1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109 
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 			    dma_addr_t buf)
112 {
113 	u32 lstatus;
114 
115 	bdp->bufPtr = cpu_to_be32(buf);
116 
117 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 		lstatus |= BD_LFLAG(RXBD_WRAP);
120 
121 	gfar_wmb();
122 
123 	bdp->lstatus = cpu_to_be32(lstatus);
124 }
125 
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 	u32 __iomem *baddr;
130 	int i;
131 
132 	baddr = &regs->tbase0;
133 	for (i = 0; i < priv->num_tx_queues; i++) {
134 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 		baddr += 2;
136 	}
137 
138 	baddr = &regs->rbase0;
139 	for (i = 0; i < priv->num_rx_queues; i++) {
140 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 		baddr += 2;
142 	}
143 }
144 
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 	u32 __iomem *baddr;
149 	int i;
150 
151 	baddr = &regs->rqprm0;
152 	for (i = 0; i < priv->num_rx_queues; i++) {
153 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 		baddr++;
156 	}
157 }
158 
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 	/* set this when rx hw offload (TOE) functions are being used */
162 	priv->uses_rxfcb = 0;
163 
164 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 		priv->uses_rxfcb = 1;
166 
167 	if (priv->hwts_rx_en || priv->rx_filer_enable)
168 		priv->uses_rxfcb = 1;
169 }
170 
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 	u32 rctrl = 0;
175 
176 	if (priv->rx_filer_enable) {
177 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 		/* Program the RIR0 reg with the required distribution */
179 		if (priv->poll_mode == GFAR_SQ_POLLING)
180 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181 		else /* GFAR_MQ_POLLING */
182 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183 	}
184 
185 	/* Restore PROMISC mode */
186 	if (priv->ndev->flags & IFF_PROMISC)
187 		rctrl |= RCTRL_PROM;
188 
189 	if (priv->ndev->features & NETIF_F_RXCSUM)
190 		rctrl |= RCTRL_CHECKSUMMING;
191 
192 	if (priv->extended_hash)
193 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194 
195 	if (priv->padding) {
196 		rctrl &= ~RCTRL_PAL_MASK;
197 		rctrl |= RCTRL_PADDING(priv->padding);
198 	}
199 
200 	/* Enable HW time stamping if requested from user space */
201 	if (priv->hwts_rx_en)
202 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203 
204 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206 
207 	/* Clear the LFC bit */
208 	gfar_write(&regs->rctrl, rctrl);
209 	/* Init flow control threshold values */
210 	gfar_init_rqprm(priv);
211 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212 	rctrl |= RCTRL_LFC;
213 
214 	/* Init rctrl based on our settings */
215 	gfar_write(&regs->rctrl, rctrl);
216 }
217 
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 	u32 tctrl = 0;
222 
223 	if (priv->ndev->features & NETIF_F_IP_CSUM)
224 		tctrl |= TCTRL_INIT_CSUM;
225 
226 	if (priv->prio_sched_en)
227 		tctrl |= TCTRL_TXSCHED_PRIO;
228 	else {
229 		tctrl |= TCTRL_TXSCHED_WRRS;
230 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232 	}
233 
234 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 		tctrl |= TCTRL_VLINS;
236 
237 	gfar_write(&regs->tctrl, tctrl);
238 }
239 
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 			       unsigned long tx_mask, unsigned long rx_mask)
242 {
243 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 	u32 __iomem *baddr;
245 
246 	if (priv->mode == MQ_MG_MODE) {
247 		int i = 0;
248 
249 		baddr = &regs->txic0;
250 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 			gfar_write(baddr + i, 0);
252 			if (likely(priv->tx_queue[i]->txcoalescing))
253 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 		}
255 
256 		baddr = &regs->rxic0;
257 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 			gfar_write(baddr + i, 0);
259 			if (likely(priv->rx_queue[i]->rxcoalescing))
260 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 		}
262 	} else {
263 		/* Backward compatible case -- even if we enable
264 		 * multiple queues, there's only single reg to program
265 		 */
266 		gfar_write(&regs->txic, 0);
267 		if (likely(priv->tx_queue[0]->txcoalescing))
268 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269 
270 		gfar_write(&regs->rxic, 0);
271 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273 	}
274 }
275 
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280 
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 	struct gfar_private *priv = netdev_priv(dev);
284 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 	unsigned long tx_packets = 0, tx_bytes = 0;
286 	int i;
287 
288 	for (i = 0; i < priv->num_rx_queues; i++) {
289 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 	}
293 
294 	dev->stats.rx_packets = rx_packets;
295 	dev->stats.rx_bytes   = rx_bytes;
296 	dev->stats.rx_dropped = rx_dropped;
297 
298 	for (i = 0; i < priv->num_tx_queues; i++) {
299 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 	}
302 
303 	dev->stats.tx_bytes   = tx_bytes;
304 	dev->stats.tx_packets = tx_packets;
305 
306 	return &dev->stats;
307 }
308 
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 	u32 tempval;
326 	struct gfar_private *priv = netdev_priv(dev);
327 	u32 result = ether_crc(ETH_ALEN, addr);
328 	int width = priv->hash_width;
329 	u8 whichbit = (result >> (32 - width)) & 0x1f;
330 	u8 whichreg = result >> (32 - width + 5);
331 	u32 value = (1 << (31-whichbit));
332 
333 	tempval = gfar_read(priv->hash_regs[whichreg]);
334 	tempval |= value;
335 	gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337 
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 				  const u8 *addr)
343 {
344 	struct gfar_private *priv = netdev_priv(dev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 tempval;
347 	u32 __iomem *macptr = &regs->macstnaddr1;
348 
349 	macptr += num*2;
350 
351 	/* For a station address of 0x12345678ABCD in transmission
352 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 	 * MACnADDR2 is set to 0x34120000.
354 	 */
355 	tempval = (addr[5] << 24) | (addr[4] << 16) |
356 		  (addr[3] << 8)  |  addr[2];
357 
358 	gfar_write(macptr, tempval);
359 
360 	tempval = (addr[1] << 24) | (addr[0] << 16);
361 
362 	gfar_write(macptr+1, tempval);
363 }
364 
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 	eth_mac_addr(dev, p);
368 
369 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370 
371 	return 0;
372 }
373 
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376 	int i;
377 	for (i = 0; i < priv->num_grps; i++) {
378 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
379 		/* Clear IEVENT */
380 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381 
382 		/* Initialize IMASK */
383 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384 	}
385 }
386 
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389 	int i;
390 	for (i = 0; i < priv->num_grps; i++) {
391 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 		/* Unmask the interrupts we look for */
393 		gfar_write(&regs->imask, IMASK_DEFAULT);
394 	}
395 }
396 
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399 	int i;
400 
401 	for (i = 0; i < priv->num_tx_queues; i++) {
402 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403 					    GFP_KERNEL);
404 		if (!priv->tx_queue[i])
405 			return -ENOMEM;
406 
407 		priv->tx_queue[i]->tx_skbuff = NULL;
408 		priv->tx_queue[i]->qindex = i;
409 		priv->tx_queue[i]->dev = priv->ndev;
410 		spin_lock_init(&(priv->tx_queue[i]->txlock));
411 	}
412 	return 0;
413 }
414 
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417 	int i;
418 
419 	for (i = 0; i < priv->num_rx_queues; i++) {
420 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421 					    GFP_KERNEL);
422 		if (!priv->rx_queue[i])
423 			return -ENOMEM;
424 
425 		priv->rx_queue[i]->qindex = i;
426 		priv->rx_queue[i]->ndev = priv->ndev;
427 	}
428 	return 0;
429 }
430 
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433 	int i;
434 
435 	for (i = 0; i < priv->num_tx_queues; i++)
436 		kfree(priv->tx_queue[i]);
437 }
438 
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++)
444 		kfree(priv->rx_queue[i]);
445 }
446 
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAXGROUPS; i++)
452 		if (priv->gfargrp[i].regs)
453 			iounmap(priv->gfargrp[i].regs);
454 }
455 
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458 	int i, j;
459 
460 	for (i = 0; i < priv->num_grps; i++)
461 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
462 			kfree(priv->gfargrp[i].irqinfo[j]);
463 			priv->gfargrp[i].irqinfo[j] = NULL;
464 		}
465 
466 	free_netdev(priv->ndev);
467 }
468 
469 static void disable_napi(struct gfar_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < priv->num_grps; i++) {
474 		napi_disable(&priv->gfargrp[i].napi_rx);
475 		napi_disable(&priv->gfargrp[i].napi_tx);
476 	}
477 }
478 
479 static void enable_napi(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_grps; i++) {
484 		napi_enable(&priv->gfargrp[i].napi_rx);
485 		napi_enable(&priv->gfargrp[i].napi_tx);
486 	}
487 }
488 
489 static int gfar_parse_group(struct device_node *np,
490 			    struct gfar_private *priv, const char *model)
491 {
492 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493 	int i;
494 
495 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
496 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497 					  GFP_KERNEL);
498 		if (!grp->irqinfo[i])
499 			return -ENOMEM;
500 	}
501 
502 	grp->regs = of_iomap(np, 0);
503 	if (!grp->regs)
504 		return -ENOMEM;
505 
506 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507 
508 	/* If we aren't the FEC we have multiple interrupts */
509 	if (model && strcasecmp(model, "FEC")) {
510 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512 		if (!gfar_irq(grp, TX)->irq ||
513 		    !gfar_irq(grp, RX)->irq ||
514 		    !gfar_irq(grp, ER)->irq)
515 			return -EINVAL;
516 	}
517 
518 	grp->priv = priv;
519 	spin_lock_init(&grp->grplock);
520 	if (priv->mode == MQ_MG_MODE) {
521 		u32 rxq_mask, txq_mask;
522 		int ret;
523 
524 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526 
527 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528 		if (!ret) {
529 			grp->rx_bit_map = rxq_mask ?
530 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531 		}
532 
533 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534 		if (!ret) {
535 			grp->tx_bit_map = txq_mask ?
536 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537 		}
538 
539 		if (priv->poll_mode == GFAR_SQ_POLLING) {
540 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543 		}
544 	} else {
545 		grp->rx_bit_map = 0xFF;
546 		grp->tx_bit_map = 0xFF;
547 	}
548 
549 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550 	 * right to left, so we need to revert the 8 bits to get the q index
551 	 */
552 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554 
555 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556 	 * also assign queues to groups
557 	 */
558 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559 		if (!grp->rx_queue)
560 			grp->rx_queue = priv->rx_queue[i];
561 		grp->num_rx_queues++;
562 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564 		priv->rx_queue[i]->grp = grp;
565 	}
566 
567 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568 		if (!grp->tx_queue)
569 			grp->tx_queue = priv->tx_queue[i];
570 		grp->num_tx_queues++;
571 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572 		priv->tqueue |= (TQUEUE_EN0 >> i);
573 		priv->tx_queue[i]->grp = grp;
574 	}
575 
576 	priv->num_grps++;
577 
578 	return 0;
579 }
580 
581 static int gfar_of_group_count(struct device_node *np)
582 {
583 	struct device_node *child;
584 	int num = 0;
585 
586 	for_each_available_child_of_node(np, child)
587 		if (of_node_name_eq(child, "queue-group"))
588 			num++;
589 
590 	return num;
591 }
592 
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598 	struct gfar_private *priv = netdev_priv(dev);
599 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
600 	u32 ecntrl;
601 
602 	ecntrl = gfar_read(&regs->ecntrl);
603 
604 	if (ecntrl & ECNTRL_SGMII_MODE)
605 		return PHY_INTERFACE_MODE_SGMII;
606 
607 	if (ecntrl & ECNTRL_TBI_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MODE)
609 			return PHY_INTERFACE_MODE_RTBI;
610 		else
611 			return PHY_INTERFACE_MODE_TBI;
612 	}
613 
614 	if (ecntrl & ECNTRL_REDUCED_MODE) {
615 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616 			return PHY_INTERFACE_MODE_RMII;
617 		}
618 		else {
619 			phy_interface_t interface = priv->interface;
620 
621 			/* This isn't autodetected right now, so it must
622 			 * be set by the device tree or platform code.
