1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 #define DEBUG 62 63 #include <linux/kernel.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/of_platform.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/udp.h> 83 #include <linux/in.h> 84 #include <linux/net_tstamp.h> 85 86 #include <asm/io.h> 87 #ifdef CONFIG_PPC 88 #include <asm/reg.h> 89 #include <asm/mpc85xx.h> 90 #endif 91 #include <asm/irq.h> 92 #include <linux/uaccess.h> 93 #include <linux/module.h> 94 #include <linux/dma-mapping.h> 95 #include <linux/crc32.h> 96 #include <linux/mii.h> 97 #include <linux/phy.h> 98 #include <linux/phy_fixed.h> 99 #include <linux/of.h> 100 #include <linux/of_net.h> 101 102 #include "gianfar.h" 103 104 #define TX_TIMEOUT (5*HZ) 105 106 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 107 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 108 MODULE_LICENSE("GPL"); 109 110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 111 dma_addr_t buf) 112 { 113 u32 lstatus; 114 115 bdp->bufPtr = cpu_to_be32(buf); 116 117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 119 lstatus |= BD_LFLAG(RXBD_WRAP); 120 121 gfar_wmb(); 122 123 bdp->lstatus = cpu_to_be32(lstatus); 124 } 125 126 static void gfar_init_tx_rx_base(struct gfar_private *priv) 127 { 128 struct gfar __iomem *regs = priv->gfargrp[0].regs; 129 u32 __iomem *baddr; 130 int i; 131 132 baddr = ®s->tbase0; 133 for (i = 0; i < priv->num_tx_queues; i++) { 134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 135 baddr += 2; 136 } 137 138 baddr = ®s->rbase0; 139 for (i = 0; i < priv->num_rx_queues; i++) { 140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 141 baddr += 2; 142 } 143 } 144 145 static void gfar_init_rqprm(struct gfar_private *priv) 146 { 147 struct gfar __iomem *regs = priv->gfargrp[0].regs; 148 u32 __iomem *baddr; 149 int i; 150 151 baddr = ®s->rqprm0; 152 for (i = 0; i < priv->num_rx_queues; i++) { 153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 155 baddr++; 156 } 157 } 158 159 static void gfar_rx_offload_en(struct gfar_private *priv) 160 { 161 /* set this when rx hw offload (TOE) functions are being used */ 162 priv->uses_rxfcb = 0; 163 164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 165 priv->uses_rxfcb = 1; 166 167 if (priv->hwts_rx_en || priv->rx_filer_enable) 168 priv->uses_rxfcb = 1; 169 } 170 171 static void gfar_mac_rx_config(struct gfar_private *priv) 172 { 173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 174 u32 rctrl = 0; 175 176 if (priv->rx_filer_enable) { 177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 178 /* Program the RIR0 reg with the required distribution */ 179 if (priv->poll_mode == GFAR_SQ_POLLING) 180 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 181 else /* GFAR_MQ_POLLING */ 182 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 183 } 184 185 /* Restore PROMISC mode */ 186 if (priv->ndev->flags & IFF_PROMISC) 187 rctrl |= RCTRL_PROM; 188 189 if (priv->ndev->features & NETIF_F_RXCSUM) 190 rctrl |= RCTRL_CHECKSUMMING; 191 192 if (priv->extended_hash) 193 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 194 195 if (priv->padding) { 196 rctrl &= ~RCTRL_PAL_MASK; 197 rctrl |= RCTRL_PADDING(priv->padding); 198 } 199 200 /* Enable HW time stamping if requested from user space */ 201 if (priv->hwts_rx_en) 202 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 203 204 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 205 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 206 207 /* Clear the LFC bit */ 208 gfar_write(®s->rctrl, rctrl); 209 /* Init flow control threshold values */ 210 gfar_init_rqprm(priv); 211 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 212 rctrl |= RCTRL_LFC; 213 214 /* Init rctrl based on our settings */ 215 gfar_write(®s->rctrl, rctrl); 216 } 217 218 static void gfar_mac_tx_config(struct gfar_private *priv) 219 { 220 struct gfar __iomem *regs = priv->gfargrp[0].regs; 221 u32 tctrl = 0; 222 223 if (priv->ndev->features & NETIF_F_IP_CSUM) 224 tctrl |= TCTRL_INIT_CSUM; 225 226 if (priv->prio_sched_en) 227 tctrl |= TCTRL_TXSCHED_PRIO; 228 else { 229 tctrl |= TCTRL_TXSCHED_WRRS; 230 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 231 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 232 } 233 234 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 235 tctrl |= TCTRL_VLINS; 236 237 gfar_write(®s->tctrl, tctrl); 238 } 239 240 static void gfar_configure_coalescing(struct gfar_private *priv, 241 unsigned long tx_mask, unsigned long rx_mask) 242 { 243 struct gfar __iomem *regs = priv->gfargrp[0].regs; 244 u32 __iomem *baddr; 245 246 if (priv->mode == MQ_MG_MODE) { 247 int i = 0; 248 249 baddr = ®s->txic0; 250 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 251 gfar_write(baddr + i, 0); 252 if (likely(priv->tx_queue[i]->txcoalescing)) 253 gfar_write(baddr + i, priv->tx_queue[i]->txic); 254 } 255 256 baddr = ®s->rxic0; 257 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 258 gfar_write(baddr + i, 0); 259 if (likely(priv->rx_queue[i]->rxcoalescing)) 260 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 261 } 262 } else { 263 /* Backward compatible case -- even if we enable 264 * multiple queues, there's only single reg to program 265 */ 266 gfar_write(®s->txic, 0); 267 if (likely(priv->tx_queue[0]->txcoalescing)) 268 gfar_write(®s->txic, priv->tx_queue[0]->txic); 269 270 gfar_write(®s->rxic, 0); 271 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 272 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 273 } 274 } 275 276 static void gfar_configure_coalescing_all(struct gfar_private *priv) 277 { 278 gfar_configure_coalescing(priv, 0xFF, 0xFF); 279 } 280 281 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 282 { 283 struct gfar_private *priv = netdev_priv(dev); 284 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 285 unsigned long tx_packets = 0, tx_bytes = 0; 286 int i; 287 288 for (i = 0; i < priv->num_rx_queues; i++) { 289 rx_packets += priv->rx_queue[i]->stats.rx_packets; 290 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 291 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 292 } 293 294 dev->stats.rx_packets = rx_packets; 295 dev->stats.rx_bytes = rx_bytes; 296 dev->stats.rx_dropped = rx_dropped; 297 298 for (i = 0; i < priv->num_tx_queues; i++) { 299 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 300 tx_packets += priv->tx_queue[i]->stats.tx_packets; 301 } 302 303 dev->stats.tx_bytes = tx_bytes; 304 dev->stats.tx_packets = tx_packets; 305 306 return &dev->stats; 307 } 308 309 /* Set the appropriate hash bit for the given addr */ 310 /* The algorithm works like so: 311 * 1) Take the Destination Address (ie the multicast address), and 312 * do a CRC on it (little endian), and reverse the bits of the 313 * result. 314 * 2) Use the 8 most significant bits as a hash into a 256-entry 315 * table. The table is controlled through 8 32-bit registers: 316 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 317 * gaddr7. This means that the 3 most significant bits in the 318 * hash index which gaddr register to use, and the 5 other bits 319 * indicate which bit (assuming an IBM numbering scheme, which 320 * for PowerPC (tm) is usually the case) in the register holds 321 * the entry. 322 */ 323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 324 { 325 u32 tempval; 326 struct gfar_private *priv = netdev_priv(dev); 327 u32 result = ether_crc(ETH_ALEN, addr); 328 int width = priv->hash_width; 329 u8 whichbit = (result >> (32 - width)) & 0x1f; 330 u8 whichreg = result >> (32 - width + 5); 331 u32 value = (1 << (31-whichbit)); 332 333 tempval = gfar_read(priv->hash_regs[whichreg]); 334 tempval |= value; 335 gfar_write(priv->hash_regs[whichreg], tempval); 336 } 337 338 /* There are multiple MAC Address register pairs on some controllers 339 * This function sets the numth pair to a given address 340 */ 341 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 342 const u8 *addr) 343 { 344 struct gfar_private *priv = netdev_priv(dev); 345 struct gfar __iomem *regs = priv->gfargrp[0].regs; 346 u32 tempval; 347 u32 __iomem *macptr = ®s->macstnaddr1; 348 349 macptr += num*2; 350 351 /* For a station address of 0x12345678ABCD in transmission 352 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 353 * MACnADDR2 is set to 0x34120000. 