1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (!gfar_irq(grp, TX)->irq ||
651 		    !gfar_irq(grp, RX)->irq ||
652 		    !gfar_irq(grp, ER)->irq)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	u32 stash_len = 0;
742 	u32 stash_idx = 0;
743 	unsigned int num_tx_qs, num_rx_qs;
744 	unsigned short mode, poll_mode;
745 
746 	if (!np)
747 		return -ENODEV;
748 
749 	if (of_device_is_compatible(np, "fsl,etsec2")) {
750 		mode = MQ_MG_MODE;
751 		poll_mode = GFAR_SQ_POLLING;
752 	} else {
753 		mode = SQ_SG_MODE;
754 		poll_mode = GFAR_SQ_POLLING;
755 	}
756 
757 	if (mode == SQ_SG_MODE) {
758 		num_tx_qs = 1;
759 		num_rx_qs = 1;
760 	} else { /* MQ_MG_MODE */
761 		/* get the actual number of supported groups */
762 		unsigned int num_grps = gfar_of_group_count(np);
763 
764 		if (num_grps == 0 || num_grps > MAXGROUPS) {
765 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 				num_grps);
767 			pr_err("Cannot do alloc_etherdev, aborting\n");
768 			return -EINVAL;
769 		}
770 
771 		if (poll_mode == GFAR_SQ_POLLING) {
772 			num_tx_qs = num_grps; /* one txq per int group */
773 			num_rx_qs = num_grps; /* one rxq per int group */
774 		} else { /* GFAR_MQ_POLLING */
775 			u32 tx_queues, rx_queues;
776 			int ret;
777 
778 			/* parse the num of HW tx and rx queues */
779 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 						   &tx_queues);
781 			num_tx_qs = ret ? 1 : tx_queues;
782 
783 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 						   &rx_queues);
785 			num_rx_qs = ret ? 1 : rx_queues;
786 		}
787 	}
788 
789 	if (num_tx_qs > MAX_TX_QS) {
790 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 		       num_tx_qs, MAX_TX_QS);
792 		pr_err("Cannot do alloc_etherdev, aborting\n");
793 		return -EINVAL;
794 	}
795 
796 	if (num_rx_qs > MAX_RX_QS) {
797 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 		       num_rx_qs, MAX_RX_QS);
799 		pr_err("Cannot do alloc_etherdev, aborting\n");
800 		return -EINVAL;
801 	}
802 
803 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 	dev = *pdev;
805 	if (NULL == dev)
806 		return -ENOMEM;
807 
808 	priv = netdev_priv(dev);
809 	priv->ndev = dev;
810 
811 	priv->mode = mode;
812 	priv->poll_mode = poll_mode;
813 
814 	priv->num_tx_queues = num_tx_qs;
815 	netif_set_real_num_rx_queues(dev, num_rx_qs);
816 	priv->num_rx_queues = num_rx_qs;
817 
818 	err = gfar_alloc_tx_queues(priv);
819 	if (err)
820 		goto tx_alloc_failed;
821 
822 	err = gfar_alloc_rx_queues(priv);
823 	if (err)
824 		goto rx_alloc_failed;
825 
826 	err = of_property_read_string(np, "model", &model);
827 	if (err) {
828 		pr_err("Device model property missing, aborting\n");
829 		goto rx_alloc_failed;
830 	}
831 
832 	/* Init Rx queue filer rule set linked list */
833 	INIT_LIST_HEAD(&priv->rx_list.list);
834 	priv->rx_list.count = 0;
835 	mutex_init(&priv->rx_queue_access);
836 
837 	for (i = 0; i < MAXGROUPS; i++)
838 		priv->gfargrp[i].regs = NULL;
839 
840 	/* Parse and initialize group specific information */
841 	if (priv->mode == MQ_MG_MODE) {
842 		for_each_available_child_of_node(np, child) {
843 			if (of_node_cmp(child->name, "queue-group"))
844 				continue;
845 
846 			err = gfar_parse_group(child, priv, model);
847 			if (err)
848 				goto err_grp_init;
849 		}
850 	} else { /* SQ_SG_MODE */
851 		err = gfar_parse_group(np, priv, model);
852 		if (err)
853 			goto err_grp_init;
854 	}
855 
856 	if (of_property_read_bool(np, "bd-stash")) {
857 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 		priv->bd_stash_en = 1;
859 	}
860 
861 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862 
863 	if (err == 0)
864 		priv->rx_stash_size = stash_len;
865 
866 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867 
868 	if (err == 0)
869 		priv->rx_stash_index = stash_idx;
870 
871 	if (stash_len || stash_idx)
872 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873 
874 	mac_addr = of_get_mac_address(np);
875 
876 	if (mac_addr)
877 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878 
879 	if (model && !strcasecmp(model, "TSEC"))
880 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 				     FSL_GIANFAR_DEV_HAS_COALESCE |
882 				     FSL_GIANFAR_DEV_HAS_RMON |
883 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884 
885 	if (model && !strcasecmp(model, "eTSEC"))
886 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 				     FSL_GIANFAR_DEV_HAS_COALESCE |
888 				     FSL_GIANFAR_DEV_HAS_RMON |
889 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 				     FSL_GIANFAR_DEV_HAS_CSUM |
891 				     FSL_GIANFAR_DEV_HAS_VLAN |
892 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 				     FSL_GIANFAR_DEV_HAS_TIMER |
895 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
896 
897 	err = of_property_read_string(np, "phy-connection-type", &ctype);
898 
899 	/* We only care about rgmii-id.  The rest are autodetected */
900 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
901 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902 	else
903 		priv->interface = PHY_INTERFACE_MODE_MII;
904 
905 	if (of_find_property(np, "fsl,magic-packet", NULL))
906 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907 
908 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
909 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910 
911 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912 
913 	/* In the case of a fixed PHY, the DT node associated
914 	 * to the PHY is the Ethernet MAC DT node.
915 	 */
916 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917 		err = of_phy_register_fixed_link(np);
918 		if (err)
919 			goto err_grp_init;
920 
921 		priv->phy_node = of_node_get(np);
922 	}
923 
924 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
925 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926 
927 	return 0;
928 
929 err_grp_init:
930 	unmap_group_regs(priv);
931 rx_alloc_failed:
932 	gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934 	gfar_free_tx_queues(priv);
935 	free_gfar_dev(priv);
936 	return err;
937 }
938 
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941 	struct hwtstamp_config config;
942 	struct gfar_private *priv = netdev_priv(netdev);
943 
944 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945 		return -EFAULT;
946 
947 	/* reserved for future extensions */
948 	if (config.flags)
949 		return -EINVAL;
950 
951 	switch (config.tx_type) {
952 	case HWTSTAMP_TX_OFF:
953 		priv->hwts_tx_en = 0;
954 		break;
955 	case HWTSTAMP_TX_ON:
956 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957 			return -ERANGE;
958 		priv->hwts_tx_en = 1;
959 		break;
960 	default:
961 		return -ERANGE;
962 	}
963 
964 	switch (config.rx_filter) {
965 	case HWTSTAMP_FILTER_NONE:
966 		if (priv->hwts_rx_en) {
967 			priv->hwts_rx_en = 0;
968 			reset_gfar(netdev);
969 		}
970 		break;
971 	default:
972 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973 			return -ERANGE;
974 		if (!priv->hwts_rx_en) {
975 			priv->hwts_rx_en = 1;
976 			reset_gfar(netdev);
977 		}
978 		config.rx_filter = HWTSTAMP_FILTER_ALL;
979 		break;
980 	}
981 
982 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983 		-EFAULT : 0;
984 }
985 
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988 	struct hwtstamp_config config;
989 	struct gfar_private *priv = netdev_priv(netdev);
990 
991 	config.flags = 0;
992 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993 	config.rx_filter = (priv->hwts_rx_en ?
994 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995 
996 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997 		-EFAULT : 0;
998 }
999 
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002 	struct phy_device *phydev = dev->phydev;
1003 
1004 	if (!netif_running(dev))
1005 		return -EINVAL;
1006 
1007 	if (cmd == SIOCSHWTSTAMP)
1008 		return gfar_hwtstamp_set(dev, rq);
1009 	if (cmd == SIOCGHWTSTAMP)
1010 		return gfar_hwtstamp_get(dev, rq);
1011 
1012 	if (!phydev)
1013 		return -ENODEV;
1014 
1015 	return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017 
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019 				   u32 class)
1020 {
1021 	u32 rqfpr = FPR_FILER_MASK;
1022 	u32 rqfcr = 0x0;
1023 
1024 	rqfar--;
1025 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026 	priv->ftp_rqfpr[rqfar] = rqfpr;
1027 	priv->ftp_rqfcr[rqfar] = rqfcr;
1028 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029 
1030 	rqfar--;
1031 	rqfcr = RQFCR_CMP_NOMATCH;
1032 	priv->ftp_rqfpr[rqfar] = rqfpr;
1033 	priv->ftp_rqfcr[rqfar] = rqfcr;
1034 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035 
1036 	rqfar--;
1037 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038 	rqfpr = class;
1039 	priv->ftp_rqfcr[rqfar] = rqfcr;
1040 	priv->ftp_rqfpr[rqfar] = rqfpr;
1041 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042 
1043 	rqfar--;
1044 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045 	rqfpr = class;
1046 	priv->ftp_rqfcr[rqfar] = rqfcr;
1047 	priv->ftp_rqfpr[rqfar] = rqfpr;
1048 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049 
1050 	return rqfar;
1051 }
1052 
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055 	int i = 0x0;
1056 	u32 rqfar = MAX_FILER_IDX;
1057 	u32 rqfcr = 0x0;
1058 	u32 rqfpr = FPR_FILER_MASK;
1059 
1060 	/* Default rule */
1061 	rqfcr = RQFCR_CMP_MATCH;
1062 	priv->ftp_rqfcr[rqfar] = rqfcr;
1063 	priv->ftp_rqfpr[rqfar] = rqfpr;
1064 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065 
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072 
1073 	/* cur_filer_idx indicated the first non-masked rule */
1074 	priv->cur_filer_idx = rqfar;
1075 
1076 	/* Rest are masked rules */
1077 	rqfcr = RQFCR_CMP_NOMATCH;
1078 	for (i = 0; i < rqfar; i++) {
1079 		priv->ftp_rqfcr[i] = rqfcr;
1080 		priv->ftp_rqfpr[i] = rqfpr;
1081 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082 	}
1083 }
1084 
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088 	unsigned int pvr = mfspr(SPRN_PVR);
1089 	unsigned int svr = mfspr(SPRN_SVR);
1090 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091 	unsigned int rev = svr & 0xffff;
1092 
1093 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096 		priv->errata |= GFAR_ERRATA_74;
1097 
1098 	/* MPC8313 and MPC837x all rev */
1099 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101 		priv->errata |= GFAR_ERRATA_76;
1102 
1103 	/* MPC8313 Rev < 2.0 */
1104 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105 		priv->errata |= GFAR_ERRATA_12;
1106 }
1107 
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110 	unsigned int svr = mfspr(SPRN_SVR);
1111 
1112 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113 		priv->errata |= GFAR_ERRATA_12;
1114 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121 
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124 	struct device *dev = &priv->ofdev->dev;
1125 
1126 	/* no plans to fix */
1127 	priv->errata |= GFAR_ERRATA_A002;
1128 
1129 #ifdef CONFIG_PPC
1130 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131 		__gfar_detect_errata_85xx(priv);
1132 	else /* non-mpc85xx parts, i.e. e300 core based */
1133 		__gfar_detect_errata_83xx(priv);
1134 #endif
1135 
1136 	if (priv->errata)
1137 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138 			 priv->errata);
1139 }
1140 
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144 	u32 tempval;
1145 
1146 	/* Reset MAC layer */
1147 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148 
1149 	/* We need to delay at least 3 TX clocks */
1150 	udelay(3);
1151 
1152 	/* the soft reset bit is not self-resetting, so we need to
1153 	 * clear it before resuming normal operation
1154 	 */
1155 	gfar_write(&regs->maccfg1, 0);
1156 
1157 	udelay(3);
1158 
1159 	gfar_rx_offload_en(priv);
1160 
1161 	/* Initialize the max receive frame/buffer lengths */
1162 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164 
1165 	/* Initialize the Minimum Frame Length Register */
1166 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167 
1168 	/* Initialize MACCFG2. */
1169 	tempval = MACCFG2_INIT_SETTINGS;
1170 
1171 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174 	 */
1175 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177 
1178 	gfar_write(&regs->maccfg2, tempval);
1179 
1180 	/* Clear mac addr hash registers */
1181 	gfar_write(&regs->igaddr0, 0);
1182 	gfar_write(&regs->igaddr1, 0);
1183 	gfar_write(&regs->igaddr2, 0);
1184 	gfar_write(&regs->igaddr3, 0);
1185 	gfar_write(&regs->igaddr4, 0);
1186 	gfar_write(&regs->igaddr5, 0);
1187 	gfar_write(&regs->igaddr6, 0);
1188 	gfar_write(&regs->igaddr7, 0);
1189 
1190 	gfar_write(&regs->gaddr0, 0);
1191 	gfar_write(&regs->gaddr1, 0);
1192 	gfar_write(&regs->gaddr2, 0);
1193 	gfar_write(&regs->gaddr3, 0);
1194 	gfar_write(&regs->gaddr4, 0);
1195 	gfar_write(&regs->gaddr5, 0);
1196 	gfar_write(&regs->gaddr6, 0);
1197 	gfar_write(&regs->gaddr7, 0);
1198 
1199 	if (priv->extended_hash)
1200 		gfar_clear_exact_match(priv->ndev);
1201 
1202 	gfar_mac_rx_config(priv);
1203 
1204 	gfar_mac_tx_config(priv);
1205 
1206 	gfar_set_mac_address(priv->ndev);
1207 
1208 	gfar_set_multi(priv->ndev);
1209 
1210 	/* clear ievent and imask before configuring coalescing */
1211 	gfar_ints_disable(priv);
1212 
1213 	/* Configure the coalescing support */
1214 	gfar_configure_coalescing_all(priv);
1215 }
1216 
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220 	u32 attrs;
1221 
1222 	/* Stop the DMA engine now, in case it was running before
1223 	 * (The firmware could have used it, and left it running).