623 			 */
624 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625 				return PHY_INTERFACE_MODE_RGMII_ID;
626 
627 			return PHY_INTERFACE_MODE_RGMII;
628 		}
629 	}
630 
631 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632 		return PHY_INTERFACE_MODE_GMII;
633 
634 	return PHY_INTERFACE_MODE_MII;
635 }
636 
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639 	const char *model;
640 	const void *mac_addr;
641 	int err = 0, i;
642 	phy_interface_t interface;
643 	struct net_device *dev = NULL;
644 	struct gfar_private *priv = NULL;
645 	struct device_node *np = ofdev->dev.of_node;
646 	struct device_node *child = NULL;
647 	u32 stash_len = 0;
648 	u32 stash_idx = 0;
649 	unsigned int num_tx_qs, num_rx_qs;
650 	unsigned short mode, poll_mode;
651 
652 	if (!np)
653 		return -ENODEV;
654 
655 	if (of_device_is_compatible(np, "fsl,etsec2")) {
656 		mode = MQ_MG_MODE;
657 		poll_mode = GFAR_SQ_POLLING;
658 	} else {
659 		mode = SQ_SG_MODE;
660 		poll_mode = GFAR_SQ_POLLING;
661 	}
662 
663 	if (mode == SQ_SG_MODE) {
664 		num_tx_qs = 1;
665 		num_rx_qs = 1;
666 	} else { /* MQ_MG_MODE */
667 		/* get the actual number of supported groups */
668 		unsigned int num_grps = gfar_of_group_count(np);
669 
670 		if (num_grps == 0 || num_grps > MAXGROUPS) {
671 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672 				num_grps);
673 			pr_err("Cannot do alloc_etherdev, aborting\n");
674 			return -EINVAL;
675 		}
676 
677 		if (poll_mode == GFAR_SQ_POLLING) {
678 			num_tx_qs = num_grps; /* one txq per int group */
679 			num_rx_qs = num_grps; /* one rxq per int group */
680 		} else { /* GFAR_MQ_POLLING */
681 			u32 tx_queues, rx_queues;
682 			int ret;
683 
684 			/* parse the num of HW tx and rx queues */
685 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
686 						   &tx_queues);
687 			num_tx_qs = ret ? 1 : tx_queues;
688 
689 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
690 						   &rx_queues);
691 			num_rx_qs = ret ? 1 : rx_queues;
692 		}
693 	}
694 
695 	if (num_tx_qs > MAX_TX_QS) {
696 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697 		       num_tx_qs, MAX_TX_QS);
698 		pr_err("Cannot do alloc_etherdev, aborting\n");
699 		return -EINVAL;
700 	}
701 
702 	if (num_rx_qs > MAX_RX_QS) {
703 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704 		       num_rx_qs, MAX_RX_QS);
705 		pr_err("Cannot do alloc_etherdev, aborting\n");
706 		return -EINVAL;
707 	}
708 
709 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710 	dev = *pdev;
711 	if (NULL == dev)
712 		return -ENOMEM;
713 
714 	priv = netdev_priv(dev);
715 	priv->ndev = dev;
716 
717 	priv->mode = mode;
718 	priv->poll_mode = poll_mode;
719 
720 	priv->num_tx_queues = num_tx_qs;
721 	netif_set_real_num_rx_queues(dev, num_rx_qs);
722 	priv->num_rx_queues = num_rx_qs;
723 
724 	err = gfar_alloc_tx_queues(priv);
725 	if (err)
726 		goto tx_alloc_failed;
727 
728 	err = gfar_alloc_rx_queues(priv);
729 	if (err)
730 		goto rx_alloc_failed;
731 
732 	err = of_property_read_string(np, "model", &model);
733 	if (err) {
734 		pr_err("Device model property missing, aborting\n");
735 		goto rx_alloc_failed;
736 	}
737 
738 	/* Init Rx queue filer rule set linked list */
739 	INIT_LIST_HEAD(&priv->rx_list.list);
740 	priv->rx_list.count = 0;
741 	mutex_init(&priv->rx_queue_access);
742 
743 	for (i = 0; i < MAXGROUPS; i++)
744 		priv->gfargrp[i].regs = NULL;
745 
746 	/* Parse and initialize group specific information */
747 	if (priv->mode == MQ_MG_MODE) {
748 		for_each_available_child_of_node(np, child) {
749 			if (!of_node_name_eq(child, "queue-group"))
750 				continue;
751 
752 			err = gfar_parse_group(child, priv, model);
753 			if (err)
754 				goto err_grp_init;
755 		}
756 	} else { /* SQ_SG_MODE */
757 		err = gfar_parse_group(np, priv, model);
758 		if (err)
759 			goto err_grp_init;
760 	}
761 
762 	if (of_property_read_bool(np, "bd-stash")) {
763 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
764 		priv->bd_stash_en = 1;
765 	}
766 
767 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
768 
769 	if (err == 0)
770 		priv->rx_stash_size = stash_len;
771 
772 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
773 
774 	if (err == 0)
775 		priv->rx_stash_index = stash_idx;
776 
777 	if (stash_len || stash_idx)
778 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
779 
780 	mac_addr = of_get_mac_address(np);
781 
782 	if (!IS_ERR(mac_addr))
783 		ether_addr_copy(dev->dev_addr, mac_addr);
784 
785 	if (model && !strcasecmp(model, "TSEC"))
786 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
787 				     FSL_GIANFAR_DEV_HAS_COALESCE |
788 				     FSL_GIANFAR_DEV_HAS_RMON |
789 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
790 
791 	if (model && !strcasecmp(model, "eTSEC"))
792 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
793 				     FSL_GIANFAR_DEV_HAS_COALESCE |
794 				     FSL_GIANFAR_DEV_HAS_RMON |
795 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
796 				     FSL_GIANFAR_DEV_HAS_CSUM |
797 				     FSL_GIANFAR_DEV_HAS_VLAN |
798 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
799 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
800 				     FSL_GIANFAR_DEV_HAS_TIMER |
801 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
802 
803 	/* Use PHY connection type from the DT node if one is specified there.
804 	 * rgmii-id really needs to be specified. Other types can be
805 	 * detected by hardware
806 	 */
807 	err = of_get_phy_mode(np, &interface);
808 	if (!err)
809 		priv->interface = interface;
810 	else
811 		priv->interface = gfar_get_interface(dev);
812 
813 	if (of_find_property(np, "fsl,magic-packet", NULL))
814 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
815 
816 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
817 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
818 
819 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
820 
821 	/* In the case of a fixed PHY, the DT node associated
822 	 * to the PHY is the Ethernet MAC DT node.
823 	 */
824 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
825 		err = of_phy_register_fixed_link(np);
826 		if (err)
827 			goto err_grp_init;
828 
829 		priv->phy_node = of_node_get(np);
830 	}
831 
832 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
833 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
834 
835 	return 0;
836 
837 err_grp_init:
838 	unmap_group_regs(priv);
839 rx_alloc_failed:
840 	gfar_free_rx_queues(priv);
841 tx_alloc_failed:
842 	gfar_free_tx_queues(priv);
843 	free_gfar_dev(priv);
844 	return err;
845 }
846 
847 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
848 				   u32 class)
849 {
850 	u32 rqfpr = FPR_FILER_MASK;
851 	u32 rqfcr = 0x0;
852 
853 	rqfar--;
854 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
855 	priv->ftp_rqfpr[rqfar] = rqfpr;
856 	priv->ftp_rqfcr[rqfar] = rqfcr;
857 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
858 
859 	rqfar--;
860 	rqfcr = RQFCR_CMP_NOMATCH;
861 	priv->ftp_rqfpr[rqfar] = rqfpr;
862 	priv->ftp_rqfcr[rqfar] = rqfcr;
863 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
864 
865 	rqfar--;
866 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
867 	rqfpr = class;
868 	priv->ftp_rqfcr[rqfar] = rqfcr;
869 	priv->ftp_rqfpr[rqfar] = rqfpr;
870 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
871 
872 	rqfar--;
873 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
874 	rqfpr = class;
875 	priv->ftp_rqfcr[rqfar] = rqfcr;
876 	priv->ftp_rqfpr[rqfar] = rqfpr;
877 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
878 
879 	return rqfar;
880 }
881 
882 static void gfar_init_filer_table(struct gfar_private *priv)
883 {
884 	int i = 0x0;
885 	u32 rqfar = MAX_FILER_IDX;
886 	u32 rqfcr = 0x0;
887 	u32 rqfpr = FPR_FILER_MASK;
888 
889 	/* Default rule */
890 	rqfcr = RQFCR_CMP_MATCH;
891 	priv->ftp_rqfcr[rqfar] = rqfcr;
892 	priv->ftp_rqfpr[rqfar] = rqfpr;
893 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894 
895 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
896 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
897 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
898 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
899 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
900 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
901 
902 	/* cur_filer_idx indicated the first non-masked rule */
903 	priv->cur_filer_idx = rqfar;
904 
905 	/* Rest are masked rules */
906 	rqfcr = RQFCR_CMP_NOMATCH;
907 	for (i = 0; i < rqfar; i++) {
908 		priv->ftp_rqfcr[i] = rqfcr;
909 		priv->ftp_rqfpr[i] = rqfpr;
910 		gfar_write_filer(priv, i, rqfcr, rqfpr);
911 	}
912 }
913 
914 #ifdef CONFIG_PPC
915 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
916 {
917 	unsigned int pvr = mfspr(SPRN_PVR);
918 	unsigned int svr = mfspr(SPRN_SVR);
919 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
920 	unsigned int rev = svr & 0xffff;
921 
922 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
923 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
924 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
925 		priv->errata |= GFAR_ERRATA_74;
926 
927 	/* MPC8313 and MPC837x all rev */
928 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
929 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
930 		priv->errata |= GFAR_ERRATA_76;
931 
932 	/* MPC8313 Rev < 2.0 */
933 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
934 		priv->errata |= GFAR_ERRATA_12;
935 }
936 
937 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
938 {
939 	unsigned int svr = mfspr(SPRN_SVR);
940 
941 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
942 		priv->errata |= GFAR_ERRATA_12;
943 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
944 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
945 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
946 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
947 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
948 }
949 #endif
950 
951 static void gfar_detect_errata(struct gfar_private *priv)
952 {
953 	struct device *dev = &priv->ofdev->dev;
954 
955 	/* no plans to fix */
956 	priv->errata |= GFAR_ERRATA_A002;
957 
958 #ifdef CONFIG_PPC
959 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
960 		__gfar_detect_errata_85xx(priv);
961 	else /* non-mpc85xx parts, i.e. e300 core based */
962 		__gfar_detect_errata_83xx(priv);
963 #endif
964 
965 	if (priv->errata)
966 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
967 			 priv->errata);
968 }
969 
970 static void gfar_init_addr_hash_table(struct gfar_private *priv)
971 {
972 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
973 
974 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
975 		priv->extended_hash = 1;
976 		priv->hash_width = 9;
977 
978 		priv->hash_regs[0] = &regs->igaddr0;
979 		priv->hash_regs[1] = &regs->igaddr1;
980 		priv->hash_regs[2] = &regs->igaddr2;
981 		priv->hash_regs[3] = &regs->igaddr3;
982 		priv->hash_regs[4] = &regs->igaddr4;
983 		priv->hash_regs[5] = &regs->igaddr5;
984 		priv->hash_regs[6] = &regs->igaddr6;
985 		priv->hash_regs[7] = &regs->igaddr7;
986 		priv->hash_regs[8] = &regs->gaddr0;
987 		priv->hash_regs[9] = &regs->gaddr1;
988 		priv->hash_regs[10] = &regs->gaddr2;
989 		priv->hash_regs[11] = &regs->gaddr3;
990 		priv->hash_regs[12] = &regs->gaddr4;
991 		priv->hash_regs[13] = &regs->gaddr5;
992 		priv->hash_regs[14] = &regs->gaddr6;
993 		priv->hash_regs[15] = &regs->gaddr7;
994 
995 	} else {
996 		priv->extended_hash = 0;
997 		priv->hash_width = 8;
998 
999 		priv->hash_regs[0] = &regs->gaddr0;
1000 		priv->hash_regs[1] = &regs->gaddr1;
1001 		priv->hash_regs[2] = &regs->gaddr2;
1002 		priv->hash_regs[3] = &regs->gaddr3;
1003 		priv->hash_regs[4] = &regs->gaddr4;
1004 		priv->hash_regs[5] = &regs->gaddr5;
1005 		priv->hash_regs[6] = &regs->gaddr6;
1006 		priv->hash_regs[7] = &regs->gaddr7;
1007 	}
1008 }
1009 
1010 static int __gfar_is_rx_idle(struct gfar_private *priv)
1011 {
1012 	u32 res;
1013 
1014 	/* Normaly TSEC should not hang on GRS commands, so we should
1015 	 * actually wait for IEVENT_GRSC flag.
1016 	 */
1017 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1018 		return 0;
1019 
1020 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1021 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1022 	 * and the Rx can be safely reset.
1023 	 */
1024 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1025 	res &= 0x7f807f80;
1026 	if ((res & 0xffff) == (res >> 16))
1027 		return 1;
1028 
1029 	return 0;
1030 }
1031 
1032 /* Halt the receive and transmit queues */
1033 static void gfar_halt_nodisable(struct gfar_private *priv)
1034 {
1035 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1036 	u32 tempval;
1037 	unsigned int timeout;
1038 	int stopped;
1039 
1040 	gfar_ints_disable(priv);
1041 
1042 	if (gfar_is_dma_stopped(priv))
1043 		return;
1044 
1045 	/* Stop the DMA, and wait for it to stop */
1046 	tempval = gfar_read(&regs->dmactrl);
1047 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1048 	gfar_write(&regs->dmactrl, tempval);
1049 
1050 retry:
1051 	timeout = 1000;
1052 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1053 		cpu_relax();
1054 		timeout--;
1055 	}
1056 
1057 	if (!timeout)
1058 		stopped = gfar_is_dma_stopped(priv);
1059 
1060 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1061 	    !__gfar_is_rx_idle(priv))
1062 		goto retry;
1063 }
1064 
1065 /* Halt the receive and transmit queues */
1066 static void gfar_halt(struct gfar_private *priv)
1067 {
1068 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1069 	u32 tempval;
1070 
1071 	/* Dissable the Rx/Tx hw queues */
1072 	gfar_write(&regs->rqueue, 0);
1073 	gfar_write(&regs->tqueue, 0);
1074 
1075 	mdelay(10);
1076 
1077 	gfar_halt_nodisable(priv);
1078 
1079 	/* Disable Rx/Tx DMA */
1080 	tempval = gfar_read(&regs->maccfg1);
1081 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1082 	gfar_write(&regs->maccfg1, tempval);
1083 }
1084 
1085 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1086 {
1087 	struct txbd8 *txbdp;
1088 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1089 	int i, j;
1090 
1091 	txbdp = tx_queue->tx_bd_base;
1092 
1093 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1094 		if (!tx_queue->tx_skbuff[i])
1095 			continue;
1096 
1097 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1098 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1099 		txbdp->lstatus = 0;
1100 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1101 		     j++) {
1102 			txbdp++;
1103 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104 				       be16_to_cpu(txbdp->length),
1105 				       DMA_TO_DEVICE);
1106 		}
1107 		txbdp++;
1108 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1109 		tx_queue->tx_skbuff[i] = NULL;
1110 	}
1111 	kfree(tx_queue->tx_skbuff);
1112 	tx_queue->tx_skbuff = NULL;
1113 }
1114 
1115 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1116 {
1117 	int i;
1118 
1119 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1120 
1121 	dev_kfree_skb(rx_queue->skb);
1122 
1123 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1124 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1125 
1126 		rxbdp->lstatus = 0;
1127 		rxbdp->bufPtr = 0;
1128 		rxbdp++;
1129 
1130 		if (!rxb->page)
1131 			continue;
1132 
1133 		dma_unmap_page(rx_queue->dev, rxb->dma,
1134 			       PAGE_SIZE, DMA_FROM_DEVICE);
1135 		__free_page(rxb->page);
1136 
1137 		rxb->page = NULL;
1138 	}
1139 
1140 	kfree(rx_queue->rx_buff);
1141 	rx_queue->rx_buff = NULL;
1142 }
1143 
1144 /* If there are any tx skbs or rx skbs still around, free them.
