv(ndev);
1312 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313 	struct gfar_priv_tx_q *tx_queue = NULL;
1314 	struct gfar_priv_rx_q *rx_queue = NULL;
1315 	struct txbd8 *txbdp;
1316 	u32 __iomem *rfbptr;
1317 	int i, j;
1318 
1319 	for (i = 0; i < priv->num_tx_queues; i++) {
1320 		tx_queue = priv->tx_queue[i];
1321 		/* Initialize some variables in our dev structure */
1322 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1323 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1324 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1325 		tx_queue->skb_curtx = 0;
1326 		tx_queue->skb_dirtytx = 0;
1327 
1328 		/* Initialize Transmit Descriptor Ring */
1329 		txbdp = tx_queue->tx_bd_base;
1330 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1331 			txbdp->lstatus = 0;
1332 			txbdp->bufPtr = 0;
1333 			txbdp++;
1334 		}
1335 
1336 		/* Set the last descriptor in the ring to indicate wrap */
1337 		txbdp--;
1338 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1339 					    TXBD_WRAP);
1340 	}
1341 
1342 	rfbptr = &regs->rfbptr0;
1343 	for (i = 0; i < priv->num_rx_queues; i++) {
1344 		rx_queue = priv->rx_queue[i];
1345 
1346 		rx_queue->next_to_clean = 0;
1347 		rx_queue->next_to_use = 0;
1348 		rx_queue->next_to_alloc = 0;
1349 
1350 		/* make sure next_to_clean != next_to_use after this
1351 		 * by leaving at least 1 unused descriptor
1352 		 */
1353 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1354 
1355 		rx_queue->rfbptr = rfbptr;
1356 		rfbptr += 2;
1357 	}
1358 }
1359 
1360 static int gfar_alloc_skb_resources(struct net_device *ndev)
1361 {
1362 	void *vaddr;
1363 	dma_addr_t addr;
1364 	int i, j;
1365 	struct gfar_private *priv = netdev_priv(ndev);
1366 	struct device *dev = priv->dev;
1367 	struct gfar_priv_tx_q *tx_queue = NULL;
1368 	struct gfar_priv_rx_q *rx_queue = NULL;
1369 
1370 	priv->total_tx_ring_size = 0;
1371 	for (i = 0; i < priv->num_tx_queues; i++)
1372 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1373 
1374 	priv->total_rx_ring_size = 0;
1375 	for (i = 0; i < priv->num_rx_queues; i++)
1376 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1377 
1378 	/* Allocate memory for the buffer descriptors */
1379 	vaddr = dma_alloc_coherent(dev,
1380 				   (priv->total_tx_ring_size *
1381 				    sizeof(struct txbd8)) +
1382 				   (priv->total_rx_ring_size *
1383 				    sizeof(struct rxbd8)),
1384 				   &addr, GFP_KERNEL);
1385 	if (!vaddr)
1386 		return -ENOMEM;
1387 
1388 	for (i = 0; i < priv->num_tx_queues; i++) {
1389 		tx_queue = priv->tx_queue[i];
1390 		tx_queue->tx_bd_base = vaddr;
1391 		tx_queue->tx_bd_dma_base = addr;
1392 		tx_queue->dev = ndev;
1393 		/* enet DMA only understands physical addresses */
1394 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1395 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1396 	}
1397 
1398 	/* Start the rx descriptor ring where the tx ring leaves off */
1399 	for (i = 0; i < priv->num_rx_queues; i++) {
1400 		rx_queue = priv->rx_queue[i];
1401 		rx_queue->rx_bd_base = vaddr;
1402 		rx_queue->rx_bd_dma_base = addr;
1403 		rx_queue->ndev = ndev;
1404 		rx_queue->dev = dev;
1405 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1406 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1407 	}
1408 
1409 	/* Setup the skbuff rings */
1410 	for (i = 0; i < priv->num_tx_queues; i++) {
1411 		tx_queue = priv->tx_queue[i];
1412 		tx_queue->tx_skbuff =
1413 			kmalloc_array(tx_queue->tx_ring_size,
1414 				      sizeof(*tx_queue->tx_skbuff),
1415 				      GFP_KERNEL);
1416 		if (!tx_queue->tx_skbuff)
1417 			goto cleanup;
1418 
1419 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1420 			tx_queue->tx_skbuff[j] = NULL;
1421 	}
1422 
1423 	for (i = 0; i < priv->num_rx_queues; i++) {
1424 		rx_queue = priv->rx_queue[i];
1425 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1426 					    sizeof(*rx_queue->rx_buff),
1427 					    GFP_KERNEL);
1428 		if (!rx_queue->rx_buff)
1429 			goto cleanup;
1430 	}
1431 
1432 	gfar_init_bds(ndev);
1433 
1434 	return 0;
1435 
1436 cleanup:
1437 	free_skb_resources(priv);
1438 	return -ENOMEM;
1439 }
1440 
1441 /* Bring the controller up and running */
1442 int startup_gfar(struct net_device *ndev)
1443 {
1444 	struct gfar_private *priv = netdev_priv(ndev);
1445 	int err;
1446 
1447 	gfar_mac_reset(priv);
1448 
1449 	err = gfar_alloc_skb_resources(ndev);
1450 	if (err)
1451 		return err;
1452 
1453 	gfar_init_tx_rx_base(priv);
1454 
1455 	smp_mb__before_atomic();
1456 	clear_bit(GFAR_DOWN, &priv->state);
1457 	smp_mb__after_atomic();
1458 
1459 	/* Start Rx/Tx DMA and enable the interrupts */
1460 	gfar_start(priv);
1461 
1462 	/* force link state update after mac reset */
1463 	priv->oldlink = 0;
1464 	priv->oldspeed = 0;
1465 	priv->oldduplex = -1;
1466 
1467 	phy_start(ndev->phydev);
1468 
1469 	enable_napi(priv);
1470 
1471 	netif_tx_wake_all_queues(ndev);
1472 
1473 	return 0;
1474 }
1475 
1476 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1477 {
1478 	struct net_device *ndev = priv->ndev;
1479 	struct phy_device *phydev = ndev->phydev;
1480 	u32 val = 0;
1481 
1482 	if (!phydev->duplex)
1483 		return val;
1484 
1485 	if (!priv->pause_aneg_en) {
1486 		if (priv->tx_pause_en)
1487 			val |= MACCFG1_TX_FLOW;
1488 		if (priv->rx_pause_en)
1489 			val |= MACCFG1_RX_FLOW;
1490 	} else {
1491 		u16 lcl_adv, rmt_adv;
1492 		u8 flowctrl;
1493 		/* get link partner capabilities */
1494 		rmt_adv = 0;
1495 		if (phydev->pause)
1496 			rmt_adv = LPA_PAUSE_CAP;
1497 		if (phydev->asym_pause)
1498 			rmt_adv |= LPA_PAUSE_ASYM;
1499 
1500 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1501 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1502 		if (flowctrl & FLOW_CTRL_TX)
1503 			val |= MACCFG1_TX_FLOW;
1504 		if (flowctrl & FLOW_CTRL_RX)
1505 			val |= MACCFG1_RX_FLOW;
1506 	}
1507 
1508 	return val;
1509 }
1510 
1511 static noinline void gfar_update_link_state(struct gfar_private *priv)
1512 {
1513 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1514 	struct net_device *ndev = priv->ndev;
1515 	struct phy_device *phydev = ndev->phydev;
1516 	struct gfar_priv_rx_q *rx_queue = NULL;
1517 	int i;
1518 
1519 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1520 		return;
1521 
1522 	if (phydev->link) {
1523 		u32 tempval1 = gfar_read(&regs->maccfg1);
1524 		u32 tempval = gfar_read(&regs->maccfg2);
1525 		u32 ecntrl = gfar_read(&regs->ecntrl);
1526 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1527 
1528 		if (phydev->duplex != priv->oldduplex) {
1529 			if (!(phydev->duplex))
1530 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1531 			else
1532 				tempval |= MACCFG2_FULL_DUPLEX;
1533 
1534 			priv->oldduplex = phydev->duplex;
1535 		}
1536 
1537 		if (phydev->speed != priv->oldspeed) {
1538 			switch (phydev->speed) {
1539 			case 1000:
1540 				tempval =
1541 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1542 
1543 				ecntrl &= ~(ECNTRL_R100);
1544 				break;
1545 			case 100:
1546 			case 10:
1547 				tempval =
1548 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1549 
1550 				/* Reduced mode distinguishes
1551 				 * between 10 and 100
1552 				 */
1553 				if (phydev->speed == SPEED_100)
1554 					ecntrl |= ECNTRL_R100;
1555 				else
1556 					ecntrl &= ~(ECNTRL_R100);
1557 				break;
1558 			default:
1559 				netif_warn(priv, link, priv->ndev,
1560 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1561 					   phydev->speed);
1562 				break;
1563 			}
1564 
1565 			priv->oldspeed = phydev->speed;
1566 		}
1567 
1568 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1569 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1570 
1571 		/* Turn last free buffer recording on */
1572 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1573 			for (i = 0; i < priv->num_rx_queues; i++) {
1574 				u32 bdp_dma;
1575 
1576 				rx_queue = priv->rx_queue[i];
1577 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1578 				gfar_write(rx_queue->rfbptr, bdp_dma);
1579 			}
1580 
1581 			priv->tx_actual_en = 1;
1582 		}
1583 
1584 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1585 			priv->tx_actual_en = 0;
1586 
1587 		gfar_write(&regs->maccfg1, tempval1);
1588 		gfar_write(&regs->maccfg2, tempval);
1589 		gfar_write(&regs->ecntrl, ecntrl);
1590 
1591 		if (!priv->oldlink)
1592 			priv->oldlink = 1;
1593 
1594 	} else if (priv->oldlink) {
1595 		priv->oldlink = 0;
1596 		priv->oldspeed = 0;
1597 		priv->oldduplex = -1;
1598 	}
1599 
1600 	if (netif_msg_link(priv))
1601 		phy_print_status(phydev);
1602 }
1603 
1604 /* Called every time the controller might need to be made
1605  * aware of new link state.  The PHY code conveys this
1606  * information through variables in the phydev structure, and this
1607  * function converts those variables into the appropriate
1608  * register values, and can bring down the device if needed.