1224 	 */
1225 	gfar_halt(priv);
1226 
1227 	gfar_mac_reset(priv);
1228 
1229 	/* Zero out the rmon mib registers if it has them */
1230 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232 
1233 		/* Mask off the CAM interrupts */
1234 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236 	}
1237 
1238 	/* Initialize ECNTRL */
1239 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240 
1241 	/* Set the extraction length and index */
1242 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243 		ATTRELI_EI(priv->rx_stash_index);
1244 
1245 	gfar_write(&regs->attreli, attrs);
1246 
1247 	/* Start with defaults, and add stashing
1248 	 * depending on driver parameters
1249 	 */
1250 	attrs = ATTR_INIT_SETTINGS;
1251 
1252 	if (priv->bd_stash_en)
1253 		attrs |= ATTR_BDSTASH;
1254 
1255 	if (priv->rx_stash_size != 0)
1256 		attrs |= ATTR_BUFSTASH;
1257 
1258 	gfar_write(&regs->attr, attrs);
1259 
1260 	/* FIFO configs */
1261 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264 
1265 	/* Program the interrupt steering regs, only for MG devices */
1266 	if (priv->num_grps > 1)
1267 		gfar_write_isrg(priv);
1268 }
1269 
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 
1274 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275 		priv->extended_hash = 1;
1276 		priv->hash_width = 9;
1277 
1278 		priv->hash_regs[0] = &regs->igaddr0;
1279 		priv->hash_regs[1] = &regs->igaddr1;
1280 		priv->hash_regs[2] = &regs->igaddr2;
1281 		priv->hash_regs[3] = &regs->igaddr3;
1282 		priv->hash_regs[4] = &regs->igaddr4;
1283 		priv->hash_regs[5] = &regs->igaddr5;
1284 		priv->hash_regs[6] = &regs->igaddr6;
1285 		priv->hash_regs[7] = &regs->igaddr7;
1286 		priv->hash_regs[8] = &regs->gaddr0;
1287 		priv->hash_regs[9] = &regs->gaddr1;
1288 		priv->hash_regs[10] = &regs->gaddr2;
1289 		priv->hash_regs[11] = &regs->gaddr3;
1290 		priv->hash_regs[12] = &regs->gaddr4;
1291 		priv->hash_regs[13] = &regs->gaddr5;
1292 		priv->hash_regs[14] = &regs->gaddr6;
1293 		priv->hash_regs[15] = &regs->gaddr7;
1294 
1295 	} else {
1296 		priv->extended_hash = 0;
1297 		priv->hash_width = 8;
1298 
1299 		priv->hash_regs[0] = &regs->gaddr0;
1300 		priv->hash_regs[1] = &regs->gaddr1;
1301 		priv->hash_regs[2] = &regs->gaddr2;
1302 		priv->hash_regs[3] = &regs->gaddr3;
1303 		priv->hash_regs[4] = &regs->gaddr4;
1304 		priv->hash_regs[5] = &regs->gaddr5;
1305 		priv->hash_regs[6] = &regs->gaddr6;
1306 		priv->hash_regs[7] = &regs->gaddr7;
1307 	}
1308 }
1309 
1310 /* Set up the ethernet device structure, private data,
1311  * and anything else we need before we start
1312  */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315 	struct device_node *np = ofdev->dev.of_node;
1316 	struct net_device *dev = NULL;
1317 	struct gfar_private *priv = NULL;
1318 	int err = 0, i;
1319 
1320 	err = gfar_of_init(ofdev, &dev);
1321 
1322 	if (err)
1323 		return err;
1324 
1325 	priv = netdev_priv(dev);
1326 	priv->ndev = dev;
1327 	priv->ofdev = ofdev;
1328 	priv->dev = &ofdev->dev;
1329 	SET_NETDEV_DEV(dev, &ofdev->dev);
1330 
1331 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1332 
1333 	platform_set_drvdata(ofdev, priv);
1334 
1335 	gfar_detect_errata(priv);
1336 
1337 	/* Set the dev->base_addr to the gfar reg region */
1338 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339 
1340 	/* Fill in the dev structure */
1341 	dev->watchdog_timeo = TX_TIMEOUT;
1342 	/* MTU range: 50 - 9586 */
1343 	dev->mtu = 1500;
1344 	dev->min_mtu = 50;
1345 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346 	dev->netdev_ops = &gfar_netdev_ops;
1347 	dev->ethtool_ops = &gfar_ethtool_ops;
1348 
1349 	/* Register for napi ...We are registering NAPI for each grp */
1350 	for (i = 0; i < priv->num_grps; i++) {
1351 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1352 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355 				       gfar_poll_tx_sq, 2);
1356 		} else {
1357 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1359 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360 				       gfar_poll_tx, 2);
1361 		}
1362 	}
1363 
1364 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366 				   NETIF_F_RXCSUM;
1367 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369 	}
1370 
1371 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373 				    NETIF_F_HW_VLAN_CTAG_RX;
1374 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375 	}
1376 
1377 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378 
1379 	gfar_init_addr_hash_table(priv);
1380 
1381 	/* Insert receive time stamps into padding alignment bytes, and
1382 	 * plus 2 bytes padding to ensure the cpu alignment.
1383 	 */
1384 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385 		priv->padding = 8 + DEFAULT_PADDING;
1386 
1387 	if (dev->features & NETIF_F_IP_CSUM ||
1388 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389 		dev->needed_headroom = GMAC_FCB_LEN;
1390 
1391 	/* Initializing some of the rx/tx queue level parameters */
1392 	for (i = 0; i < priv->num_tx_queues; i++) {
1393 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1394 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1395 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1396 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1397 	}
1398 
1399 	for (i = 0; i < priv->num_rx_queues; i++) {
1400 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1401 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1402 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1403 	}
1404 
1405 	/* Always enable rx filer if available */
1406 	priv->rx_filer_enable =
1407 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1408 	/* Enable most messages by default */
1409 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1410 	/* use pritority h/w tx queue scheduling for single queue devices */
1411 	if (priv->num_tx_queues == 1)
1412 		priv->prio_sched_en = 1;
1413 
1414 	set_bit(GFAR_DOWN, &priv->state);
1415 
1416 	gfar_hw_init(priv);
1417 
1418 	/* Carrier starts down, phylib will bring it up */
1419 	netif_carrier_off(dev);
1420 
1421 	err = register_netdev(dev);
1422 
1423 	if (err) {
1424 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1425 		goto register_fail;
1426 	}
1427 
1428 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1429 		priv->wol_supported |= GFAR_WOL_MAGIC;
1430 
1431 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1432 	    priv->rx_filer_enable)
1433 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1434 
1435 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1436 
1437 	/* fill out IRQ number and name fields */
1438 	for (i = 0; i < priv->num_grps; i++) {
1439 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1440 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1441 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1442 				dev->name, "_g", '0' + i, "_tx");
1443 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1444 				dev->name, "_g", '0' + i, "_rx");
1445 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1446 				dev->name, "_g", '0' + i, "_er");
1447 		} else
1448 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1449 	}
1450 
1451 	/* Initialize the filer table */
1452 	gfar_init_filer_table(priv);
1453 
1454 	/* Print out the device info */
1455 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1456 
1457 	/* Even more device info helps when determining which kernel
1458 	 * provided which set of benchmarks.