1145  * Then free tx_skbuff and rx_skbuff
1146  */
1147 static void free_skb_resources(struct gfar_private *priv)
1148 {
1149 	struct gfar_priv_tx_q *tx_queue = NULL;
1150 	struct gfar_priv_rx_q *rx_queue = NULL;
1151 	int i;
1152 
1153 	/* Go through all the buffer descriptors and free their data buffers */
1154 	for (i = 0; i < priv->num_tx_queues; i++) {
1155 		struct netdev_queue *txq;
1156 
1157 		tx_queue = priv->tx_queue[i];
1158 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1159 		if (tx_queue->tx_skbuff)
1160 			free_skb_tx_queue(tx_queue);
1161 		netdev_tx_reset_queue(txq);
1162 	}
1163 
1164 	for (i = 0; i < priv->num_rx_queues; i++) {
1165 		rx_queue = priv->rx_queue[i];
1166 		if (rx_queue->rx_buff)
1167 			free_skb_rx_queue(rx_queue);
1168 	}
1169 
1170 	dma_free_coherent(priv->dev,
1171 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1172 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1173 			  priv->tx_queue[0]->tx_bd_base,
1174 			  priv->tx_queue[0]->tx_bd_dma_base);
1175 }
1176 
1177 void stop_gfar(struct net_device *dev)
1178 {
1179 	struct gfar_private *priv = netdev_priv(dev);
1180 
1181 	netif_tx_stop_all_queues(dev);
1182 
1183 	smp_mb__before_atomic();
1184 	set_bit(GFAR_DOWN, &priv->state);
1185 	smp_mb__after_atomic();
1186 
1187 	disable_napi(priv);
1188 
1189 	/* disable ints and gracefully shut down Rx/Tx DMA */
1190 	gfar_halt(priv);
1191 
1192 	phy_stop(dev->phydev);
1193 
1194 	free_skb_resources(priv);
1195 }
1196 
1197 static void gfar_start(struct gfar_private *priv)
1198 {
1199 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1200 	u32 tempval;
1201 	int i = 0;
1202 
1203 	/* Enable Rx/Tx hw queues */
1204 	gfar_write(&regs->rqueue, priv->rqueue);
1205 	gfar_write(&regs->tqueue, priv->tqueue);
1206 
1207 	/* Initialize DMACTRL to have WWR and WOP */
1208 	tempval = gfar_read(&regs->dmactrl);
1209 	tempval |= DMACTRL_INIT_SETTINGS;
1210 	gfar_write(&regs->dmactrl, tempval);
1211 
1212 	/* Make sure we aren't stopped */
1213 	tempval = gfar_read(&regs->dmactrl);
1214 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1215 	gfar_write(&regs->dmactrl, tempval);
1216 
1217 	for (i = 0; i < priv->num_grps; i++) {
1218 		regs = priv->gfargrp[i].regs;
1219 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1220 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1221 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1222 	}
1223 
1224 	/* Enable Rx/Tx DMA */
1225 	tempval = gfar_read(&regs->maccfg1);
1226 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1227 	gfar_write(&regs->maccfg1, tempval);
1228 
1229 	gfar_ints_enable(priv);
1230 
1231 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1232 }
1233 
1234 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1235 {
1236 	struct page *page;
1237 	dma_addr_t addr;
1238 
1239 	page = dev_alloc_page();
1240 	if (unlikely(!page))
1241 		return false;
1242 
1243 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1244 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1245 		__free_page(page);
1246 
1247 		return false;
1248 	}
1249 
1250 	rxb->dma = addr;
1251 	rxb->page = page;
1252 	rxb->page_offset = 0;
1253 
1254 	return true;
1255 }
1256 
1257 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1258 {
1259 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1260 	struct gfar_extra_stats *estats = &priv->extra_stats;
1261 
1262 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1263 	atomic64_inc(&estats->rx_alloc_err);
1264 }
1265 
1266 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1267 				int alloc_cnt)
1268 {
1269 	struct rxbd8 *bdp;
1270 	struct gfar_rx_buff *rxb;
1271 	int i;
1272 
1273 	i = rx_queue->next_to_use;
1274 	bdp = &rx_queue->rx_bd_base[i];
1275 	rxb = &rx_queue->rx_buff[i];
1276 
1277 	while (alloc_cnt--) {
1278 		/* try reuse page */
1279 		if (unlikely(!rxb->page)) {
1280 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1281 				gfar_rx_alloc_err(rx_queue);
1282 				break;
1283 			}
1284 		}
1285 
1286 		/* Setup the new RxBD */
1287 		gfar_init_rxbdp(rx_queue, bdp,
1288 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1289 
1290 		/* Update to the next pointer */
1291 		bdp++;
1292 		rxb++;
1293 
1294 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1295 			i = 0;
1296 			bdp = rx_queue->rx_bd_base;
1297 			rxb = rx_queue->rx_buff;
1298 		}
1299 	}
1300 
1301 	rx_queue->next_to_use = i;
1302 	rx_queue->next_to_alloc = i;
1303 }
1304 
1305 static void gfar_init_bds(struct net_device *ndev)
1306 {
1307 	struct gfar_private *priv = netdev_priv(ndev);
1308 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1309 	struct gfar_priv_tx_q *tx_queue = NULL;
1310 	struct gfar_priv_rx_q *rx_queue = NULL;
1311 	struct txbd8 *txbdp;
1312 	u32 __iomem *rfbptr;
1313 	int i, j;
1314 
1315 	for (i = 0; i < priv->num_tx_queues; i++) {
1316 		tx_queue = priv->tx_queue[i];
1317 		/* Initialize some variables in our dev structure */
1318 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1319 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1320 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1321 		tx_queue->skb_curtx = 0;
1322 		tx_queue->skb_dirtytx = 0;
1323 
1324 		/* Initialize Transmit Descriptor Ring */
1325 		txbdp = tx_queue->tx_bd_base;
1326 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1327 			txbdp->lstatus = 0;
1328 			txbdp->bufPtr = 0;
1329 			txbdp++;
1330 		}
1331 
1332 		/* Set the last descriptor in the ring to indicate wrap */
1333 		txbdp--;
1334 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1335 					    TXBD_WRAP);
1336 	}
1337 
1338 	rfbptr = &regs->rfbptr0;
1339 	for (i = 0; i < priv->num_rx_queues; i++) {
1340 		rx_queue = priv->rx_queue[i];
1341 
1342 		rx_queue->next_to_clean = 0;
1343 		rx_queue->next_to_use = 0;
1344 		rx_queue->next_to_alloc = 0;
1345 
1346 		/* make sure next_to_clean != next_to_use after this
1347 		 * by leaving at least 1 unused descriptor
1348 		 */
1349 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1350 
1351 		rx_queue->rfbptr = rfbptr;
1352 		rfbptr += 2;
1353 	}
1354 }
1355 
1356 static int gfar_alloc_skb_resources(struct net_device *ndev)
1357 {
1358 	void *vaddr;
1359 	dma_addr_t addr;
1360 	int i, j;
1361 	struct gfar_private *priv = netdev_priv(ndev);
1362 	struct device *dev = priv->dev;
1363 	struct gfar_priv_tx_q *tx_queue = NULL;
1364 	struct gfar_priv_rx_q *rx_queue = NULL;
1365 
1366 	priv->total_tx_ring_size = 0;
1367 	for (i = 0; i < priv->num_tx_queues; i++)
1368 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1369 
1370 	priv->total_rx_ring_size = 0;
1371 	for (i = 0; i < priv->num_rx_queues; i++)
1372 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1373 
1374 	/* Allocate memory for the buffer descriptors */
1375 	vaddr = dma_alloc_coherent(dev,
1376 				   (priv->total_tx_ring_size *
1377 				    sizeof(struct txbd8)) +
1378 				   (priv->total_rx_ring_size *
1379 				    sizeof(struct rxbd8)),
1380 				   &addr, GFP_KERNEL);
1381 	if (!vaddr)
1382 		return -ENOMEM;
1383 
1384 	for (i = 0; i < priv->num_tx_queues; i++) {
1385 		tx_queue = priv->tx_queue[i];
1386 		tx_queue->tx_bd_base = vaddr;
1387 		tx_queue->tx_bd_dma_base = addr;
1388 		tx_queue->dev = ndev;
1389 		/* enet DMA only understands physical addresses */
1390 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1391 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1392 	}
1393 
1394 	/* Start the rx descriptor ring where the tx ring leaves off */
1395 	for (i = 0; i < priv->num_rx_queues; i++) {
1396 		rx_queue = priv->rx_queue[i];
1397 		rx_queue->rx_bd_base = vaddr;
1398 		rx_queue->rx_bd_dma_base = addr;
1399 		rx_queue->ndev = ndev;
1400 		rx_queue->dev = dev;
1401 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1402 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1403 	}
1404 
1405 	/* Setup the skbuff rings */
1406 	for (i = 0; i < priv->num_tx_queues; i++) {
1407 		tx_queue = priv->tx_queue[i];
1408 		tx_queue->tx_skbuff =
1409 			kmalloc_array(tx_queue->tx_ring_size,
1410 				      sizeof(*tx_queue->tx_skbuff),
1411 				      GFP_KERNEL);
1412 		if (!tx_queue->tx_skbuff)
1413 			goto cleanup;
1414 
1415 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1416 			tx_queue->tx_skbuff[j] = NULL;
1417 	}
1418 
1419 	for (i = 0; i < priv->num_rx_queues; i++) {
1420 		rx_queue = priv->rx_queue[i];
1421 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1422 					    sizeof(*rx_queue->rx_buff),
1423 					    GFP_KERNEL);
1424 		if (!rx_queue->rx_buff)
1425 			goto cleanup;
1426 	}
1427 
1428 	gfar_init_bds(ndev);
1429 
1430 	return 0;
1431 
1432 cleanup:
1433 	free_skb_resources(priv);
1434 	return -ENOMEM;
1435 }
1436 
1437 /* Bring the controller up and running */
1438 int startup_gfar(struct net_device *ndev)
1439 {
1440 	struct gfar_private *priv = netdev_priv(ndev);
1441 	int err;
1442 
1443 	gfar_mac_reset(priv);
1444 
1445 	err = gfar_alloc_skb_resources(ndev);
1446 	if (err)
1447 		return err;
1448 
1449 	gfar_init_tx_rx_base(priv);
1450 
1451 	smp_mb__before_atomic();
1452 	clear_bit(GFAR_DOWN, &priv->state);
1453 	smp_mb__after_atomic();
1454 
1455 	/* Start Rx/Tx DMA and enable the interrupts */
1456 	gfar_start(priv);
1457 
1458 	/* force link state update after mac reset */
1459 	priv->oldlink = 0;
1460 	priv->oldspeed = 0;
1461 	priv->oldduplex = -1;
1462 
1463 	phy_start(ndev->phydev);
1464 
1465 	enable_napi(priv);
1466 
1467 	netif_tx_wake_all_queues(ndev);
1468 
1469 	return 0;
1470 }
1471 
1472 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1473 {
1474 	struct net_device *ndev = priv->ndev;
1475 	struct phy_device *phydev = ndev->phydev;
1476 	u32 val = 0;
1477 
1478 	if (!phydev->duplex)
1479 		return val;
1480 
1481 	if (!priv->pause_aneg_en) {
1482 		if (priv->tx_pause_en)
1483 			val |= MACCFG1_TX_FLOW;
1484 		if (priv->rx_pause_en)
1485 			val |= MACCFG1_RX_FLOW;
1486 	} else {
1487 		u16 lcl_adv, rmt_adv;
1488 		u8 flowctrl;
1489 		/* get link partner capabilities */
1490 		rmt_adv = 0;
1491 		if (phydev->pause)
1492 			rmt_adv = LPA_PAUSE_CAP;
1493 		if (phydev->asym_pause)
1494 			rmt_adv |= LPA_PAUSE_ASYM;
1495 
1496 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1497 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1498 		if (flowctrl & FLOW_CTRL_TX)
1499 			val |= MACCFG1_TX_FLOW;
1500 		if (flowctrl & FLOW_CTRL_RX)
1501 			val |= MACCFG1_RX_FLOW;
1502 	}
1503 
1504 	return val;
1505 }
1506 
1507 static noinline void gfar_update_link_state(struct gfar_private *priv)
1508 {
1509 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1510 	struct net_device *ndev = priv->ndev;
1511 	struct phy_device *phydev = ndev->phydev;
1512 	struct gfar_priv_rx_q *rx_queue = NULL;
1513 	int i;
1514 
1515 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1516 		return;
1517 
1518 	if (phydev->link) {
1519 		u32 tempval1 = gfar_read(&regs->maccfg1);
1520 		u32 tempval = gfar_read(&regs->maccfg2);
1521 		u32 ecntrl = gfar_read(&regs->ecntrl);
1522 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1523 
1524 		if (phydev->duplex != priv->oldduplex) {
1525 			if (!(phydev->duplex))
1526 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1527 			else
1528 				tempval |= MACCFG2_FULL_DUPLEX;
1529 
1530 			priv->oldduplex = phydev->duplex;
1531 		}
1532 
1533 		if (phydev->speed != priv->oldspeed) {
1534 			switch (phydev->speed) {
1535 			case 1000:
1536 				tempval =
1537 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1538 
1539 				ecntrl &= ~(ECNTRL_R100);
1540 				break;
1541 			case 100:
1542 			case 10:
1543 				tempval =
1544 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1545 
1546 				/* Reduced mode distinguishes
1547 				 * between 10 and 100
1548 				 */
1549 				if (phydev->speed == SPEED_100)
1550 					ecntrl |= ECNTRL_R100;
1551 				else
1552 					ecntrl &= ~(ECNTRL_R100);
1553 				break;
1554 			default:
1555 				netif_warn(priv, link, priv->ndev,
1556 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1557 					   phydev->speed);
1558 				break;
1559 			}
1560 
1561 			priv->oldspeed = phydev->speed;
1562 		}
1563 
1564 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1565 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1566 
1567 		/* Turn last free buffer recording on */
1568 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1569 			for (i = 0; i < priv->num_rx_queues; i++) {
1570 				u32 bdp_dma;
1571 
1572 				rx_queue = priv->rx_queue[i];
1573 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1574 				gfar_write(rx_queue->rfbptr, bdp_dma);
1575 			}
1576 
1577 			priv->tx_actual_en = 1;
1578 		}
1579 
1580 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1581 			priv->tx_actual_en = 0;
1582 
1583 		gfar_write(&regs->maccfg1, tempval1);
1584 		gfar_write(&regs->maccfg2, tempval);
1585 		gfar_write(&regs->ecntrl, ecntrl);
1586 
1587 		if (!priv->oldlink)
1588 			priv->oldlink = 1;
1589 
1590 	} else if (priv->oldlink) {
1591 		priv->oldlink = 0;
1592 		priv->oldspeed = 0;
1593 		priv->oldduplex = -1;
1594 	}
1595 
1596 	if (netif_msg_link(priv))
1597 		phy_print_status(phydev);
1598 }
1599 
1600 /* Called every time the controller might need to be made
1601  * aware of new link state.  The PHY code conveys this
1602  * information through variables in the phydev structure, and this
1603  * function converts those variables into the appropriate
1604  * register values, and can bring down the device if needed.