354 */ 355 tempval = (addr[5] << 24) | (addr[4] << 16) | 356 (addr[3] << 8) | addr[2]; 357 358 gfar_write(macptr, tempval); 359 360 tempval = (addr[1] << 24) | (addr[0] << 16); 361 362 gfar_write(macptr+1, tempval); 363 } 364 365 static int gfar_set_mac_addr(struct net_device *dev, void *p) 366 { 367 eth_mac_addr(dev, p); 368 369 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 370 371 return 0; 372 } 373 374 static void gfar_ints_disable(struct gfar_private *priv) 375 { 376 int i; 377 for (i = 0; i < priv->num_grps; i++) { 378 struct gfar __iomem *regs = priv->gfargrp[i].regs; 379 /* Clear IEVENT */ 380 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 381 382 /* Initialize IMASK */ 383 gfar_write(®s->imask, IMASK_INIT_CLEAR); 384 } 385 } 386 387 static void gfar_ints_enable(struct gfar_private *priv) 388 { 389 int i; 390 for (i = 0; i < priv->num_grps; i++) { 391 struct gfar __iomem *regs = priv->gfargrp[i].regs; 392 /* Unmask the interrupts we look for */ 393 gfar_write(®s->imask, IMASK_DEFAULT); 394 } 395 } 396 397 static int gfar_alloc_tx_queues(struct gfar_private *priv) 398 { 399 int i; 400 401 for (i = 0; i < priv->num_tx_queues; i++) { 402 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 403 GFP_KERNEL); 404 if (!priv->tx_queue[i]) 405 return -ENOMEM; 406 407 priv->tx_queue[i]->tx_skbuff = NULL; 408 priv->tx_queue[i]->qindex = i; 409 priv->tx_queue[i]->dev = priv->ndev; 410 spin_lock_init(&(priv->tx_queue[i]->txlock)); 411 } 412 return 0; 413 } 414 415 static int gfar_alloc_rx_queues(struct gfar_private *priv) 416 { 417 int i; 418 419 for (i = 0; i < priv->num_rx_queues; i++) { 420 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 421 GFP_KERNEL); 422 if (!priv->rx_queue[i]) 423 return -ENOMEM; 424 425 priv->rx_queue[i]->qindex = i; 426 priv->rx_queue[i]->ndev = priv->ndev; 427 } 428 return 0; 429 } 430 431 static void gfar_free_tx_queues(struct gfar_private *priv) 432 { 433 int i; 434 435 for (i = 0; i < priv->num_tx_queues; i++) 436 kfree(priv->tx_queue[i]); 437 } 438 439 static void gfar_free_rx_queues(struct gfar_private *priv) 440 { 441 int i; 442 443 for (i = 0; i < priv->num_rx_queues; i++) 444 kfree(priv->rx_queue[i]); 445 } 446 447 static void unmap_group_regs(struct gfar_private *priv) 448 { 449 int i; 450 451 for (i = 0; i < MAXGROUPS; i++) 452 if (priv->gfargrp[i].regs) 453 iounmap(priv->gfargrp[i].regs); 454 } 455 456 static void free_gfar_dev(struct gfar_private *priv) 457 { 458 int i, j; 459 460 for (i = 0; i < priv->num_grps; i++) 461 for (j = 0; j < GFAR_NUM_IRQS; j++) { 462 kfree(priv->gfargrp[i].irqinfo[j]); 463 priv->gfargrp[i].irqinfo[j] = NULL; 464 } 465 466 free_netdev(priv->ndev); 467 } 468 469 static void disable_napi(struct gfar_private *priv) 470 { 471 int i; 472 473 for (i = 0; i < priv->num_grps; i++) { 474 napi_disable(&priv->gfargrp[i].napi_rx); 475 napi_disable(&priv->gfargrp[i].napi_tx); 476 } 477 } 478 479 static void enable_napi(struct gfar_private *priv) 480 { 481 int i; 482 483 for (i = 0; i < priv->num_grps; i++) { 484 napi_enable(&priv->gfargrp[i].napi_rx); 485 napi_enable(&priv->gfargrp[i].napi_tx); 486 } 487 } 488 489 static int gfar_parse_group(struct device_node *np, 490 struct gfar_private *priv, const char *model) 491 { 492 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 493 int i; 494 495 for (i = 0; i < GFAR_NUM_IRQS; i++) { 496 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 497 GFP_KERNEL); 498 if (!grp->irqinfo[i]) 499 return -ENOMEM; 500 } 501 502 grp->regs = of_iomap(np, 0); 503 if (!grp->regs) 504 return -ENOMEM; 505 506 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 507 508 /* If we aren't the FEC we have multiple interrupts */ 509 if (model && strcasecmp(model, "FEC")) { 510 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 511 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 512 if (!gfar_irq(grp, TX)->irq || 513 !gfar_irq(grp, RX)->irq || 514 !gfar_irq(grp, ER)->irq) 515 return -EINVAL; 516 } 517 518 grp->priv = priv; 519 spin_lock_init(&grp->grplock); 520 if (priv->mode == MQ_MG_MODE) { 521 u32 rxq_mask, txq_mask; 522 int ret; 523 524 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 525 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 526 527 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 528 if (!ret) { 529 grp->rx_bit_map = rxq_mask ? 530 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 531 } 532 533 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 534 if (!ret) { 535 grp->tx_bit_map = txq_mask ? 536 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 537 } 538 539 if (priv->poll_mode == GFAR_SQ_POLLING) { 540 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 541 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 542 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 543 } 544 } else { 545 grp->rx_bit_map = 0xFF; 546 grp->tx_bit_map = 0xFF; 547 } 548 549 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 550 * right to left, so we need to revert the 8 bits to get the q index 551 */ 552 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 553 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 554 555 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 556 * also assign queues to groups 557 */ 558 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 559 if (!grp->rx_queue) 560 grp->rx_queue = priv->rx_queue[i]; 561 grp->num_rx_queues++; 562 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 563 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 564 priv->rx_queue[i]->grp = grp; 565 } 566 567 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 568 if (!grp->tx_queue) 569 grp->tx_queue = priv->tx_queue[i]; 570 grp->num_tx_queues++; 571 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 572 priv->tqueue |= (TQUEUE_EN0 >> i); 573 priv->tx_queue[i]->grp = grp; 574 } 575 576 priv->num_grps++; 577 578 return 0; 579 } 580 581 static int gfar_of_group_count(struct device_node *np) 582 { 583 struct device_node *child; 584 int num = 0; 585 586 for_each_available_child_of_node(np, child) 587 if (of_node_name_eq(child, "queue-group")) 588 num++; 589 590 return num; 591 } 592 593 /* Reads the controller's registers to determine what interface 594 * connects it to the PHY. 595 */ 596 static phy_interface_t gfar_get_interface(struct net_device *dev) 597 { 598 struct gfar_private *priv = netdev_priv(dev); 599 struct gfar __iomem *regs = priv->gfargrp[0].regs; 600 u32 ecntrl; 601 602 ecntrl = gfar_read(®s->ecntrl); 603 604 if (ecntrl & ECNTRL_SGMII_MODE) 605 return PHY_INTERFACE_MODE_SGMII; 606 607 if (ecntrl & ECNTRL_TBI_MODE) { 608 if (ecntrl & ECNTRL_REDUCED_MODE) 609 return PHY_INTERFACE_MODE_RTBI; 610 else 611 return PHY_INTERFACE_MODE_TBI; 612 } 613 614 if (ecntrl & ECNTRL_REDUCED_MODE) { 615 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 616 return PHY_INTERFACE_MODE_RMII; 617 } 618 else { 619 phy_interface_t interface = priv->interface; 620 621 /* This isn't autodetected right now, so it must 622 * be set by the device tree or platform code. 623 */ 624 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 625 return PHY_INTERFACE_MODE_RGMII_ID; 626 627 return PHY_INTERFACE_MODE_RGMII; 628 } 629 } 630 631 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 632 return PHY_INTERFACE_MODE_GMII; 633 634 return PHY_INTERFACE_MODE_MII; 635 } 636 637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 638 { 639 const char *model; 640 const void *mac_addr; 641 int err = 0, i; 642 phy_interface_t interface; 643 struct net_device *dev = NULL; 644 struct gfar_private *priv = NULL; 645 struct device_node *np = ofdev->dev.of_node; 646 struct device_node *child = NULL; 647 u32 stash_len = 0; 648 u32 stash_idx = 0; 649 unsigned int num_tx_qs, num_rx_qs; 650 unsigned short mode, poll_mode; 651 652 if (!np) 653 return -ENODEV; 654 655 if (of_device_is_compatible(np, "fsl,etsec2")) { 656 mode = MQ_MG_MODE; 657 poll_mode = GFAR_SQ_POLLING; 658 } else { 659 mode = SQ_SG_MODE; 660 poll_mode = GFAR_SQ_POLLING; 661 } 662 663 if (mode == SQ_SG_MODE) { 664 num_tx_qs = 1; 665 num_rx_qs = 1; 666 } else { /* MQ_MG_MODE */ 667 /* get the actual number of supported groups */ 668 unsigned int num_grps = gfar_of_group_count(np); 669 670 if (num_grps == 0 || num_grps > MAXGROUPS) { 671 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 672 num_grps); 673 pr_err("Cannot do alloc_etherdev, aborting\n"); 674 return -EINVAL; 675 } 676 677 if (poll_mode == GFAR_SQ_POLLING) { 678 num_tx_qs = num_grps; /* one txq per int group */ 679 num_rx_qs = num_grps; /* one rxq per int group */ 680 } else { /* GFAR_MQ_POLLING */ 681 u32 tx_queues, rx_queues; 682 int ret; 683 684 /* parse the num of HW tx and rx queues */ 685 ret = of_property_read_u32(np, "fsl,num_tx_queues", 686 &tx_queues); 687 num_tx_qs = ret ? 1 : tx_queues; 688 689 ret = of_property_read_u32(np, "fsl,num_rx_queues", 690 &rx_queues); 691 num_rx_qs = ret ? 1 : rx_queues; 692 } 693 } 694 695 if (num_tx_qs > MAX_TX_QS) { 696 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 697 num_tx_qs, MAX_TX_QS); 698 pr_err("Cannot do alloc_etherdev, aborting\n"); 699 return -EINVAL; 700 } 701 702 if (num_rx_qs > MAX_RX_QS) { 703 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 704 num_rx_qs, MAX_RX_QS); 705 pr_err("Cannot do alloc_etherdev, aborting\n"); 706 return -EINVAL; 707 } 708 709 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 710 dev = *pdev; 711 if (NULL == dev) 712 return -ENOMEM; 713 714 priv = netdev_priv(dev); 715 priv->ndev = dev; 716 717 priv->mode = mode; 718 priv->poll_mode = poll_mode; 719 720 priv->num_tx_queues = num_tx_qs; 721 netif_set_real_num_rx_queues(dev, num_rx_qs); 722 priv->num_rx_queues = num_rx_qs; 723 724 err = gfar_alloc_tx_queues(priv); 725 if (err) 726 goto tx_alloc_failed; 727 728 err = gfar_alloc_rx_queues(priv); 729 if (err) 730 goto rx_alloc_failed; 731 732 err = of_property_read_string(np, "model", &model); 733 if (err) { 734 pr_err("Device model property missing, aborting\n"); 735 goto rx_alloc_failed; 736 } 737 738 /* Init Rx queue filer rule set linked list */ 739 INIT_LIST_HEAD(&priv->rx_list.list); 740 priv->rx_list.count = 0; 741 mutex_init(&priv->rx_queue_access); 742 743 for (i = 0; i < MAXGROUPS; i++) 744 priv->gfargrp[i].regs = NULL; 745 746 /* Parse and initialize group specific information */ 747 if (priv->mode == MQ_MG_MODE) { 748 for_each_available_child_of_node(np, child) { 749 if (!of_node_name_eq(child, "queue-group")) 750 continue; 751 752 err = gfar_parse_group(child, priv, model); 753 if (err) 754 goto err_grp_init; 755 } 756 } else { /* SQ_SG_MODE */ 757 err = gfar_parse_group(np, priv, model); 758 if (err) 759 goto err_grp_init; 760 } 761 762 if (of_property_read_bool(np, "bd-stash")) { 763 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 764 priv->bd_stash_en = 1; 765 } 766 767 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 768 769 if (err == 0) 770 priv->rx_stash_size = stash_len; 771 772 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 773 774 if (err == 0) 775 priv->rx_stash_index = stash_idx; 776 777 if (stash_len || stash_idx) 778 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 779 780 mac_addr = of_get_mac_address(np); 781 782 if (!IS_ERR(mac_addr)) 783 ether_addr_copy(dev->dev_addr, mac_addr); 784 785 if (model && !strcasecmp(model, "TSEC")) 786 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 787 FSL_GIANFAR_DEV_HAS_COALESCE | 788 FSL_GIANFAR_DEV_HAS_RMON | 789 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 790 791 if (model && !strcasecmp(model, "eTSEC")) 792 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 793 FSL_GIANFAR_DEV_HAS_COALESCE | 794 FSL_GIANFAR_DEV_HAS_RMON | 795 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 796 FSL_GIANFAR_DEV_HAS_CSUM | 797 FSL_GIANFAR_DEV_HAS_VLAN | 798 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 799 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 800 FSL_GIANFAR_DEV_HAS_TIMER | 801 FSL_GIANFAR_DEV_HAS_RX_FILER; 802 803 /* Use PHY connection type from the DT node if one is specified there. 