1459 	 */
1460 	netdev_info(dev, "Running with NAPI enabled\n");
1461 	for (i = 0; i < priv->num_rx_queues; i++)
1462 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1463 			    i, priv->rx_queue[i]->rx_ring_size);
1464 	for (i = 0; i < priv->num_tx_queues; i++)
1465 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1466 			    i, priv->tx_queue[i]->tx_ring_size);
1467 
1468 	return 0;
1469 
1470 register_fail:
1471 	if (of_phy_is_fixed_link(np))
1472 		of_phy_deregister_fixed_link(np);
1473 	unmap_group_regs(priv);
1474 	gfar_free_rx_queues(priv);
1475 	gfar_free_tx_queues(priv);
1476 	of_node_put(priv->phy_node);
1477 	of_node_put(priv->tbi_node);
1478 	free_gfar_dev(priv);
1479 	return err;
1480 }
1481 
1482 static int gfar_remove(struct platform_device *ofdev)
1483 {
1484 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1485 	struct device_node *np = ofdev->dev.of_node;
1486 
1487 	of_node_put(priv->phy_node);
1488 	of_node_put(priv->tbi_node);
1489 
1490 	unregister_netdev(priv->ndev);
1491 
1492 	if (of_phy_is_fixed_link(np))
1493 		of_phy_deregister_fixed_link(np);
1494 
1495 	unmap_group_regs(priv);
1496 	gfar_free_rx_queues(priv);
1497 	gfar_free_tx_queues(priv);
1498 	free_gfar_dev(priv);
1499 
1500 	return 0;
1501 }
1502 
1503 #ifdef CONFIG_PM
1504 
1505 static void __gfar_filer_disable(struct gfar_private *priv)
1506 {
1507 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1508 	u32 temp;
1509 
1510 	temp = gfar_read(&regs->rctrl);
1511 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1512 	gfar_write(&regs->rctrl, temp);
1513 }
1514 
1515 static void __gfar_filer_enable(struct gfar_private *priv)
1516 {
1517 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1518 	u32 temp;
1519 
1520 	temp = gfar_read(&regs->rctrl);
1521 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1522 	gfar_write(&regs->rctrl, temp);
1523 }
1524 
1525 /* Filer rules implementing wol capabilities */
1526 static void gfar_filer_config_wol(struct gfar_private *priv)
1527 {
1528 	unsigned int i;
1529 	u32 rqfcr;
1530 
1531 	__gfar_filer_disable(priv);
1532 
1533 	/* clear the filer table, reject any packet by default */
1534 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1535 	for (i = 0; i <= MAX_FILER_IDX; i++)
1536 		gfar_write_filer(priv, i, rqfcr, 0);
1537 
1538 	i = 0;
1539 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1540 		/* unicast packet, accept it */
1541 		struct net_device *ndev = priv->ndev;
1542 		/* get the default rx queue index */
1543 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1544 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1545 				    (ndev->dev_addr[1] << 8) |
1546 				     ndev->dev_addr[2];
1547 
1548 		rqfcr = (qindex << 10) | RQFCR_AND |
1549 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1550 
1551 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1552 
1553 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1554 				(ndev->dev_addr[4] << 8) |
1555 				 ndev->dev_addr[5];
1556 		rqfcr = (qindex << 10) | RQFCR_GPI |
1557 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1558 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1559 	}
1560 
1561 	__gfar_filer_enable(priv);
1562 }
1563 
1564 static void gfar_filer_restore_table(struct gfar_private *priv)
1565 {
1566 	u32 rqfcr, rqfpr;
1567 	unsigned int i;
1568 
1569 	__gfar_filer_disable(priv);
1570 
1571 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1572 		rqfcr = priv->ftp_rqfcr[i];
1573 		rqfpr = priv->ftp_rqfpr[i];
1574 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1575 	}
1576 
1577 	__gfar_filer_enable(priv);
1578 }
1579 
1580 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1581 static void gfar_start_wol_filer(struct gfar_private *priv)
1582 {
1583 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584 	u32 tempval;
1585 	int i = 0;
1586 
1587 	/* Enable Rx hw queues */
1588 	gfar_write(&regs->rqueue, priv->rqueue);
1589 
1590 	/* Initialize DMACTRL to have WWR and WOP */
1591 	tempval = gfar_read(&regs->dmactrl);
1592 	tempval |= DMACTRL_INIT_SETTINGS;
1593 	gfar_write(&regs->dmactrl, tempval);
1594 
1595 	/* Make sure we aren't stopped */
1596 	tempval = gfar_read(&regs->dmactrl);
1597 	tempval &= ~DMACTRL_GRS;
1598 	gfar_write(&regs->dmactrl, tempval);
1599 
1600 	for (i = 0; i < priv->num_grps; i++) {
1601 		regs = priv->gfargrp[i].regs;
1602 		/* Clear RHLT, so that the DMA starts polling now */
1603 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1604 		/* enable the Filer General Purpose Interrupt */
1605 		gfar_write(&regs->imask, IMASK_FGPI);
1606 	}
1607 
1608 	/* Enable Rx DMA */
1609 	tempval = gfar_read(&regs->maccfg1);
1610 	tempval |= MACCFG1_RX_EN;
1611 	gfar_write(&regs->maccfg1, tempval);
1612 }
1613 
1614 static int gfar_suspend(struct device *dev)
1615 {
1616 	struct gfar_private *priv = dev_get_drvdata(dev);
1617 	struct net_device *ndev = priv->ndev;
1618 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619 	u32 tempval;
1620 	u16 wol = priv->wol_opts;
1621 
1622 	if (!netif_running(ndev))
1623 		return 0;
1624 
1625 	disable_napi(priv);
1626 	netif_tx_lock(ndev);
1627 	netif_device_detach(ndev);
1628 	netif_tx_unlock(ndev);
1629 
1630 	gfar_halt(priv);
1631 
1632 	if (wol & GFAR_WOL_MAGIC) {
1633 		/* Enable interrupt on Magic Packet */
1634 		gfar_write(&regs->imask, IMASK_MAG);
1635 
1636 		/* Enable Magic Packet mode */
1637 		tempval = gfar_read(&regs->maccfg2);
1638 		tempval |= MACCFG2_MPEN;
1639 		gfar_write(&regs->maccfg2, tempval);
1640 
1641 		/* re-enable the Rx block */
1642 		tempval = gfar_read(&regs->maccfg1);
1643 		tempval |= MACCFG1_RX_EN;
1644 		gfar_write(&regs->maccfg1, tempval);
1645 
1646 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1647 		gfar_filer_config_wol(priv);
1648 		gfar_start_wol_filer(priv);
1649 
1650 	} else {
1651 		phy_stop(ndev->phydev);
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 static int gfar_resume(struct device *dev)
1658 {
1659 	struct gfar_private *priv = dev_get_drvdata(dev);
1660 	struct net_device *ndev = priv->ndev;
1661 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662 	u32 tempval;
1663 	u16 wol = priv->wol_opts;
1664 
1665 	if (!netif_running(ndev))
1666 		return 0;
1667 
1668 	if (wol & GFAR_WOL_MAGIC) {
1669 		/* Disable Magic Packet mode */
1670 		tempval = gfar_read(&regs->maccfg2);
1671 		tempval &= ~MACCFG2_MPEN;
1672 		gfar_write(&regs->maccfg2, tempval);
1673 
1674 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1675 		/* need to stop rx only, tx is already down */
1676 		gfar_halt(priv);
1677 		gfar_filer_restore_table(priv);
1678 
1679 	} else {
1680 		phy_start(ndev->phydev);
1681 	}
1682 
1683 	gfar_start(priv);
1684 
1685 	netif_device_attach(ndev);
1686 	enable_napi(priv);
1687 
1688 	return 0;
1689 }
1690 
1691 static int gfar_restore(struct device *dev)
1692 {
1693 	struct gfar_private *priv = dev_get_drvdata(dev);
1694 	struct net_device *ndev = priv->ndev;
1695 
1696 	if (!netif_running(ndev)) {
1697 		netif_device_attach(ndev);
1698 
1699 		return 0;
1700 	}
1701 
1702 	gfar_init_bds(ndev);
1703 
1704 	gfar_mac_reset(priv);
1705 
1706 	gfar_init_tx_rx_base(priv);
1707 
1708 	gfar_start(priv);
1709 
1710 	priv->oldlink = 0;
1711 	priv->oldspeed = 0;
1712 	priv->oldduplex = -1;
1713 
1714 	if (ndev->phydev)
1715 		phy_start(ndev->phydev);
1716 
1717 	netif_device_attach(ndev);
1718 	enable_napi(priv);
1719 
1720 	return 0;
1721 }
1722 
1723 static const struct dev_pm_ops gfar_pm_ops = {
1724 	.suspend = gfar_suspend,
1725 	.resume = gfar_resume,
1726 	.freeze = gfar_suspend,
1727 	.thaw = gfar_resume,
1728 	.restore = gfar_restore,
1729 };
1730 
1731 #define GFAR_PM_OPS (&gfar_pm_ops)
1732 
1733 #else
1734 
1735 #define GFAR_PM_OPS NULL
1736 
1737 #endif
1738 
1739 /* Reads the controller's registers to determine what interface
1740  * connects it to the PHY.
1741  */
1742 static phy_interface_t gfar_get_interface(struct net_device *dev)
1743 {
1744 	struct gfar_private *priv = netdev_priv(dev);
1745 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1746 	u32 ecntrl;
1747 
1748 	ecntrl = gfar_read(&regs->ecntrl);
1749 
1750 	if (ecntrl & ECNTRL_SGMII_MODE)
1751 		return PHY_INTERFACE_MODE_SGMII;
1752 
1753 	if (ecntrl & ECNTRL_TBI_MODE) {
1754 		if (ecntrl & ECNTRL_REDUCED_MODE)
1755 			return PHY_INTERFACE_MODE_RTBI;
1756 		else
1757 			return PHY_INTERFACE_MODE_TBI;
1758 	}
1759 
1760 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1761 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1762 			return PHY_INTERFACE_MODE_RMII;
1763 		}
1764 		else {
1765 			phy_interface_t interface = priv->interface;
1766 
1767 			/* This isn't autodetected right now, so it must
1768 			 * be set by the device tree or platform code.
1769 			 */
1770 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1771 				return PHY_INTERFACE_MODE_RGMII_ID;
1772 
1773 			return PHY_INTERFACE_MODE_RGMII;
1774 		}
1775 	}
1776 
1777 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1778 		return PHY_INTERFACE_MODE_GMII;
1779 
1780 	return PHY_INTERFACE_MODE_MII;
1781 }
1782 
1783 
1784 /* Initializes driver's PHY state, and attaches to the PHY.
1785  * Returns 0 on success.
1786  */
1787 static int init_phy(struct net_device *dev)
1788 {
1789 	struct gfar_private *priv = netdev_priv(dev);
1790 	uint gigabit_support =
1791 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1792 		GFAR_SUPPORTED_GBIT : 0;
1793 	phy_interface_t interface;
1794 	struct phy_device *phydev;
1795 	struct ethtool_eee edata;
1796 
1797 	priv->oldlink = 0;
1798 	priv->oldspeed = 0;
1799 	priv->oldduplex = -1;
1800 
1801 	interface = gfar_get_interface(dev);
1802 
1803 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1804 				interface);
1805 	if (!phydev) {
1806 		dev_err(&dev->dev, "could not attach to PHY\n");
1807 		return -ENODEV;
1808 	}
1809 
1810 	if (interface == PHY_INTERFACE_MODE_SGMII)
1811 		gfar_configure_serdes(dev);
1812 
1813 	/* Remove any features not supported by the controller */
1814 	phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1815 	phydev->advertising = phydev->supported;
1816 
1817 	/* Add support for flow control, but don't advertise it by default */
1818 	phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1819 
1820 	/* disable EEE autoneg, EEE not supported by eTSEC */
1821 	memset(&edata, 0, sizeof(struct ethtool_eee));
1822 	phy_ethtool_set_eee(phydev, &edata);
1823 
1824 	return 0;
1825 }
1826 
1827 /* Initialize TBI PHY interface for communicating with the
1828  * SERDES lynx PHY on the chip.  We communicate with this PHY
1829  * through the MDIO bus on each controller, treating it as a
1830  * "normal" PHY at the address found in the TBIPA register.  We assume
1831  * that the TBIPA register is valid.  Either the MDIO bus code will set
1832  * it to a value that doesn't conflict with other PHYs on the bus, or the
1833  * value doesn't matter, as there are no other PHYs on the bus.
1834  */
1835 static void gfar_configure_serdes(struct net_device *dev)
1836 {
1837 	struct gfar_private *priv = netdev_priv(dev);
1838 	struct phy_device *tbiphy;
1839 
1840 	if (!priv->tbi_node) {
1841 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1842 				    "device tree specify a tbi-handle\n");
1843 		return;
1844 	}
1845 
1846 	tbiphy = of_phy_find_device(priv->tbi_node);
1847 	if (!tbiphy) {
1848 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1849 		return;
1850 	}
1851 
1852 	/* If the link is already up, we must already be ok, and don't need to
1853 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1854 	 * everything for us?  Resetting it takes the link down and requires
1855 	 * several seconds for it to come back.
1856 	 */
1857 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1858 		put_device(&tbiphy->mdio.dev);
1859 		return;
1860 	}
1861 
1862 	/* Single clk mode, mii mode off(for serdes communication) */
1863 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1864 
1865 	phy_write(tbiphy, MII_ADVERTISE,
1866 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1867 		  ADVERTISE_1000XPSE_ASYM);
1868 
1869 	phy_write(tbiphy, MII_BMCR,
1870 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1871 		  BMCR_SPEED1000);
1872 
1873 	put_device(&tbiphy->mdio.dev);
1874 }
1875 
1876 static int __gfar_is_rx_idle(struct gfar_private *priv)
1877 {
1878 	u32 res;
1879 
1880 	/* Normaly TSEC should not hang on GRS commands, so we should
1881 	 * actually wait for IEVENT_GRSC flag.
1882 	 */
1883 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1884 		return 0;
1885 
1886 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1887 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1888 	 * and the Rx can be safely reset.