1605  */
1606 static void adjust_link(struct net_device *dev)
1607 {
1608 	struct gfar_private *priv = netdev_priv(dev);
1609 	struct phy_device *phydev = dev->phydev;
1610 
1611 	if (unlikely(phydev->link != priv->oldlink ||
1612 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1613 				       phydev->speed != priv->oldspeed))))
1614 		gfar_update_link_state(priv);
1615 }
1616 
1617 /* Initialize TBI PHY interface for communicating with the
1618  * SERDES lynx PHY on the chip.  We communicate with this PHY
1619  * through the MDIO bus on each controller, treating it as a
1620  * "normal" PHY at the address found in the TBIPA register.  We assume
1621  * that the TBIPA register is valid.  Either the MDIO bus code will set
1622  * it to a value that doesn't conflict with other PHYs on the bus, or the
1623  * value doesn't matter, as there are no other PHYs on the bus.
1624  */
1625 static void gfar_configure_serdes(struct net_device *dev)
1626 {
1627 	struct gfar_private *priv = netdev_priv(dev);
1628 	struct phy_device *tbiphy;
1629 
1630 	if (!priv->tbi_node) {
1631 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1632 				    "device tree specify a tbi-handle\n");
1633 		return;
1634 	}
1635 
1636 	tbiphy = of_phy_find_device(priv->tbi_node);
1637 	if (!tbiphy) {
1638 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1639 		return;
1640 	}
1641 
1642 	/* If the link is already up, we must already be ok, and don't need to
1643 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1644 	 * everything for us?  Resetting it takes the link down and requires
1645 	 * several seconds for it to come back.
1646 	 */
1647 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1648 		put_device(&tbiphy->mdio.dev);
1649 		return;
1650 	}
1651 
1652 	/* Single clk mode, mii mode off(for serdes communication) */
1653 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1654 
1655 	phy_write(tbiphy, MII_ADVERTISE,
1656 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1657 		  ADVERTISE_1000XPSE_ASYM);
1658 
1659 	phy_write(tbiphy, MII_BMCR,
1660 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1661 		  BMCR_SPEED1000);
1662 
1663 	put_device(&tbiphy->mdio.dev);
1664 }
1665 
1666 /* Initializes driver's PHY state, and attaches to the PHY.
1667  * Returns 0 on success.
1668  */
1669 static int init_phy(struct net_device *dev)
1670 {
1671 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1672 	struct gfar_private *priv = netdev_priv(dev);
1673 	phy_interface_t interface = priv->interface;
1674 	struct phy_device *phydev;
1675 	struct ethtool_eee edata;
1676 
1677 	linkmode_set_bit_array(phy_10_100_features_array,
1678 			       ARRAY_SIZE(phy_10_100_features_array),
1679 			       mask);
1680 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1681 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1682 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1683 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1684 
1685 	priv->oldlink = 0;
1686 	priv->oldspeed = 0;
1687 	priv->oldduplex = -1;
1688 
1689 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1690 				interface);
1691 	if (!phydev) {
1692 		dev_err(&dev->dev, "could not attach to PHY\n");
1693 		return -ENODEV;
1694 	}
1695 
1696 	if (interface == PHY_INTERFACE_MODE_SGMII)
1697 		gfar_configure_serdes(dev);
1698 
1699 	/* Remove any features not supported by the controller */
1700 	linkmode_and(phydev->supported, phydev->supported, mask);
1701 	linkmode_copy(phydev->advertising, phydev->supported);
1702 
1703 	/* Add support for flow control */
1704 	phy_support_asym_pause(phydev);
1705 
1706 	/* disable EEE autoneg, EEE not supported by eTSEC */
1707 	memset(&edata, 0, sizeof(struct ethtool_eee));
1708 	phy_ethtool_set_eee(phydev, &edata);
1709 
1710 	return 0;
1711 }
1712 
1713 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1714 {
1715 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1716 
1717 	memset(fcb, 0, GMAC_FCB_LEN);
1718 
1719 	return fcb;
1720 }
1721 
1722 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1723 				    int fcb_length)
1724 {
1725 	/* If we're here, it's a IP packet with a TCP or UDP
1726 	 * payload.  We set it to checksum, using a pseudo-header
1727 	 * we provide
1728 	 */
1729 	u8 flags = TXFCB_DEFAULT;
1730 
1731 	/* Tell the controller what the protocol is
1732 	 * And provide the already calculated phcs
1733 	 */
1734 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1735 		flags |= TXFCB_UDP;
1736 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1737 	} else
1738 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1739 
1740 	/* l3os is the distance between the start of the
1741 	 * frame (skb->data) and the start of the IP hdr.
1742 	 * l4os is the distance between the start of the
1743 	 * l3 hdr and the l4 hdr
1744 	 */
1745 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1746 	fcb->l4os = skb_network_header_len(skb);
1747 
1748 	fcb->flags = flags;
1749 }
1750 
1751 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1752 {
1753 	fcb->flags |= TXFCB_VLN;
1754 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1755 }
1756 
1757 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1758 				      struct txbd8 *base, int ring_size)
1759 {
1760 	struct txbd8 *new_bd = bdp + stride;
1761 
1762 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1763 }
1764 
1765 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1766 				      int ring_size)
1767 {
1768 	return skip_txbd(bdp, 1, base, ring_size);
1769 }
1770 
1771 /* eTSEC12: csum generation not supported for some fcb offsets */
1772 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1773 				       unsigned long fcb_addr)
1774 {
1775 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1776 	       (fcb_addr % 0x20) > 0x18);
1777 }
1778 
1779 /* eTSEC76: csum generation for frames larger than 2500 may
1780  * cause excess delays before start of transmission
1781  */
1782 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1783 				       unsigned int len)
1784 {
1785 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1786 	       (len > 2500));
1787 }
1788 
1789 /* This is called by the kernel when a frame is ready for transmission.
1790  * It is pointed to by the dev->hard_start_xmit function pointer
1791  */
1792 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1793 {
1794 	struct gfar_private *priv = netdev_priv(dev);
1795 	struct gfar_priv_tx_q *tx_queue = NULL;
1796 	struct netdev_queue *txq;
1797 	struct gfar __iomem *regs = NULL;
1798 	struct txfcb *fcb = NULL;
1799 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1800 	u32 lstatus;
1801 	skb_frag_t *frag;
1802 	int i, rq = 0;
1803 	int do_tstamp, do_csum, do_vlan;
1804 	u32 bufaddr;
1805 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1806 
1807 	rq = skb->queue_mapping;
1808 	tx_queue = priv->tx_queue[rq];
1809 	txq = netdev_get_tx_queue(dev, rq);
1810 	base = tx_queue->tx_bd_base;
1811 	regs = tx_queue->grp->regs;
1812 
1813 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1814 	do_vlan = skb_vlan_tag_present(skb);
1815 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1816 		    priv->hwts_tx_en;
1817 
1818 	if (do_csum || do_vlan)
1819 		fcb_len = GMAC_FCB_LEN;
1820 
1821 	/* check if time stamp should be generated */
1822 	if (unlikely(do_tstamp))
1823 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1824 
1825 	/* make space for additional header when fcb is needed */
1826 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1827 		struct sk_buff *skb_new;
1828 
1829 		skb_new = skb_realloc_headroom(skb, fcb_len);
1830 		if (!skb_new) {
1831 			dev->stats.tx_errors++;
1832 			dev_kfree_skb_any(skb);
1833 			return NETDEV_TX_OK;
1834 		}
1835 
1836 		if (skb->sk)
1837 			skb_set_owner_w(skb_new, skb->sk);
1838 		dev_consume_skb_any(skb);
1839 		skb = skb_new;
1840 	}
1841 
1842 	/* total number of fragments in the SKB */
1843 	nr_frags = skb_shinfo(skb)->nr_frags;
1844 
1845 	/* calculate the required number of TxBDs for this skb */
1846 	if (unlikely(do_tstamp))
1847 		nr_txbds = nr_frags + 2;
1848 	else
1849 		nr_txbds = nr_frags + 1;
1850 
1851 	/* check if there is space to queue this packet */
1852 	if (nr_txbds > tx_queue->num_txbdfree) {
1853 		/* no space, stop the queue */
1854 		netif_tx_stop_queue(txq);
1855 		dev->stats.tx_fifo_errors++;
1856 		return NETDEV_TX_BUSY;
1857 	}
1858 
1859 	/* Update transmit stats */
1860 	bytes_sent = skb->len;
1861 	tx_queue->stats.tx_bytes += bytes_sent;
1862 	/* keep Tx bytes on wire for BQL accounting */
1863 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1864 	tx_queue->stats.tx_packets++;
1865 
1866 	txbdp = txbdp_start = tx_queue->cur_tx;
1867 	lstatus = be32_to_cpu(txbdp->lstatus);
1868 
1869 	/* Add TxPAL between FCB and frame if required */
1870 	if (unlikely(do_tstamp)) {
1871 		skb_push(skb, GMAC_TXPAL_LEN);
1872 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1873 	}
1874 
1875 	/* Add TxFCB if required */
1876 	if (fcb_len) {
1877 		fcb = gfar_add_fcb(skb);
1878 		lstatus |= BD_LFLAG(TXBD_TOE);
1879 	}
1880 
1881 	/* Set up checksumming */
1882 	if (do_csum) {
1883 		gfar_tx_checksum(skb, fcb, fcb_len);
1884 
1885 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1886 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1887 			__skb_pull(skb, GMAC_FCB_LEN);
1888 			skb_checksum_help(skb);
1889 			if (do_vlan || do_tstamp) {
1890 				/* put back a new fcb for vlan/tstamp TOE */
1891 				fcb = gfar_add_fcb(skb);
1892 			} else {
1893 				/* Tx TOE not used */
1894 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1895 				fcb = NULL;
1896 			}
1897 		}
1898 	}
1899 
1900 	if (do_vlan)
1901 		gfar_tx_vlan(skb, fcb);
1902 
1903 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1904 				 DMA_TO_DEVICE);
1905 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1906 		goto dma_map_err;
1907 
1908 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1909 
1910 	/* Time stamp insertion requires one additional TxBD */
1911 	if (unlikely(do_tstamp))
1912 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1913 						 tx_queue->tx_ring_size);
1914 
1915 	if (likely(!nr_frags)) {
1916 		if (likely(!do_tstamp))
1917 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1918 	} else {
1919 		u32 lstatus_start = lstatus;
1920 
1921 		/* Place the fragment addresses and lengths into the TxBDs */
1922 		frag = &skb_shinfo(skb)->frags[0];
1923 		for (i = 0; i < nr_frags; i++, frag++) {
1924 			unsigned int size;
1925 
1926 			/* Point at the next BD, wrapping as needed */
1927 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1928 
1929 			size = skb_frag_size(frag);
1930 
1931 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1932 				  BD_LFLAG(TXBD_READY);
1933 
1934 			/* Handle the last BD specially */
1935 			if (i == nr_frags - 1)
1936 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937 
1938 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1939 						   size, DMA_TO_DEVICE);
1940 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1941 				goto dma_map_err;
1942 
1943 			/* set the TxBD length and buffer pointer */
1944 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1945 			txbdp->lstatus = cpu_to_be32(lstatus);
1946 		}
1947 
1948 		lstatus = lstatus_start;
1949 	}
1950 
1951 	/* If time stamping is requested one additional TxBD must be set up. The
1952 	 * first TxBD points to the FCB and must have a data length of
1953 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1954 	 * the full frame length.
1955 	 */
1956 	if (unlikely(do_tstamp)) {
1957 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1958 
1959 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1960 		bufaddr += fcb_len;
1961 
1962 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1963 			      (skb_headlen(skb) - fcb_len);
1964 		if (!nr_frags)
1965 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1966 
1967 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1968 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1969 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1970 
1971 		/* Setup tx hardware time stamping */
1972 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1973 		fcb->ptp = 1;
1974 	} else {
1975 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1976 	}
1977 
1978 	netdev_tx_sent_queue(txq, bytes_sent);
1979 
1980 	gfar_wmb();
1981 
1982 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1983 
1984 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1985 
1986 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1987 
1988 	/* Update the current skb pointer to the next entry we will use
1989 	 * (wrapping if necessary)
1990 	 */
1991 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1992 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1993 
1994 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1995 
1996 	/* We can work in parallel with gfar_clean_tx_ring(), except
1997 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1998 	 * when we were reading the num_txbdfree and checking for available
1999 	 * space, that's because outside of this function it can only grow.
2000 	 */
2001 	spin_lock_bh(&tx_queue->txlock);
2002 	/* reduce TxBD free count */
2003 	tx_queue->num_txbdfree -= (nr_txbds);
2004 	spin_unlock_bh(&tx_queue->txlock);
2005 
2006 	/* If the next BD still needs to be cleaned up, then the bds
2007 	 * are full.  We need to tell the kernel to stop sending us stuff.