804 * rgmii-id really needs to be specified. Other types can be 805 * detected by hardware 806 */ 807 err = of_get_phy_mode(np, &interface); 808 if (!err) 809 priv->interface = interface; 810 else 811 priv->interface = gfar_get_interface(dev); 812 813 if (of_find_property(np, "fsl,magic-packet", NULL)) 814 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 815 816 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 817 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 818 819 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 820 821 /* In the case of a fixed PHY, the DT node associated 822 * to the PHY is the Ethernet MAC DT node. 823 */ 824 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 825 err = of_phy_register_fixed_link(np); 826 if (err) 827 goto err_grp_init; 828 829 priv->phy_node = of_node_get(np); 830 } 831 832 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 833 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 834 835 return 0; 836 837 err_grp_init: 838 unmap_group_regs(priv); 839 rx_alloc_failed: 840 gfar_free_rx_queues(priv); 841 tx_alloc_failed: 842 gfar_free_tx_queues(priv); 843 free_gfar_dev(priv); 844 return err; 845 } 846 847 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 848 u32 class) 849 { 850 u32 rqfpr = FPR_FILER_MASK; 851 u32 rqfcr = 0x0; 852 853 rqfar--; 854 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 855 priv->ftp_rqfpr[rqfar] = rqfpr; 856 priv->ftp_rqfcr[rqfar] = rqfcr; 857 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 858 859 rqfar--; 860 rqfcr = RQFCR_CMP_NOMATCH; 861 priv->ftp_rqfpr[rqfar] = rqfpr; 862 priv->ftp_rqfcr[rqfar] = rqfcr; 863 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 864 865 rqfar--; 866 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 867 rqfpr = class; 868 priv->ftp_rqfcr[rqfar] = rqfcr; 869 priv->ftp_rqfpr[rqfar] = rqfpr; 870 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 871 872 rqfar--; 873 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 874 rqfpr = class; 875 priv->ftp_rqfcr[rqfar] = rqfcr; 876 priv->ftp_rqfpr[rqfar] = rqfpr; 877 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 878 879 return rqfar; 880 } 881 882 static void gfar_init_filer_table(struct gfar_private *priv) 883 { 884 int i = 0x0; 885 u32 rqfar = MAX_FILER_IDX; 886 u32 rqfcr = 0x0; 887 u32 rqfpr = FPR_FILER_MASK; 888 889 /* Default rule */ 890 rqfcr = RQFCR_CMP_MATCH; 891 priv->ftp_rqfcr[rqfar] = rqfcr; 892 priv->ftp_rqfpr[rqfar] = rqfpr; 893 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 894 895 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 896 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 897 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 898 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 899 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 900 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 901 902 /* cur_filer_idx indicated the first non-masked rule */ 903 priv->cur_filer_idx = rqfar; 904 905 /* Rest are masked rules */ 906 rqfcr = RQFCR_CMP_NOMATCH; 907 for (i = 0; i < rqfar; i++) { 908 priv->ftp_rqfcr[i] = rqfcr; 909 priv->ftp_rqfpr[i] = rqfpr; 910 gfar_write_filer(priv, i, rqfcr, rqfpr); 911 } 912 } 913 914 #ifdef CONFIG_PPC 915 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 916 { 917 unsigned int pvr = mfspr(SPRN_PVR); 918 unsigned int svr = mfspr(SPRN_SVR); 919 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 920 unsigned int rev = svr & 0xffff; 921 922 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 923 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 924 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 925 priv->errata |= GFAR_ERRATA_74; 926 927 /* MPC8313 and MPC837x all rev */ 928 if ((pvr == 0x80850010 && mod == 0x80b0) || 929 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 930 priv->errata |= GFAR_ERRATA_76; 931 932 /* MPC8313 Rev < 2.0 */ 933 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 934 priv->errata |= GFAR_ERRATA_12; 935 } 936 937 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 938 { 939 unsigned int svr = mfspr(SPRN_SVR); 940 941 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 942 priv->errata |= GFAR_ERRATA_12; 943 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 944 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 945 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 946 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 947 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 948 } 949 #endif 950 951 static void gfar_detect_errata(struct gfar_private *priv) 952 { 953 struct device *dev = &priv->ofdev->dev; 954 955 /* no plans to fix */ 956 priv->errata |= GFAR_ERRATA_A002; 957 958 #ifdef CONFIG_PPC 959 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 960 __gfar_detect_errata_85xx(priv); 961 else /* non-mpc85xx parts, i.e. e300 core based */ 962 __gfar_detect_errata_83xx(priv); 963 #endif 964 965 if (priv->errata) 966 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 967 priv->errata); 968 } 969 970 static void gfar_init_addr_hash_table(struct gfar_private *priv) 971 { 972 struct gfar __iomem *regs = priv->gfargrp[0].regs; 973 974 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 975 priv->extended_hash = 1; 976 priv->hash_width = 9; 977 978 priv->hash_regs[0] = ®s->igaddr0; 979 priv->hash_regs[1] = ®s->igaddr1; 980 priv->hash_regs[2] = ®s->igaddr2; 981 priv->hash_regs[3] = ®s->igaddr3; 982 priv->hash_regs[4] = ®s->igaddr4; 983 priv->hash_regs[5] = ®s->igaddr5; 984 priv->hash_regs[6] = ®s->igaddr6; 985 priv->hash_regs[7] = ®s->igaddr7; 986 priv->hash_regs[8] = ®s->gaddr0; 987 priv->hash_regs[9] = ®s->gaddr1; 988 priv->hash_regs[10] = ®s->gaddr2; 989 priv->hash_regs[11] = ®s->gaddr3; 990 priv->hash_regs[12] = ®s->gaddr4; 991 priv->hash_regs[13] = ®s->gaddr5; 992 priv->hash_regs[14] = ®s->gaddr6; 993 priv->hash_regs[15] = ®s->gaddr7; 994 995 } else { 996 priv->extended_hash = 0; 997 priv->hash_width = 8; 998 999 priv->hash_regs[0] = ®s->gaddr0; 1000 priv->hash_regs[1] = ®s->gaddr1; 1001 priv->hash_regs[2] = ®s->gaddr2; 1002 priv->hash_regs[3] = ®s->gaddr3; 1003 priv->hash_regs[4] = ®s->gaddr4; 1004 priv->hash_regs[5] = ®s->gaddr5; 1005 priv->hash_regs[6] = ®s->gaddr6; 1006 priv->hash_regs[7] = ®s->gaddr7; 1007 } 1008 } 1009 1010 static int __gfar_is_rx_idle(struct gfar_private *priv) 1011 { 1012 u32 res; 1013 1014 /* Normaly TSEC should not hang on GRS commands, so we should 1015 * actually wait for IEVENT_GRSC flag. 1016 */ 1017 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1018 return 0; 1019 1020 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1021 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1022 * and the Rx can be safely reset. 1023 */ 1024 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1025 res &= 0x7f807f80; 1026 if ((res & 0xffff) == (res >> 16)) 1027 return 1; 1028 1029 return 0; 1030 } 1031 1032 /* Halt the receive and transmit queues */ 1033 static void gfar_halt_nodisable(struct gfar_private *priv) 1034 { 1035 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1036 u32 tempval; 1037 unsigned int timeout; 1038 int stopped; 1039 1040 gfar_ints_disable(priv); 1041 1042 if (gfar_is_dma_stopped(priv)) 1043 return; 1044 1045 /* Stop the DMA, and wait for it to stop */ 1046 tempval = gfar_read(®s->dmactrl); 1047 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1048 gfar_write(®s->dmactrl, tempval); 1049 1050 retry: 1051 timeout = 1000; 1052 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1053 cpu_relax(); 1054 timeout--; 1055 } 1056 1057 if (!timeout) 1058 stopped = gfar_is_dma_stopped(priv); 1059 1060 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1061 !