1889 	 */
1890 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1891 	res &= 0x7f807f80;
1892 	if ((res & 0xffff) == (res >> 16))
1893 		return 1;
1894 
1895 	return 0;
1896 }
1897 
1898 /* Halt the receive and transmit queues */
1899 static void gfar_halt_nodisable(struct gfar_private *priv)
1900 {
1901 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1902 	u32 tempval;
1903 	unsigned int timeout;
1904 	int stopped;
1905 
1906 	gfar_ints_disable(priv);
1907 
1908 	if (gfar_is_dma_stopped(priv))
1909 		return;
1910 
1911 	/* Stop the DMA, and wait for it to stop */
1912 	tempval = gfar_read(&regs->dmactrl);
1913 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1914 	gfar_write(&regs->dmactrl, tempval);
1915 
1916 retry:
1917 	timeout = 1000;
1918 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1919 		cpu_relax();
1920 		timeout--;
1921 	}
1922 
1923 	if (!timeout)
1924 		stopped = gfar_is_dma_stopped(priv);
1925 
1926 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1927 	    !__gfar_is_rx_idle(priv))
1928 		goto retry;
1929 }
1930 
1931 /* Halt the receive and transmit queues */
1932 void gfar_halt(struct gfar_private *priv)
1933 {
1934 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1935 	u32 tempval;
1936 
1937 	/* Dissable the Rx/Tx hw queues */
1938 	gfar_write(&regs->rqueue, 0);
1939 	gfar_write(&regs->tqueue, 0);
1940 
1941 	mdelay(10);
1942 
1943 	gfar_halt_nodisable(priv);
1944 
1945 	/* Disable Rx/Tx DMA */
1946 	tempval = gfar_read(&regs->maccfg1);
1947 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1948 	gfar_write(&regs->maccfg1, tempval);
1949 }
1950 
1951 void stop_gfar(struct net_device *dev)
1952 {
1953 	struct gfar_private *priv = netdev_priv(dev);
1954 
1955 	netif_tx_stop_all_queues(dev);
1956 
1957 	smp_mb__before_atomic();
1958 	set_bit(GFAR_DOWN, &priv->state);
1959 	smp_mb__after_atomic();
1960 
1961 	disable_napi(priv);
1962 
1963 	/* disable ints and gracefully shut down Rx/Tx DMA */
1964 	gfar_halt(priv);
1965 
1966 	phy_stop(dev->phydev);
1967 
1968 	free_skb_resources(priv);
1969 }
1970 
1971 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1972 {
1973 	struct txbd8 *txbdp;
1974 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1975 	int i, j;
1976 
1977 	txbdp = tx_queue->tx_bd_base;
1978 
1979 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1980 		if (!tx_queue->tx_skbuff[i])
1981 			continue;
1982 
1983 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1984 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1985 		txbdp->lstatus = 0;
1986 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1987 		     j++) {
1988 			txbdp++;
1989 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1990 				       be16_to_cpu(txbdp->length),
1991 				       DMA_TO_DEVICE);
1992 		}
1993 		txbdp++;
1994 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1995 		tx_queue->tx_skbuff[i] = NULL;
1996 	}
1997 	kfree(tx_queue->tx_skbuff);
1998 	tx_queue->tx_skbuff = NULL;
1999 }
2000 
2001 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2002 {
2003 	int i;
2004 
2005 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2006 
2007 	if (rx_queue->skb)
2008 		dev_kfree_skb(rx_queue->skb);
2009 
2010 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2011 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2012 
2013 		rxbdp->lstatus = 0;
2014 		rxbdp->bufPtr = 0;
2015 		rxbdp++;
2016 
2017 		if (!rxb->page)
2018 			continue;
2019 
2020 		dma_unmap_page(rx_queue->dev, rxb->dma,
2021 			       PAGE_SIZE, DMA_FROM_DEVICE);
2022 		__free_page(rxb->page);
2023 
2024 		rxb->page = NULL;
2025 	}
2026 
2027 	kfree(rx_queue->rx_buff);
2028 	rx_queue->rx_buff = NULL;
2029 }
2030 
2031 /* If there are any tx skbs or rx skbs still around, free them.
2032  * Then free tx_skbuff and rx_skbuff
2033  */
2034 static void free_skb_resources(struct gfar_private *priv)
2035 {
2036 	struct gfar_priv_tx_q *tx_queue = NULL;
2037 	struct gfar_priv_rx_q *rx_queue = NULL;
2038 	int i;
2039 
2040 	/* Go through all the buffer descriptors and free their data buffers */
2041 	for (i = 0; i < priv->num_tx_queues; i++) {
2042 		struct netdev_queue *txq;
2043 
2044 		tx_queue = priv->tx_queue[i];
2045 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2046 		if (tx_queue->tx_skbuff)
2047 			free_skb_tx_queue(tx_queue);
2048 		netdev_tx_reset_queue(txq);
2049 	}
2050 
2051 	for (i = 0; i < priv->num_rx_queues; i++) {
2052 		rx_queue = priv->rx_queue[i];
2053 		if (rx_queue->rx_buff)
2054 			free_skb_rx_queue(rx_queue);
2055 	}
2056 
2057 	dma_free_coherent(priv->dev,
2058 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2059 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2060 			  priv->tx_queue[0]->tx_bd_base,
2061 			  priv->tx_queue[0]->tx_bd_dma_base);
2062 }
2063 
2064 void gfar_start(struct gfar_private *priv)
2065 {
2066 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2067 	u32 tempval;
2068 	int i = 0;
2069 
2070 	/* Enable Rx/Tx hw queues */
2071 	gfar_write(&regs->rqueue, priv->rqueue);
2072 	gfar_write(&regs->tqueue, priv->tqueue);
2073 
2074 	/* Initialize DMACTRL to have WWR and WOP */
2075 	tempval = gfar_read(&regs->dmactrl);
2076 	tempval |= DMACTRL_INIT_SETTINGS;
2077 	gfar_write(&regs->dmactrl, tempval);
2078 
2079 	/* Make sure we aren't stopped */
2080 	tempval = gfar_read(&regs->dmactrl);
2081 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2082 	gfar_write(&regs->dmactrl, tempval);
2083 
2084 	for (i = 0; i < priv->num_grps; i++) {
2085 		regs = priv->gfargrp[i].regs;
2086 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2087 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2088 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2089 	}
2090 
2091 	/* Enable Rx/Tx DMA */
2092 	tempval = gfar_read(&regs->maccfg1);
2093 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2094 	gfar_write(&regs->maccfg1, tempval);
2095 
2096 	gfar_ints_enable(priv);
2097 
2098 	netif_trans_update(priv->ndev); /* prevent tx timeout */
2099 }
2100 
2101 static void free_grp_irqs(struct gfar_priv_grp *grp)
2102 {
2103 	free_irq(gfar_irq(grp, TX)->irq, grp);
2104 	free_irq(gfar_irq(grp, RX)->irq, grp);
2105 	free_irq(gfar_irq(grp, ER)->irq, grp);
2106 }
2107 
2108 static int register_grp_irqs(struct gfar_priv_grp *grp)
2109 {
2110 	struct gfar_private *priv = grp->priv;
2111 	struct net_device *dev = priv->ndev;
2112 	int err;
2113 
2114 	/* If the device has multiple interrupts, register for
2115 	 * them.  Otherwise, only register for the one
2116 	 */
2117 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2118 		/* Install our interrupt handlers for Error,
2119 		 * Transmit, and Receive
2120 		 */
2121 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2122 				  gfar_irq(grp, ER)->name, grp);
2123 		if (err < 0) {
2124 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2125 				  gfar_irq(grp, ER)->irq);
2126 
2127 			goto err_irq_fail;
2128 		}
2129 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2130 
2131 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2132 				  gfar_irq(grp, TX)->name, grp);
2133 		if (err < 0) {
2134 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135 				  gfar_irq(grp, TX)->irq);
2136 			goto tx_irq_fail;
2137 		}
2138 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2139 				  gfar_irq(grp, RX)->name, grp);
2140 		if (err < 0) {
2141 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2142 				  gfar_irq(grp, RX)->irq);
2143 			goto rx_irq_fail;
2144 		}
2145 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2146 
2147 	} else {
2148 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2149 				  gfar_irq(grp, TX)->name, grp);
2150 		if (err < 0) {
2151 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2152 				  gfar_irq(grp, TX)->irq);
2153 			goto err_irq_fail;
2154 		}
2155 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2156 	}
2157 
2158 	return 0;
2159 
2160 rx_irq_fail:
2161 	free_irq(gfar_irq(grp, TX)->irq, grp);
2162 tx_irq_fail:
2163 	free_irq(gfar_irq(grp, ER)->irq, grp);
2164 err_irq_fail:
2165 	return err;
2166 
2167 }
2168 
2169 static void gfar_free_irq(struct gfar_private *priv)
2170 {
2171 	int i;
2172 
2173 	/* Free the IRQs */
2174 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2175 		for (i = 0; i < priv->num_grps; i++)
2176 			free_grp_irqs(&priv->gfargrp[i]);
2177 	} else {
2178 		for (i = 0; i < priv->num_grps; i++)
2179 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2180 				 &priv->gfargrp[i]);
2181 	}
2182 }
2183 
2184 static int gfar_request_irq(struct gfar_private *priv)
2185 {
2186 	int err, i, j;
2187 
2188 	for (i = 0; i < priv->num_grps; i++) {
2189 		err = register_grp_irqs(&priv->gfargrp[i]);
2190 		if (err) {
2191 			for (j = 0; j < i; j++)
2192 				free_grp_irqs(&priv->gfargrp[j]);
2193 			return err;
2194 		}
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 /* Bring the controller up and running */
2201 int startup_gfar(struct net_device *ndev)
2202 {
2203 	struct gfar_private *priv = netdev_priv(ndev);
2204 	int err;
2205 
2206 	gfar_mac_reset(priv);
2207 
2208 	err = gfar_alloc_skb_resources(ndev);
2209 	if (err)
2210 		return err;
2211 
2212 	gfar_init_tx_rx_base(priv);
2213 
2214 	smp_mb__before_atomic();
2215 	clear_bit(GFAR_DOWN, &priv->state);
2216 	smp_mb__after_atomic();
2217 
2218 	/* Start Rx/Tx DMA and enable the interrupts */
2219 	gfar_start(priv);
2220 
2221 	/* force link state update after mac reset */
2222 	priv->oldlink = 0;
2223 	priv->oldspeed = 0;
2224 	priv->oldduplex = -1;
2225 
2226 	phy_start(ndev->phydev);
2227 
2228 	enable_napi(priv);
2229 
2230 	netif_tx_wake_all_queues(ndev);
2231 
2232 	return 0;
2233 }
2234 
2235 /* Called when something needs to use the ethernet device
2236  * Returns 0 for success.
2237  */
2238 static int gfar_enet_open(struct net_device *dev)
2239 {
2240 	struct gfar_private *priv = netdev_priv(dev);
2241 	int err;
2242 
2243 	err = init_phy(dev);
2244 	if (err)
2245 		return err;
2246 
2247 	err = gfar_request_irq(priv);
2248 	if (err)
2249 		return err;
2250 
2251 	err = startup_gfar(dev);
2252 	if (err)
2253 		return err;
2254 
2255 	return err;
2256 }
2257 
2258 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2259 {
2260 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2261 
2262 	memset(fcb, 0, GMAC_FCB_LEN);
2263 
2264 	return fcb;
2265 }
2266 
2267 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2268 				    int fcb_length)
2269 {
2270 	/* If we're here, it's a IP packet with a TCP or UDP
2271 	 * payload.  We set it to checksum, using a pseudo-header
2272 	 * we provide
2273 	 */
2274 	u8 flags = TXFCB_DEFAULT;
2275 
2276 	/* Tell the controller what the protocol is
2277 	 * And provide the already calculated phcs
2278 	 */
2279 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2280 		flags |= TXFCB_UDP;
2281 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2282 	} else
2283 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2284 
2285 	/* l3os is the distance between the start of the
2286 	 * frame (skb->data) and the start of the IP hdr.
2287 	 * l4os is the distance between the start of the
2288 	 * l3 hdr and the l4 hdr
2289 	 */
2290 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2291 	fcb->l4os = skb_network_header_len(skb);
2292 
2293 	fcb->flags = flags;
2294 }
2295 
2296 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2297 {
2298 	fcb->flags |= TXFCB_VLN;
2299 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2300 }
2301 
2302 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2303 				      struct txbd8 *base, int ring_size)
2304 {
2305 	struct txbd8 *new_bd = bdp + stride;
2306 
2307 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2308 }
2309 
2310 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2311 				      int ring_size)
2312 {
2313 	return skip_txbd(bdp, 1, base, ring_size);
2314 }
2315 
2316 /* eTSEC12: csum generation not supported for some fcb offsets */
2317 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2318 				       unsigned long fcb_addr)
2319 {
2320 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2321 	       (fcb_addr % 0x20) > 0x18);
2322 }
2323 
2324 /* eTSEC76: csum generation for frames larger than 2500 may
2325  * cause excess delays before start of transmission
2326  */
2327 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2328 				       unsigned int len)
2329 {
2330 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2331 	       (len > 2500));
2332 }
2333 
2334 /* This is called by the kernel when a frame is ready for transmission.