2008 	 */
2009 	if (!tx_queue->num_txbdfree) {
2010 		netif_tx_stop_queue(txq);
2011 
2012 		dev->stats.tx_fifo_errors++;
2013 	}
2014 
2015 	/* Tell the DMA to go go go */
2016 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2017 
2018 	return NETDEV_TX_OK;
2019 
2020 dma_map_err:
2021 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2022 	if (do_tstamp)
2023 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2024 	for (i = 0; i < nr_frags; i++) {
2025 		lstatus = be32_to_cpu(txbdp->lstatus);
2026 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2027 			break;
2028 
2029 		lstatus &= ~BD_LFLAG(TXBD_READY);
2030 		txbdp->lstatus = cpu_to_be32(lstatus);
2031 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2032 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2033 			       DMA_TO_DEVICE);
2034 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2035 	}
2036 	gfar_wmb();
2037 	dev_kfree_skb_any(skb);
2038 	return NETDEV_TX_OK;
2039 }
2040 
2041 /* Changes the mac address if the controller is not running. */
2042 static int gfar_set_mac_address(struct net_device *dev)
2043 {
2044 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2045 
2046 	return 0;
2047 }
2048 
2049 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2050 {
2051 	struct gfar_private *priv = netdev_priv(dev);
2052 
2053 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2054 		cpu_relax();
2055 
2056 	if (dev->flags & IFF_UP)
2057 		stop_gfar(dev);
2058 
2059 	dev->mtu = new_mtu;
2060 
2061 	if (dev->flags & IFF_UP)
2062 		startup_gfar(dev);
2063 
2064 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2065 
2066 	return 0;
2067 }
2068 
2069 static void reset_gfar(struct net_device *ndev)
2070 {
2071 	struct gfar_private *priv = netdev_priv(ndev);
2072 
2073 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2074 		cpu_relax();
2075 
2076 	stop_gfar(ndev);
2077 	startup_gfar(ndev);
2078 
2079 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2080 }
2081 
2082 /* gfar_reset_task gets scheduled when a packet has not been
2083  * transmitted after a set amount of time.
2084  * For now, assume that clearing out all the structures, and
2085  * starting over will fix the problem.
2086  */
2087 static void gfar_reset_task(struct work_struct *work)
2088 {
2089 	struct gfar_private *priv = container_of(work, struct gfar_private,
2090 						 reset_task);
2091 	reset_gfar(priv->ndev);
2092 }
2093 
2094 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2095 {
2096 	struct gfar_private *priv = netdev_priv(dev);
2097 
2098 	dev->stats.tx_errors++;
2099 	schedule_work(&priv->reset_task);
2100 }
2101 
2102 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2103 {
2104 	struct hwtstamp_config config;
2105 	struct gfar_private *priv = netdev_priv(netdev);
2106 
2107 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2108 		return -EFAULT;
2109 
2110 	/* reserved for future extensions */
2111 	if (config.flags)
2112 		return -EINVAL;
2113 
2114 	switch (config.tx_type) {
2115 	case HWTSTAMP_TX_OFF:
2116 		priv->hwts_tx_en = 0;
2117 		break;
2118 	case HWTSTAMP_TX_ON:
2119 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2120 			return -ERANGE;
2121 		priv->hwts_tx_en = 1;
2122 		break;
2123 	default:
2124 		return -ERANGE;
2125 	}
2126 
2127 	switch (config.rx_filter) {
2128 	case HWTSTAMP_FILTER_NONE:
2129 		if (priv->hwts_rx_en) {
2130 			priv->hwts_rx_en = 0;
2131 			reset_gfar(netdev);
2132 		}
2133 		break;
2134 	default:
2135 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2136 			return -ERANGE;
2137 		if (!priv->hwts_rx_en) {
2138 			priv->hwts_rx_en = 1;
2139 			reset_gfar(netdev);
2140 		}
2141 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2142 		break;
2143 	}
2144 
2145 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2146 		-EFAULT : 0;
2147 }
2148 
2149 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2150 {
2151 	struct hwtstamp_config config;
2152 	struct gfar_private *priv = netdev_priv(netdev);
2153 
2154 	config.flags = 0;
2155 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2156 	config.rx_filter = (priv->hwts_rx_en ?
2157 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2158 
2159 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2160 		-EFAULT : 0;
2161 }
2162 
2163 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2164 {
2165 	struct phy_device *phydev = dev->phydev;
2166 
2167 	if (!netif_running(dev))
2168 		return -EINVAL;
2169 
2170 	if (cmd == SIOCSHWTSTAMP)
2171 		return gfar_hwtstamp_set(dev, rq);
2172 	if (cmd == SIOCGHWTSTAMP)
2173 		return gfar_hwtstamp_get(dev, rq);
2174 
2175 	if (!phydev)
2176 		return -ENODEV;
2177 
2178 	return phy_mii_ioctl(phydev, rq, cmd);
2179 }
2180 
2181 /* Interrupt Handler for Transmit complete */
2182 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2183 {
2184 	struct net_device *dev = tx_queue->dev;
2185 	struct netdev_queue *txq;
2186 	struct gfar_private *priv = netdev_priv(dev);
2187 	struct txbd8 *bdp, *next = NULL;
2188 	struct txbd8 *lbdp = NULL;
2189 	struct txbd8 *base = tx_queue->tx_bd_base;
2190 	struct sk_buff *skb;
2191 	int skb_dirtytx;
2192 	int tx_ring_size = tx_queue->tx_ring_size;
2193 	int frags = 0, nr_txbds = 0;
2194 	int i;
2195 	int howmany = 0;
2196 	int tqi = tx_queue->qindex;
2197 	unsigned int bytes_sent = 0;
2198 	u32 lstatus;
2199 	size_t buflen;
2200 
2201 	txq = netdev_get_tx_queue(dev, tqi);
2202 	bdp = tx_queue->dirty_tx;
2203 	skb_dirtytx = tx_queue->skb_dirtytx;
2204 
2205 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2206 		bool do_tstamp;
2207 
2208 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2209 			    priv->hwts_tx_en;
2210 
2211 		frags = skb_shinfo(skb)->nr_frags;
2212 
2213 		/* When time stamping, one additional TxBD must be freed.
2214 		 * Also, we need to dma_unmap_single() the TxPAL.
2215 		 */
2216 		if (unlikely(do_tstamp))
2217 			nr_txbds = frags + 2;
2218 		else
2219 			nr_txbds = frags + 1;
2220 
2221 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2222 
2223 		lstatus = be32_to_cpu(lbdp->lstatus);
2224 
2225 		/* Only clean completed frames */
2226 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2227 		    (lstatus & BD_LENGTH_MASK))
2228 			break;
2229 
2230 		if (unlikely(do_tstamp)) {
2231 			next = next_txbd(bdp, base, tx_ring_size);
2232 			buflen = be16_to_cpu(next->length) +
2233 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2234 		} else
2235 			buflen = be16_to_cpu(bdp->length);
2236 
2237 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2238 				 buflen, DMA_TO_DEVICE);
2239 
2240 		if (unlikely(do_tstamp)) {
2241 			struct skb_shared_hwtstamps shhwtstamps;
2242 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2243 					  ~0x7UL);
2244 
2245 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2246 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2247 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2248 			skb_tstamp_tx(skb, &shhwtstamps);
2249 			gfar_clear_txbd_status(bdp);
2250 			bdp = next;
2251 		}
2252 
2253 		gfar_clear_txbd_status(bdp);
2254 		bdp = next_txbd(bdp, base, tx_ring_size);
2255 
2256 		for (i = 0; i < frags; i++) {
2257 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2258 				       be16_to_cpu(bdp->length),
2259 				       DMA_TO_DEVICE);
2260 			gfar_clear_txbd_status(bdp);
2261 			bdp = next_txbd(bdp, base, tx_ring_size);
2262 		}
2263 
2264 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2265 
2266 		dev_kfree_skb_any(skb);
2267 
2268 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2269 
2270 		skb_dirtytx = (skb_dirtytx + 1) &
2271 			      TX_RING_MOD_MASK(tx_ring_size);
2272 
2273 		howmany++;
2274 		spin_lock(&tx_queue->txlock);
2275 		tx_queue->num_txbdfree += nr_txbds;
2276 		spin_unlock(&tx_queue->txlock);
2277 	}
2278 
2279 	/* If we freed a buffer, we can restart transmission, if necessary */
2280 	if (tx_queue->num_txbdfree &&
2281 	    netif_tx_queue_stopped(txq) &&
2282 	    !(test_bit(GFAR_DOWN, &priv->state)))
2283 		netif_wake_subqueue(priv->ndev, tqi);
2284 
2285 	/* Update dirty indicators */
2286 	tx_queue->skb_dirtytx = skb_dirtytx;
2287 	tx_queue->dirty_tx = bdp;
2288 
2289 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2290 }
2291 
2292 static void count_errors(u32 lstatus, struct net_device *ndev)
2293 {
2294 	struct gfar_private *priv = netdev_priv(ndev);
2295 	struct net_device_stats *stats = &ndev->stats;
2296 	struct gfar_extra_stats *estats = &priv->extra_stats;
2297 
2298 	/* If the packet was truncated, none of the other errors matter */
2299 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2300 		stats->rx_length_errors++;
2301 
2302 		atomic64_inc(&estats->rx_trunc);
2303 
2304 		return;
2305 	}
2306 	/* Count the errors, if there were any */
2307 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2308 		stats->rx_length_errors++;
2309 
2310 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2311 			atomic64_inc(&estats->rx_large);
2312 		else
2313 			atomic64_inc(&estats->rx_short);
2314 	}
2315 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2316 		stats->rx_frame_errors++;
2317 		atomic64_inc(&estats->rx_nonoctet);
2318 	}
2319 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2320 		atomic64_inc(&estats->rx_crcerr);
2321 		stats->rx_crc_errors++;
2322 	}
2323 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2324 		atomic64_inc(&estats->rx_overrun);
2325 		stats->rx_over_errors++;
2326 	}
2327 }
2328 
2329 static irqreturn_t gfar_receive(int irq, void *grp_id)
2330 {
2331 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332 	unsigned long flags;
2333 	u32 imask, ievent;
2334 
2335 	ievent = gfar_read(&grp->regs->ievent);
2336 
2337 	if (unlikely(ievent & IEVENT_FGPI)) {
2338 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2339 		return IRQ_HANDLED;
2340 	}
2341 
2342 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2343 		spin_lock_irqsave(&grp->grplock, flags);
2344 		imask = gfar_read(&grp->regs->imask);
2345 		imask &= IMASK_RX_DISABLED;
2346 		gfar_write(&grp->regs->imask, imask);
2347 		spin_unlock_irqrestore(&grp->grplock, flags);
2348 		__napi_schedule(&grp->napi_rx);
2349 	} else {
2350 		/* Clear IEVENT, so interrupts aren't called again
2351 		 * because of the packets that have already arrived.
2352 		 */
2353 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2354 	}
2355 
2356 	return IRQ_HANDLED;
2357 }
2358 
2359 /* Interrupt Handler for Transmit complete */
2360 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2361 {
2362 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2363 	unsigned long flags;
2364 	u32 imask;
2365 
2366 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2367 		spin_lock_irqsave(&grp->grplock, flags);
2368 		imask = gfar_read(&grp->regs->imask);
2369 		imask &= IMASK_TX_DISABLED;
2370 		gfar_write(&grp->regs->imask, imask);
2371 		spin_unlock_irqrestore(&grp->grplock, flags);
2372 		__napi_schedule(&grp->napi_tx);
2373 	} else {
2374 		/* Clear IEVENT, so interrupts aren't called again
2375 		 * because of the packets that have already arrived.
2376 		 */
2377 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2378 	}
2379 
2380 	return IRQ_HANDLED;
2381 }
2382 
2383 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2384 			     struct sk_buff *skb, bool first)
2385 {
2386 	int size = lstatus & BD_LENGTH_MASK;
2387 	struct page *page = rxb->page;
2388 
2389 	if (likely(first)) {
2390 		skb_put(skb, size);
2391 	} else {
2392 		/* the last fragments' length contains the full frame length */
2393 		if (lstatus & BD_LFLAG(RXBD_LAST))
2394 			size -= skb->len;
2395 
2396 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2397 				rxb->page_offset + RXBUF_ALIGNMENT,
2398 				size, GFAR_RXB_TRUESIZE);
2399 	}
2400 
2401 	/* try reuse page */
2402 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2403 		return false;
2404 
2405 	/* change offset to the other half */
2406 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2407 
2408 	page_ref_inc(page);
2409 
2410 	return true;
2411 }
2412 
2413 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2414 			       struct gfar_rx_buff *old_rxb)
2415 {
2416 	struct gfar_rx_buff *new_rxb;
2417 	u16 nta = rxq->next_to_alloc;
2418 
2419 	new_rxb = &rxq->rx_buff[nta];
2420 
2421 	/* find next buf that can reuse a page */
2422 	nta++;
2423 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2424 
2425 	/* copy page reference */
2426 	*new_rxb = *old_rxb;
2427 
2428 	/* sync for use by the device */
2429 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2430 					 old_rxb->page_offset,
2431 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2432 }
2433 
2434 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2435 					    u32 lstatus, struct sk_buff *skb)
2436 {
2437 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2438 	struct page *page = rxb->page;
2439 	bool first = false;
2440 
2441 	if (likely(!skb)) {
2442 		void *buff_addr = page_address(page) + rxb->page_offset;
2443 
2444 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2445 		if (unlikely(!skb)) {
2446 			gfar_rx_alloc_err(rx_queue);
2447 			return NULL;
2448 		}
2449 		skb_reserve(skb, RXBUF_ALIGNMENT);
2450 		first = true;
2451 	}
2452 
2453 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2454 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2455 
2456 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2457 		/* reuse the free half of the page */
2458 		gfar_reuse_rx_page(rx_queue, rxb);
2459 	} else {
2460 		/* page cannot be reused, unmap it */
2461 		dma_unmap_page(rx_queue->dev, rxb->dma,
2462 			       PAGE_SIZE, DMA_FROM_DEVICE);
2463 	}
2464 
2465 	/* clear rxb content */
2466 	rxb->page = NULL;
2467 
2468 	return skb;
2469 }
2470 
2471 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2472 {
2473 	/* If valid headers were found, and valid sums
2474 	 * were verified, then we tell the kernel that no
2475 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2476 	 */
2477 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2478 	    (RXFCB_CIP | RXFCB_CTU))
2479 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2480 	else
2481 		skb_checksum_none_assert(skb);
2482 }
2483 
2484 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2485 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2486 {
2487 	struct gfar_private *priv = netdev_priv(ndev);
2488 	struct rxfcb *fcb = NULL;
2489 
2490 	/* fcb is at the beginning if exists */
2491 	fcb = (struct rxfcb *)skb->data;
2492 
2493 	/* Remove the FCB from the skb
2494 	 * Remove the padded bytes, if there are any
2495 	 */
2496 	if (priv->uses_rxfcb)
2497 		skb_pull(skb, GMAC_FCB_LEN);
2498 
2499 	/* Get receive timestamp from the skb */
2500 	if (priv->hwts_rx_en) {
2501 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2502 		u64 *ns = (u64 *) skb->data;
2503 
2504 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2505 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2506 	}
2507 
2508 	if (priv->padding)
2509 		skb_pull(skb, priv->padding);
2510 
2511 	/* Trim off the FCS */
2512 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2513 
2514 	if (ndev->features & NETIF_F_RXCSUM)
2515 		gfar_rx_checksum(skb, fcb);
2516 
2517 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2518 	 * Even if vlan rx accel is disabled, on some chips
2519 	 * RXFCB_VLN is pseudo randomly set.