1609  */
1610 static void adjust_link(struct net_device *dev)
1611 {
1612 	struct gfar_private *priv = netdev_priv(dev);
1613 	struct phy_device *phydev = dev->phydev;
1614 
1615 	if (unlikely(phydev->link != priv->oldlink ||
1616 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1617 				       phydev->speed != priv->oldspeed))))
1618 		gfar_update_link_state(priv);
1619 }
1620 
1621 /* Initialize TBI PHY interface for communicating with the
1622  * SERDES lynx PHY on the chip.  We communicate with this PHY
1623  * through the MDIO bus on each controller, treating it as a
1624  * "normal" PHY at the address found in the TBIPA register.  We assume
1625  * that the TBIPA register is valid.  Either the MDIO bus code will set
1626  * it to a value that doesn't conflict with other PHYs on the bus, or the
1627  * value doesn't matter, as there are no other PHYs on the bus.
1628  */
1629 static void gfar_configure_serdes(struct net_device *dev)
1630 {
1631 	struct gfar_private *priv = netdev_priv(dev);
1632 	struct phy_device *tbiphy;
1633 
1634 	if (!priv->tbi_node) {
1635 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1636 				    "device tree specify a tbi-handle\n");
1637 		return;
1638 	}
1639 
1640 	tbiphy = of_phy_find_device(priv->tbi_node);
1641 	if (!tbiphy) {
1642 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1643 		return;
1644 	}
1645 
1646 	/* If the link is already up, we must already be ok, and don't need to
1647 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1648 	 * everything for us?  Resetting it takes the link down and requires
1649 	 * several seconds for it to come back.
1650 	 */
1651 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1652 		put_device(&tbiphy->mdio.dev);
1653 		return;
1654 	}
1655 
1656 	/* Single clk mode, mii mode off(for serdes communication) */
1657 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1658 
1659 	phy_write(tbiphy, MII_ADVERTISE,
1660 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1661 		  ADVERTISE_1000XPSE_ASYM);
1662 
1663 	phy_write(tbiphy, MII_BMCR,
1664 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1665 		  BMCR_SPEED1000);
1666 
1667 	put_device(&tbiphy->mdio.dev);
1668 }
1669 
1670 /* Initializes driver's PHY state, and attaches to the PHY.
1671  * Returns 0 on success.
1672  */
1673 static int init_phy(struct net_device *dev)
1674 {
1675 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1676 	struct gfar_private *priv = netdev_priv(dev);
1677 	phy_interface_t interface = priv->interface;
1678 	struct phy_device *phydev;
1679 	struct ethtool_eee edata;
1680 
1681 	linkmode_set_bit_array(phy_10_100_features_array,
1682 			       ARRAY_SIZE(phy_10_100_features_array),
1683 			       mask);
1684 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1685 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1686 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1687 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1688 
1689 	priv->oldlink = 0;
1690 	priv->oldspeed = 0;
1691 	priv->oldduplex = -1;
1692 
1693 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1694 				interface);
1695 	if (!phydev) {
1696 		dev_err(&dev->dev, "could not attach to PHY\n");
1697 		return -ENODEV;
1698 	}
1699 
1700 	if (interface == PHY_INTERFACE_MODE_SGMII)
1701 		gfar_configure_serdes(dev);
1702 
1703 	/* Remove any features not supported by the controller */
1704 	linkmode_and(phydev->supported, phydev->supported, mask);
1705 	linkmode_copy(phydev->advertising, phydev->supported);
1706 
1707 	/* Add support for flow control */
1708 	phy_support_asym_pause(phydev);
1709 
1710 	/* disable EEE autoneg, EEE not supported by eTSEC */
1711 	memset(&edata, 0, sizeof(struct ethtool_eee));
1712 	phy_ethtool_set_eee(phydev, &edata);
1713 
1714 	return 0;
1715 }
1716 
1717 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1718 {
1719 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1720 
1721 	memset(fcb, 0, GMAC_FCB_LEN);
1722 
1723 	return fcb;
1724 }
1725 
1726 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1727 				    int fcb_length)
1728 {
1729 	/* If we're here, it's a IP packet with a TCP or UDP
1730 	 * payload.  We set it to checksum, using a pseudo-header
1731 	 * we provide
1732 	 */
1733 	u8 flags = TXFCB_DEFAULT;
1734 
1735 	/* Tell the controller what the protocol is
1736 	 * And provide the already calculated phcs
1737 	 */
1738 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1739 		flags |= TXFCB_UDP;
1740 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1741 	} else
1742 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1743 
1744 	/* l3os is the distance between the start of the
1745 	 * frame (skb->data) and the start of the IP hdr.
1746 	 * l4os is the distance between the start of the
1747 	 * l3 hdr and the l4 hdr
1748 	 */
1749 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1750 	fcb->l4os = skb_network_header_len(skb);
1751 
1752 	fcb->flags = flags;
1753 }
1754 
1755 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1756 {
1757 	fcb->flags |= TXFCB_VLN;
1758 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1759 }
1760 
1761 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1762 				      struct txbd8 *base, int ring_size)
1763 {
1764 	struct txbd8 *new_bd = bdp + stride;
1765 
1766 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1767 }
1768 
1769 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1770 				      int ring_size)
1771 {
1772 	return skip_txbd(bdp, 1, base, ring_size);
1773 }
1774 
1775 /* eTSEC12: csum generation not supported for some fcb offsets */
1776 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1777 				       unsigned long fcb_addr)
1778 {
1779 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1780 	       (fcb_addr % 0x20) > 0x18);
1781 }
1782 
1783 /* eTSEC76: csum generation for frames larger than 2500 may
1784  * cause excess delays before start of transmission
1785  */
1786 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1787 				       unsigned int len)
1788 {
1789 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1790 	       (len > 2500));
1791 }
1792 
1793 /* This is called by the kernel when a frame is ready for transmission.
1794  * It is pointed to by the dev->hard_start_xmit function pointer
1795  */
1796 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1797 {
1798 	struct gfar_private *priv = netdev_priv(dev);
1799 	struct gfar_priv_tx_q *tx_queue = NULL;
1800 	struct netdev_queue *txq;
1801 	struct gfar __iomem *regs = NULL;
1802 	struct txfcb *fcb = NULL;
1803 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1804 	u32 lstatus;
1805 	skb_frag_t *frag;
1806 	int i, rq = 0;
1807 	int do_tstamp, do_csum, do_vlan;
1808 	u32 bufaddr;
1809 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1810 
1811 	rq = skb->queue_mapping;
1812 	tx_queue = priv->tx_queue[rq];
1813 	txq = netdev_get_tx_queue(dev, rq);
1814 	base = tx_queue->tx_bd_base;
1815 	regs = tx_queue->grp->regs;
1816 
1817 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1818 	do_vlan = skb_vlan_tag_present(skb);
1819 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1820 		    priv->hwts_tx_en;
1821 
1822 	if (do_csum || do_vlan)
1823 		fcb_len = GMAC_FCB_LEN;
1824 
1825 	/* check if time stamp should be generated */
1826 	if (unlikely(do_tstamp))
1827 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1828 
1829 	/* make space for additional header when fcb is needed */
1830 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1831 		struct sk_buff *skb_new;
1832 
1833 		skb_new = skb_realloc_headroom(skb, fcb_len);
1834 		if (!skb_new) {
1835 			dev->stats.tx_errors++;
1836 			dev_kfree_skb_any(skb);
1837 			return NETDEV_TX_OK;
1838 		}
1839 
1840 		if (skb->sk)
1841 			skb_set_owner_w(skb_new, skb->sk);
1842 		dev_consume_skb_any(skb);
1843 		skb = skb_new;
1844 	}
1845 
1846 	/* total number of fragments in the SKB */
1847 	nr_frags = skb_shinfo(skb)->nr_frags;
1848 
1849 	/* calculate the required number of TxBDs for this skb */
1850 	if (unlikely(do_tstamp))
1851 		nr_txbds = nr_frags + 2;
1852 	else
1853 		nr_txbds = nr_frags + 1;
1854 
1855 	/* check if there is space to queue this packet */
1856 	if (nr_txbds > tx_queue->num_txbdfree) {
1857 		/* no space, stop the queue */
1858 		netif_tx_stop_queue(txq);
1859 		dev->stats.tx_fifo_errors++;
1860 		return NETDEV_TX_BUSY;
1861 	}
1862 
1863 	/* Update transmit stats */
1864 	bytes_sent = skb->len;
1865 	tx_queue->stats.tx_bytes += bytes_sent;
1866 	/* keep Tx bytes on wire for BQL accounting */
1867 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1868 	tx_queue->stats.tx_packets++;
1869 
1870 	txbdp = txbdp_start = tx_queue->cur_tx;
1871 	lstatus = be32_to_cpu(txbdp->lstatus);
1872 
1873 	/* Add TxPAL between FCB and frame if required */
1874 	if (unlikely(do_tstamp)) {
1875 		skb_push(skb, GMAC_TXPAL_LEN);
1876 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1877 	}
1878 
1879 	/* Add TxFCB if required */
1880 	if (fcb_len) {
1881 		fcb = gfar_add_fcb(skb);
1882 		lstatus |= BD_LFLAG(TXBD_TOE);
1883 	}
1884 
1885 	/* Set up checksumming */
1886 	if (do_csum) {
1887 		gfar_tx_checksum(skb, fcb, fcb_len);
1888 
1889 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1890 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1891 			__skb_pull(skb, GMAC_FCB_LEN);
1892 			skb_checksum_help(skb);
1893 			if (do_vlan || do_tstamp) {
1894 				/* put back a new fcb for vlan/tstamp TOE */
1895 				fcb = gfar_add_fcb(skb);
1896 			} else {
1897 				/* Tx TOE not used */
1898 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1899 				fcb = NULL;
1900 			}
1901 		}
1902 	}
1903 
1904 	if (do_vlan)
1905 		gfar_tx_vlan(skb, fcb);
1906 
1907 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1908 				 DMA_TO_DEVICE);
1909 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910 		goto dma_map_err;
1911 
1912 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1913 
1914 	/* Time stamp insertion requires one additional TxBD */
1915 	if (unlikely(do_tstamp))
1916 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1917 						 tx_queue->tx_ring_size);
1918 
1919 	if (likely(!nr_frags)) {
1920 		if (likely(!do_tstamp))
1921 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1922 	} else {
1923 		u32 lstatus_start = lstatus;
1924 
1925 		/* Place the fragment addresses and lengths into the TxBDs */
1926 		frag = &skb_shinfo(skb)->frags[0];
1927 		for (i = 0; i < nr_frags; i++, frag++) {
1928 			unsigned int size;
1929 
1930 			/* Point at the next BD, wrapping as needed */
1931 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1932 
1933 			size = skb_frag_size(frag);
1934 
1935 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1936 				  BD_LFLAG(TXBD_READY);
1937 
1938 			/* Handle the last BD specially */
1939 			if (i == nr_frags - 1)
1940 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1941 
1942 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1943 						   size, DMA_TO_DEVICE);
1944 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1945 				goto dma_map_err;
1946 
1947 			/* set the TxBD length and buffer pointer */
1948 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1949 			txbdp->lstatus = cpu_to_be32(lstatus);
1950 		}
1951 
1952 		lstatus = lstatus_start;
1953 	}
1954 
1955 	/* If time stamping is requested one additional TxBD must be set up. The
1956 	 * first TxBD points to the FCB and must have a data length of
1957 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1958 	 * the full frame length.