__gfar_is_rx_idle(priv)) 1062 goto retry; 1063 } 1064 1065 /* Halt the receive and transmit queues */ 1066 static void gfar_halt(struct gfar_private *priv) 1067 { 1068 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1069 u32 tempval; 1070 1071 /* Dissable the Rx/Tx hw queues */ 1072 gfar_write(®s->rqueue, 0); 1073 gfar_write(®s->tqueue, 0); 1074 1075 mdelay(10); 1076 1077 gfar_halt_nodisable(priv); 1078 1079 /* Disable Rx/Tx DMA */ 1080 tempval = gfar_read(®s->maccfg1); 1081 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1082 gfar_write(®s->maccfg1, tempval); 1083 } 1084 1085 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1086 { 1087 struct txbd8 *txbdp; 1088 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1089 int i, j; 1090 1091 txbdp = tx_queue->tx_bd_base; 1092 1093 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1094 if (!tx_queue->tx_skbuff[i]) 1095 continue; 1096 1097 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1098 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1099 txbdp->lstatus = 0; 1100 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1101 j++) { 1102 txbdp++; 1103 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1104 be16_to_cpu(txbdp->length), 1105 DMA_TO_DEVICE); 1106 } 1107 txbdp++; 1108 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1109 tx_queue->tx_skbuff[i] = NULL; 1110 } 1111 kfree(tx_queue->tx_skbuff); 1112 tx_queue->tx_skbuff = NULL; 1113 } 1114 1115 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1116 { 1117 int i; 1118 1119 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1120 1121 dev_kfree_skb(rx_queue->skb); 1122 1123 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1124 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1125 1126 rxbdp->lstatus = 0; 1127 rxbdp->bufPtr = 0; 1128 rxbdp++; 1129 1130 if (!rxb->page) 1131 continue; 1132 1133 dma_unmap_page(rx_queue->dev, rxb->dma, 1134 PAGE_SIZE, DMA_FROM_DEVICE); 1135 __free_page(rxb->page); 1136 1137 rxb->page = NULL; 1138 } 1139 1140 kfree(rx_queue->rx_buff); 1141 rx_queue->rx_buff = NULL; 1142 } 1143 1144 /* If there are any tx skbs or rx skbs still around, free them. 1145 * Then free tx_skbuff and rx_skbuff 1146 */ 1147 static void free_skb_resources(struct gfar_private *priv) 1148 { 1149 struct gfar_priv_tx_q *tx_queue = NULL; 1150 struct gfar_priv_rx_q *rx_queue = NULL; 1151 int i; 1152 1153 /* Go through all the buffer descriptors and free their data buffers */ 1154 for (i = 0; i < priv->num_tx_queues; i++) { 1155 struct netdev_queue *txq; 1156 1157 tx_queue = priv->tx_queue[i]; 1158 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1159 if (tx_queue->tx_skbuff) 1160 free_skb_tx_queue(tx_queue); 1161 netdev_tx_reset_queue(txq); 1162 } 1163 1164 for (i = 0; i < priv->num_rx_queues; i++) { 1165 rx_queue = priv->rx_queue[i]; 1166 if (rx_queue->rx_buff) 1167 free_skb_rx_queue(rx_queue); 1168 } 1169 1170 dma_free_coherent(priv->dev, 1171 sizeof(struct txbd8) * priv->total_tx_ring_size + 1172 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1173 priv->tx_queue[0]->tx_bd_base, 1174 priv->tx_queue[0]->tx_bd_dma_base); 1175 } 1176 1177 void stop_gfar(struct net_device *dev) 1178 { 1179 struct gfar_private *priv = netdev_priv(dev); 1180 1181 netif_tx_stop_all_queues(dev); 1182 1183 smp_mb__before_atomic(); 1184 set_bit(GFAR_DOWN, &priv->state); 1185 smp_mb__after_atomic(); 1186 1187 disable_napi(priv); 1188 1189 /* disable ints and gracefully shut down Rx/Tx DMA */ 1190 gfar_halt(priv); 1191 1192 phy_stop(dev->phydev); 1193 1194 free_skb_resources(priv); 1195 } 1196 1197 static void gfar_start(struct gfar_private *priv) 1198 { 1199 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1200 u32 tempval; 1201 int i = 0; 1202 1203 /* Enable Rx/Tx hw queues */ 1204 gfar_write(®s->rqueue, priv->rqueue); 1205 gfar_write(®s->tqueue, priv->tqueue); 1206 1207 /* Initialize DMACTRL to have WWR and WOP */ 1208 tempval = gfar_read(®s->dmactrl); 1209 tempval |= DMACTRL_INIT_SETTINGS; 1210 gfar_write(®s->dmactrl, tempval); 1211 1212 /* Make sure we aren't stopped */ 1213 tempval = gfar_read(®s->dmactrl); 1214 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1215 gfar_write(®s->dmactrl, tempval); 1216 1217 for (i = 0; i < priv->num_grps; i++) { 1218 regs = priv->gfargrp[i].regs; 1219 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1220 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1221 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1222 } 1223 1224 /* Enable Rx/Tx DMA */ 1225 tempval = gfar_read(®s->maccfg1); 1226 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1227 gfar_write(®s->maccfg1, tempval); 1228 1229 gfar_ints_enable(priv); 1230 1231 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1232 } 1233 1234 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1235 { 1236 struct page *page; 1237 dma_addr_t addr; 1238 1239 page = dev_alloc_page(); 1240 if (unlikely(!page)) 1241 return false; 1242 1243 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1244 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1245 __free_page(page); 1246 1247 return false; 1248 } 1249 1250 rxb->dma = addr; 1251 rxb->page = page; 1252 rxb->page_offset = 0; 1253 1254 return true; 1255 } 1256 1257 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1258 { 1259 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1260 struct gfar_extra_stats *estats = &priv->extra_stats; 1261 1262 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1263 atomic64_inc(&estats->rx_alloc_err); 1264 } 1265 1266 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1267 int alloc_cnt) 1268 { 1269 struct rxbd8 *bdp; 1270 struct gfar_rx_buff *rxb; 1271 int i; 1272 1273 i = rx_queue->next_to_use; 1274 bdp = &rx_queue->rx_bd_base[i]; 1275 rxb = &rx_queue->rx_buff[i]; 1276 1277 while (alloc_cnt--) { 1278 /* try reuse page */ 1279 if (unlikely(!rxb->page)) { 1280 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1281 gfar_rx_alloc_err(rx_queue); 1282 break; 1283 } 1284 } 1285 1286 /* Setup the new RxBD */ 1287 gfar_init_rxbdp(rx_queue, bdp, 1288 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1289 1290 /* Update to the next pointer */ 1291 bdp++; 1292 rxb++; 1293 1294 if (unlikely(++i == rx_queue->rx_ring_size)) { 1295 i = 0; 1296 bdp = rx_queue->rx_bd_base; 1297 rxb = rx_queue->rx_buff; 1298 } 1299 } 1300 1301 rx_queue->next_to_use = i; 1302 rx_queue->next_to_alloc = i; 1303 } 1304 1305 static void gfar_init_bds(struct net_device *ndev) 1306 { 1307 struct gfar_private *priv = netdev_priv(ndev); 1308 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1309 struct gfar_priv_tx_q *tx_queue = NULL; 1310 struct gfar_priv_rx_q *rx_queue = NULL; 1311 struct txbd8 *txbdp; 1312 u32 __iomem *rfbptr; 1313 int i, j; 1314 1315 for (i = 0; i < priv->num_tx_queues; i++) { 1316 tx_queue = priv->tx_queue[i]; 1317 /* Initialize some variables in our dev structure */ 1318 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1319 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1320 tx_queue->cur_tx = tx_queue->tx_bd_base; 1321 tx_queue->skb_curtx = 0; 1322 tx_queue->skb_dirtytx = 0; 1323 1324 /* Initialize Transmit Descriptor Ring */ 1325 txbdp = tx_queue->tx_bd_base; 1326 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1327 txbdp->lstatus = 0; 1328 txbdp->bufPtr = 0; 1329 txbdp++; 1330 } 1331 1332 /* Set the last descriptor in the ring to indicate wrap */ 1333 txbdp--; 1334 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1335 TXBD_WRAP); 1336 } 1337 1338 rfbptr = ®s->rfbptr0; 1339 for (i = 0; i < priv->num_rx_queues; i++) { 1340 rx_queue = priv->rx_queue[i]; 1341 1342 rx_queue->next_to_clean = 0; 1343 rx_queue->next_to_use = 0; 1344 rx_queue->next_to_alloc = 0; 1345 1346 /* make sure next_to_clean != next_to_use after this 1347 * by leaving at least 1 unused descriptor 1348 */ 1349 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1350 1351 rx_queue->rfbptr = rfbptr; 1352 rfbptr += 2; 1353 } 1354 } 1355 1356 static int gfar_alloc_skb_resources(struct net_device *ndev) 1357 { 1358 void *vaddr; 1359 dma_addr_t addr; 1360 int i, j; 1361 struct gfar_private *priv = netdev_priv(ndev); 1362 struct device *dev = priv->dev; 1363 struct gfar_priv_tx_q *tx_queue = NULL; 1364 struct gfar_priv_rx_q *rx_queue = NULL; 1365 1366 priv->total_tx_ring_size = 0; 1367 for (i = 0; i < priv->num_tx_queues; i++) 1368 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1369 1370 priv->total_rx_ring_size = 0; 1371 for (i = 0; i < priv->num_rx_queues; i++) 1372 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1373 1374 /* Allocate memory for the buffer descriptors */ 1375 vaddr = dma_alloc_coherent(dev, 1376 (priv->total_tx_ring_size * 1377 sizeof(struct txbd8)) + 1378 (priv->total_rx_ring_size * 1379 sizeof(struct rxbd8)), 1380 &addr, GFP_KERNEL); 1381 if (!vaddr) 1382 return -ENOMEM; 1383 1384 for (i = 0; i < priv->num_tx_queues; i++) { 1385 tx_queue = priv->tx_queue[i]; 1386 tx_queue->tx_bd_base = vaddr; 1387 tx_queue->tx_bd_dma_base = addr; 1388 tx_queue->dev = ndev; 1389 /* enet DMA only understands physical addresses */ 1390 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1391 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1392 } 1393 1394 /* Start the rx descriptor ring where the tx ring leaves off */ 1395 for (i = 0; i < priv->num_rx_queues; i++) { 1396 rx_queue = priv->rx_queue[i]; 1397 rx_queue->rx_bd_base = vaddr; 1398 rx_queue->rx_bd_dma_base = addr; 1399 rx_queue->ndev = ndev; 1400 rx_queue->dev = dev; 1401 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1402 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1403 } 1404 1405 /* Setup the skbuff rings */ 1406 for (i = 0; i < priv->num_tx_queues; i++) { 1407 tx_queue = priv->tx_queue[i]; 1408 tx_queue->tx_skbuff = 1409 kmalloc_array(tx_queue->tx_ring_size, 1410 sizeof(*tx_queue->tx_skbuff), 1411 GFP_KERNEL); 1412 if (!tx_queue->tx_skbuff) 1413 goto cleanup; 1414 1415 for (j = 0; j < tx_queue->tx_ring_size; j++) 1416 tx_queue->tx_skbuff[j] = NULL; 1417 } 1418 1419 for (i = 0; i < priv->num_rx_queues; i++) { 1420 rx_queue = priv->rx_queue[i]; 1421 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1422 sizeof(*rx_queue->rx_buff), 1423 GFP_KERNEL); 1424 if (!rx_queue->rx_buff) 1425 goto cleanup; 1426 } 1427 1428 gfar_init_bds(ndev); 1429 1430 return 0; 1431 1432 cleanup: 1433 free_skb_resources(priv); 1434 return -ENOMEM; 1435 } 1436 1437 /* Bring the controller up and running */ 1438 int startup_gfar(struct net_device *ndev) 1439 { 1440 struct gfar_private *priv = netdev_priv(ndev); 1441 int err; 1442 1443 gfar_mac_reset(priv); 1444 1445 err = gfar_alloc_skb_resources(ndev); 1446 if (err) 1447 return err; 1448 1449 gfar_init_tx_rx_base(priv); 1450 1451 smp_mb__before_atomic(); 1452 clear_bit(GFAR_DOWN, &priv->state); 1453 smp_mb__after_atomic(); 1454 1455 /* Start Rx/Tx DMA and enable the interrupts */ 1456 gfar_start(priv); 1457 1458 /* force link state update after mac reset */ 1459 priv->oldlink = 0; 1460 priv->oldspeed = 0; 1461 priv->oldduplex = -1; 1462 1463 phy_start(ndev->phydev); 1464 1465 enable_napi(priv); 1466 1467 netif_tx_wake_all_queues(ndev); 1468 1469 return 0; 1470 } 1471 1472 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1473 { 1474 struct net_device *ndev = priv->ndev; 1475 struct phy_device *phydev = ndev->phydev; 1476 u32 val = 0; 1477 1478 if (!phydev->duplex) 1479 return val; 1480 1481 if (!priv->pause_aneg_en) { 1482 if (priv->tx_pause_en) 1483 val |= MACCFG1_TX_FLOW; 1484 if (priv->rx_pause_en) 1485 val |= MACCFG1_RX_FLOW; 1486 } else { 1487 u16 lcl_adv, rmt_adv; 1488 u8 flowctrl; 1489 /* get link partner capabilities */ 1490 rmt_adv = 0; 1491 if (phydev->pause) 1492 rmt_adv = LPA_PAUSE_CAP; 1493 if (phydev->asym_pause) 1494 rmt_adv |= LPA_PAUSE_ASYM; 1495 1496 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1497 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1498 if (flowctrl & FLOW_CTRL_TX) 1499 val |= MACCFG1_TX_FLOW; 1500 if (flowctrl & FLOW_CTRL_RX) 1501 val |= MACCFG1_RX_FLOW; 1502 } 1503 1504 return val; 1505 } 1506 1507 static noinline void gfar_update_link_state(struct gfar_private *priv) 1508 { 1509 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1510 struct net_device *ndev = priv->ndev; 1511 struct phy_device *phydev = ndev->phydev; 1512 struct gfar_priv_rx_q *rx_queue = NULL; 1513 int i; 1514 1515 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1516 return; 1517 1518 if (phydev->link) { 1519 u32 tempval1 = gfar_read(®s->maccfg1); 1520 u32 tempval = gfar_read(®s->maccfg2); 1521 u32 ecntrl = gfar_read(®s->ecntrl); 1522 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1523 1524 if (phydev->duplex != priv->oldduplex) { 1525 if (!(phydev->duplex)) 1526 tempval &= ~(MACCFG2_FULL_DUPLEX); 1527 else 1528 tempval |= MACCFG2_FULL_DUPLEX; 1529 1530 priv->oldduplex = phydev->duplex; 1531 } 1532 1533 if (phydev->speed != priv->oldspeed) { 1534 switch (phydev->speed) { 1535 case 1000: 1536 tempval = 1537 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1538 1539 ecntrl &= ~(ECNTRL_R100); 1540 break; 1541 case 100: 1542 case 10: 1543 tempval = 1544 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1545 1546 /* Reduced mode distinguishes 1547 * between 10 and 100 1548 */ 1549 if (phydev->speed == SPEED_100) 1550 ecntrl |= ECNTRL_R100; 1551 else 1552 ecntrl &= ~(ECNTRL_R100); 1553 break; 1554 default: 1555 netif_warn(priv, link, priv->ndev, 1556 "Ack! Speed (%d) is not 10/100/1000!\n", 1557 phydev->speed); 1558 break; 1559 } 1560 1561 priv->oldspeed = phydev->speed; 1562 } 1563 1564 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1565 tempval1 |= gfar_get_flowctrl_cfg(priv); 1566 1567 /* Turn last free buffer recording on */ 1568 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1569 for (i = 0; i < priv->num_rx_queues; i++) { 1570 u32 bdp_dma; 1571 1572 rx_queue = priv->rx_queue[i]; 1573 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1574 gfar_write(rx_queue->rfbptr, bdp_dma); 1575 } 1576 1577 priv->tx_actual_en = 1; 1578 } 1579 1580 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1581 priv->tx_actual_en = 0; 1582 1583 gfar_write(®s->maccfg1, tempval1); 1584 gfar_write(®s->maccfg2, tempval); 1585 gfar_write(®s->ecntrl, ecntrl); 1586 1587 if (!priv->oldlink) 1588 priv->oldlink = 1; 1589 1590 } else if (priv->oldlink) { 1591 priv->oldlink = 0; 1592 priv->oldspeed = 0; 1593 priv->oldduplex = -1; 1594 } 1595 1596 if (netif_msg_link(priv)) 1597 phy_print_status(phydev); 1598 } 1599 1600 /* Called every time the controller might need to be made 1601 * aware of new link state. The PHY code conveys this 1602 * information through variables in the phydev structure, and this 1603 * function converts those variables into the appropriate 1604 * register values, and can bring down the device if needed. 1605 */ 1606 static void adjust_link(struct net_device *dev) 1607 { 1608 struct gfar_private *priv = netdev_priv(dev); 1609 struct phy_device *phydev = dev->phydev; 1610 1611 if (unlikely(phydev->link != priv->oldlink || 1612 (phydev->link && (phydev->duplex != priv->oldduplex || 1613 phydev->speed != priv->oldspeed)))) 1614 gfar_update_link_state(priv); 1615 } 1616 1617 /* Initialize TBI PHY interface for communicating with the 1618 * SERDES lynx PHY on the chip. We communicate with this PHY 1619 * through the MDIO bus on each controller, treating it as a 1620 * "normal" PHY at the address found in the TBIPA register. We assume 1621 * that the TBIPA register is valid. Either the MDIO bus code will set 1622 * it to a value that doesn't conflict with other PHYs on the bus, or the 1623 * value doesn't matter, as there are no other PHYs on the bus. 1624 */ 1625 static void gfar_configure_serdes(struct net_device *dev) 1626 { 1627 struct gfar_private *priv = netdev_priv(dev); 1628 struct phy_device *tbiphy; 1629 1630 if (!priv->tbi_node) { 1631 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1632 "device tree specify a tbi-handle\n"); 1633 return; 1634 } 1635 1636 tbiphy = of_phy_find_device(priv->tbi_node); 1637 if (!tbiphy) { 1638 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1639 return; 1640 } 1641 1642 /* If the link is already up, we must already be ok, and don't need to 1643 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1644 * everything for us? Resetting it takes the link down and requires 1645 * several seconds for it to come back. 1646 */ 1647 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1648 put_device(&tbiphy->mdio.dev); 1649 return; 1650 } 1651 1652 /* Single clk mode, mii mode off(for serdes communication) */ 1653 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1654 1655 phy_write(tbiphy, MII_ADVERTISE, 1656 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1657 ADVERTISE_1000XPSE_ASYM); 1658 1659 phy_write(tbiphy, MII_BMCR, 1660 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1661 BMCR_SPEED1000); 1662 1663 put_device(&tbiphy->mdio.dev); 1664 } 1665 1666 /* Initializes driver's PHY state, and attaches to the PHY. 1667 * Returns 0 on success. 1668 */ 1669 static int init_phy(struct net_device *dev) 1670 { 1671 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1672 struct gfar_private *priv = netdev_priv(dev); 1673 phy_interface_t interface = priv->interface; 1674 struct phy_device *phydev; 1675 struct ethtool_eee edata; 1676 1677 linkmode_set_bit_array(phy_10_100_features_array, 1678 ARRAY_SIZE(phy_10_100_features_array), 1679 mask); 1680 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1681 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1682 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1683 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1684 1685 priv->oldlink = 0; 1686 priv->oldspeed = 0; 1687 priv->oldduplex = -1; 1688 1689 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1690 interface); 1691 if (!phydev) { 1692 dev_err(&dev->dev, "could not attach to PHY\n"); 1693 return -ENODEV; 1694 } 1695 1696 if (interface == PHY_INTERFACE_MODE_SGMII) 1697 gfar_configure_serdes(dev); 1698 1699 /* Remove any features not supported by the controller */ 1700 linkmode_and(phydev->supported, phydev->supported, mask); 1701 linkmode_copy(phydev->advertising, phydev->supported); 1702 1703 /* Add support for flow control */ 1704 phy_support_asym_pause(phydev); 1705 1706 /* disable EEE autoneg, EEE not supported by eTSEC */ 1707 memset(&edata, 0, sizeof(struct ethtool_eee)); 1708 phy_ethtool_set_eee(phydev, &edata); 1709 1710 return 0; 1711 } 1712 1713 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1714 { 1715 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1716 1717 memset(fcb, 0, GMAC_FCB_LEN); 1718 1719 return fcb; 1720 } 1721 1722 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1723 int fcb_length) 1724 { 1725 /* If we're here, it's a IP packet with a TCP or UDP 1726 * payload. We set it to checksum, using a pseudo-header 1727 * we provide 1728 */ 1729 u8 flags = TXFCB_DEFAULT; 1730 1731 /* Tell the controller what the protocol is 1732 * And provide the already calculated phcs 1733 */ 1734 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1735 flags |= TXFCB_UDP; 1736 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1737 } else 1738 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1739 1740 /* l3os is the distance between the start of the 1741 * frame (skb->data) and the start of the IP hdr. 1742 * l4os is the distance between the start of the 1743 * l3 hdr and the l4 hdr 1744 */ 1745 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1746 fcb->l4os = skb_network_header_len(skb); 1747 1748 fcb->flags = flags; 1749 } 1750 1751 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1752 { 1753 fcb->flags |= TXFCB_VLN; 1754 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1755 } 1756 1757 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1758 struct txbd8 *base, int ring_size) 1759 { 1760 struct txbd8 *new_bd = bdp + stride; 1761 1762 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1763 } 1764 1765 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1766 int ring_size) 1767 { 1768 return skip_txbd(bdp, 1, base, ring_size); 1769 } 1770 1771 /* eTSEC12: csum generation not supported for some fcb offsets */ 1772 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1773 unsigned long fcb_addr) 1774 { 1775 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1776 (fcb_addr % 0x20) > 0x18); 1777 } 1778 1779 /* eTSEC76: csum generation for frames larger than 2500 may 1780 * cause excess delays before start of transmission 1781 */ 1782 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1783 unsigned int len) 1784 { 1785 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1786 (len > 2500)); 1787 } 1788 1789 /* This is called by the kernel when a frame is ready for transmission. 