2335  * It is pointed to by the dev->hard_start_xmit function pointer
2336  */
2337 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2338 {
2339 	struct gfar_private *priv = netdev_priv(dev);
2340 	struct gfar_priv_tx_q *tx_queue = NULL;
2341 	struct netdev_queue *txq;
2342 	struct gfar __iomem *regs = NULL;
2343 	struct txfcb *fcb = NULL;
2344 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2345 	u32 lstatus;
2346 	skb_frag_t *frag;
2347 	int i, rq = 0;
2348 	int do_tstamp, do_csum, do_vlan;
2349 	u32 bufaddr;
2350 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2351 
2352 	rq = skb->queue_mapping;
2353 	tx_queue = priv->tx_queue[rq];
2354 	txq = netdev_get_tx_queue(dev, rq);
2355 	base = tx_queue->tx_bd_base;
2356 	regs = tx_queue->grp->regs;
2357 
2358 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2359 	do_vlan = skb_vlan_tag_present(skb);
2360 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2361 		    priv->hwts_tx_en;
2362 
2363 	if (do_csum || do_vlan)
2364 		fcb_len = GMAC_FCB_LEN;
2365 
2366 	/* check if time stamp should be generated */
2367 	if (unlikely(do_tstamp))
2368 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2369 
2370 	/* make space for additional header when fcb is needed */
2371 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2372 		struct sk_buff *skb_new;
2373 
2374 		skb_new = skb_realloc_headroom(skb, fcb_len);
2375 		if (!skb_new) {
2376 			dev->stats.tx_errors++;
2377 			dev_kfree_skb_any(skb);
2378 			return NETDEV_TX_OK;
2379 		}
2380 
2381 		if (skb->sk)
2382 			skb_set_owner_w(skb_new, skb->sk);
2383 		dev_consume_skb_any(skb);
2384 		skb = skb_new;
2385 	}
2386 
2387 	/* total number of fragments in the SKB */
2388 	nr_frags = skb_shinfo(skb)->nr_frags;
2389 
2390 	/* calculate the required number of TxBDs for this skb */
2391 	if (unlikely(do_tstamp))
2392 		nr_txbds = nr_frags + 2;
2393 	else
2394 		nr_txbds = nr_frags + 1;
2395 
2396 	/* check if there is space to queue this packet */
2397 	if (nr_txbds > tx_queue->num_txbdfree) {
2398 		/* no space, stop the queue */
2399 		netif_tx_stop_queue(txq);
2400 		dev->stats.tx_fifo_errors++;
2401 		return NETDEV_TX_BUSY;
2402 	}
2403 
2404 	/* Update transmit stats */
2405 	bytes_sent = skb->len;
2406 	tx_queue->stats.tx_bytes += bytes_sent;
2407 	/* keep Tx bytes on wire for BQL accounting */
2408 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2409 	tx_queue->stats.tx_packets++;
2410 
2411 	txbdp = txbdp_start = tx_queue->cur_tx;
2412 	lstatus = be32_to_cpu(txbdp->lstatus);
2413 
2414 	/* Add TxPAL between FCB and frame if required */
2415 	if (unlikely(do_tstamp)) {
2416 		skb_push(skb, GMAC_TXPAL_LEN);
2417 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2418 	}
2419 
2420 	/* Add TxFCB if required */
2421 	if (fcb_len) {
2422 		fcb = gfar_add_fcb(skb);
2423 		lstatus |= BD_LFLAG(TXBD_TOE);
2424 	}
2425 
2426 	/* Set up checksumming */
2427 	if (do_csum) {
2428 		gfar_tx_checksum(skb, fcb, fcb_len);
2429 
2430 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2431 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2432 			__skb_pull(skb, GMAC_FCB_LEN);
2433 			skb_checksum_help(skb);
2434 			if (do_vlan || do_tstamp) {
2435 				/* put back a new fcb for vlan/tstamp TOE */
2436 				fcb = gfar_add_fcb(skb);
2437 			} else {
2438 				/* Tx TOE not used */
2439 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2440 				fcb = NULL;
2441 			}
2442 		}
2443 	}
2444 
2445 	if (do_vlan)
2446 		gfar_tx_vlan(skb, fcb);
2447 
2448 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2449 				 DMA_TO_DEVICE);
2450 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2451 		goto dma_map_err;
2452 
2453 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2454 
2455 	/* Time stamp insertion requires one additional TxBD */
2456 	if (unlikely(do_tstamp))
2457 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2458 						 tx_queue->tx_ring_size);
2459 
2460 	if (likely(!nr_frags)) {
2461 		if (likely(!do_tstamp))
2462 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2463 	} else {
2464 		u32 lstatus_start = lstatus;
2465 
2466 		/* Place the fragment addresses and lengths into the TxBDs */
2467 		frag = &skb_shinfo(skb)->frags[0];
2468 		for (i = 0; i < nr_frags; i++, frag++) {
2469 			unsigned int size;
2470 
2471 			/* Point at the next BD, wrapping as needed */
2472 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2473 
2474 			size = skb_frag_size(frag);
2475 
2476 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2477 				  BD_LFLAG(TXBD_READY);
2478 
2479 			/* Handle the last BD specially */
2480 			if (i == nr_frags - 1)
2481 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2482 
2483 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2484 						   size, DMA_TO_DEVICE);
2485 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2486 				goto dma_map_err;
2487 
2488 			/* set the TxBD length and buffer pointer */
2489 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2490 			txbdp->lstatus = cpu_to_be32(lstatus);
2491 		}
2492 
2493 		lstatus = lstatus_start;
2494 	}
2495 
2496 	/* If time stamping is requested one additional TxBD must be set up. The
2497 	 * first TxBD points to the FCB and must have a data length of
2498 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2499 	 * the full frame length.
2500 	 */
2501 	if (unlikely(do_tstamp)) {
2502 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2503 
2504 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2505 		bufaddr += fcb_len;
2506 
2507 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2508 			      (skb_headlen(skb) - fcb_len);
2509 		if (!nr_frags)
2510 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2511 
2512 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2513 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2514 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2515 
2516 		/* Setup tx hardware time stamping */
2517 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2518 		fcb->ptp = 1;
2519 	} else {
2520 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2521 	}
2522 
2523 	netdev_tx_sent_queue(txq, bytes_sent);
2524 
2525 	gfar_wmb();
2526 
2527 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2528 
2529 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2530 
2531 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2532 
2533 	/* Update the current skb pointer to the next entry we will use
2534 	 * (wrapping if necessary)
2535 	 */
2536 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2537 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2538 
2539 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2540 
2541 	/* We can work in parallel with gfar_clean_tx_ring(), except
2542 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2543 	 * when we were reading the num_txbdfree and checking for available
2544 	 * space, that's because outside of this function it can only grow.
2545 	 */
2546 	spin_lock_bh(&tx_queue->txlock);
2547 	/* reduce TxBD free count */
2548 	tx_queue->num_txbdfree -= (nr_txbds);
2549 	spin_unlock_bh(&tx_queue->txlock);
2550 
2551 	/* If the next BD still needs to be cleaned up, then the bds
2552 	 * are full.  We need to tell the kernel to stop sending us stuff.
2553 	 */
2554 	if (!tx_queue->num_txbdfree) {
2555 		netif_tx_stop_queue(txq);
2556 
2557 		dev->stats.tx_fifo_errors++;
2558 	}
2559 
2560 	/* Tell the DMA to go go go */
2561 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2562 
2563 	return NETDEV_TX_OK;
2564 
2565 dma_map_err:
2566 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2567 	if (do_tstamp)
2568 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2569 	for (i = 0; i < nr_frags; i++) {
2570 		lstatus = be32_to_cpu(txbdp->lstatus);
2571 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2572 			break;
2573 
2574 		lstatus &= ~BD_LFLAG(TXBD_READY);
2575 		txbdp->lstatus = cpu_to_be32(lstatus);
2576 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2577 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2578 			       DMA_TO_DEVICE);
2579 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2580 	}
2581 	gfar_wmb();
2582 	dev_kfree_skb_any(skb);
2583 	return NETDEV_TX_OK;
2584 }
2585 
2586 /* Stops the kernel queue, and halts the controller */
2587 static int gfar_close(struct net_device *dev)
2588 {
2589 	struct gfar_private *priv = netdev_priv(dev);
2590 
2591 	cancel_work_sync(&priv->reset_task);
2592 	stop_gfar(dev);
2593 
2594 	/* Disconnect from the PHY */
2595 	phy_disconnect(dev->phydev);
2596 
2597 	gfar_free_irq(priv);
2598 
2599 	return 0;
2600 }
2601 
2602 /* Changes the mac address if the controller is not running. */
2603 static int gfar_set_mac_address(struct net_device *dev)
2604 {
2605 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2606 
2607 	return 0;
2608 }
2609 
2610 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2611 {
2612 	struct gfar_private *priv = netdev_priv(dev);
2613 
2614 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2615 		cpu_relax();
2616 
2617 	if (dev->flags & IFF_UP)
2618 		stop_gfar(dev);
2619 
2620 	dev->mtu = new_mtu;
2621 
2622 	if (dev->flags & IFF_UP)
2623 		startup_gfar(dev);
2624 
2625 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2626 
2627 	return 0;
2628 }
2629 
2630 void reset_gfar(struct net_device *ndev)
2631 {
2632 	struct gfar_private *priv = netdev_priv(ndev);
2633 
2634 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2635 		cpu_relax();
2636 
2637 	stop_gfar(ndev);
2638 	startup_gfar(ndev);
2639 
2640 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2641 }
2642 
2643 /* gfar_reset_task gets scheduled when a packet has not been
2644  * transmitted after a set amount of time.
2645  * For now, assume that clearing out all the structures, and
2646  * starting over will fix the problem.
2647  */
2648 static void gfar_reset_task(struct work_struct *work)
2649 {
2650 	struct gfar_private *priv = container_of(work, struct gfar_private,
2651 						 reset_task);
2652 	reset_gfar(priv->ndev);
2653 }
2654 
2655 static void gfar_timeout(struct net_device *dev)
2656 {
2657 	struct gfar_private *priv = netdev_priv(dev);
2658 
2659 	dev->stats.tx_errors++;
2660 	schedule_work(&priv->reset_task);
2661 }
2662 
2663 /* Interrupt Handler for Transmit complete */
2664 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2665 {
2666 	struct net_device *dev = tx_queue->dev;
2667 	struct netdev_queue *txq;
2668 	struct gfar_private *priv = netdev_priv(dev);
2669 	struct txbd8 *bdp, *next = NULL;
2670 	struct txbd8 *lbdp = NULL;
2671 	struct txbd8 *base = tx_queue->tx_bd_base;
2672 	struct sk_buff *skb;
2673 	int skb_dirtytx;
2674 	int tx_ring_size = tx_queue->tx_ring_size;
2675 	int frags = 0, nr_txbds = 0;
2676 	int i;
2677 	int howmany = 0;
2678 	int tqi = tx_queue->qindex;
2679 	unsigned int bytes_sent = 0;
2680 	u32 lstatus;
2681 	size_t buflen;
2682 
2683 	txq = netdev_get_tx_queue(dev, tqi);
2684 	bdp = tx_queue->dirty_tx;
2685 	skb_dirtytx = tx_queue->skb_dirtytx;
2686 
2687 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2688 
2689 		frags = skb_shinfo(skb)->nr_frags;
2690 
2691 		/* When time stamping, one additional TxBD must be freed.
2692 		 * Also, we need to dma_unmap_single() the TxPAL.