1959 	 */
1960 	if (unlikely(do_tstamp)) {
1961 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1962 
1963 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1964 		bufaddr += fcb_len;
1965 
1966 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1967 			      (skb_headlen(skb) - fcb_len);
1968 		if (!nr_frags)
1969 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1970 
1971 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1972 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1973 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1974 
1975 		/* Setup tx hardware time stamping */
1976 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1977 		fcb->ptp = 1;
1978 	} else {
1979 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1980 	}
1981 
1982 	netdev_tx_sent_queue(txq, bytes_sent);
1983 
1984 	gfar_wmb();
1985 
1986 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1987 
1988 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1989 
1990 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1991 
1992 	/* Update the current skb pointer to the next entry we will use
1993 	 * (wrapping if necessary)
1994 	 */
1995 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1996 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1997 
1998 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1999 
2000 	/* We can work in parallel with gfar_clean_tx_ring(), except
2001 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2002 	 * when we were reading the num_txbdfree and checking for available
2003 	 * space, that's because outside of this function it can only grow.
2004 	 */
2005 	spin_lock_bh(&tx_queue->txlock);
2006 	/* reduce TxBD free count */
2007 	tx_queue->num_txbdfree -= (nr_txbds);
2008 	spin_unlock_bh(&tx_queue->txlock);
2009 
2010 	/* If the next BD still needs to be cleaned up, then the bds
2011 	 * are full.  We need to tell the kernel to stop sending us stuff.
2012 	 */
2013 	if (!tx_queue->num_txbdfree) {
2014 		netif_tx_stop_queue(txq);
2015 
2016 		dev->stats.tx_fifo_errors++;
2017 	}
2018 
2019 	/* Tell the DMA to go go go */
2020 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2021 
2022 	return NETDEV_TX_OK;
2023 
2024 dma_map_err:
2025 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2026 	if (do_tstamp)
2027 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2028 	for (i = 0; i < nr_frags; i++) {
2029 		lstatus = be32_to_cpu(txbdp->lstatus);
2030 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2031 			break;
2032 
2033 		lstatus &= ~BD_LFLAG(TXBD_READY);
2034 		txbdp->lstatus = cpu_to_be32(lstatus);
2035 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2036 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2037 			       DMA_TO_DEVICE);
2038 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2039 	}
2040 	gfar_wmb();
2041 	dev_kfree_skb_any(skb);
2042 	return NETDEV_TX_OK;
2043 }
2044 
2045 /* Changes the mac address if the controller is not running. */
2046 static int gfar_set_mac_address(struct net_device *dev)
2047 {
2048 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2049 
2050 	return 0;
2051 }
2052 
2053 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2054 {
2055 	struct gfar_private *priv = netdev_priv(dev);
2056 
2057 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2058 		cpu_relax();
2059 
2060 	if (dev->flags & IFF_UP)
2061 		stop_gfar(dev);
2062 
2063 	dev->mtu = new_mtu;
2064 
2065 	if (dev->flags & IFF_UP)
2066 		startup_gfar(dev);
2067 
2068 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2069 
2070 	return 0;
2071 }
2072 
2073 static void reset_gfar(struct net_device *ndev)
2074 {
2075 	struct gfar_private *priv = netdev_priv(ndev);
2076 
2077 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2078 		cpu_relax();
2079 
2080 	stop_gfar(ndev);
2081 	startup_gfar(ndev);
2082 
2083 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2084 }
2085 
2086 /* gfar_reset_task gets scheduled when a packet has not been
2087  * transmitted after a set amount of time.
2088  * For now, assume that clearing out all the structures, and
2089  * starting over will fix the problem.
2090  */
2091 static void gfar_reset_task(struct work_struct *work)
2092 {
2093 	struct gfar_private *priv = container_of(work, struct gfar_private,
2094 						 reset_task);
2095 	reset_gfar(priv->ndev);
2096 }
2097 
2098 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2099 {
2100 	struct gfar_private *priv = netdev_priv(dev);
2101 
2102 	dev->stats.tx_errors++;
2103 	schedule_work(&priv->reset_task);
2104 }
2105 
2106 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2107 {
2108 	struct hwtstamp_config config;
2109 	struct gfar_private *priv = netdev_priv(netdev);
2110 
2111 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2112 		return -EFAULT;
2113 
2114 	/* reserved for future extensions */
2115 	if (config.flags)
2116 		return -EINVAL;
2117 
2118 	switch (config.tx_type) {
2119 	case HWTSTAMP_TX_OFF:
2120 		priv->hwts_tx_en = 0;
2121 		break;
2122 	case HWTSTAMP_TX_ON:
2123 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2124 			return -ERANGE;
2125 		priv->hwts_tx_en = 1;
2126 		break;
2127 	default:
2128 		return -ERANGE;
2129 	}
2130 
2131 	switch (config.rx_filter) {
2132 	case HWTSTAMP_FILTER_NONE:
2133 		if (priv->hwts_rx_en) {
2134 			priv->hwts_rx_en = 0;
2135 			reset_gfar(netdev);
2136 		}
2137 		break;
2138 	default:
2139 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2140 			return -ERANGE;
2141 		if (!priv->hwts_rx_en) {
2142 			priv->hwts_rx_en = 1;
2143 			reset_gfar(netdev);
2144 		}
2145 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2146 		break;
2147 	}
2148 
2149 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2150 		-EFAULT : 0;
2151 }
2152 
2153 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2154 {
2155 	struct hwtstamp_config config;
2156 	struct gfar_private *priv = netdev_priv(netdev);
2157 
2158 	config.flags = 0;
2159 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2160 	config.rx_filter = (priv->hwts_rx_en ?
2161 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2162 
2163 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2164 		-EFAULT : 0;
2165 }
2166 
2167 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2168 {
2169 	struct phy_device *phydev = dev->phydev;
2170 
2171 	if (!netif_running(dev))
2172 		return -EINVAL;
2173 
2174 	if (cmd == SIOCSHWTSTAMP)
2175 		return gfar_hwtstamp_set(dev, rq);
2176 	if (cmd == SIOCGHWTSTAMP)
2177 		return gfar_hwtstamp_get(dev, rq);
2178 
2179 	if (!phydev)
2180 		return -ENODEV;
2181 
2182 	return phy_mii_ioctl(phydev, rq, cmd);
2183 }
2184 
2185 /* Interrupt Handler for Transmit complete */
2186 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2187 {
2188 	struct net_device *dev = tx_queue->dev;
2189 	struct netdev_queue *txq;
2190 	struct gfar_private *priv = netdev_priv(dev);
2191 	struct txbd8 *bdp, *next = NULL;
2192 	struct txbd8 *lbdp = NULL;
2193 	struct txbd8 *base = tx_queue->tx_bd_base;
2194 	struct sk_buff *skb;
2195 	int skb_dirtytx;
2196 	int tx_ring_size = tx_queue->tx_ring_size;
2197 	int frags = 0, nr_txbds = 0;
2198 	int i;
2199 	int howmany = 0;
2200 	int tqi = tx_queue->qindex;
2201 	unsigned int bytes_sent = 0;
2202 	u32 lstatus;
2203 	size_t buflen;
2204 
2205 	txq = netdev_get_tx_queue(dev, tqi);
2206 	bdp = tx_queue->dirty_tx;
2207 	skb_dirtytx = tx_queue->skb_dirtytx;
2208 
2209 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2210 		bool do_tstamp;
2211 
2212 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2213 			    priv->hwts_tx_en;
2214 
2215 		frags = skb_shinfo(skb)->nr_frags;
2216 
2217 		/* When time stamping, one additional TxBD must be freed.
2218 		 * Also, we need to dma_unmap_single() the TxPAL.