1790 * It is pointed to by the dev->hard_start_xmit function pointer 1791 */ 1792 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1793 { 1794 struct gfar_private *priv = netdev_priv(dev); 1795 struct gfar_priv_tx_q *tx_queue = NULL; 1796 struct netdev_queue *txq; 1797 struct gfar __iomem *regs = NULL; 1798 struct txfcb *fcb = NULL; 1799 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1800 u32 lstatus; 1801 skb_frag_t *frag; 1802 int i, rq = 0; 1803 int do_tstamp, do_csum, do_vlan; 1804 u32 bufaddr; 1805 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1806 1807 rq = skb->queue_mapping; 1808 tx_queue = priv->tx_queue[rq]; 1809 txq = netdev_get_tx_queue(dev, rq); 1810 base = tx_queue->tx_bd_base; 1811 regs = tx_queue->grp->regs; 1812 1813 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1814 do_vlan = skb_vlan_tag_present(skb); 1815 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1816 priv->hwts_tx_en; 1817 1818 if (do_csum || do_vlan) 1819 fcb_len = GMAC_FCB_LEN; 1820 1821 /* check if time stamp should be generated */ 1822 if (unlikely(do_tstamp)) 1823 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1824 1825 /* make space for additional header when fcb is needed */ 1826 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 1827 struct sk_buff *skb_new; 1828 1829 skb_new = skb_realloc_headroom(skb, fcb_len); 1830 if (!skb_new) { 1831 dev->stats.tx_errors++; 1832 dev_kfree_skb_any(skb); 1833 return NETDEV_TX_OK; 1834 } 1835 1836 if (skb->sk) 1837 skb_set_owner_w(skb_new, skb->sk); 1838 dev_consume_skb_any(skb); 1839 skb = skb_new; 1840 } 1841 1842 /* total number of fragments in the SKB */ 1843 nr_frags = skb_shinfo(skb)->nr_frags; 1844 1845 /* calculate the required number of TxBDs for this skb */ 1846 if (unlikely(do_tstamp)) 1847 nr_txbds = nr_frags + 2; 1848 else 1849 nr_txbds = nr_frags + 1; 1850 1851 /* check if there is space to queue this packet */ 1852 if (nr_txbds > tx_queue->num_txbdfree) { 1853 /* no space, stop the queue */ 1854 netif_tx_stop_queue(txq); 1855 dev->stats.tx_fifo_errors++; 1856 return NETDEV_TX_BUSY; 1857 } 1858 1859 /* Update transmit stats */ 1860 bytes_sent = skb->len; 1861 tx_queue->stats.tx_bytes += bytes_sent; 1862 /* keep Tx bytes on wire for BQL accounting */ 1863 GFAR_CB(skb)->bytes_sent = bytes_sent; 1864 tx_queue->stats.tx_packets++; 1865 1866 txbdp = txbdp_start = tx_queue->cur_tx; 1867 lstatus = be32_to_cpu(txbdp->lstatus); 1868 1869 /* Add TxPAL between FCB and frame if required */ 1870 if (unlikely(do_tstamp)) { 1871 skb_push(skb, GMAC_TXPAL_LEN); 1872 memset(skb->data, 0, GMAC_TXPAL_LEN); 1873 } 1874 1875 /* Add TxFCB if required */ 1876 if (fcb_len) { 1877 fcb = gfar_add_fcb(skb); 1878 lstatus |= BD_LFLAG(TXBD_TOE); 1879 } 1880 1881 /* Set up checksumming */ 1882 if (do_csum) { 1883 gfar_tx_checksum(skb, fcb, fcb_len); 1884 1885 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1886 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1887 __skb_pull(skb, GMAC_FCB_LEN); 1888 skb_checksum_help(skb); 1889 if (do_vlan || do_tstamp) { 1890 /* put back a new fcb for vlan/tstamp TOE */ 1891 fcb = gfar_add_fcb(skb); 1892 } else { 1893 /* Tx TOE not used */ 1894 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1895 fcb = NULL; 1896 } 1897 } 1898 } 1899 1900 if (do_vlan) 1901 gfar_tx_vlan(skb, fcb); 1902 1903 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1904 DMA_TO_DEVICE); 1905 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1906 goto dma_map_err; 1907 1908 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1909 1910 /* Time stamp insertion requires one additional TxBD */ 1911 if (unlikely(do_tstamp)) 1912 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1913 tx_queue->tx_ring_size); 1914 1915 if (likely(!nr_frags)) { 1916 if (likely(!do_tstamp)) 1917 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1918 } else { 1919 u32 lstatus_start = lstatus; 1920 1921 /* Place the fragment addresses and lengths into the TxBDs */ 1922 frag = &skb_shinfo(skb)->frags[0]; 1923 for (i = 0; i < nr_frags; i++, frag++) { 1924 unsigned int size; 1925 1926 /* Point at the next BD, wrapping as needed */ 1927 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1928 1929 size = skb_frag_size(frag); 1930 1931 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1932 BD_LFLAG(TXBD_READY); 1933 1934 /* Handle the last BD specially */ 1935 if (i == nr_frags - 1) 1936 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1937 1938 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1939 size, DMA_TO_DEVICE); 1940 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1941 goto dma_map_err; 1942 1943 /* set the TxBD length and buffer pointer */ 1944 txbdp->bufPtr = cpu_to_be32(bufaddr); 1945 txbdp->lstatus = cpu_to_be32(lstatus); 1946 } 1947 1948 lstatus = lstatus_start; 1949 } 1950 1951 /* If time stamping is requested one additional TxBD must be set up. The 1952 * first TxBD points to the FCB and must have a data length of 1953 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1954 * the full frame length. 1955 */ 1956 if (unlikely(do_tstamp)) { 1957 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1958 1959 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1960 bufaddr += fcb_len; 1961 1962 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1963 (skb_headlen(skb) - fcb_len); 1964 if (!nr_frags) 1965 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1966 1967 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1968 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1969 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1970 1971 /* Setup tx hardware time stamping */ 1972 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1973 fcb->ptp = 1; 1974 } else { 1975 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1976 } 1977 1978 netdev_tx_sent_queue(txq, bytes_sent); 1979 1980 gfar_wmb(); 1981 1982 txbdp_start->lstatus = cpu_to_be32(lstatus); 1983 1984 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1985 1986 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1987 1988 /* Update the current skb pointer to the next entry we will use 1989 * (wrapping if necessary) 1990 */ 1991 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1992 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1993 1994 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1995 1996 /* We can work in parallel with gfar_clean_tx_ring(), except 1997 * when modifying num_txbdfree. Note that we didn't grab the lock 1998 * when we were reading the num_txbdfree and checking for available 1999 * space, that's because outside of this function it can only grow. 2000 */ 2001 spin_lock_bh(&tx_queue->txlock); 2002 /* reduce TxBD free count */ 2003 tx_queue->num_txbdfree -= (nr_txbds); 2004 spin_unlock_bh(&tx_queue->txlock); 2005 2006 /* If the next BD still needs to be cleaned up, then the bds 2007 * are full. We need to tell the kernel to stop sending us stuff. 2008 */ 2009 if (!tx_queue->num_txbdfree) { 2010 netif_tx_stop_queue(txq); 2011 2012 dev->stats.tx_fifo_errors++; 2013 } 2014 2015 /* Tell the DMA to go go go */ 2016 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2017 2018 return NETDEV_TX_OK; 2019 2020 dma_map_err: 2021 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2022 if (do_tstamp) 2023 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2024 for (i = 0; i < nr_frags; i++) { 2025 lstatus = be32_to_cpu(txbdp->lstatus); 2026 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2027 break; 2028 2029 lstatus &= ~BD_LFLAG(TXBD_READY); 2030 txbdp->lstatus = cpu_to_be32(lstatus); 2031 bufaddr = be32_to_cpu(txbdp->bufPtr); 2032 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2033 DMA_TO_DEVICE); 2034 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2035 } 2036 gfar_wmb(); 2037 dev_kfree_skb_any(skb); 2038 return NETDEV_TX_OK; 2039 } 2040 2041 /* Changes the mac address if the controller is not running. */ 2042 static int gfar_set_mac_address(struct net_device *dev) 2043 { 2044 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2045 2046 return 0; 2047 } 2048 2049 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2050 { 2051 struct gfar_private *priv = netdev_priv(dev); 2052 2053 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2054 cpu_relax(); 2055 2056 if (dev->flags & IFF_UP) 2057 stop_gfar(dev); 2058 2059 dev->mtu = new_mtu; 2060 2061 if (dev->flags & IFF_UP) 2062 startup_gfar(dev); 2063 2064 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2065 2066 return 0; 2067 } 2068 2069 static void reset_gfar(struct net_device *ndev) 2070 { 2071 struct gfar_private *priv = netdev_priv(ndev); 2072 2073 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2074 cpu_relax(); 2075 2076 stop_gfar(ndev); 2077 startup_gfar(ndev); 2078 2079 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2080 } 2081 2082 /* gfar_reset_task gets scheduled when a packet has not been 2083 * transmitted after a set amount of time. 2084 * For now, assume that clearing out all the structures, and 2085 * starting over will fix the problem. 