2693 		 */
2694 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2695 			nr_txbds = frags + 2;
2696 		else
2697 			nr_txbds = frags + 1;
2698 
2699 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2700 
2701 		lstatus = be32_to_cpu(lbdp->lstatus);
2702 
2703 		/* Only clean completed frames */
2704 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2705 		    (lstatus & BD_LENGTH_MASK))
2706 			break;
2707 
2708 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2709 			next = next_txbd(bdp, base, tx_ring_size);
2710 			buflen = be16_to_cpu(next->length) +
2711 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2712 		} else
2713 			buflen = be16_to_cpu(bdp->length);
2714 
2715 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2716 				 buflen, DMA_TO_DEVICE);
2717 
2718 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2719 			struct skb_shared_hwtstamps shhwtstamps;
2720 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2721 					  ~0x7UL);
2722 
2723 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2724 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2725 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2726 			skb_tstamp_tx(skb, &shhwtstamps);
2727 			gfar_clear_txbd_status(bdp);
2728 			bdp = next;
2729 		}
2730 
2731 		gfar_clear_txbd_status(bdp);
2732 		bdp = next_txbd(bdp, base, tx_ring_size);
2733 
2734 		for (i = 0; i < frags; i++) {
2735 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2736 				       be16_to_cpu(bdp->length),
2737 				       DMA_TO_DEVICE);
2738 			gfar_clear_txbd_status(bdp);
2739 			bdp = next_txbd(bdp, base, tx_ring_size);
2740 		}
2741 
2742 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2743 
2744 		dev_kfree_skb_any(skb);
2745 
2746 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2747 
2748 		skb_dirtytx = (skb_dirtytx + 1) &
2749 			      TX_RING_MOD_MASK(tx_ring_size);
2750 
2751 		howmany++;
2752 		spin_lock(&tx_queue->txlock);
2753 		tx_queue->num_txbdfree += nr_txbds;
2754 		spin_unlock(&tx_queue->txlock);
2755 	}
2756 
2757 	/* If we freed a buffer, we can restart transmission, if necessary */
2758 	if (tx_queue->num_txbdfree &&
2759 	    netif_tx_queue_stopped(txq) &&
2760 	    !(test_bit(GFAR_DOWN, &priv->state)))
2761 		netif_wake_subqueue(priv->ndev, tqi);
2762 
2763 	/* Update dirty indicators */
2764 	tx_queue->skb_dirtytx = skb_dirtytx;
2765 	tx_queue->dirty_tx = bdp;
2766 
2767 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2768 }
2769 
2770 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2771 {
2772 	struct page *page;
2773 	dma_addr_t addr;
2774 
2775 	page = dev_alloc_page();
2776 	if (unlikely(!page))
2777 		return false;
2778 
2779 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2780 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2781 		__free_page(page);
2782 
2783 		return false;
2784 	}
2785 
2786 	rxb->dma = addr;
2787 	rxb->page = page;
2788 	rxb->page_offset = 0;
2789 
2790 	return true;
2791 }
2792 
2793 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2794 {
2795 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2796 	struct gfar_extra_stats *estats = &priv->extra_stats;
2797 
2798 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2799 	atomic64_inc(&estats->rx_alloc_err);
2800 }
2801 
2802 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2803 				int alloc_cnt)
2804 {
2805 	struct rxbd8 *bdp;
2806 	struct gfar_rx_buff *rxb;
2807 	int i;
2808 
2809 	i = rx_queue->next_to_use;
2810 	bdp = &rx_queue->rx_bd_base[i];
2811 	rxb = &rx_queue->rx_buff[i];
2812 
2813 	while (alloc_cnt--) {
2814 		/* try reuse page */
2815 		if (unlikely(!rxb->page)) {
2816 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2817 				gfar_rx_alloc_err(rx_queue);
2818 				break;
2819 			}
2820 		}
2821 
2822 		/* Setup the new RxBD */
2823 		gfar_init_rxbdp(rx_queue, bdp,
2824 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2825 
2826 		/* Update to the next pointer */
2827 		bdp++;
2828 		rxb++;
2829 
2830 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2831 			i = 0;
2832 			bdp = rx_queue->rx_bd_base;
2833 			rxb = rx_queue->rx_buff;
2834 		}
2835 	}
2836 
2837 	rx_queue->next_to_use = i;
2838 	rx_queue->next_to_alloc = i;
2839 }
2840 
2841 static void count_errors(u32 lstatus, struct net_device *ndev)
2842 {
2843 	struct gfar_private *priv = netdev_priv(ndev);
2844 	struct net_device_stats *stats = &ndev->stats;
2845 	struct gfar_extra_stats *estats = &priv->extra_stats;
2846 
2847 	/* If the packet was truncated, none of the other errors matter */
2848 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2849 		stats->rx_length_errors++;
2850 
2851 		atomic64_inc(&estats->rx_trunc);
2852 
2853 		return;
2854 	}
2855 	/* Count the errors, if there were any */
2856 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2857 		stats->rx_length_errors++;
2858 
2859 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2860 			atomic64_inc(&estats->rx_large);
2861 		else
2862 			atomic64_inc(&estats->rx_short);
2863 	}
2864 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2865 		stats->rx_frame_errors++;
2866 		atomic64_inc(&estats->rx_nonoctet);
2867 	}
2868 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2869 		atomic64_inc(&estats->rx_crcerr);
2870 		stats->rx_crc_errors++;
2871 	}
2872 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2873 		atomic64_inc(&estats->rx_overrun);
2874 		stats->rx_over_errors++;
2875 	}
2876 }
2877 
2878 irqreturn_t gfar_receive(int irq, void *grp_id)
2879 {
2880 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2881 	unsigned long flags;
2882 	u32 imask, ievent;
2883 
2884 	ievent = gfar_read(&grp->regs->ievent);
2885 
2886 	if (unlikely(ievent & IEVENT_FGPI)) {
2887 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2888 		return IRQ_HANDLED;
2889 	}
2890 
2891 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2892 		spin_lock_irqsave(&grp->grplock, flags);
2893 		imask = gfar_read(&grp->regs->imask);
2894 		imask &= IMASK_RX_DISABLED;
2895 		gfar_write(&grp->regs->imask, imask);
2896 		spin_unlock_irqrestore(&grp->grplock, flags);
2897 		__napi_schedule(&grp->napi_rx);
2898 	} else {
2899 		/* Clear IEVENT, so interrupts aren't called again
2900 		 * because of the packets that have already arrived.
2901 		 */
2902 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2903 	}
2904 
2905 	return IRQ_HANDLED;
2906 }
2907 
2908 /* Interrupt Handler for Transmit complete */
2909 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2910 {
2911 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2912 	unsigned long flags;
2913 	u32 imask;
2914 
2915 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2916 		spin_lock_irqsave(&grp->grplock, flags);
2917 		imask = gfar_read(&grp->regs->imask);
2918 		imask &= IMASK_TX_DISABLED;
2919 		gfar_write(&grp->regs->imask, imask);
2920 		spin_unlock_irqrestore(&grp->grplock, flags);
2921 		__napi_schedule(&grp->napi_tx);
2922 	} else {
2923 		/* Clear IEVENT, so interrupts aren't called again
2924 		 * because of the packets that have already arrived.
2925 		 */
2926 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2927 	}
2928 
2929 	return IRQ_HANDLED;
2930 }
2931 
2932 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2933 			     struct sk_buff *skb, bool first)
2934 {
2935 	int size = lstatus & BD_LENGTH_MASK;
2936 	struct page *page = rxb->page;
2937 	bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2938 
2939 	/* Remove the FCS from the packet length */
2940 	if (last)
2941 		size -= ETH_FCS_LEN;
2942 
2943 	if (likely(first)) {
2944 		skb_put(skb, size);
2945 	} else {
2946 		/* the last fragments' length contains the full frame length */
2947 		if (last)
2948 			size -= skb->len;
2949 
2950 		/* Add the last fragment if it contains something other than
2951 		 * the FCS, otherwise drop it and trim off any part of the FCS
2952 		 * that was already received.
2953 		 */
2954 		if (size > 0)
2955 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2956 					rxb->page_offset + RXBUF_ALIGNMENT,
2957 					size, GFAR_RXB_TRUESIZE);
2958 		else if (size < 0)
2959 			pskb_trim(skb, skb->len + size);
2960 	}
2961 
2962 	/* try reuse page */
2963 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2964 		return false;
2965 
2966 	/* change offset to the other half */
2967 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2968 
2969 	page_ref_inc(page);
2970 
2971 	return true;
2972 }
2973 
2974 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2975 			       struct gfar_rx_buff *old_rxb)
2976 {
2977 	struct gfar_rx_buff *new_rxb;
2978 	u16 nta = rxq->next_to_alloc;
2979 
2980 	new_rxb = &rxq->rx_buff[nta];
2981 
2982 	/* find next buf that can reuse a page */
2983 	nta++;
2984 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2985 
2986 	/* copy page reference */
2987 	*new_rxb = *old_rxb;
2988 
2989 	/* sync for use by the device */
2990 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2991 					 old_rxb->page_offset,
2992 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2993 }
2994 
2995 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2996 					    u32 lstatus, struct sk_buff *skb)
2997 {
2998 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2999 	struct page *page = rxb->page;
3000 	bool first = false;
3001 
3002 	if (likely(!skb)) {
3003 		void *buff_addr = page_address(page) + rxb->page_offset;
3004 
3005 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3006 		if (unlikely(!skb)) {
3007 			gfar_rx_alloc_err(rx_queue);
3008 			return NULL;
3009 		}
3010 		skb_reserve(skb, RXBUF_ALIGNMENT);
3011 		first = true;
3012 	}
3013 
3014 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3015 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3016 
3017 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3018 		/* reuse the free half of the page */
3019 		gfar_reuse_rx_page(rx_queue, rxb);
3020 	} else {
3021 		/* page cannot be reused, unmap it */
3022 		dma_unmap_page(rx_queue->dev, rxb->dma,
3023 			       PAGE_SIZE, DMA_FROM_DEVICE);
3024 	}
3025 
3026 	/* clear rxb content */
3027 	rxb->page = NULL;
3028 
3029 	return skb;
3030 }
3031 
3032 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3033 {
3034 	/* If valid headers were found, and valid sums
3035 	 * were verified, then we tell the kernel that no
3036 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3037 	 */
3038 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3039 	    (RXFCB_CIP | RXFCB_CTU))
3040 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3041 	else
3042 		skb_checksum_none_assert(skb);
3043 }
3044 
3045 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3046 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3047 {
3048 	struct gfar_private *priv = netdev_priv(ndev);
3049 	struct rxfcb *fcb = NULL;
3050 
3051 	/* fcb is at the beginning if exists */
3052 	fcb = (struct rxfcb *)skb->data;
3053 
3054 	/* Remove the FCB from the skb
3055 	 * Remove the padded bytes, if there are any
3056 	 */
3057 	if (priv->uses_rxfcb)
3058 		skb_pull(skb, GMAC_FCB_LEN);
3059 
3060 	/* Get receive timestamp from the skb */
3061 	if (priv->hwts_rx_en) {
3062 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3063 		u64 *ns = (u64 *) skb->data;
3064 
3065 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3066 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3067 	}
3068 
3069 	if (priv->padding)
3070 		skb_pull(skb, priv->padding);
3071 
3072 	if (ndev->features & NETIF_F_RXCSUM)
3073 		gfar_rx_checksum(skb, fcb);
3074 
3075 	/* Tell the skb what kind of packet this is */
3076 	skb->protocol = eth_type_trans(skb, ndev);
3077 
3078 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3079 	 * Even if vlan rx accel is disabled, on some chips
3080 	 * RXFCB_VLN is pseudo randomly set.