2219 		 */
2220 		if (unlikely(do_tstamp))
2221 			nr_txbds = frags + 2;
2222 		else
2223 			nr_txbds = frags + 1;
2224 
2225 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2226 
2227 		lstatus = be32_to_cpu(lbdp->lstatus);
2228 
2229 		/* Only clean completed frames */
2230 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2231 		    (lstatus & BD_LENGTH_MASK))
2232 			break;
2233 
2234 		if (unlikely(do_tstamp)) {
2235 			next = next_txbd(bdp, base, tx_ring_size);
2236 			buflen = be16_to_cpu(next->length) +
2237 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2238 		} else
2239 			buflen = be16_to_cpu(bdp->length);
2240 
2241 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2242 				 buflen, DMA_TO_DEVICE);
2243 
2244 		if (unlikely(do_tstamp)) {
2245 			struct skb_shared_hwtstamps shhwtstamps;
2246 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2247 					  ~0x7UL);
2248 
2249 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2250 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2251 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2252 			skb_tstamp_tx(skb, &shhwtstamps);
2253 			gfar_clear_txbd_status(bdp);
2254 			bdp = next;
2255 		}
2256 
2257 		gfar_clear_txbd_status(bdp);
2258 		bdp = next_txbd(bdp, base, tx_ring_size);
2259 
2260 		for (i = 0; i < frags; i++) {
2261 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2262 				       be16_to_cpu(bdp->length),
2263 				       DMA_TO_DEVICE);
2264 			gfar_clear_txbd_status(bdp);
2265 			bdp = next_txbd(bdp, base, tx_ring_size);
2266 		}
2267 
2268 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2269 
2270 		dev_kfree_skb_any(skb);
2271 
2272 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2273 
2274 		skb_dirtytx = (skb_dirtytx + 1) &
2275 			      TX_RING_MOD_MASK(tx_ring_size);
2276 
2277 		howmany++;
2278 		spin_lock(&tx_queue->txlock);
2279 		tx_queue->num_txbdfree += nr_txbds;
2280 		spin_unlock(&tx_queue->txlock);
2281 	}
2282 
2283 	/* If we freed a buffer, we can restart transmission, if necessary */
2284 	if (tx_queue->num_txbdfree &&
2285 	    netif_tx_queue_stopped(txq) &&
2286 	    !(test_bit(GFAR_DOWN, &priv->state)))
2287 		netif_wake_subqueue(priv->ndev, tqi);
2288 
2289 	/* Update dirty indicators */
2290 	tx_queue->skb_dirtytx = skb_dirtytx;
2291 	tx_queue->dirty_tx = bdp;
2292 
2293 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2294 }
2295 
2296 static void count_errors(u32 lstatus, struct net_device *ndev)
2297 {
2298 	struct gfar_private *priv = netdev_priv(ndev);
2299 	struct net_device_stats *stats = &ndev->stats;
2300 	struct gfar_extra_stats *estats = &priv->extra_stats;
2301 
2302 	/* If the packet was truncated, none of the other errors matter */
2303 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2304 		stats->rx_length_errors++;
2305 
2306 		atomic64_inc(&estats->rx_trunc);
2307 
2308 		return;
2309 	}
2310 	/* Count the errors, if there were any */
2311 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2312 		stats->rx_length_errors++;
2313 
2314 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2315 			atomic64_inc(&estats->rx_large);
2316 		else
2317 			atomic64_inc(&estats->rx_short);
2318 	}
2319 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2320 		stats->rx_frame_errors++;
2321 		atomic64_inc(&estats->rx_nonoctet);
2322 	}
2323 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2324 		atomic64_inc(&estats->rx_crcerr);
2325 		stats->rx_crc_errors++;
2326 	}
2327 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2328 		atomic64_inc(&estats->rx_overrun);
2329 		stats->rx_over_errors++;
2330 	}
2331 }
2332 
2333 static irqreturn_t gfar_receive(int irq, void *grp_id)
2334 {
2335 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2336 	unsigned long flags;
2337 	u32 imask, ievent;
2338 
2339 	ievent = gfar_read(&grp->regs->ievent);
2340 
2341 	if (unlikely(ievent & IEVENT_FGPI)) {
2342 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2343 		return IRQ_HANDLED;
2344 	}
2345 
2346 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2347 		spin_lock_irqsave(&grp->grplock, flags);
2348 		imask = gfar_read(&grp->regs->imask);
2349 		imask &= IMASK_RX_DISABLED;
2350 		gfar_write(&grp->regs->imask, imask);
2351 		spin_unlock_irqrestore(&grp->grplock, flags);
2352 		__napi_schedule(&grp->napi_rx);
2353 	} else {
2354 		/* Clear IEVENT, so interrupts aren't called again
2355 		 * because of the packets that have already arrived.
2356 		 */
2357 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2358 	}
2359 
2360 	return IRQ_HANDLED;
2361 }
2362 
2363 /* Interrupt Handler for Transmit complete */
2364 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2365 {
2366 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2367 	unsigned long flags;
2368 	u32 imask;
2369 
2370 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2371 		spin_lock_irqsave(&grp->grplock, flags);
2372 		imask = gfar_read(&grp->regs->imask);
2373 		imask &= IMASK_TX_DISABLED;
2374 		gfar_write(&grp->regs->imask, imask);
2375 		spin_unlock_irqrestore(&grp->grplock, flags);
2376 		__napi_schedule(&grp->napi_tx);
2377 	} else {
2378 		/* Clear IEVENT, so interrupts aren't called again
2379 		 * because of the packets that have already arrived.
2380 		 */
2381 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2382 	}
2383 
2384 	return IRQ_HANDLED;
2385 }
2386 
2387 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2388 			     struct sk_buff *skb, bool first)
2389 {
2390 	int size = lstatus & BD_LENGTH_MASK;
2391 	struct page *page = rxb->page;
2392 
2393 	if (likely(first)) {
2394 		skb_put(skb, size);
2395 	} else {
2396 		/* the last fragments' length contains the full frame length */
2397 		if (lstatus & BD_LFLAG(RXBD_LAST))
2398 			size -= skb->len;
2399 
2400 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2401 				rxb->page_offset + RXBUF_ALIGNMENT,
2402 				size, GFAR_RXB_TRUESIZE);
2403 	}
2404 
2405 	/* try reuse page */
2406 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2407 		return false;
2408 
2409 	/* change offset to the other half */
2410 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2411 
2412 	page_ref_inc(page);
2413 
2414 	return true;
2415 }
2416 
2417 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2418 			       struct gfar_rx_buff *old_rxb)
2419 {
2420 	struct gfar_rx_buff *new_rxb;
2421 	u16 nta = rxq->next_to_alloc;
2422 
2423 	new_rxb = &rxq->rx_buff[nta];
2424 
2425 	/* find next buf that can reuse a page */
2426 	nta++;
2427 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2428 
2429 	/* copy page reference */
2430 	*new_rxb = *old_rxb;
2431 
2432 	/* sync for use by the device */
2433 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2434 					 old_rxb->page_offset,
2435 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2436 }
2437 
2438 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2439 					    u32 lstatus, struct sk_buff *skb)
2440 {
2441 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2442 	struct page *page = rxb->page;
2443 	bool first = false;
2444 
2445 	if (likely(!skb)) {
2446 		void *buff_addr = page_address(page) + rxb->page_offset;
2447 
2448 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2449 		if (unlikely(!skb)) {
2450 			gfar_rx_alloc_err(rx_queue);
2451 			return NULL;
2452 		}
2453 		skb_reserve(skb, RXBUF_ALIGNMENT);
2454 		first = true;
2455 	}
2456 
2457 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2458 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2459 
2460 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2461 		/* reuse the free half of the page */
2462 		gfar_reuse_rx_page(rx_queue, rxb);
2463 	} else {
2464 		/* page cannot be reused, unmap it */
2465 		dma_unmap_page(rx_queue->dev, rxb->dma,
2466 			       PAGE_SIZE, DMA_FROM_DEVICE);
2467 	}
2468 
2469 	/* clear rxb content */
2470 	rxb->page = NULL;
2471 
2472 	return skb;
2473 }
2474 
2475 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2476 {
2477 	/* If valid headers were found, and valid sums
2478 	 * were verified, then we tell the kernel that no
2479 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2480 	 */
2481 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2482 	    (RXFCB_CIP | RXFCB_CTU))
2483 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2484 	else
2485 		skb_checksum_none_assert(skb);
2486 }
2487 
2488 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2489 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2490 {
2491 	struct gfar_private *priv = netdev_priv(ndev);
2492 	struct rxfcb *fcb = NULL;
2493 
2494 	/* fcb is at the beginning if exists */
2495 	fcb = (struct rxfcb *)skb->data;
2496 
2497 	/* Remove the FCB from the skb
2498 	 * Remove the padded bytes, if there are any
2499 	 */
2500 	if (priv->uses_rxfcb)
2501 		skb_pull(skb, GMAC_FCB_LEN);
2502 
2503 	/* Get receive timestamp from the skb */
2504 	if (priv->hwts_rx_en) {
2505 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2506 		u64 *ns = (u64 *) skb->data;
2507 
2508 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2509 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2510 	}
2511 
2512 	if (priv->padding)
2513 		skb_pull(skb, priv->padding);
2514 
2515 	/* Trim off the FCS */
2516 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2517 
2518 	if (ndev->features & NETIF_F_RXCSUM)
2519 		gfar_rx_checksum(skb, fcb);
2520 
2521 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2522 	 * Even if vlan rx accel is disabled, on some chips
2523 	 * RXFCB_VLN is pseudo randomly set.