2520 	 */
2521 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2522 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2523 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2524 				       be16_to_cpu(fcb->vlctl));
2525 }
2526 
2527 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2528  * until the budget/quota has been reached. Returns the number
2529  * of frames handled
2530  */
2531 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2532 			      int rx_work_limit)
2533 {
2534 	struct net_device *ndev = rx_queue->ndev;
2535 	struct gfar_private *priv = netdev_priv(ndev);
2536 	struct rxbd8 *bdp;
2537 	int i, howmany = 0;
2538 	struct sk_buff *skb = rx_queue->skb;
2539 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2540 	unsigned int total_bytes = 0, total_pkts = 0;
2541 
2542 	/* Get the first full descriptor */
2543 	i = rx_queue->next_to_clean;
2544 
2545 	while (rx_work_limit--) {
2546 		u32 lstatus;
2547 
2548 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2549 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2550 			cleaned_cnt = 0;
2551 		}
2552 
2553 		bdp = &rx_queue->rx_bd_base[i];
2554 		lstatus = be32_to_cpu(bdp->lstatus);
2555 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2556 			break;
2557 
2558 		/* order rx buffer descriptor reads */
2559 		rmb();
2560 
2561 		/* fetch next to clean buffer from the ring */
2562 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2563 		if (unlikely(!skb))
2564 			break;
2565 
2566 		cleaned_cnt++;
2567 		howmany++;
2568 
2569 		if (unlikely(++i == rx_queue->rx_ring_size))
2570 			i = 0;
2571 
2572 		rx_queue->next_to_clean = i;
2573 
2574 		/* fetch next buffer if not the last in frame */
2575 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2576 			continue;
2577 
2578 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2579 			count_errors(lstatus, ndev);
2580 
2581 			/* discard faulty buffer */
2582 			dev_kfree_skb(skb);
2583 			skb = NULL;
2584 			rx_queue->stats.rx_dropped++;
2585 			continue;
2586 		}
2587 
2588 		gfar_process_frame(ndev, skb);
2589 
2590 		/* Increment the number of packets */
2591 		total_pkts++;
2592 		total_bytes += skb->len;
2593 
2594 		skb_record_rx_queue(skb, rx_queue->qindex);
2595 
2596 		skb->protocol = eth_type_trans(skb, ndev);
2597 
2598 		/* Send the packet up the stack */
2599 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2600 
2601 		skb = NULL;
2602 	}
2603 
2604 	/* Store incomplete frames for completion */
2605 	rx_queue->skb = skb;
2606 
2607 	rx_queue->stats.rx_packets += total_pkts;
2608 	rx_queue->stats.rx_bytes += total_bytes;
2609 
2610 	if (cleaned_cnt)
2611 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2612 
2613 	/* Update Last Free RxBD pointer for LFC */
2614 	if (unlikely(priv->tx_actual_en)) {
2615 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2616 
2617 		gfar_write(rx_queue->rfbptr, bdp_dma);
2618 	}
2619 
2620 	return howmany;
2621 }
2622 
2623 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2624 {
2625 	struct gfar_priv_grp *gfargrp =
2626 		container_of(napi, struct gfar_priv_grp, napi_rx);
2627 	struct gfar __iomem *regs = gfargrp->regs;
2628 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2629 	int work_done = 0;
2630 
2631 	/* Clear IEVENT, so interrupts aren't called again
2632 	 * because of the packets that have already arrived
2633 	 */
2634 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2635 
2636 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2637 
2638 	if (work_done < budget) {
2639 		u32 imask;
2640 		napi_complete_done(napi, work_done);
2641 		/* Clear the halt bit in RSTAT */
2642 		gfar_write(&regs->rstat, gfargrp->rstat);
2643 
2644 		spin_lock_irq(&gfargrp->grplock);
2645 		imask = gfar_read(&regs->imask);
2646 		imask |= IMASK_RX_DEFAULT;
2647 		gfar_write(&regs->imask, imask);
2648 		spin_unlock_irq(&gfargrp->grplock);
2649 	}
2650 
2651 	return work_done;
2652 }
2653 
2654 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2655 {
2656 	struct gfar_priv_grp *gfargrp =
2657 		container_of(napi, struct gfar_priv_grp, napi_tx);
2658 	struct gfar __iomem *regs = gfargrp->regs;
2659 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2660 	u32 imask;
2661 
2662 	/* Clear IEVENT, so interrupts aren't called again
2663 	 * because of the packets that have already arrived
2664 	 */
2665 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2666 
2667 	/* run Tx cleanup to completion */
2668 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2669 		gfar_clean_tx_ring(tx_queue);
2670 
2671 	napi_complete(napi);
2672 
2673 	spin_lock_irq(&gfargrp->grplock);
2674 	imask = gfar_read(&regs->imask);
2675 	imask |= IMASK_TX_DEFAULT;
2676 	gfar_write(&regs->imask, imask);
2677 	spin_unlock_irq(&gfargrp->grplock);
2678 
2679 	return 0;
2680 }
2681 
2682 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2683 {
2684 	struct gfar_priv_grp *gfargrp =
2685 		container_of(napi, struct gfar_priv_grp, napi_rx);
2686 	struct gfar_private *priv = gfargrp->priv;
2687 	struct gfar __iomem *regs = gfargrp->regs;
2688 	struct gfar_priv_rx_q *rx_queue = NULL;
2689 	int work_done = 0, work_done_per_q = 0;
2690 	int i, budget_per_q = 0;
2691 	unsigned long rstat_rxf;
2692 	int num_act_queues;
2693 
2694 	/* Clear IEVENT, so interrupts aren't called again
2695 	 * because of the packets that have already arrived
2696 	 */
2697 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2698 
2699 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2700 
2701 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2702 	if (num_act_queues)
2703 		budget_per_q = budget/num_act_queues;
2704 
2705 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2706 		/* skip queue if not active */
2707 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2708 			continue;
2709 
2710 		rx_queue = priv->rx_queue[i];
2711 		work_done_per_q =
2712 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2713 		work_done += work_done_per_q;
2714 
2715 		/* finished processing this queue */
2716 		if (work_done_per_q < budget_per_q) {
2717 			/* clear active queue hw indication */
2718 			gfar_write(&regs->rstat,
2719 				   RSTAT_CLEAR_RXF0 >> i);
2720 			num_act_queues--;
2721 
2722 			if (!num_act_queues)
2723 				break;
2724 		}
2725 	}
2726 
2727 	if (!num_act_queues) {
2728 		u32 imask;
2729 		napi_complete_done(napi, work_done);
2730 
2731 		/* Clear the halt bit in RSTAT */
2732 		gfar_write(&regs->rstat, gfargrp->rstat);
2733 
2734 		spin_lock_irq(&gfargrp->grplock);
2735 		imask = gfar_read(&regs->imask);
2736 		imask |= IMASK_RX_DEFAULT;
2737 		gfar_write(&regs->imask, imask);
2738 		spin_unlock_irq(&gfargrp->grplock);
2739 	}
2740 
2741 	return work_done;
2742 }
2743 
2744 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2745 {
2746 	struct gfar_priv_grp *gfargrp =
2747 		container_of(napi, struct gfar_priv_grp, napi_tx);
2748 	struct gfar_private *priv = gfargrp->priv;
2749 	struct gfar __iomem *regs = gfargrp->regs;
2750 	struct gfar_priv_tx_q *tx_queue = NULL;
2751 	int has_tx_work = 0;
2752 	int i;
2753 
2754 	/* Clear IEVENT, so interrupts aren't called again
2755 	 * because of the packets that have already arrived
2756 	 */
2757 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2758 
2759 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2760 		tx_queue = priv->tx_queue[i];
2761 		/* run Tx cleanup to completion */
2762 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2763 			gfar_clean_tx_ring(tx_queue);
2764 			has_tx_work = 1;
2765 		}
2766 	}
2767 
2768 	if (!has_tx_work) {
2769 		u32 imask;
2770 		napi_complete(napi);
2771 
2772 		spin_lock_irq(&gfargrp->grplock);
2773 		imask = gfar_read(&regs->imask);
2774 		imask |= IMASK_TX_DEFAULT;
2775 		gfar_write(&regs->imask, imask);
2776 		spin_unlock_irq(&gfargrp->grplock);
2777 	}
2778 
2779 	return 0;
2780 }
2781 
2782 /* GFAR error interrupt handler */
2783 static irqreturn_t gfar_error(int irq, void *grp_id)
2784 {
2785 	struct gfar_priv_grp *gfargrp = grp_id;
2786 	struct gfar __iomem *regs = gfargrp->regs;
2787 	struct gfar_private *priv= gfargrp->priv;
2788 	struct net_device *dev = priv->ndev;
2789 
2790 	/* Save ievent for future reference */
2791 	u32 events = gfar_read(&regs->ievent);
2792 
2793 	/* Clear IEVENT */
2794 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2795 
2796 	/* Magic Packet is not an error. */
2797 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2798 	    (events & IEVENT_MAG))
2799 		events &= ~IEVENT_MAG;
2800 
2801 	/* Hmm... */
2802 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2803 		netdev_dbg(dev,
2804 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2805 			   events, gfar_read(&regs->imask));
2806 
2807 	/* Update the error counters */
2808 	if (events & IEVENT_TXE) {
2809 		dev->stats.tx_errors++;
2810 
2811 		if (events & IEVENT_LC)
2812 			dev->stats.tx_window_errors++;
2813 		if (events & IEVENT_CRL)
2814 			dev->stats.tx_aborted_errors++;
2815 		if (events & IEVENT_XFUN) {
2816 			netif_dbg(priv, tx_err, dev,
2817 				  "TX FIFO underrun, packet dropped\n");
2818 			dev->stats.tx_dropped++;
2819 			atomic64_inc(&priv->extra_stats.tx_underrun);
2820 
2821 			schedule_work(&priv->reset_task);
2822 		}
2823 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2824 	}
2825 	if (events & IEVENT_BSY) {
2826 		dev->stats.rx_over_errors++;
2827 		atomic64_inc(&priv->extra_stats.rx_bsy);
2828 
2829 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2830 			  gfar_read(&regs->rstat));
2831 	}
2832 	if (events & IEVENT_BABR) {
2833 		dev->stats.rx_errors++;
2834 		atomic64_inc(&priv->extra_stats.rx_babr);
2835 
2836 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2837 	}
2838 	if (events & IEVENT_EBERR) {
2839 		atomic64_inc(&priv->extra_stats.eberr);
2840 		netif_dbg(priv, rx_err, dev, "bus error\n");
2841 	}
2842 	if (events & IEVENT_RXC)
2843 		netif_dbg(priv, rx_status, dev, "control frame\n");
2844 
2845 	if (events & IEVENT_BABT) {
2846 		atomic64_inc(&priv->extra_stats.tx_babt);
2847 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2848 	}
2849 	return IRQ_HANDLED;
2850 }
2851 
2852 /* The interrupt handler for devices with one interrupt */
2853 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2854 {
2855 	struct gfar_priv_grp *gfargrp = grp_id;
2856 
2857 	/* Save ievent for future reference */
2858 	u32 events = gfar_read(&gfargrp->regs->ievent);
2859 
2860 	/* Check for reception */
2861 	if (events & IEVENT_RX_MASK)
2862 		gfar_receive(irq, grp_id);
2863 
2864 	/* Check for transmit completion */
2865 	if (events & IEVENT_TX_MASK)
2866 		gfar_transmit(irq, grp_id);
2867 
2868 	/* Check for errors */
2869 	if (events & IEVENT_ERR_MASK)
2870 		gfar_error(irq, grp_id);
2871 
2872 	return IRQ_HANDLED;
2873 }
2874 
2875 #ifdef CONFIG_NET_POLL_CONTROLLER
2876 /* Polling 'interrupt' - used by things like netconsole to send skbs
2877  * without having to re-enable interrupts. It's not called while
2878  * the interrupt routine is executing.