3081 	 */
3082 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3083 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3084 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3085 				       be16_to_cpu(fcb->vlctl));
3086 }
3087 
3088 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3089  * until the budget/quota has been reached. Returns the number
3090  * of frames handled
3091  */
3092 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3093 {
3094 	struct net_device *ndev = rx_queue->ndev;
3095 	struct gfar_private *priv = netdev_priv(ndev);
3096 	struct rxbd8 *bdp;
3097 	int i, howmany = 0;
3098 	struct sk_buff *skb = rx_queue->skb;
3099 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3100 	unsigned int total_bytes = 0, total_pkts = 0;
3101 
3102 	/* Get the first full descriptor */
3103 	i = rx_queue->next_to_clean;
3104 
3105 	while (rx_work_limit--) {
3106 		u32 lstatus;
3107 
3108 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3109 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3110 			cleaned_cnt = 0;
3111 		}
3112 
3113 		bdp = &rx_queue->rx_bd_base[i];
3114 		lstatus = be32_to_cpu(bdp->lstatus);
3115 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3116 			break;
3117 
3118 		/* order rx buffer descriptor reads */
3119 		rmb();
3120 
3121 		/* fetch next to clean buffer from the ring */
3122 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3123 		if (unlikely(!skb))
3124 			break;
3125 
3126 		cleaned_cnt++;
3127 		howmany++;
3128 
3129 		if (unlikely(++i == rx_queue->rx_ring_size))
3130 			i = 0;
3131 
3132 		rx_queue->next_to_clean = i;
3133 
3134 		/* fetch next buffer if not the last in frame */
3135 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3136 			continue;
3137 
3138 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3139 			count_errors(lstatus, ndev);
3140 
3141 			/* discard faulty buffer */
3142 			dev_kfree_skb(skb);
3143 			skb = NULL;
3144 			rx_queue->stats.rx_dropped++;
3145 			continue;
3146 		}
3147 
3148 		/* Increment the number of packets */
3149 		total_pkts++;
3150 		total_bytes += skb->len;
3151 
3152 		skb_record_rx_queue(skb, rx_queue->qindex);
3153 
3154 		gfar_process_frame(ndev, skb);
3155 
3156 		/* Send the packet up the stack */
3157 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3158 
3159 		skb = NULL;
3160 	}
3161 
3162 	/* Store incomplete frames for completion */
3163 	rx_queue->skb = skb;
3164 
3165 	rx_queue->stats.rx_packets += total_pkts;
3166 	rx_queue->stats.rx_bytes += total_bytes;
3167 
3168 	if (cleaned_cnt)
3169 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3170 
3171 	/* Update Last Free RxBD pointer for LFC */
3172 	if (unlikely(priv->tx_actual_en)) {
3173 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3174 
3175 		gfar_write(rx_queue->rfbptr, bdp_dma);
3176 	}
3177 
3178 	return howmany;
3179 }
3180 
3181 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3182 {
3183 	struct gfar_priv_grp *gfargrp =
3184 		container_of(napi, struct gfar_priv_grp, napi_rx);
3185 	struct gfar __iomem *regs = gfargrp->regs;
3186 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3187 	int work_done = 0;
3188 
3189 	/* Clear IEVENT, so interrupts aren't called again
3190 	 * because of the packets that have already arrived
3191 	 */
3192 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3193 
3194 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3195 
3196 	if (work_done < budget) {
3197 		u32 imask;
3198 		napi_complete_done(napi, work_done);
3199 		/* Clear the halt bit in RSTAT */
3200 		gfar_write(&regs->rstat, gfargrp->rstat);
3201 
3202 		spin_lock_irq(&gfargrp->grplock);
3203 		imask = gfar_read(&regs->imask);
3204 		imask |= IMASK_RX_DEFAULT;
3205 		gfar_write(&regs->imask, imask);
3206 		spin_unlock_irq(&gfargrp->grplock);
3207 	}
3208 
3209 	return work_done;
3210 }
3211 
3212 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3213 {
3214 	struct gfar_priv_grp *gfargrp =
3215 		container_of(napi, struct gfar_priv_grp, napi_tx);
3216 	struct gfar __iomem *regs = gfargrp->regs;
3217 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3218 	u32 imask;
3219 
3220 	/* Clear IEVENT, so interrupts aren't called again
3221 	 * because of the packets that have already arrived
3222 	 */
3223 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3224 
3225 	/* run Tx cleanup to completion */
3226 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3227 		gfar_clean_tx_ring(tx_queue);
3228 
3229 	napi_complete(napi);
3230 
3231 	spin_lock_irq(&gfargrp->grplock);
3232 	imask = gfar_read(&regs->imask);
3233 	imask |= IMASK_TX_DEFAULT;
3234 	gfar_write(&regs->imask, imask);
3235 	spin_unlock_irq(&gfargrp->grplock);
3236 
3237 	return 0;
3238 }
3239 
3240 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3241 {
3242 	struct gfar_priv_grp *gfargrp =
3243 		container_of(napi, struct gfar_priv_grp, napi_rx);
3244 	struct gfar_private *priv = gfargrp->priv;
3245 	struct gfar __iomem *regs = gfargrp->regs;
3246 	struct gfar_priv_rx_q *rx_queue = NULL;
3247 	int work_done = 0, work_done_per_q = 0;
3248 	int i, budget_per_q = 0;
3249 	unsigned long rstat_rxf;
3250 	int num_act_queues;
3251 
3252 	/* Clear IEVENT, so interrupts aren't called again
3253 	 * because of the packets that have already arrived
3254 	 */
3255 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3256 
3257 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3258 
3259 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3260 	if (num_act_queues)
3261 		budget_per_q = budget/num_act_queues;
3262 
3263 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3264 		/* skip queue if not active */
3265 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3266 			continue;
3267 
3268 		rx_queue = priv->rx_queue[i];
3269 		work_done_per_q =
3270 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3271 		work_done += work_done_per_q;
3272 
3273 		/* finished processing this queue */
3274 		if (work_done_per_q < budget_per_q) {
3275 			/* clear active queue hw indication */
3276 			gfar_write(&regs->rstat,
3277 				   RSTAT_CLEAR_RXF0 >> i);
3278 			num_act_queues--;
3279 
3280 			if (!num_act_queues)
3281 				break;
3282 		}
3283 	}
3284 
3285 	if (!num_act_queues) {
3286 		u32 imask;
3287 		napi_complete_done(napi, work_done);
3288 
3289 		/* Clear the halt bit in RSTAT */
3290 		gfar_write(&regs->rstat, gfargrp->rstat);
3291 
3292 		spin_lock_irq(&gfargrp->grplock);
3293 		imask = gfar_read(&regs->imask);
3294 		imask |= IMASK_RX_DEFAULT;
3295 		gfar_write(&regs->imask, imask);
3296 		spin_unlock_irq(&gfargrp->grplock);
3297 	}
3298 
3299 	return work_done;
3300 }
3301 
3302 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3303 {
3304 	struct gfar_priv_grp *gfargrp =
3305 		container_of(napi, struct gfar_priv_grp, napi_tx);
3306 	struct gfar_private *priv = gfargrp->priv;
3307 	struct gfar __iomem *regs = gfargrp->regs;
3308 	struct gfar_priv_tx_q *tx_queue = NULL;
3309 	int has_tx_work = 0;
3310 	int i;
3311 
3312 	/* Clear IEVENT, so interrupts aren't called again
3313 	 * because of the packets that have already arrived
3314 	 */
3315 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3316 
3317 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3318 		tx_queue = priv->tx_queue[i];
3319 		/* run Tx cleanup to completion */
3320 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3321 			gfar_clean_tx_ring(tx_queue);
3322 			has_tx_work = 1;
3323 		}
3324 	}
3325 
3326 	if (!has_tx_work) {
3327 		u32 imask;
3328 		napi_complete(napi);
3329 
3330 		spin_lock_irq(&gfargrp->grplock);
3331 		imask = gfar_read(&regs->imask);
3332 		imask |= IMASK_TX_DEFAULT;
3333 		gfar_write(&regs->imask, imask);
3334 		spin_unlock_irq(&gfargrp->grplock);
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 
3341 #ifdef CONFIG_NET_POLL_CONTROLLER
3342 /* Polling 'interrupt' - used by things like netconsole to send skbs
3343  * without having to re-enable interrupts. It's not called while
3344  * the interrupt routine is executing.
3345  */
3346 static void gfar_netpoll(struct net_device *dev)
3347 {
3348 	struct gfar_private *priv = netdev_priv(dev);
3349 	int i;
3350 
3351 	/* If the device has multiple interrupts, run tx/rx */
3352 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3353 		for (i = 0; i < priv->num_grps; i++) {
3354 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3355 
3356 			disable_irq(gfar_irq(grp, TX)->irq);
3357 			disable_irq(gfar_irq(grp, RX)->irq);
3358 			disable_irq(gfar_irq(grp, ER)->irq);
3359 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3360 			enable_irq(gfar_irq(grp, ER)->irq);
3361 			enable_irq(gfar_irq(grp, RX)->irq);
3362 			enable_irq(gfar_irq(grp, TX)->irq);
3363 		}
3364 	} else {
3365 		for (i = 0; i < priv->num_grps; i++) {
3366 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3367 
3368 			disable_irq(gfar_irq(grp, TX)->irq);
3369 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3370 			enable_irq(gfar_irq(grp, TX)->irq);
3371 		}
3372 	}
3373 }
3374 #endif
3375 
3376 /* The interrupt handler for devices with one interrupt */
3377 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3378 {
3379 	struct gfar_priv_grp *gfargrp = grp_id;
3380 
3381 	/* Save ievent for future reference */
3382 	u32 events = gfar_read(&gfargrp->regs->ievent);
3383 
3384 	/* Check for reception */
3385 	if (events & IEVENT_RX_MASK)
3386 		gfar_receive(irq, grp_id);
3387 
3388 	/* Check for transmit completion */
3389 	if (events & IEVENT_TX_MASK)
3390 		gfar_transmit(irq, grp_id);
3391 
3392 	/* Check for errors */
3393 	if (events & IEVENT_ERR_MASK)
3394 		gfar_error(irq, grp_id);
3395 
3396 	return IRQ_HANDLED;
3397 }
3398 
3399 /* Called every time the controller might need to be made
3400  * aware of new link state.  The PHY code conveys this
3401  * information through variables in the phydev structure, and this
3402  * function converts those variables into the appropriate
3403  * register values, and can bring down the device if needed.