2524 	 */
2525 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2526 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2527 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2528 				       be16_to_cpu(fcb->vlctl));
2529 }
2530 
2531 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2532  * until the budget/quota has been reached. Returns the number
2533  * of frames handled
2534  */
2535 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2536 			      int rx_work_limit)
2537 {
2538 	struct net_device *ndev = rx_queue->ndev;
2539 	struct gfar_private *priv = netdev_priv(ndev);
2540 	struct rxbd8 *bdp;
2541 	int i, howmany = 0;
2542 	struct sk_buff *skb = rx_queue->skb;
2543 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2544 	unsigned int total_bytes = 0, total_pkts = 0;
2545 
2546 	/* Get the first full descriptor */
2547 	i = rx_queue->next_to_clean;
2548 
2549 	while (rx_work_limit--) {
2550 		u32 lstatus;
2551 
2552 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2553 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2554 			cleaned_cnt = 0;
2555 		}
2556 
2557 		bdp = &rx_queue->rx_bd_base[i];
2558 		lstatus = be32_to_cpu(bdp->lstatus);
2559 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2560 			break;
2561 
2562 		/* order rx buffer descriptor reads */
2563 		rmb();
2564 
2565 		/* fetch next to clean buffer from the ring */
2566 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2567 		if (unlikely(!skb))
2568 			break;
2569 
2570 		cleaned_cnt++;
2571 		howmany++;
2572 
2573 		if (unlikely(++i == rx_queue->rx_ring_size))
2574 			i = 0;
2575 
2576 		rx_queue->next_to_clean = i;
2577 
2578 		/* fetch next buffer if not the last in frame */
2579 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2580 			continue;
2581 
2582 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2583 			count_errors(lstatus, ndev);
2584 
2585 			/* discard faulty buffer */
2586 			dev_kfree_skb(skb);
2587 			skb = NULL;
2588 			rx_queue->stats.rx_dropped++;
2589 			continue;
2590 		}
2591 
2592 		gfar_process_frame(ndev, skb);
2593 
2594 		/* Increment the number of packets */
2595 		total_pkts++;
2596 		total_bytes += skb->len;
2597 
2598 		skb_record_rx_queue(skb, rx_queue->qindex);
2599 
2600 		skb->protocol = eth_type_trans(skb, ndev);
2601 
2602 		/* Send the packet up the stack */
2603 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2604 
2605 		skb = NULL;
2606 	}
2607 
2608 	/* Store incomplete frames for completion */
2609 	rx_queue->skb = skb;
2610 
2611 	rx_queue->stats.rx_packets += total_pkts;
2612 	rx_queue->stats.rx_bytes += total_bytes;
2613 
2614 	if (cleaned_cnt)
2615 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2616 
2617 	/* Update Last Free RxBD pointer for LFC */
2618 	if (unlikely(priv->tx_actual_en)) {
2619 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2620 
2621 		gfar_write(rx_queue->rfbptr, bdp_dma);
2622 	}
2623 
2624 	return howmany;
2625 }
2626 
2627 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2628 {
2629 	struct gfar_priv_grp *gfargrp =
2630 		container_of(napi, struct gfar_priv_grp, napi_rx);
2631 	struct gfar __iomem *regs = gfargrp->regs;
2632 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2633 	int work_done = 0;
2634 
2635 	/* Clear IEVENT, so interrupts aren't called again
2636 	 * because of the packets that have already arrived
2637 	 */
2638 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2639 
2640 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2641 
2642 	if (work_done < budget) {
2643 		u32 imask;
2644 		napi_complete_done(napi, work_done);
2645 		/* Clear the halt bit in RSTAT */
2646 		gfar_write(&regs->rstat, gfargrp->rstat);
2647 
2648 		spin_lock_irq(&gfargrp->grplock);
2649 		imask = gfar_read(&regs->imask);
2650 		imask |= IMASK_RX_DEFAULT;
2651 		gfar_write(&regs->imask, imask);
2652 		spin_unlock_irq(&gfargrp->grplock);
2653 	}
2654 
2655 	return work_done;
2656 }
2657 
2658 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2659 {
2660 	struct gfar_priv_grp *gfargrp =
2661 		container_of(napi, struct gfar_priv_grp, napi_tx);
2662 	struct gfar __iomem *regs = gfargrp->regs;
2663 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2664 	u32 imask;
2665 
2666 	/* Clear IEVENT, so interrupts aren't called again
2667 	 * because of the packets that have already arrived
2668 	 */
2669 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2670 
2671 	/* run Tx cleanup to completion */
2672 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2673 		gfar_clean_tx_ring(tx_queue);
2674 
2675 	napi_complete(napi);
2676 
2677 	spin_lock_irq(&gfargrp->grplock);
2678 	imask = gfar_read(&regs->imask);
2679 	imask |= IMASK_TX_DEFAULT;
2680 	gfar_write(&regs->imask, imask);
2681 	spin_unlock_irq(&gfargrp->grplock);
2682 
2683 	return 0;
2684 }
2685 
2686 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2687 {
2688 	struct gfar_priv_grp *gfargrp =
2689 		container_of(napi, struct gfar_priv_grp, napi_rx);
2690 	struct gfar_private *priv = gfargrp->priv;
2691 	struct gfar __iomem *regs = gfargrp->regs;
2692 	struct gfar_priv_rx_q *rx_queue = NULL;
2693 	int work_done = 0, work_done_per_q = 0;
2694 	int i, budget_per_q = 0;
2695 	unsigned long rstat_rxf;
2696 	int num_act_queues;
2697 
2698 	/* Clear IEVENT, so interrupts aren't called again
2699 	 * because of the packets that have already arrived
2700 	 */
2701 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2702 
2703 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2704 
2705 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2706 	if (num_act_queues)
2707 		budget_per_q = budget/num_act_queues;
2708 
2709 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2710 		/* skip queue if not active */
2711 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2712 			continue;
2713 
2714 		rx_queue = priv->rx_queue[i];
2715 		work_done_per_q =
2716 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2717 		work_done += work_done_per_q;
2718 
2719 		/* finished processing this queue */
2720 		if (work_done_per_q < budget_per_q) {
2721 			/* clear active queue hw indication */
2722 			gfar_write(&regs->rstat,
2723 				   RSTAT_CLEAR_RXF0 >> i);
2724 			num_act_queues--;
2725 
2726 			if (!num_act_queues)
2727 				break;
2728 		}
2729 	}
2730 
2731 	if (!num_act_queues) {
2732 		u32 imask;
2733 		napi_complete_done(napi, work_done);
2734 
2735 		/* Clear the halt bit in RSTAT */
2736 		gfar_write(&regs->rstat, gfargrp->rstat);
2737 
2738 		spin_lock_irq(&gfargrp->grplock);
2739 		imask = gfar_read(&regs->imask);
2740 		imask |= IMASK_RX_DEFAULT;
2741 		gfar_write(&regs->imask, imask);
2742 		spin_unlock_irq(&gfargrp->grplock);
2743 	}
2744 
2745 	return work_done;
2746 }
2747 
2748 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2749 {
2750 	struct gfar_priv_grp *gfargrp =
2751 		container_of(napi, struct gfar_priv_grp, napi_tx);
2752 	struct gfar_private *priv = gfargrp->priv;
2753 	struct gfar __iomem *regs = gfargrp->regs;
2754 	struct gfar_priv_tx_q *tx_queue = NULL;
2755 	int has_tx_work = 0;
2756 	int i;
2757 
2758 	/* Clear IEVENT, so interrupts aren't called again
2759 	 * because of the packets that have already arrived
2760 	 */
2761 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2762 
2763 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2764 		tx_queue = priv->tx_queue[i];
2765 		/* run Tx cleanup to completion */
2766 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2767 			gfar_clean_tx_ring(tx_queue);
2768 			has_tx_work = 1;
2769 		}
2770 	}
2771 
2772 	if (!has_tx_work) {
2773 		u32 imask;
2774 		napi_complete(napi);
2775 
2776 		spin_lock_irq(&gfargrp->grplock);
2777 		imask = gfar_read(&regs->imask);
2778 		imask |= IMASK_TX_DEFAULT;
2779 		gfar_write(&regs->imask, imask);
2780 		spin_unlock_irq(&gfargrp->grplock);
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 /* GFAR error interrupt handler */
2787 static irqreturn_t gfar_error(int irq, void *grp_id)
2788 {
2789 	struct gfar_priv_grp *gfargrp = grp_id;
2790 	struct gfar __iomem *regs = gfargrp->regs;
2791 	struct gfar_private *priv= gfargrp->priv;
2792 	struct net_device *dev = priv->ndev;
2793 
2794 	/* Save ievent for future reference */
2795 	u32 events = gfar_read(&regs->ievent);
2796 
2797 	/* Clear IEVENT */
2798 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2799 
2800 	/* Magic Packet is not an error. */
2801 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2802 	    (events & IEVENT_MAG))
2803 		events &= ~IEVENT_MAG;
2804 
2805 	/* Hmm... */
2806 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2807 		netdev_dbg(dev,
2808 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2809 			   events, gfar_read(&regs->imask));
2810 
2811 	/* Update the error counters */
2812 	if (events & IEVENT_TXE) {
2813 		dev->stats.tx_errors++;
2814 
2815 		if (events & IEVENT_LC)
2816 			dev->stats.tx_window_errors++;
2817 		if (events & IEVENT_CRL)
2818 			dev->stats.tx_aborted_errors++;
2819 		if (events & IEVENT_XFUN) {
2820 			netif_dbg(priv, tx_err, dev,
2821 				  "TX FIFO underrun, packet dropped\n");
2822 			dev->stats.tx_dropped++;
2823 			atomic64_inc(&priv->extra_stats.tx_underrun);
2824 
2825 			schedule_work(&priv->reset_task);
2826 		}
2827 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2828 	}
2829 	if (events & IEVENT_BSY) {
2830 		dev->stats.rx_over_errors++;
2831 		atomic64_inc(&priv->extra_stats.rx_bsy);
2832 
2833 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2834 			  gfar_read(&regs->rstat));
2835 	}
2836 	if (events & IEVENT_BABR) {
2837 		dev->stats.rx_errors++;
2838 		atomic64_inc(&priv->extra_stats.rx_babr);
2839 
2840 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2841 	}
2842 	if (events & IEVENT_EBERR) {
2843 		atomic64_inc(&priv->extra_stats.eberr);
2844 		netif_dbg(priv, rx_err, dev, "bus error\n");
2845 	}
2846 	if (events & IEVENT_RXC)
2847 		netif_dbg(priv, rx_status, dev, "control frame\n");
2848 
2849 	if (events & IEVENT_BABT) {
2850 		atomic64_inc(&priv->extra_stats.tx_babt);
2851 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2852 	}
2853 	return IRQ_HANDLED;
2854 }
2855 
2856 /* The interrupt handler for devices with one interrupt */
2857 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2858 {
2859 	struct gfar_priv_grp *gfargrp = grp_id;
2860 
2861 	/* Save ievent for future reference */
2862 	u32 events = gfar_read(&gfargrp->regs->ievent);
2863 
2864 	/* Check for reception */
2865 	if (events & IEVENT_RX_MASK)
2866 		gfar_receive(irq, grp_id);
2867 
2868 	/* Check for transmit completion */
2869 	if (events & IEVENT_TX_MASK)
2870 		gfar_transmit(irq, grp_id);
2871 
2872 	/* Check for errors */
2873 	if (events & IEVENT_ERR_MASK)
2874 		gfar_error(irq, grp_id);
2875 
2876 	return IRQ_HANDLED;
2877 }
2878 
2879 #ifdef CONFIG_NET_POLL_CONTROLLER
2880 /* Polling 'interrupt' - used by things like netconsole to send skbs
2881  * without having to re-enable interrupts. It's not called while
2882  * the interrupt routine is executing.