2879  */
2880 static void gfar_netpoll(struct net_device *dev)
2881 {
2882 	struct gfar_private *priv = netdev_priv(dev);
2883 	int i;
2884 
2885 	/* If the device has multiple interrupts, run tx/rx */
2886 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2887 		for (i = 0; i < priv->num_grps; i++) {
2888 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2889 
2890 			disable_irq(gfar_irq(grp, TX)->irq);
2891 			disable_irq(gfar_irq(grp, RX)->irq);
2892 			disable_irq(gfar_irq(grp, ER)->irq);
2893 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2894 			enable_irq(gfar_irq(grp, ER)->irq);
2895 			enable_irq(gfar_irq(grp, RX)->irq);
2896 			enable_irq(gfar_irq(grp, TX)->irq);
2897 		}
2898 	} else {
2899 		for (i = 0; i < priv->num_grps; i++) {
2900 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2901 
2902 			disable_irq(gfar_irq(grp, TX)->irq);
2903 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2904 			enable_irq(gfar_irq(grp, TX)->irq);
2905 		}
2906 	}
2907 }
2908 #endif
2909 
2910 static void free_grp_irqs(struct gfar_priv_grp *grp)
2911 {
2912 	free_irq(gfar_irq(grp, TX)->irq, grp);
2913 	free_irq(gfar_irq(grp, RX)->irq, grp);
2914 	free_irq(gfar_irq(grp, ER)->irq, grp);
2915 }
2916 
2917 static int register_grp_irqs(struct gfar_priv_grp *grp)
2918 {
2919 	struct gfar_private *priv = grp->priv;
2920 	struct net_device *dev = priv->ndev;
2921 	int err;
2922 
2923 	/* If the device has multiple interrupts, register for
2924 	 * them.  Otherwise, only register for the one
2925 	 */
2926 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2927 		/* Install our interrupt handlers for Error,
2928 		 * Transmit, and Receive
2929 		 */
2930 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2931 				  gfar_irq(grp, ER)->name, grp);
2932 		if (err < 0) {
2933 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2934 				  gfar_irq(grp, ER)->irq);
2935 
2936 			goto err_irq_fail;
2937 		}
2938 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2939 
2940 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2941 				  gfar_irq(grp, TX)->name, grp);
2942 		if (err < 0) {
2943 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2944 				  gfar_irq(grp, TX)->irq);
2945 			goto tx_irq_fail;
2946 		}
2947 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2948 				  gfar_irq(grp, RX)->name, grp);
2949 		if (err < 0) {
2950 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2951 				  gfar_irq(grp, RX)->irq);
2952 			goto rx_irq_fail;
2953 		}
2954 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2955 
2956 	} else {
2957 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2958 				  gfar_irq(grp, TX)->name, grp);
2959 		if (err < 0) {
2960 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2961 				  gfar_irq(grp, TX)->irq);
2962 			goto err_irq_fail;
2963 		}
2964 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2965 	}
2966 
2967 	return 0;
2968 
2969 rx_irq_fail:
2970 	free_irq(gfar_irq(grp, TX)->irq, grp);
2971 tx_irq_fail:
2972 	free_irq(gfar_irq(grp, ER)->irq, grp);
2973 err_irq_fail:
2974 	return err;
2975 
2976 }
2977 
2978 static void gfar_free_irq(struct gfar_private *priv)
2979 {
2980 	int i;
2981 
2982 	/* Free the IRQs */
2983 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2984 		for (i = 0; i < priv->num_grps; i++)
2985 			free_grp_irqs(&priv->gfargrp[i]);
2986 	} else {
2987 		for (i = 0; i < priv->num_grps; i++)
2988 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2989 				 &priv->gfargrp[i]);
2990 	}
2991 }
2992 
2993 static int gfar_request_irq(struct gfar_private *priv)
2994 {
2995 	int err, i, j;
2996 
2997 	for (i = 0; i < priv->num_grps; i++) {
2998 		err = register_grp_irqs(&priv->gfargrp[i]);
2999 		if (err) {
3000 			for (j = 0; j < i; j++)
3001 				free_grp_irqs(&priv->gfargrp[j]);
3002 			return err;
3003 		}
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 /* Called when something needs to use the ethernet device
3010  * Returns 0 for success.
3011  */
3012 static int gfar_enet_open(struct net_device *dev)
3013 {
3014 	struct gfar_private *priv = netdev_priv(dev);
3015 	int err;
3016 
3017 	err = init_phy(dev);
3018 	if (err)
3019 		return err;
3020 
3021 	err = gfar_request_irq(priv);
3022 	if (err)
3023 		return err;
3024 
3025 	err = startup_gfar(dev);
3026 	if (err)
3027 		return err;
3028 
3029 	return err;
3030 }
3031 
3032 /* Stops the kernel queue, and halts the controller */
3033 static int gfar_close(struct net_device *dev)
3034 {
3035 	struct gfar_private *priv = netdev_priv(dev);
3036 
3037 	cancel_work_sync(&priv->reset_task);
3038 	stop_gfar(dev);
3039 
3040 	/* Disconnect from the PHY */
3041 	phy_disconnect(dev->phydev);
3042 
3043 	gfar_free_irq(priv);
3044 
3045 	return 0;
3046 }
3047 
3048 /* Clears each of the exact match registers to zero, so they
3049  * don't interfere with normal reception
3050  */
3051 static void gfar_clear_exact_match(struct net_device *dev)
3052 {
3053 	int idx;
3054 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3055 
3056 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3057 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3058 }
3059 
3060 /* Update the hash table based on the current list of multicast
3061  * addresses we subscribe to.  Also, change the promiscuity of
3062  * the device based on the flags (this function is called
3063  * whenever dev->flags is changed
3064  */
3065 static void gfar_set_multi(struct net_device *dev)
3066 {
3067 	struct netdev_hw_addr *ha;
3068 	struct gfar_private *priv = netdev_priv(dev);
3069 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3070 	u32 tempval;
3071 
3072 	if (dev->flags & IFF_PROMISC) {
3073 		/* Set RCTRL to PROM */
3074 		tempval = gfar_read(&regs->rctrl);
3075 		tempval |= RCTRL_PROM;
3076 		gfar_write(&regs->rctrl, tempval);
3077 	} else {
3078 		/* Set RCTRL to not PROM */
3079 		tempval = gfar_read(&regs->rctrl);
3080 		tempval &= ~(RCTRL_PROM);
3081 		gfar_write(&regs->rctrl, tempval);
3082 	}
3083 
3084 	if (dev->flags & IFF_ALLMULTI) {
3085 		/* Set the hash to rx all multicast frames */
3086 		gfar_write(&regs->igaddr0, 0xffffffff);
3087 		gfar_write(&regs->igaddr1, 0xffffffff);
3088 		gfar_write(&regs->igaddr2, 0xffffffff);
3089 		gfar_write(&regs->igaddr3, 0xffffffff);
3090 		gfar_write(&regs->igaddr4, 0xffffffff);
3091 		gfar_write(&regs->igaddr5, 0xffffffff);
3092 		gfar_write(&regs->igaddr6, 0xffffffff);
3093 		gfar_write(&regs->igaddr7, 0xffffffff);
3094 		gfar_write(&regs->gaddr0, 0xffffffff);
3095 		gfar_write(&regs->gaddr1, 0xffffffff);
3096 		gfar_write(&regs->gaddr2, 0xffffffff);
3097 		gfar_write(&regs->gaddr3, 0xffffffff);
3098 		gfar_write(&regs->gaddr4, 0xffffffff);
3099 		gfar_write(&regs->gaddr5, 0xffffffff);
3100 		gfar_write(&regs->gaddr6, 0xffffffff);
3101 		gfar_write(&regs->gaddr7, 0xffffffff);
3102 	} else {
3103 		int em_num;
3104 		int idx;
3105 
3106 		/* zero out the hash */
3107 		gfar_write(&regs->igaddr0, 0x0);
3108 		gfar_write(&regs->igaddr1, 0x0);
3109 		gfar_write(&regs->igaddr2, 0x0);
3110 		gfar_write(&regs->igaddr3, 0x0);
3111 		gfar_write(&regs->igaddr4, 0x0);
3112 		gfar_write(&regs->igaddr5, 0x0);
3113 		gfar_write(&regs->igaddr6, 0x0);
3114 		gfar_write(&regs->igaddr7, 0x0);
3115 		gfar_write(&regs->gaddr0, 0x0);
3116 		gfar_write(&regs->gaddr1, 0x0);
3117 		gfar_write(&regs->gaddr2, 0x0);
3118 		gfar_write(&regs->gaddr3, 0x0);
3119 		gfar_write(&regs->gaddr4, 0x0);
3120 		gfar_write(&regs->gaddr5, 0x0);
3121 		gfar_write(&regs->gaddr6, 0x0);
3122 		gfar_write(&regs->gaddr7, 0x0);
3123 
3124 		/* If we have extended hash tables, we need to
3125 		 * clear the exact match registers to prepare for
3126 		 * setting them
3127 		 */
3128 		if (priv->extended_hash) {
3129 			em_num = GFAR_EM_NUM + 1;
3130 			gfar_clear_exact_match(dev);
3131 			idx = 1;
3132 		} else {
3133 			idx = 0;
3134 			em_num = 0;
3135 		}
3136 
3137 		if (netdev_mc_empty(dev))
3138 			return;
3139 
3140 		/* Parse the list, and set the appropriate bits */
3141 		netdev_for_each_mc_addr(ha, dev) {
3142 			if (idx < em_num) {
3143 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3144 				idx++;
3145 			} else
3146 				gfar_set_hash_for_addr(dev, ha->addr);
3147 		}
3148 	}
3149 }
3150 
3151 void gfar_mac_reset(struct gfar_private *priv)
3152 {
3153 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3154 	u32 tempval;
3155 
3156 	/* Reset MAC layer */
3157 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3158 
3159 	/* We need to delay at least 3 TX clocks */
3160 	udelay(3);
3161 
3162 	/* the soft reset bit is not self-resetting, so we need to
3163 	 * clear it before resuming normal operation
3164 	 */
3165 	gfar_write(&regs->maccfg1, 0);
3166 
3167 	udelay(3);
3168 
3169 	gfar_rx_offload_en(priv);
3170 
3171 	/* Initialize the max receive frame/buffer lengths */
3172 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3173 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3174 
3175 	/* Initialize the Minimum Frame Length Register */
3176 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3177 
3178 	/* Initialize MACCFG2. */
3179 	tempval = MACCFG2_INIT_SETTINGS;
3180 
3181 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3182 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3183 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3184 	 */
3185 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3186 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3187 
3188 	gfar_write(&regs->maccfg2, tempval);
3189 
3190 	/* Clear mac addr hash registers */
3191 	gfar_write(&regs->igaddr0, 0);
3192 	gfar_write(&regs->igaddr1, 0);
3193 	gfar_write(&regs->igaddr2, 0);
3194 	gfar_write(&regs->igaddr3, 0);
3195 	gfar_write(&regs->igaddr4, 0);
3196 	gfar_write(&regs->igaddr5, 0);
3197 	gfar_write(&regs->igaddr6, 0);
3198 	gfar_write(&regs->igaddr7, 0);
3199 
3200 	gfar_write(&regs->gaddr0, 0);
3201 	gfar_write(&regs->gaddr1, 0);
3202 	gfar_write(&regs->gaddr2, 0);
3203 	gfar_write(&regs->gaddr3, 0);
3204 	gfar_write(&regs->gaddr4, 0);
3205 	gfar_write(&regs->gaddr5, 0);
3206 	gfar_write(&regs->gaddr6, 0);
3207 	gfar_write(&regs->gaddr7, 0);
3208 
3209 	if (priv->extended_hash)
3210 		gfar_clear_exact_match(priv->ndev);
3211 
3212 	gfar_mac_rx_config(priv);
3213 
3214 	gfar_mac_tx_config(priv);
3215 
3216 	gfar_set_mac_address(priv->ndev);
3217 
3218 	gfar_set_multi(priv->ndev);
3219 
3220 	/* clear ievent and imask before configuring coalescing */
3221 	gfar_ints_disable(priv);
3222 
3223 	/* Configure the coalescing support */
3224 	gfar_configure_coalescing_all(priv);
3225 }
3226 
3227 static void gfar_hw_init(struct gfar_private *priv)
3228 {
3229 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3230 	u32 attrs;
3231 
3232 	/* Stop the DMA engine now, in case it was running before
3233 	 * (The firmware could have used it, and left it running).
3234 	 */
3235 	gfar_halt(priv);
3236 
3237 	gfar_mac_reset(priv);
3238 
3239 	/* Zero out the rmon mib registers if it has them */
3240 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3241 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3242 
3243 		/* Mask off the CAM interrupts */
3244 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3245 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3246 	}
3247 
3248 	/* Initialize ECNTRL */
3249 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3250 
3251 	/* Set the extraction length and index */
3252 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3253 		ATTRELI_EI(priv->rx_stash_index);
3254 
3255 	gfar_write(&regs->attreli, attrs);
3256 
3257 	/* Start with defaults, and add stashing
3258 	 * depending on driver parameters
3259 	 */
3260 	attrs = ATTR_INIT_SETTINGS;
3261 
3262 	if (priv->bd_stash_en)
3263 		attrs |= ATTR_BDSTASH;
3264 
3265 	if (priv->rx_stash_size != 0)
3266 		attrs |= ATTR_BUFSTASH;
3267 
3268 	gfar_write(&regs->attr, attrs);
3269 
3270 	/* FIFO configs */
3271 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3272 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3273 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3274 
3275 	/* Program the interrupt steering regs, only for MG devices */
3276 	if (priv->num_grps > 1)
3277 		gfar_write_isrg(priv);
3278 }
3279 
3280 static const struct net_device_ops gfar_netdev_ops = {
3281 	.ndo_open = gfar_enet_open,
3282 	.ndo_start_xmit = gfar_start_xmit,
3283 	.ndo_stop = gfar_close,
3284 	.ndo_change_mtu = gfar_change_mtu,
3285 	.ndo_set_features = gfar_set_features,
3286 	.ndo_set_rx_mode = gfar_set_multi,
3287 	.ndo_tx_timeout = gfar_timeout,
3288 	.ndo_do_ioctl = gfar_ioctl,
3289 	.ndo_get_stats = gfar_get_stats,
3290 	.ndo_change_carrier = fixed_phy_change_carrier,
3291 	.ndo_set_mac_address = gfar_set_mac_addr,
3292 	.ndo_validate_addr = eth_validate_addr,
3293 #ifdef CONFIG_NET_POLL_CONTROLLER
3294 	.ndo_poll_controller = gfar_netpoll,
3295 #endif
3296 };
3297 
3298 /* Set up the ethernet device structure, private data,
3299  * and anything else we need before we start
3300  */
3301 static int gfar_probe(struct platform_device *ofdev)
3302 {
3303 	struct device_node *np = ofdev->dev.of_node;
3304 	struct net_device *dev = NULL;
3305 	struct gfar_private *priv = NULL;
3306 	int err = 0, i;
3307 
3308 	err = gfar_of_init(ofdev, &dev);
3309 
3310 	if (err)
3311 		return err;
3312 
3313 	priv = netdev_priv(dev);
3314 	priv->ndev = dev;
3315 	priv->ofdev = ofdev;
3316 	priv->dev = &ofdev->dev;
3317 	SET_NETDEV_DEV(dev, &ofdev->dev);
3318 
3319 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3320 
3321 	platform_set_drvdata(ofdev, priv);
3322 
3323 	gfar_detect_errata(priv);
3324 
3325 	/* Set the dev->base_addr to the gfar reg region */
3326 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3327 
3328 	/* Fill in the dev structure */
3329 	dev->watchdog_timeo = TX_TIMEOUT;
3330 	/* MTU range: 50 - 9586 */
3331 	dev->mtu = 1500;
3332 	dev->min_mtu = 50;
3333 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3334 	dev->netdev_ops = &gfar_netdev_ops;
3335 	dev->ethtool_ops = &gfar_ethtool_ops;
3336 
3337 	/* Register for napi ...We are registering NAPI for each grp */
3338 	for (i = 0; i < priv->num_grps; i++) {
3339 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3340 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3341 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3342 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3343 				       gfar_poll_tx_sq, 2);
3344 		} else {
3345 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3346 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3347 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3348 				       gfar_poll_tx, 2);
3349 		}
3350 	}
3351 
3352 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3353 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3354 				   NETIF_F_RXCSUM;
3355 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3356 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3357 	}
3358 
3359 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3360 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3361 				    NETIF_F_HW_VLAN_CTAG_RX;
3362 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3363 	}
3364 
3365 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3366 
3367 	gfar_init_addr_hash_table(priv);
3368 
3369 	/* Insert receive time stamps into padding alignment bytes, and
3370 	 * plus 2 bytes padding to ensure the cpu alignment.