2086 */ 2087 static void gfar_reset_task(struct work_struct *work) 2088 { 2089 struct gfar_private *priv = container_of(work, struct gfar_private, 2090 reset_task); 2091 reset_gfar(priv->ndev); 2092 } 2093 2094 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2095 { 2096 struct gfar_private *priv = netdev_priv(dev); 2097 2098 dev->stats.tx_errors++; 2099 schedule_work(&priv->reset_task); 2100 } 2101 2102 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2103 { 2104 struct hwtstamp_config config; 2105 struct gfar_private *priv = netdev_priv(netdev); 2106 2107 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2108 return -EFAULT; 2109 2110 /* reserved for future extensions */ 2111 if (config.flags) 2112 return -EINVAL; 2113 2114 switch (config.tx_type) { 2115 case HWTSTAMP_TX_OFF: 2116 priv->hwts_tx_en = 0; 2117 break; 2118 case HWTSTAMP_TX_ON: 2119 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2120 return -ERANGE; 2121 priv->hwts_tx_en = 1; 2122 break; 2123 default: 2124 return -ERANGE; 2125 } 2126 2127 switch (config.rx_filter) { 2128 case HWTSTAMP_FILTER_NONE: 2129 if (priv->hwts_rx_en) { 2130 priv->hwts_rx_en = 0; 2131 reset_gfar(netdev); 2132 } 2133 break; 2134 default: 2135 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2136 return -ERANGE; 2137 if (!priv->hwts_rx_en) { 2138 priv->hwts_rx_en = 1; 2139 reset_gfar(netdev); 2140 } 2141 config.rx_filter = HWTSTAMP_FILTER_ALL; 2142 break; 2143 } 2144 2145 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2146 -EFAULT : 0; 2147 } 2148 2149 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2150 { 2151 struct hwtstamp_config config; 2152 struct gfar_private *priv = netdev_priv(netdev); 2153 2154 config.flags = 0; 2155 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2156 config.rx_filter = (priv->hwts_rx_en ? 2157 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2158 2159 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2160 -EFAULT : 0; 2161 } 2162 2163 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2164 { 2165 struct phy_device *phydev = dev->phydev; 2166 2167 if (!netif_running(dev)) 2168 return -EINVAL; 2169 2170 if (cmd == SIOCSHWTSTAMP) 2171 return gfar_hwtstamp_set(dev, rq); 2172 if (cmd == SIOCGHWTSTAMP) 2173 return gfar_hwtstamp_get(dev, rq); 2174 2175 if (!phydev) 2176 return -ENODEV; 2177 2178 return phy_mii_ioctl(phydev, rq, cmd); 2179 } 2180 2181 /* Interrupt Handler for Transmit complete */ 2182 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2183 { 2184 struct net_device *dev = tx_queue->dev; 2185 struct netdev_queue *txq; 2186 struct gfar_private *priv = netdev_priv(dev); 2187 struct txbd8 *bdp, *next = NULL; 2188 struct txbd8 *lbdp = NULL; 2189 struct txbd8 *base = tx_queue->tx_bd_base; 2190 struct sk_buff *skb; 2191 int skb_dirtytx; 2192 int tx_ring_size = tx_queue->tx_ring_size; 2193 int frags = 0, nr_txbds = 0; 2194 int i; 2195 int howmany = 0; 2196 int tqi = tx_queue->qindex; 2197 unsigned int bytes_sent = 0; 2198 u32 lstatus; 2199 size_t buflen; 2200 2201 txq = netdev_get_tx_queue(dev, tqi); 2202 bdp = tx_queue->dirty_tx; 2203 skb_dirtytx = tx_queue->skb_dirtytx; 2204 2205 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2206 bool do_tstamp; 2207 2208 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2209 priv->hwts_tx_en; 2210 2211 frags = skb_shinfo(skb)->nr_frags; 2212 2213 /* When time stamping, one additional TxBD must be freed. 2214 * Also, we need to dma_unmap_single() the TxPAL. 2215 */ 2216 if (unlikely(do_tstamp)) 2217 nr_txbds = frags + 2; 2218 else 2219 nr_txbds = frags + 1; 2220 2221 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2222 2223 lstatus = be32_to_cpu(lbdp->lstatus); 2224 2225 /* Only clean completed frames */ 2226 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2227 (lstatus & BD_LENGTH_MASK)) 2228 break; 2229 2230 if (unlikely(do_tstamp)) { 2231 next = next_txbd(bdp, base, tx_ring_size); 2232 buflen = be16_to_cpu(next->length) + 2233 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2234 } else 2235 buflen = be16_to_cpu(bdp->length); 2236 2237 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2238 buflen, DMA_TO_DEVICE); 2239 2240 if (unlikely(do_tstamp)) { 2241 struct skb_shared_hwtstamps shhwtstamps; 2242 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2243 ~0x7UL); 2244 2245 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2246 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2247 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2248 skb_tstamp_tx(skb, &shhwtstamps); 2249 gfar_clear_txbd_status(bdp); 2250 bdp = next; 2251 } 2252 2253 gfar_clear_txbd_status(bdp); 2254 bdp = next_txbd(bdp, base, tx_ring_size); 2255 2256 for (i = 0; i < frags; i++) { 2257 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2258 be16_to_cpu(bdp->length), 2259 DMA_TO_DEVICE); 2260 gfar_clear_txbd_status(bdp); 2261 bdp = next_txbd(bdp, base, tx_ring_size); 2262 } 2263 2264 bytes_sent += GFAR_CB(skb)->bytes_sent; 2265 2266 dev_kfree_skb_any(skb); 2267 2268 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2269 2270 skb_dirtytx = (skb_dirtytx + 1) & 2271 TX_RING_MOD_MASK(tx_ring_size); 2272 2273 howmany++; 2274 spin_lock(&tx_queue->txlock); 2275 tx_queue->num_txbdfree += nr_txbds; 2276 spin_unlock(&tx_queue->txlock); 2277 } 2278 2279 /* If we freed a buffer, we can restart transmission, if necessary */ 2280 if (tx_queue->num_txbdfree && 2281 netif_tx_queue_stopped(txq) && 2282 !(test_bit(GFAR_DOWN, &priv->state))) 2283 netif_wake_subqueue(priv->ndev, tqi); 2284 2285 /* Update dirty indicators */ 2286 tx_queue->skb_dirtytx = skb_dirtytx; 2287 tx_queue->dirty_tx = bdp; 2288 2289 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2290 } 2291 2292 static void count_errors(u32 lstatus, struct net_device *ndev) 2293 { 2294 struct gfar_private *priv = netdev_priv(ndev); 2295 struct net_device_stats *stats = &ndev->stats; 2296 struct gfar_extra_stats *estats = &priv->extra_stats; 2297 2298 /* If the packet was truncated, none of the other errors matter */ 2299 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2300 stats->rx_length_errors++; 2301 2302 atomic64_inc(&estats->rx_trunc); 2303 2304 return; 2305 } 2306 /* Count the errors, if there were any */ 2307 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2308 stats->rx_length_errors++; 2309 2310 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2311 atomic64_inc(&estats->rx_large); 2312 else 2313 atomic64_inc(&estats->rx_short); 2314 } 2315 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2316 stats->rx_frame_errors++; 2317 atomic64_inc(&estats->rx_nonoctet); 2318 } 2319 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2320 atomic64_inc(&estats->rx_crcerr); 2321 stats->rx_crc_errors++; 2322 } 2323 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2324 atomic64_inc(&estats->rx_overrun); 2325 stats->rx_over_errors++; 2326 } 2327 } 2328 2329 static irqreturn_t gfar_receive(int irq, void *grp_id) 2330 { 2331 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2332 unsigned long flags; 2333 u32 imask, ievent; 2334 2335 ievent = gfar_read(&grp->regs->ievent); 2336 2337 if (unlikely(ievent & IEVENT_FGPI)) { 2338 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2339 return IRQ_HANDLED; 2340 } 2341 2342 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2343 spin_lock_irqsave(&grp->grplock, flags); 2344 imask = gfar_read(&grp->regs->imask); 2345 imask &= IMASK_RX_DISABLED; 2346 gfar_write(&grp->regs->imask, imask); 2347 spin_unlock_irqrestore(&grp->grplock, flags); 2348 __napi_schedule(&grp->napi_rx); 2349 } else { 2350 /* Clear IEVENT, so interrupts aren't called again 2351 * because of the packets that have already arrived. 2352 */ 2353 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2354 } 2355 2356 return IRQ_HANDLED; 2357 } 2358 2359 /* Interrupt Handler for Transmit complete */ 2360 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2361 { 2362 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2363 unsigned long flags; 2364 u32 imask; 2365 2366 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2367 spin_lock_irqsave(&grp->grplock, flags); 2368 imask = gfar_read(&grp->regs->imask); 2369 imask &= IMASK_TX_DISABLED; 2370 gfar_write(&grp->regs->imask, imask); 2371 spin_unlock_irqrestore(&grp->grplock, flags); 2372 __napi_schedule(&grp->napi_tx); 2373 } else { 2374 /* Clear IEVENT, so interrupts aren't called again 2375 * because of the packets that have already arrived. 2376 */ 2377 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2378 } 2379 2380 return IRQ_HANDLED; 2381 } 2382 2383 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2384 struct sk_buff *skb, bool first) 2385 { 2386 int size = lstatus & BD_LENGTH_MASK; 2387 struct page *page = rxb->page; 2388 2389 if (likely(first)) { 2390 skb_put(skb, size); 2391 } else { 2392 /* the last fragments' length contains the full frame length */ 2393 if (lstatus & BD_LFLAG(RXBD_LAST)) 2394 size -= skb->len; 2395 2396 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2397 rxb->page_offset + RXBUF_ALIGNMENT, 2398 size, GFAR_RXB_TRUESIZE); 2399 } 2400 2401 /* try reuse page */ 2402 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2403 return false; 2404 2405 /* change offset to the other half */ 2406 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2407 2408 page_ref_inc(page); 2409 2410 return true; 2411 } 2412 2413 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2414 struct gfar_rx_buff *old_rxb) 2415 { 2416 struct gfar_rx_buff *new_rxb; 2417 u16 nta = rxq->next_to_alloc; 2418 2419 new_rxb = &rxq->rx_buff[nta]; 2420 2421 /* find next buf that can reuse a page */ 2422 nta++; 2423 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2424 2425 /* copy page reference */ 2426 *new_rxb = *old_rxb; 2427 2428 /* sync for use by the device */ 2429 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2430 old_rxb->page_offset, 2431 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2432 } 2433 2434 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2435 u32 lstatus, struct sk_buff *skb) 2436 { 2437 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2438 struct page *page = rxb->page; 2439 bool first = false; 2440 2441 if (likely(!skb)) { 2442 void *buff_addr = page_address(page) + rxb->page_offset; 2443 2444 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2445 if (unlikely(!skb)) { 2446 gfar_rx_alloc_err(rx_queue); 2447 return NULL; 