2883  */
2884 static void gfar_netpoll(struct net_device *dev)
2885 {
2886 	struct gfar_private *priv = netdev_priv(dev);
2887 	int i;
2888 
2889 	/* If the device has multiple interrupts, run tx/rx */
2890 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2891 		for (i = 0; i < priv->num_grps; i++) {
2892 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2893 
2894 			disable_irq(gfar_irq(grp, TX)->irq);
2895 			disable_irq(gfar_irq(grp, RX)->irq);
2896 			disable_irq(gfar_irq(grp, ER)->irq);
2897 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2898 			enable_irq(gfar_irq(grp, ER)->irq);
2899 			enable_irq(gfar_irq(grp, RX)->irq);
2900 			enable_irq(gfar_irq(grp, TX)->irq);
2901 		}
2902 	} else {
2903 		for (i = 0; i < priv->num_grps; i++) {
2904 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2905 
2906 			disable_irq(gfar_irq(grp, TX)->irq);
2907 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2908 			enable_irq(gfar_irq(grp, TX)->irq);
2909 		}
2910 	}
2911 }
2912 #endif
2913 
2914 static void free_grp_irqs(struct gfar_priv_grp *grp)
2915 {
2916 	free_irq(gfar_irq(grp, TX)->irq, grp);
2917 	free_irq(gfar_irq(grp, RX)->irq, grp);
2918 	free_irq(gfar_irq(grp, ER)->irq, grp);
2919 }
2920 
2921 static int register_grp_irqs(struct gfar_priv_grp *grp)
2922 {
2923 	struct gfar_private *priv = grp->priv;
2924 	struct net_device *dev = priv->ndev;
2925 	int err;
2926 
2927 	/* If the device has multiple interrupts, register for
2928 	 * them.  Otherwise, only register for the one
2929 	 */
2930 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2931 		/* Install our interrupt handlers for Error,
2932 		 * Transmit, and Receive
2933 		 */
2934 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2935 				  gfar_irq(grp, ER)->name, grp);
2936 		if (err < 0) {
2937 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2938 				  gfar_irq(grp, ER)->irq);
2939 
2940 			goto err_irq_fail;
2941 		}
2942 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2943 
2944 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2945 				  gfar_irq(grp, TX)->name, grp);
2946 		if (err < 0) {
2947 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2948 				  gfar_irq(grp, TX)->irq);
2949 			goto tx_irq_fail;
2950 		}
2951 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2952 				  gfar_irq(grp, RX)->name, grp);
2953 		if (err < 0) {
2954 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2955 				  gfar_irq(grp, RX)->irq);
2956 			goto rx_irq_fail;
2957 		}
2958 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2959 
2960 	} else {
2961 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2962 				  gfar_irq(grp, TX)->name, grp);
2963 		if (err < 0) {
2964 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2965 				  gfar_irq(grp, TX)->irq);
2966 			goto err_irq_fail;
2967 		}
2968 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2969 	}
2970 
2971 	return 0;
2972 
2973 rx_irq_fail:
2974 	free_irq(gfar_irq(grp, TX)->irq, grp);
2975 tx_irq_fail:
2976 	free_irq(gfar_irq(grp, ER)->irq, grp);
2977 err_irq_fail:
2978 	return err;
2979 
2980 }
2981 
2982 static void gfar_free_irq(struct gfar_private *priv)
2983 {
2984 	int i;
2985 
2986 	/* Free the IRQs */
2987 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2988 		for (i = 0; i < priv->num_grps; i++)
2989 			free_grp_irqs(&priv->gfargrp[i]);
2990 	} else {
2991 		for (i = 0; i < priv->num_grps; i++)
2992 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2993 				 &priv->gfargrp[i]);
2994 	}
2995 }
2996 
2997 static int gfar_request_irq(struct gfar_private *priv)
2998 {
2999 	int err, i, j;
3000 
3001 	for (i = 0; i < priv->num_grps; i++) {
3002 		err = register_grp_irqs(&priv->gfargrp[i]);
3003 		if (err) {
3004 			for (j = 0; j < i; j++)
3005 				free_grp_irqs(&priv->gfargrp[j]);
3006 			return err;
3007 		}
3008 	}
3009 
3010 	return 0;
3011 }
3012 
3013 /* Called when something needs to use the ethernet device
3014  * Returns 0 for success.
3015  */
3016 static int gfar_enet_open(struct net_device *dev)
3017 {
3018 	struct gfar_private *priv = netdev_priv(dev);
3019 	int err;
3020 
3021 	err = init_phy(dev);
3022 	if (err)
3023 		return err;
3024 
3025 	err = gfar_request_irq(priv);
3026 	if (err)
3027 		return err;
3028 
3029 	err = startup_gfar(dev);
3030 	if (err)
3031 		return err;
3032 
3033 	return err;
3034 }
3035 
3036 /* Stops the kernel queue, and halts the controller */
3037 static int gfar_close(struct net_device *dev)
3038 {
3039 	struct gfar_private *priv = netdev_priv(dev);
3040 
3041 	cancel_work_sync(&priv->reset_task);
3042 	stop_gfar(dev);
3043 
3044 	/* Disconnect from the PHY */
3045 	phy_disconnect(dev->phydev);
3046 
3047 	gfar_free_irq(priv);
3048 
3049 	return 0;
3050 }
3051 
3052 /* Clears each of the exact match registers to zero, so they
3053  * don't interfere with normal reception
3054  */
3055 static void gfar_clear_exact_match(struct net_device *dev)
3056 {
3057 	int idx;
3058 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3059 
3060 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3061 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3062 }
3063 
3064 /* Update the hash table based on the current list of multicast
3065  * addresses we subscribe to.  Also, change the promiscuity of
3066  * the device based on the flags (this function is called
3067  * whenever dev->flags is changed
3068  */
3069 static void gfar_set_multi(struct net_device *dev)
3070 {
3071 	struct netdev_hw_addr *ha;
3072 	struct gfar_private *priv = netdev_priv(dev);
3073 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3074 	u32 tempval;
3075 
3076 	if (dev->flags & IFF_PROMISC) {
3077 		/* Set RCTRL to PROM */
3078 		tempval = gfar_read(&regs->rctrl);
3079 		tempval |= RCTRL_PROM;
3080 		gfar_write(&regs->rctrl, tempval);
3081 	} else {
3082 		/* Set RCTRL to not PROM */
3083 		tempval = gfar_read(&regs->rctrl);
3084 		tempval &= ~(RCTRL_PROM);
3085 		gfar_write(&regs->rctrl, tempval);
3086 	}
3087 
3088 	if (dev->flags & IFF_ALLMULTI) {
3089 		/* Set the hash to rx all multicast frames */
3090 		gfar_write(&regs->igaddr0, 0xffffffff);
3091 		gfar_write(&regs->igaddr1, 0xffffffff);
3092 		gfar_write(&regs->igaddr2, 0xffffffff);
3093 		gfar_write(&regs->igaddr3, 0xffffffff);
3094 		gfar_write(&regs->igaddr4, 0xffffffff);
3095 		gfar_write(&regs->igaddr5, 0xffffffff);
3096 		gfar_write(&regs->igaddr6, 0xffffffff);
3097 		gfar_write(&regs->igaddr7, 0xffffffff);
3098 		gfar_write(&regs->gaddr0, 0xffffffff);
3099 		gfar_write(&regs->gaddr1, 0xffffffff);
3100 		gfar_write(&regs->gaddr2, 0xffffffff);
3101 		gfar_write(&regs->gaddr3, 0xffffffff);
3102 		gfar_write(&regs->gaddr4, 0xffffffff);
3103 		gfar_write(&regs->gaddr5, 0xffffffff);
3104 		gfar_write(&regs->gaddr6, 0xffffffff);
3105 		gfar_write(&regs->gaddr7, 0xffffffff);
3106 	} else {
3107 		int em_num;
3108 		int idx;
3109 
3110 		/* zero out the hash */
3111 		gfar_write(&regs->igaddr0, 0x0);
3112 		gfar_write(&regs->igaddr1, 0x0);
3113 		gfar_write(&regs->igaddr2, 0x0);
3114 		gfar_write(&regs->igaddr3, 0x0);
3115 		gfar_write(&regs->igaddr4, 0x0);
3116 		gfar_write(&regs->igaddr5, 0x0);
3117 		gfar_write(&regs->igaddr6, 0x0);
3118 		gfar_write(&regs->igaddr7, 0x0);
3119 		gfar_write(&regs->gaddr0, 0x0);
3120 		gfar_write(&regs->gaddr1, 0x0);
3121 		gfar_write(&regs->gaddr2, 0x0);
3122 		gfar_write(&regs->gaddr3, 0x0);
3123 		gfar_write(&regs->gaddr4, 0x0);
3124 		gfar_write(&regs->gaddr5, 0x0);
3125 		gfar_write(&regs->gaddr6, 0x0);
3126 		gfar_write(&regs->gaddr7, 0x0);
3127 
3128 		/* If we have extended hash tables, we need to
3129 		 * clear the exact match registers to prepare for
3130 		 * setting them
3131 		 */
3132 		if (priv->extended_hash) {
3133 			em_num = GFAR_EM_NUM + 1;
3134 			gfar_clear_exact_match(dev);
3135 			idx = 1;
3136 		} else {
3137 			idx = 0;
3138 			em_num = 0;
3139 		}
3140 
3141 		if (netdev_mc_empty(dev))
3142 			return;
3143 
3144 		/* Parse the list, and set the appropriate bits */
3145 		netdev_for_each_mc_addr(ha, dev) {
3146 			if (idx < em_num) {
3147 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3148 				idx++;
3149 			} else
3150 				gfar_set_hash_for_addr(dev, ha->addr);
3151 		}
3152 	}
3153 }
3154 
3155 void gfar_mac_reset(struct gfar_private *priv)
3156 {
3157 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3158 	u32 tempval;
3159 
3160 	/* Reset MAC layer */
3161 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3162 
3163 	/* We need to delay at least 3 TX clocks */
3164 	udelay(3);
3165 
3166 	/* the soft reset bit is not self-resetting, so we need to
3167 	 * clear it before resuming normal operation
3168 	 */
3169 	gfar_write(&regs->maccfg1, 0);
3170 
3171 	udelay(3);
3172 
3173 	gfar_rx_offload_en(priv);
3174 
3175 	/* Initialize the max receive frame/buffer lengths */
3176 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3177 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3178 
3179 	/* Initialize the Minimum Frame Length Register */
3180 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3181 
3182 	/* Initialize MACCFG2. */