3371 	 */
3372 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3373 		priv->padding = 8 + DEFAULT_PADDING;
3374 
3375 	if (dev->features & NETIF_F_IP_CSUM ||
3376 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3377 		dev->needed_headroom = GMAC_FCB_LEN;
3378 
3379 	/* Initializing some of the rx/tx queue level parameters */
3380 	for (i = 0; i < priv->num_tx_queues; i++) {
3381 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3382 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3383 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3384 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3385 	}
3386 
3387 	for (i = 0; i < priv->num_rx_queues; i++) {
3388 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3389 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3390 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3391 	}
3392 
3393 	/* Always enable rx filer if available */
3394 	priv->rx_filer_enable =
3395 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3396 	/* Enable most messages by default */
3397 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3398 	/* use pritority h/w tx queue scheduling for single queue devices */
3399 	if (priv->num_tx_queues == 1)
3400 		priv->prio_sched_en = 1;
3401 
3402 	set_bit(GFAR_DOWN, &priv->state);
3403 
3404 	gfar_hw_init(priv);
3405 
3406 	/* Carrier starts down, phylib will bring it up */
3407 	netif_carrier_off(dev);
3408 
3409 	err = register_netdev(dev);
3410 
3411 	if (err) {
3412 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3413 		goto register_fail;
3414 	}
3415 
3416 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3417 		priv->wol_supported |= GFAR_WOL_MAGIC;
3418 
3419 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3420 	    priv->rx_filer_enable)
3421 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3422 
3423 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3424 
3425 	/* fill out IRQ number and name fields */
3426 	for (i = 0; i < priv->num_grps; i++) {
3427 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3428 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3429 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3430 				dev->name, "_g", '0' + i, "_tx");
3431 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3432 				dev->name, "_g", '0' + i, "_rx");
3433 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3434 				dev->name, "_g", '0' + i, "_er");
3435 		} else
3436 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3437 	}
3438 
3439 	/* Initialize the filer table */
3440 	gfar_init_filer_table(priv);
3441 
3442 	/* Print out the device info */
3443 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3444 
3445 	/* Even more device info helps when determining which kernel
3446 	 * provided which set of benchmarks.
3447 	 */
3448 	netdev_info(dev, "Running with NAPI enabled\n");
3449 	for (i = 0; i < priv->num_rx_queues; i++)
3450 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3451 			    i, priv->rx_queue[i]->rx_ring_size);
3452 	for (i = 0; i < priv->num_tx_queues; i++)
3453 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3454 			    i, priv->tx_queue[i]->tx_ring_size);
3455 
3456 	return 0;
3457 
3458 register_fail:
3459 	if (of_phy_is_fixed_link(np))
3460 		of_phy_deregister_fixed_link(np);
3461 	unmap_group_regs(priv);
3462 	gfar_free_rx_queues(priv);
3463 	gfar_free_tx_queues(priv);
3464 	of_node_put(priv->phy_node);
3465 	of_node_put(priv->tbi_node);
3466 	free_gfar_dev(priv);
3467 	return err;
3468 }
3469 
3470 static int gfar_remove(struct platform_device *ofdev)
3471 {
3472 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3473 	struct device_node *np = ofdev->dev.of_node;
3474 
3475 	of_node_put(priv->phy_node);
3476 	of_node_put(priv->tbi_node);
3477 
3478 	unregister_netdev(priv->ndev);
3479 
3480 	if (of_phy_is_fixed_link(np))
3481 		of_phy_deregister_fixed_link(np);
3482 
3483 	unmap_group_regs(priv);
3484 	gfar_free_rx_queues(priv);
3485 	gfar_free_tx_queues(priv);
3486 	free_gfar_dev(priv);
3487 
3488 	return 0;
3489 }
3490 
3491 #ifdef CONFIG_PM
3492 
3493 static void __gfar_filer_disable(struct gfar_private *priv)
3494 {
3495 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3496 	u32 temp;
3497 
3498 	temp = gfar_read(&regs->rctrl);
3499 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3500 	gfar_write(&regs->rctrl, temp);
3501 }
3502 
3503 static void __gfar_filer_enable(struct gfar_private *priv)
3504 {
3505 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3506 	u32 temp;
3507 
3508 	temp = gfar_read(&regs->rctrl);
3509 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3510 	gfar_write(&regs->rctrl, temp);
3511 }
3512 
3513 /* Filer rules implementing wol capabilities */
3514 static void gfar_filer_config_wol(struct gfar_private *priv)
3515 {
3516 	unsigned int i;
3517 	u32 rqfcr;
3518 
3519 	__gfar_filer_disable(priv);
3520 
3521 	/* clear the filer table, reject any packet by default */
3522 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3523 	for (i = 0; i <= MAX_FILER_IDX; i++)
3524 		gfar_write_filer(priv, i, rqfcr, 0);
3525 
3526 	i = 0;
3527 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3528 		/* unicast packet, accept it */
3529 		struct net_device *ndev = priv->ndev;
3530 		/* get the default rx queue index */
3531 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3532 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3533 				    (ndev->dev_addr[1] << 8) |
3534 				     ndev->dev_addr[2];
3535 
3536 		rqfcr = (qindex << 10) | RQFCR_AND |
3537 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3538 
3539 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3540 
3541 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3542 				(ndev->dev_addr[4] << 8) |
3543 				 ndev->dev_addr[5];
3544 		rqfcr = (qindex << 10) | RQFCR_GPI |
3545 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3546 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3547 	}
3548 
3549 	__gfar_filer_enable(priv);
3550 }
3551 
3552 static void gfar_filer_restore_table(struct gfar_private *priv)
3553 {
3554 	u32 rqfcr, rqfpr;
3555 	unsigned int i;
3556 
3557 	__gfar_filer_disable(priv);
3558 
3559 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3560 		rqfcr = priv->ftp_rqfcr[i];
3561 		rqfpr = priv->ftp_rqfpr[i];
3562 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3563 	}
3564 
3565 	__gfar_filer_enable(priv);
3566 }
3567 
3568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3569 static void gfar_start_wol_filer(struct gfar_private *priv)
3570 {
3571 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3572 	u32 tempval;
3573 	int i = 0;
3574 
3575 	/* Enable Rx hw queues */
3576 	gfar_write(&regs->rqueue, priv->rqueue);
3577 
3578 	/* Initialize DMACTRL to have WWR and WOP */
3579 	tempval = gfar_read(&regs->dmactrl);
3580 	tempval |= DMACTRL_INIT_SETTINGS;
3581 	gfar_write(&regs->dmactrl, tempval);
3582 
3583 	/* Make sure we aren't stopped */
3584 	tempval = gfar_read(&regs->dmactrl);
3585 	tempval &= ~DMACTRL_GRS;
3586 	gfar_write(&regs->dmactrl, tempval);
3587 
3588 	for (i = 0; i < priv->num_grps; i++) {
3589 		regs = priv->gfargrp[i].regs;
3590 		/* Clear RHLT, so that the DMA starts polling now */
3591 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3592 		/* enable the Filer General Purpose Interrupt */
3593 		gfar_write(&regs->imask, IMASK_FGPI);
3594 	}
3595 
3596 	/* Enable Rx DMA */
3597 	tempval = gfar_read(&regs->maccfg1);
3598 	tempval |= MACCFG1_RX_EN;
3599 	gfar_write(&regs->maccfg1, tempval);
3600 }
3601 
3602 static int gfar_suspend(struct device *dev)
3603 {
3604 	struct gfar_private *priv = dev_get_drvdata(dev);
3605 	struct net_device *ndev = priv->ndev;
3606 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3607 	u32 tempval;
3608 	u16 wol = priv->wol_opts;
3609 
3610 	if (!netif_running(ndev))
3611 		return 0;
3612 
3613 	disable_napi(priv);
3614 	netif_tx_lock(ndev);
3615 	netif_device_detach(ndev);
3616 	netif_tx_unlock(ndev);
3617 
3618 	gfar_halt(priv);
3619 
3620 	if (wol & GFAR_WOL_MAGIC) {
3621 		/* Enable interrupt on Magic Packet */
3622 		gfar_write(&regs->imask, IMASK_MAG);
3623 
3624 		/* Enable Magic Packet mode */
3625 		tempval = gfar_read(&regs->maccfg2);
3626 		tempval |= MACCFG2_MPEN;
3627 		gfar_write(&regs->maccfg2, tempval);
3628 
3629 		/* re-enable the Rx block */
3630 		tempval = gfar_read(&regs->maccfg1);
3631 		tempval |= MACCFG1_RX_EN;
3632 		gfar_write(&regs->maccfg1, tempval);
3633 
3634 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3635 		gfar_filer_config_wol(priv);
3636 		gfar_start_wol_filer(priv);
3637 
3638 	} else {
3639 		phy_stop(ndev->phydev);
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 static int gfar_resume(struct device *dev)
3646 {
3647 	struct gfar_private *priv = dev_get_drvdata(dev);
3648 	struct net_device *ndev = priv->ndev;
3649 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3650 	u32 tempval;
3651 	u16 wol = priv->wol_opts;
3652 
3653 	if (!netif_running(ndev))
3654 		return 0;
3655 
3656 	if (wol & GFAR_WOL_MAGIC) {
3657 		/* Disable Magic Packet mode */
3658 		tempval = gfar_read(&regs->maccfg2);
3659 		tempval &= ~MACCFG2_MPEN;
3660 		gfar_write(&regs->maccfg2, tempval);
3661 
3662 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3663 		/* need to stop rx only, tx is already down */
3664 		gfar_halt(priv);
3665 		gfar_filer_restore_table(priv);
3666 
3667 	} else {
3668 		phy_start(ndev->phydev);
3669 	}
3670 
3671 	gfar_start(priv);
3672 
3673 	netif_device_attach(ndev);
3674 	enable_napi(priv);
3675 
3676 	return 0;
3677 }
3678 
3679 static int gfar_restore(struct device *dev)
3680 {
3681 	struct gfar_private *priv = dev_get_drvdata(dev);
3682 	struct net_device *ndev = priv->ndev;
3683 
3684 	if (!netif_running(ndev)) {
3685 		netif_device_attach(ndev);
3686 
3687 		return 0;
3688 	}
3689 
3690 	gfar_init_bds(ndev);
3691 
3692 	gfar_mac_reset(priv);
3693 
3694 	gfar_init_tx_rx_base(priv);
3695 
3696 	gfar_start(priv);
3697 
3698 	priv->oldlink = 0;
3699 	priv->oldspeed = 0;
3700 	priv->oldduplex = -1;
3701 
3702 	if (ndev->phydev)
3703 		phy_start(ndev->phydev);
3704 
3705 	netif_device_attach(ndev);
3706 	enable_napi(priv);
3707 
3708 	return 0;
3709 }
3710 
3711 static const struct dev_pm_ops gfar_pm_ops = {
3712 	.suspend = gfar_suspend,
3713 	.resume = gfar_resume,
3714 	.freeze = gfar_suspend,
3715 	.thaw = gfar_resume,
3716 	.restore = gfar_restore,
3717 };
3718 
3719 #define GFAR_PM_OPS (&gfar_pm_ops)
3720 
3721 #else
3722 
3723 #define GFAR_PM_OPS NULL
3724 
3725 #endif
3726 
3727 static const struct of_device_id gfar_match[] =
3728 {
3729 	{
3730 		.type = "network",
3731 		.compatible = "gianfar",
3732 	},
3733 	{
3734 		.compatible = "fsl,etsec2",
3735 	},
3736 	{},
3737 };
3738 MODULE_DEVICE_TABLE(of, gfar_match);
3739 
3740 /* Structure for a device driver */
3741 static struct platform_driver gfar_driver = {
3742 	.driver = {
3743 		.name = "fsl-gianfar",
3744 		.pm = GFAR_PM_OPS,
3745 		.of_match_table = gfar_match,
3746 	},
3747 	.probe = gfar_probe,
3748 	.remove = gfar_remove,
3749 };
3750 
3751 module_platform_driver(gfar_driver);
3752