3404  */
3405 static void adjust_link(struct net_device *dev)
3406 {
3407 	struct gfar_private *priv = netdev_priv(dev);
3408 	struct phy_device *phydev = dev->phydev;
3409 
3410 	if (unlikely(phydev->link != priv->oldlink ||
3411 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3412 				       phydev->speed != priv->oldspeed))))
3413 		gfar_update_link_state(priv);
3414 }
3415 
3416 /* Update the hash table based on the current list of multicast
3417  * addresses we subscribe to.  Also, change the promiscuity of
3418  * the device based on the flags (this function is called
3419  * whenever dev->flags is changed
3420  */
3421 static void gfar_set_multi(struct net_device *dev)
3422 {
3423 	struct netdev_hw_addr *ha;
3424 	struct gfar_private *priv = netdev_priv(dev);
3425 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3426 	u32 tempval;
3427 
3428 	if (dev->flags & IFF_PROMISC) {
3429 		/* Set RCTRL to PROM */
3430 		tempval = gfar_read(&regs->rctrl);
3431 		tempval |= RCTRL_PROM;
3432 		gfar_write(&regs->rctrl, tempval);
3433 	} else {
3434 		/* Set RCTRL to not PROM */
3435 		tempval = gfar_read(&regs->rctrl);
3436 		tempval &= ~(RCTRL_PROM);
3437 		gfar_write(&regs->rctrl, tempval);
3438 	}
3439 
3440 	if (dev->flags & IFF_ALLMULTI) {
3441 		/* Set the hash to rx all multicast frames */
3442 		gfar_write(&regs->igaddr0, 0xffffffff);
3443 		gfar_write(&regs->igaddr1, 0xffffffff);
3444 		gfar_write(&regs->igaddr2, 0xffffffff);
3445 		gfar_write(&regs->igaddr3, 0xffffffff);
3446 		gfar_write(&regs->igaddr4, 0xffffffff);
3447 		gfar_write(&regs->igaddr5, 0xffffffff);
3448 		gfar_write(&regs->igaddr6, 0xffffffff);
3449 		gfar_write(&regs->igaddr7, 0xffffffff);
3450 		gfar_write(&regs->gaddr0, 0xffffffff);
3451 		gfar_write(&regs->gaddr1, 0xffffffff);
3452 		gfar_write(&regs->gaddr2, 0xffffffff);
3453 		gfar_write(&regs->gaddr3, 0xffffffff);
3454 		gfar_write(&regs->gaddr4, 0xffffffff);
3455 		gfar_write(&regs->gaddr5, 0xffffffff);
3456 		gfar_write(&regs->gaddr6, 0xffffffff);
3457 		gfar_write(&regs->gaddr7, 0xffffffff);
3458 	} else {
3459 		int em_num;
3460 		int idx;
3461 
3462 		/* zero out the hash */
3463 		gfar_write(&regs->igaddr0, 0x0);
3464 		gfar_write(&regs->igaddr1, 0x0);
3465 		gfar_write(&regs->igaddr2, 0x0);
3466 		gfar_write(&regs->igaddr3, 0x0);
3467 		gfar_write(&regs->igaddr4, 0x0);
3468 		gfar_write(&regs->igaddr5, 0x0);
3469 		gfar_write(&regs->igaddr6, 0x0);
3470 		gfar_write(&regs->igaddr7, 0x0);
3471 		gfar_write(&regs->gaddr0, 0x0);
3472 		gfar_write(&regs->gaddr1, 0x0);
3473 		gfar_write(&regs->gaddr2, 0x0);
3474 		gfar_write(&regs->gaddr3, 0x0);
3475 		gfar_write(&regs->gaddr4, 0x0);
3476 		gfar_write(&regs->gaddr5, 0x0);
3477 		gfar_write(&regs->gaddr6, 0x0);
3478 		gfar_write(&regs->gaddr7, 0x0);
3479 
3480 		/* If we have extended hash tables, we need to
3481 		 * clear the exact match registers to prepare for
3482 		 * setting them
3483 		 */
3484 		if (priv->extended_hash) {
3485 			em_num = GFAR_EM_NUM + 1;
3486 			gfar_clear_exact_match(dev);
3487 			idx = 1;
3488 		} else {
3489 			idx = 0;
3490 			em_num = 0;
3491 		}
3492 
3493 		if (netdev_mc_empty(dev))
3494 			return;
3495 
3496 		/* Parse the list, and set the appropriate bits */
3497 		netdev_for_each_mc_addr(ha, dev) {
3498 			if (idx < em_num) {
3499 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3500 				idx++;
3501 			} else
3502 				gfar_set_hash_for_addr(dev, ha->addr);
3503 		}
3504 	}
3505 }
3506 
3507 
3508 /* Clears each of the exact match registers to zero, so they
3509  * don't interfere with normal reception
3510  */
3511 static void gfar_clear_exact_match(struct net_device *dev)
3512 {
3513 	int idx;
3514 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3515 
3516 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3517 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3518 }
3519 
3520 /* Set the appropriate hash bit for the given addr */
3521 /* The algorithm works like so:
3522  * 1) Take the Destination Address (ie the multicast address), and
3523  * do a CRC on it (little endian), and reverse the bits of the
3524  * result.
3525  * 2) Use the 8 most significant bits as a hash into a 256-entry
3526  * table.  The table is controlled through 8 32-bit registers:
3527  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3528  * gaddr7.  This means that the 3 most significant bits in the
3529  * hash index which gaddr register to use, and the 5 other bits
3530  * indicate which bit (assuming an IBM numbering scheme, which
3531  * for PowerPC (tm) is usually the case) in the register holds
3532  * the entry.
3533  */
3534 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3535 {
3536 	u32 tempval;
3537 	struct gfar_private *priv = netdev_priv(dev);
3538 	u32 result = ether_crc(ETH_ALEN, addr);
3539 	int width = priv->hash_width;
3540 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3541 	u8 whichreg = result >> (32 - width + 5);
3542 	u32 value = (1 << (31-whichbit));
3543 
3544 	tempval = gfar_read(priv->hash_regs[whichreg]);
3545 	tempval |= value;
3546 	gfar_write(priv->hash_regs[whichreg], tempval);
3547 }
3548 
3549 
3550 /* There are multiple MAC Address register pairs on some controllers
3551  * This function sets the numth pair to a given address
3552  */
3553 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3554 				  const u8 *addr)
3555 {
3556 	struct gfar_private *priv = netdev_priv(dev);
3557 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3558 	u32 tempval;
3559 	u32 __iomem *macptr = &regs->macstnaddr1;
3560 
3561 	macptr += num*2;
3562 
3563 	/* For a station address of 0x12345678ABCD in transmission
3564 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3565 	 * MACnADDR2 is set to 0x34120000.
3566 	 */
3567 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3568 		  (addr[3] << 8)  |  addr[2];
3569 
3570 	gfar_write(macptr, tempval);
3571 
3572 	tempval = (addr[1] << 24) | (addr[0] << 16);
3573 
3574 	gfar_write(macptr+1, tempval);
3575 }
3576 
3577 /* GFAR error interrupt handler */
3578 static irqreturn_t gfar_error(int irq, void *grp_id)
3579 {
3580 	struct gfar_priv_grp *gfargrp = grp_id;
3581 	struct gfar __iomem *regs = gfargrp->regs;
3582 	struct gfar_private *priv= gfargrp->priv;
3583 	struct net_device *dev = priv->ndev;
3584 
3585 	/* Save ievent for future reference */
3586 	u32 events = gfar_read(&regs->ievent);
3587 
3588 	/* Clear IEVENT */
3589 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3590 
3591 	/* Magic Packet is not an error. */
3592 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3593 	    (events & IEVENT_MAG))
3594 		events &= ~IEVENT_MAG;
3595 
3596 	/* Hmm... */
3597 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3598 		netdev_dbg(dev,
3599 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3600 			   events, gfar_read(&regs->imask));
3601 
3602 	/* Update the error counters */
3603 	if (events & IEVENT_TXE) {
3604 		dev->stats.tx_errors++;
3605 
3606 		if (events & IEVENT_LC)
3607 			dev->stats.tx_window_errors++;
3608 		if (events & IEVENT_CRL)
3609 			dev->stats.tx_aborted_errors++;
3610 		if (events & IEVENT_XFUN) {
3611 			netif_dbg(priv, tx_err, dev,
3612 				  "TX FIFO underrun, packet dropped\n");
3613 			dev->stats.tx_dropped++;
3614 			atomic64_inc(&priv->extra_stats.tx_underrun);
3615 
3616 			schedule_work(&priv->reset_task);
3617 		}
3618 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3619 	}
3620 	if (events & IEVENT_BSY) {
3621 		dev->stats.rx_over_errors++;
3622 		atomic64_inc(&priv->extra_stats.rx_bsy);
3623 
3624 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3625 			  gfar_read(&regs->rstat));
3626 	}
3627 	if (events & IEVENT_BABR) {
3628 		dev->stats.rx_errors++;
3629 		atomic64_inc(&priv->extra_stats.rx_babr);
3630 
3631 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3632 	}
3633 	if (events & IEVENT_EBERR) {
3634 		atomic64_inc(&priv->extra_stats.eberr);
3635 		netif_dbg(priv, rx_err, dev, "bus error\n");
3636 	}
3637 	if (events & IEVENT_RXC)
3638 		netif_dbg(priv, rx_status, dev, "control frame\n");
3639 
3640 	if (events & IEVENT_BABT) {
3641 		atomic64_inc(&priv->extra_stats.tx_babt);
3642 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3643 	}
3644 	return IRQ_HANDLED;
3645 }
3646 
3647 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3648 {
3649 	struct net_device *ndev = priv->ndev;
3650 	struct phy_device *phydev = ndev->phydev;
3651 	u32 val = 0;
3652 
3653 	if (!phydev->duplex)
3654 		return val;
3655 
3656 	if (!priv->pause_aneg_en) {
3657 		if (priv->tx_pause_en)
3658 			val |= MACCFG1_TX_FLOW;
3659 		if (priv->rx_pause_en)
3660 			val |= MACCFG1_RX_FLOW;
3661 	} else {
3662 		u16 lcl_adv, rmt_adv;
3663 		u8 flowctrl;
3664 		/* get link partner capabilities */
3665 		rmt_adv = 0;
3666 		if (phydev->pause)
3667 			rmt_adv = LPA_PAUSE_CAP;
3668 		if (phydev->asym_pause)
3669 			rmt_adv |= LPA_PAUSE_ASYM;
3670 
3671 		lcl_adv = 0;
3672 		if (phydev->advertising & ADVERTISED_Pause)
3673 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3674 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3675 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3676 
3677 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3678 		if (flowctrl & FLOW_CTRL_TX)
3679 			val |= MACCFG1_TX_FLOW;
3680 		if (flowctrl & FLOW_CTRL_RX)
3681 			val |= MACCFG1_RX_FLOW;
3682 	}
3683 
3684 	return val;
3685 }
3686 
3687 static noinline void gfar_update_link_state(struct gfar_private *priv)
3688 {
3689 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3690 	struct net_device *ndev = priv->ndev;
3691 	struct phy_device *phydev = ndev->phydev;
3692 	struct gfar_priv_rx_q *rx_queue = NULL;
3693 	int i;
3694 
3695 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3696 		return;
3697 
3698 	if (phydev->link) {
3699 		u32 tempval1 = gfar_read(&regs->maccfg1);
3700 		u32 tempval = gfar_read(&regs->maccfg2);
3701 		u32 ecntrl = gfar_read(&regs->ecntrl);
3702 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3703 
3704 		if (phydev->duplex != priv->oldduplex) {
3705 			if (!(phydev->duplex))
3706 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3707 			else
3708 				tempval |= MACCFG2_FULL_DUPLEX;
3709 
3710 			priv->oldduplex = phydev->duplex;
3711 		}
3712 
3713 		if (phydev->speed != priv->oldspeed) {
3714 			switch (phydev->speed) {
3715 			case 1000:
3716 				tempval =
3717 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3718 
3719 				ecntrl &= ~(ECNTRL_R100);
3720 				break;
3721 			case 100:
3722 			case 10:
3723 				tempval =
3724 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3725 
3726 				/* Reduced mode distinguishes
3727 				 * between 10 and 100
3728 				 */
3729 				if (phydev->speed == SPEED_100)
3730 					ecntrl |= ECNTRL_R100;
3731 				else
3732 					ecntrl &= ~(ECNTRL_R100);
3733 				break;
3734 			default:
3735 				netif_warn(priv, link, priv->ndev,
3736 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3737 					   phydev->speed);
3738 				break;
3739 			}
3740 
3741 			priv->oldspeed = phydev->speed;
3742 		}
3743 
3744 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3745 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3746 
3747 		/* Turn last free buffer recording on */
3748 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3749 			for (i = 0; i < priv->num_rx_queues; i++) {
3750 				u32 bdp_dma;
3751 
3752 				rx_queue = priv->rx_queue[i];
3753 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3754 				gfar_write(rx_queue->rfbptr, bdp_dma);
3755 			}
3756 
3757 			priv->tx_actual_en = 1;
3758 		}
3759 
3760 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3761 			priv->tx_actual_en = 0;
3762 
3763 		gfar_write(&regs->maccfg1, tempval1);
3764 		gfar_write(&regs->maccfg2, tempval);
3765 		gfar_write(&regs->ecntrl, ecntrl);
3766 
3767 		if (!priv->oldlink)
3768 			priv->oldlink = 1;
3769 
3770 	} else if (priv->oldlink) {
3771 		priv->oldlink = 0;
3772 		priv->oldspeed = 0;
3773 		priv->oldduplex = -1;
3774 	}
3775 
3776 	if (netif_msg_link(priv))
3777 		phy_print_status(phydev);
3778 }
3779 
3780 static const struct of_device_id gfar_match[] =
3781 {
3782 	{
3783 		.type = "network",
3784 		.compatible = "gianfar",
3785 	},
3786 	{
3787 		.compatible = "fsl,etsec2",
3788 	},
3789 	{},
3790 };
3791 MODULE_DEVICE_TABLE(of, gfar_match);
3792 
3793 /* Structure for a device driver */
3794 static struct platform_driver gfar_driver = {
3795 	.driver = {
3796 		.name = "fsl-gianfar",
3797 		.pm = GFAR_PM_OPS,
3798 		.of_match_table = gfar_match,
3799 	},
3800 	.probe = gfar_probe,
3801 	.remove = gfar_remove,
3802 };
3803 
3804 module_platform_driver(gfar_driver);
3805