3183 	tempval = MACCFG2_INIT_SETTINGS;
3184 
3185 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3186 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3187 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3188 	 */
3189 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3190 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3191 
3192 	gfar_write(&regs->maccfg2, tempval);
3193 
3194 	/* Clear mac addr hash registers */
3195 	gfar_write(&regs->igaddr0, 0);
3196 	gfar_write(&regs->igaddr1, 0);
3197 	gfar_write(&regs->igaddr2, 0);
3198 	gfar_write(&regs->igaddr3, 0);
3199 	gfar_write(&regs->igaddr4, 0);
3200 	gfar_write(&regs->igaddr5, 0);
3201 	gfar_write(&regs->igaddr6, 0);
3202 	gfar_write(&regs->igaddr7, 0);
3203 
3204 	gfar_write(&regs->gaddr0, 0);
3205 	gfar_write(&regs->gaddr1, 0);
3206 	gfar_write(&regs->gaddr2, 0);
3207 	gfar_write(&regs->gaddr3, 0);
3208 	gfar_write(&regs->gaddr4, 0);
3209 	gfar_write(&regs->gaddr5, 0);
3210 	gfar_write(&regs->gaddr6, 0);
3211 	gfar_write(&regs->gaddr7, 0);
3212 
3213 	if (priv->extended_hash)
3214 		gfar_clear_exact_match(priv->ndev);
3215 
3216 	gfar_mac_rx_config(priv);
3217 
3218 	gfar_mac_tx_config(priv);
3219 
3220 	gfar_set_mac_address(priv->ndev);
3221 
3222 	gfar_set_multi(priv->ndev);
3223 
3224 	/* clear ievent and imask before configuring coalescing */
3225 	gfar_ints_disable(priv);
3226 
3227 	/* Configure the coalescing support */
3228 	gfar_configure_coalescing_all(priv);
3229 }
3230 
3231 static void gfar_hw_init(struct gfar_private *priv)
3232 {
3233 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3234 	u32 attrs;
3235 
3236 	/* Stop the DMA engine now, in case it was running before
3237 	 * (The firmware could have used it, and left it running).
3238 	 */
3239 	gfar_halt(priv);
3240 
3241 	gfar_mac_reset(priv);
3242 
3243 	/* Zero out the rmon mib registers if it has them */
3244 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3245 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3246 
3247 		/* Mask off the CAM interrupts */
3248 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3249 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3250 	}
3251 
3252 	/* Initialize ECNTRL */
3253 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3254 
3255 	/* Set the extraction length and index */
3256 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3257 		ATTRELI_EI(priv->rx_stash_index);
3258 
3259 	gfar_write(&regs->attreli, attrs);
3260 
3261 	/* Start with defaults, and add stashing
3262 	 * depending on driver parameters
3263 	 */
3264 	attrs = ATTR_INIT_SETTINGS;
3265 
3266 	if (priv->bd_stash_en)
3267 		attrs |= ATTR_BDSTASH;
3268 
3269 	if (priv->rx_stash_size != 0)
3270 		attrs |= ATTR_BUFSTASH;
3271 
3272 	gfar_write(&regs->attr, attrs);
3273 
3274 	/* FIFO configs */
3275 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3276 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3277 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3278 
3279 	/* Program the interrupt steering regs, only for MG devices */
3280 	if (priv->num_grps > 1)
3281 		gfar_write_isrg(priv);
3282 }
3283 
3284 static const struct net_device_ops gfar_netdev_ops = {
3285 	.ndo_open = gfar_enet_open,
3286 	.ndo_start_xmit = gfar_start_xmit,
3287 	.ndo_stop = gfar_close,
3288 	.ndo_change_mtu = gfar_change_mtu,
3289 	.ndo_set_features = gfar_set_features,
3290 	.ndo_set_rx_mode = gfar_set_multi,
3291 	.ndo_tx_timeout = gfar_timeout,
3292 	.ndo_do_ioctl = gfar_ioctl,
3293 	.ndo_get_stats = gfar_get_stats,
3294 	.ndo_change_carrier = fixed_phy_change_carrier,
3295 	.ndo_set_mac_address = gfar_set_mac_addr,
3296 	.ndo_validate_addr = eth_validate_addr,
3297 #ifdef CONFIG_NET_POLL_CONTROLLER
3298 	.ndo_poll_controller = gfar_netpoll,
3299 #endif
3300 };
3301 
3302 /* Set up the ethernet device structure, private data,
3303  * and anything else we need before we start
3304  */
3305 static int gfar_probe(struct platform_device *ofdev)
3306 {
3307 	struct device_node *np = ofdev->dev.of_node;
3308 	struct net_device *dev = NULL;
3309 	struct gfar_private *priv = NULL;
3310 	int err = 0, i;
3311 
3312 	err = gfar_of_init(ofdev, &dev);
3313 
3314 	if (err)
3315 		return err;
3316 
3317 	priv = netdev_priv(dev);
3318 	priv->ndev = dev;
3319 	priv->ofdev = ofdev;
3320 	priv->dev = &ofdev->dev;
3321 	SET_NETDEV_DEV(dev, &ofdev->dev);
3322 
3323 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3324 
3325 	platform_set_drvdata(ofdev, priv);
3326 
3327 	gfar_detect_errata(priv);
3328 
3329 	/* Set the dev->base_addr to the gfar reg region */
3330 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3331 
3332 	/* Fill in the dev structure */
3333 	dev->watchdog_timeo = TX_TIMEOUT;
3334 	/* MTU range: 50 - 9586 */
3335 	dev->mtu = 1500;
3336 	dev->min_mtu = 50;
3337 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3338 	dev->netdev_ops = &gfar_netdev_ops;
3339 	dev->ethtool_ops = &gfar_ethtool_ops;
3340 
3341 	/* Register for napi ...We are registering NAPI for each grp */
3342 	for (i = 0; i < priv->num_grps; i++) {
3343 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3344 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3345 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3346 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3347 				       gfar_poll_tx_sq, 2);
3348 		} else {
3349 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3350 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3351 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3352 				       gfar_poll_tx, 2);
3353 		}
3354 	}
3355 
3356 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3357 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3358 				   NETIF_F_RXCSUM;
3359 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3360 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3361 	}
3362 
3363 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3364 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3365 				    NETIF_F_HW_VLAN_CTAG_RX;
3366 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3367 	}
3368 
3369 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3370 
3371 	gfar_init_addr_hash_table(priv);
3372 
3373 	/* Insert receive time stamps into padding alignment bytes, and
3374 	 * plus 2 bytes padding to ensure the cpu alignment.
3375 	 */
3376 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3377 		priv->padding = 8 + DEFAULT_PADDING;
3378 
3379 	if (dev->features & NETIF_F_IP_CSUM ||
3380 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3381 		dev->needed_headroom = GMAC_FCB_LEN;
3382 
3383 	/* Initializing some of the rx/tx queue level parameters */
3384 	for (i = 0; i < priv->num_tx_queues; i++) {
3385 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3386 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3387 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3388 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3389 	}
3390 
3391 	for (i = 0; i < priv->num_rx_queues; i++) {
3392 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3393 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3394 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3395 	}
3396 
3397 	/* Always enable rx filer if available */
3398 	priv->rx_filer_enable =
3399 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3400 	/* Enable most messages by default */
3401 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3402 	/* use pritority h/w tx queue scheduling for single queue devices */
3403 	if (priv->num_tx_queues == 1)
3404 		priv->prio_sched_en = 1;
3405 
3406 	set_bit(GFAR_DOWN, &priv->state);
3407 
3408 	gfar_hw_init(priv);
3409 
3410 	/* Carrier starts down, phylib will bring it up */
3411 	netif_carrier_off(dev);
3412 
3413 	err = register_netdev(dev);
3414 
3415 	if (err) {
3416 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3417 		goto register_fail;
3418 	}
3419 
3420 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3421 		priv->wol_supported |= GFAR_WOL_MAGIC;
3422 
3423 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3424 	    priv->rx_filer_enable)
3425 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3426 
3427 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3428 
3429 	/* fill out IRQ number and name fields */
3430 	for (i = 0; i < priv->num_grps; i++) {
3431 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3432 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3433 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3434 				dev->name, "_g", '0' + i, "_tx");
3435 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3436 				dev->name, "_g", '0' + i, "_rx");
3437 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3438 				dev->name, "_g", '0' + i, "_er");
3439 		} else
3440 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3441 	}
3442 
3443 	/* Initialize the filer table */
3444 	gfar_init_filer_table(priv);
3445 
3446 	/* Print out the device info */
3447 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3448 
3449 	/* Even more device info helps when determining which kernel
3450 	 * provided which set of benchmarks.
3451 	 */
3452 	netdev_info(dev, "Running with NAPI enabled\n");
3453 	for (i = 0; i < priv->num_rx_queues; i++)
3454 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3455 			    i, priv->rx_queue[i]->rx_ring_size);
3456 	for (i = 0; i < priv->num_tx_queues; i++)
3457 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3458 			    i, priv->tx_queue[i]->tx_ring_size);
3459 
3460 	return 0;
3461 
3462 register_fail:
3463 	if (of_phy_is_fixed_link(np))
3464 		of_phy_deregister_fixed_link(np);
3465 	unmap_group_regs(priv);
3466 	gfar_free_rx_queues(priv);
3467 	gfar_free_tx_queues(priv);
3468 	of_node_put(priv->phy_node);
3469 	of_node_put(priv->tbi_node);
3470 	free_gfar_dev(priv);
3471 	return err;
3472 }
3473 
3474 static int gfar_remove(struct platform_device *ofdev)
3475 {
3476 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3477 	struct device_node *np = ofdev->dev.of_node;
3478 
3479 	of_node_put(priv->phy_node);
3480 	of_node_put(priv->tbi_node);
3481 
3482 	unregister_netdev(priv->ndev);
3483 
3484 	if (of_phy_is_fixed_link(np))
3485 		of_phy_deregister_fixed_link(np);
3486 
3487 	unmap_group_regs(priv);
3488 	gfar_free_rx_queues(priv);
3489 	gfar_free_tx_queues(priv);
3490 	free_gfar_dev(priv);
3491 
3492 	return 0;
3493 }
3494 
3495 #ifdef CONFIG_PM
3496 
3497 static void __gfar_filer_disable(struct gfar_private *priv)
3498 {
3499 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3500 	u32 temp;
3501 
3502 	temp = gfar_read(&regs->rctrl);
3503 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3504 	gfar_write(&regs->rctrl, temp);
3505 }
3506 
3507 static void __gfar_filer_enable(struct gfar_private *priv)
3508 {
3509 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3510 	u32 temp;
3511 
3512 	temp = gfar_read(&regs->rctrl);
3513 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3514 	gfar_write(&regs->rctrl, temp);
3515 }
3516 
3517 /* Filer rules implementing wol capabilities */
3518 static void gfar_filer_config_wol(struct gfar_private *priv)
3519 {
3520 	unsigned int i;
3521 	u32 rqfcr;
3522 
3523 	__gfar_filer_disable(priv);
3524 
3525 	/* clear the filer table, reject any packet by default */
3526 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3527 	for (i = 0; i <= MAX_FILER_IDX; i++)
3528 		gfar_write_filer(priv, i, rqfcr, 0);
3529 
3530 	i = 0;
3531 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3532 		/* unicast packet, accept it */
3533 		struct net_device *ndev = priv->ndev;
3534 		/* get the default rx queue index */
3535 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3536 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3537 				    (ndev->dev_addr[1] << 8) |
3538 				     ndev->dev_addr[2];
3539 
3540 		rqfcr = (qindex << 10) | RQFCR_AND |
3541 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3542 
3543 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3544 
3545 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3546 				(ndev->dev_addr[4] << 8) |
3547 				 ndev->dev_addr[5];
3548 		rqfcr = (qindex << 10) | RQFCR_GPI |
3549 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3550 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3551 	}
3552 
3553 	__gfar_filer_enable(priv);
3554 }
3555 
3556 static void gfar_filer_restore_table(struct gfar_private *priv)
3557 {
3558 	u32 rqfcr, rqfpr;
3559 	unsigned int i;
3560 
3561 	__gfar_filer_disable(priv);
3562 
3563 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3564 		rqfcr = priv->ftp_rqfcr[i];
3565 		rqfpr = priv->ftp_rqfpr[i];
3566 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3567 	}
3568 
3569 	__gfar_filer_enable(priv);
3570 }
3571 
3572 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3573 static void gfar_start_wol_filer(struct gfar_private *priv)
3574 {
3575 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3576 	u32 tempval;
3577 	int i = 0;
3578 
3579 	/* Enable Rx hw queues */
3580 	gfar_write(&regs->rqueue, priv->rqueue);
3581 
3582 	/* Initialize DMACTRL to have WWR and WOP */
3583 	tempval = gfar_read(&regs->dmactrl);
3584 	tempval |= DMACTRL_INIT_SETTINGS;
3585 	gfar_write(&regs->dmactrl, tempval);
3586 
3587 	/* Make sure we aren't stopped */
3588 	tempval = gfar_read(&regs->dmactrl);
3589 	tempval &= ~DMACTRL_GRS;
3590 	gfar_write(&regs->dmactrl, tempval);
3591 
3592 	for (i = 0; i < priv->num_grps; i++) {
3593 		regs = priv->gfargrp[i].regs;
3594 		/* Clear RHLT, so that the DMA starts polling now */
3595 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3596 		/* enable the Filer General Purpose Interrupt */
3597 		gfar_write(&regs->imask, IMASK_FGPI);
3598 	}
3599 
3600 	/* Enable Rx DMA */
3601 	tempval = gfar_read(&regs->maccfg1);
3602 	tempval |= MACCFG1_RX_EN;
3603 	gfar_write(&regs->maccfg1, tempval);
3604 }
3605 
3606 static int gfar_suspend(struct device *dev)
3607 {
3608 	struct gfar_private *priv = dev_get_drvdata(dev);
3609 	struct net_device *ndev = priv->ndev;
3610 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3611 	u32 tempval;
3612 	u16 wol = priv->wol_opts;
3613 
3614 	if (!netif_running(ndev))
3615 		return 0;
3616 
3617 	disable_napi(priv);
3618 	netif_tx_lock(ndev);
3619 	netif_device_detach(ndev);
3620 	netif_tx_unlock(ndev);
3621 
3622 	gfar_halt(priv);
3623 
3624 	if (wol & GFAR_WOL_MAGIC) {
3625 		/* Enable interrupt on Magic Packet */
3626 		gfar_write(&regs->imask, IMASK_MAG);
3627 
3628 		/* Enable Magic Packet mode */
3629 		tempval = gfar_read(&regs->maccfg2);
3630 		tempval |= MACCFG2_MPEN;
3631 		gfar_write(&regs->maccfg2, tempval);
3632 
3633 		/* re-enable the Rx block */
3634 		tempval = gfar_read(&regs->maccfg1);
3635 		tempval |= MACCFG1_RX_EN;
3636 		gfar_write(&regs->maccfg1, tempval);
3637 
3638 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3639 		gfar_filer_config_wol(priv);
3640 		gfar_start_wol_filer(priv);
3641 
3642 	} else {
3643 		phy_stop(ndev->phydev);
3644 	}
3645 
3646 	return 0;
3647 }
3648 
3649 static int gfar_resume(struct device *dev)
3650 {
3651 	struct gfar_private *priv = dev_get_drvdata(dev);
3652 	struct net_device *ndev = priv->ndev;
3653 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3654 	u32 tempval;
3655 	u16 wol = priv->wol_opts;
3656 
3657 	if (!netif_running(ndev))
3658 		return 0;
3659 
3660 	if (wol & GFAR_WOL_MAGIC) {
3661 		/* Disable Magic Packet mode */
3662 		tempval = gfar_read(&regs->maccfg2);
3663 		tempval &= ~MACCFG2_MPEN;
3664 		gfar_write(&regs->maccfg2, tempval);
3665 
3666 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3667 		/* need to stop rx only, tx is already down */
3668 		gfar_halt(priv);
3669 		gfar_filer_restore_table(priv);
3670 
3671 	} else {
3672 		phy_start(ndev->phydev);
3673 	}
3674 
3675 	gfar_start(priv);
3676 
3677 	netif_device_attach(ndev);
3678 	enable_napi(priv);
3679 
3680 	return 0;
3681 }
3682 
3683 static int gfar_restore(struct device *dev)
3684 {
3685 	struct gfar_private *priv = dev_get_drvdata(dev);
3686 	struct net_device *ndev = priv->ndev;
3687 
3688 	if (!netif_running(ndev)) {
3689 		netif_device_attach(ndev);
3690 
3691 		return 0;
3692 	}
3693 
3694 	gfar_init_bds(ndev);
3695 
3696 	gfar_mac_reset(priv);
3697 
3698 	gfar_init_tx_rx_base(priv);
3699 
3700 	gfar_start(priv);
3701 
3702 	priv->oldlink = 0;
3703 	priv->oldspeed = 0;
3704 	priv->oldduplex = -1;
3705 
3706 	if (ndev->phydev)
3707 		phy_start(ndev->phydev);
3708 
3709 	netif_device_attach(ndev);
3710 	enable_napi(priv);
3711 
3712 	return 0;
3713 }
3714 
3715 static const struct dev_pm_ops gfar_pm_ops = {
3716 	.suspend = gfar_suspend,
3717 	.resume = gfar_resume,
3718 	.freeze = gfar_suspend,
3719 	.thaw = gfar_resume,
3720 	.restore = gfar_restore,
3721 };
3722 
3723 #define GFAR_PM_OPS (&gfar_pm_ops)
3724 
3725 #else
3726 
3727 #define GFAR_PM_OPS NULL
3728 
3729 #endif
3730 
3731 static const struct of_device_id gfar_match[] =
3732 {
3733 	{
3734 		.type = "network",
3735 		.compatible = "gianfar",
3736 	},
3737 	{
3738 		.compatible = "fsl,etsec2",
3739 	},
3740 	{},
3741 };
3742 MODULE_DEVICE_TABLE(of, gfar_match);
3743 
3744 /* Structure for a device driver */
3745 static struct platform_driver gfar_driver = {
3746 	.driver = {
3747 		.name = "fsl-gianfar",
3748 		.pm = GFAR_PM_OPS,
3749 		.of_match_table = gfar_match,
3750 	},
3751 	.probe = gfar_probe,
3752 	.remove = gfar_remove,
3753 };
3754 
3755 module_platform_driver(gfar_driver);
3756