2448 } 2449 skb_reserve(skb, RXBUF_ALIGNMENT); 2450 first = true; 2451 } 2452 2453 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2454 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2455 2456 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2457 /* reuse the free half of the page */ 2458 gfar_reuse_rx_page(rx_queue, rxb); 2459 } else { 2460 /* page cannot be reused, unmap it */ 2461 dma_unmap_page(rx_queue->dev, rxb->dma, 2462 PAGE_SIZE, DMA_FROM_DEVICE); 2463 } 2464 2465 /* clear rxb content */ 2466 rxb->page = NULL; 2467 2468 return skb; 2469 } 2470 2471 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2472 { 2473 /* If valid headers were found, and valid sums 2474 * were verified, then we tell the kernel that no 2475 * checksumming is necessary. Otherwise, it is [FIXME] 2476 */ 2477 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2478 (RXFCB_CIP | RXFCB_CTU)) 2479 skb->ip_summed = CHECKSUM_UNNECESSARY; 2480 else 2481 skb_checksum_none_assert(skb); 2482 } 2483 2484 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2485 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2486 { 2487 struct gfar_private *priv = netdev_priv(ndev); 2488 struct rxfcb *fcb = NULL; 2489 2490 /* fcb is at the beginning if exists */ 2491 fcb = (struct rxfcb *)skb->data; 2492 2493 /* Remove the FCB from the skb 2494 * Remove the padded bytes, if there are any 2495 */ 2496 if (priv->uses_rxfcb) 2497 skb_pull(skb, GMAC_FCB_LEN); 2498 2499 /* Get receive timestamp from the skb */ 2500 if (priv->hwts_rx_en) { 2501 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2502 u64 *ns = (u64 *) skb->data; 2503 2504 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2505 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2506 } 2507 2508 if (priv->padding) 2509 skb_pull(skb, priv->padding); 2510 2511 /* Trim off the FCS */ 2512 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2513 2514 if (ndev->features & NETIF_F_RXCSUM) 2515 gfar_rx_checksum(skb, fcb); 2516 2517 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2518 * Even if vlan rx accel is disabled, on some chips 2519 * RXFCB_VLN is pseudo randomly set. 2520 */ 2521 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2522 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2523 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2524 be16_to_cpu(fcb->vlctl)); 2525 } 2526 2527 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2528 * until the budget/quota has been reached. Returns the number 2529 * of frames handled 2530 */ 2531 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2532 int rx_work_limit) 2533 { 2534 struct net_device *ndev = rx_queue->ndev; 2535 struct gfar_private *priv = netdev_priv(ndev); 2536 struct rxbd8 *bdp; 2537 int i, howmany = 0; 2538 struct sk_buff *skb = rx_queue->skb; 2539 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2540 unsigned int total_bytes = 0, total_pkts = 0; 2541 2542 /* Get the first full descriptor */ 2543 i = rx_queue->next_to_clean; 2544 2545 while (rx_work_limit--) { 2546 u32 lstatus; 2547 2548 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2549 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2550 cleaned_cnt = 0; 2551 } 2552 2553 bdp = &rx_queue->rx_bd_base[i]; 2554 lstatus = be32_to_cpu(bdp->lstatus); 2555 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2556 break; 2557 2558 /* order rx buffer descriptor reads */ 2559 rmb(); 2560 2561 /* fetch next to clean buffer from the ring */ 2562 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2563 if (unlikely(!skb)) 2564 break; 2565 2566 cleaned_cnt++; 2567 howmany++; 2568 2569 if (unlikely(++i == rx_queue->rx_ring_size)) 2570 i = 0; 2571 2572 rx_queue->next_to_clean = i; 2573 2574 /* fetch next buffer if not the last in frame */ 2575 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2576 continue; 2577 2578 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2579 count_errors(lstatus, ndev); 2580 2581 /* discard faulty buffer */ 2582 dev_kfree_skb(skb); 2583 skb = NULL; 2584 rx_queue->stats.rx_dropped++; 2585 continue; 2586 } 2587 2588 gfar_process_frame(ndev, skb); 2589 2590 /* Increment the number of packets */ 2591 total_pkts++; 2592 total_bytes += skb->len; 2593 2594 skb_record_rx_queue(skb, rx_queue->qindex); 2595 2596 skb->protocol = eth_type_trans(skb, ndev); 2597 2598 /* Send the packet up the stack */ 2599 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2600 2601 skb = NULL; 2602 } 2603 2604 /* Store incomplete frames for completion */ 2605 rx_queue->skb = skb; 2606 2607 rx_queue->stats.rx_packets += total_pkts; 2608 rx_queue->stats.rx_bytes += total_bytes; 2609 2610 if (cleaned_cnt) 2611 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2612 2613 /* Update Last Free RxBD pointer for LFC */ 2614 if (unlikely(priv->tx_actual_en)) { 2615 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2616 2617 gfar_write(rx_queue->rfbptr, bdp_dma); 2618 } 2619 2620 return howmany; 2621 } 2622 2623 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2624 { 2625 struct gfar_priv_grp *gfargrp = 2626 container_of(napi, struct gfar_priv_grp, napi_rx); 2627 struct gfar __iomem *regs = gfargrp->regs; 2628 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2629 int work_done = 0; 2630 2631 /* Clear IEVENT, so interrupts aren't called again 2632 * because of the packets that have already arrived 2633 */ 2634 gfar_write(®s->ievent, IEVENT_RX_MASK); 2635 2636 work_done = gfar_clean_rx_ring(rx_queue, budget); 2637 2638 if (work_done < budget) { 2639 u32 imask; 2640 napi_complete_done(napi, work_done); 2641 /* Clear the halt bit in RSTAT */ 2642 gfar_write(®s->rstat, gfargrp->rstat); 2643 2644 spin_lock_irq(&gfargrp->grplock); 2645 imask = gfar_read(®s->imask); 2646 imask |= IMASK_RX_DEFAULT; 2647 gfar_write(®s->imask, imask); 2648 spin_unlock_irq(&gfargrp->grplock); 2649 } 2650 2651 return work_done; 2652 } 2653 2654 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2655 { 2656 struct gfar_priv_grp *gfargrp = 2657 container_of(napi, struct gfar_priv_grp, napi_tx); 2658 struct gfar __iomem *regs = gfargrp->regs; 2659 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2660 u32 imask; 2661 2662 /* Clear IEVENT, so interrupts aren't called again 2663 * because of the packets that have already arrived 2664 */ 2665 gfar_write(®s->ievent, IEVENT_TX_MASK); 2666 2667 /* run Tx cleanup to completion */ 2668 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2669 gfar_clean_tx_ring(tx_queue); 2670 2671 napi_complete(napi); 2672 2673 spin_lock_irq(&gfargrp->grplock); 2674 imask = gfar_read(®s->imask); 2675 imask |= IMASK_TX_DEFAULT; 2676 gfar_write(®s->imask, imask); 2677 spin_unlock_irq(&gfargrp->grplock); 2678 2679 return 0; 2680 } 2681 2682 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2683 { 2684 struct gfar_priv_grp *gfargrp = 2685 container_of(napi, struct gfar_priv_grp, napi_rx); 2686 struct gfar_private *priv = gfargrp->priv; 2687 struct gfar __iomem *regs = gfargrp->regs; 2688 struct gfar_priv_rx_q *rx_queue = NULL; 2689 int work_done = 0, work_done_per_q = 0; 2690 int i, budget_per_q = 0; 2691 unsigned long rstat_rxf; 2692 int num_act_queues; 2693 2694 /* Clear IEVENT, so interrupts aren't called again 2695 * because of the packets that have already arrived 2696 */ 2697 gfar_write(®s->ievent, IEVENT_RX_MASK); 2698 2699 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2700 2701 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2702 if (num_act_queues) 2703 budget_per_q = budget/num_act_queues; 2704 2705 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2706 /* skip queue if not active */ 2707 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2708 continue; 2709 2710 rx_queue = priv->rx_queue[i]; 2711 work_done_per_q = 2712 gfar_clean_rx_ring(rx_queue, budget_per_q); 2713 work_done += work_done_per_q; 2714 2715 /* finished processing this queue */ 2716 if (work_done_per_q < budget_per_q) { 2717 /* clear active queue hw indication */ 2718 gfar_write(®s->rstat, 2719 RSTAT_CLEAR_RXF0 >> i); 2720 num_act_queues--; 2721 2722 if (!num_act_queues) 2723 break; 2724 } 2725 } 2726 2727 if (!num_act_queues) { 2728 u32 imask; 2729 napi_complete_done(napi, work_done); 2730 2731 /* Clear the halt bit in RSTAT */ 2732 gfar_write(®s->rstat, gfargrp->rstat); 2733 2734 spin_lock_irq(&gfargrp->grplock); 2735 imask = gfar_read(®s->imask); 2736 imask |= IMASK_RX_DEFAULT; 2737 gfar_write(®s->imask, imask); 2738 spin_unlock_irq(&gfargrp->grplock); 2739 } 2740 2741 return work_done; 2742 } 2743 2744 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2745 { 2746 struct gfar_priv_grp *gfargrp = 2747 container_of(napi, struct gfar_priv_grp, napi_tx); 2748 struct gfar_private *priv = gfargrp->priv; 2749 struct gfar __iomem *regs = gfargrp->regs; 2750 struct gfar_priv_tx_q *tx_queue = NULL; 2751 int has_tx_work = 0; 2752 int i; 2753 2754 /* Clear IEVENT, so interrupts aren't called again 2755 * because of the packets that have already arrived 2756 */ 2757 gfar_write(®s->ievent, IEVENT_TX_MASK); 2758 2759 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2760 tx_queue = priv->tx_queue[i]; 2761 /* run Tx cleanup to completion */ 2762 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2763 gfar_clean_tx_ring(tx_queue); 2764 has_tx_work = 1; 2765 } 2766 } 2767 2768 if (!has_tx_work) { 2769 u32 imask; 2770 napi_complete(napi); 2771 2772 spin_lock_irq(&gfargrp->grplock); 2773 imask = gfar_read(®s->imask); 2774 imask |= IMASK_TX_DEFAULT; 2775 gfar_write(®s->imask, imask); 2776 spin_unlock_irq(&gfargrp->grplock); 2777 } 2778 2779 return 0; 2780 } 2781 2782 /* GFAR error interrupt handler */ 2783 static irqreturn_t gfar_error(int irq, void *grp_id) 2784 { 2785 struct gfar_priv_grp *gfargrp = grp_id; 2786 struct gfar __iomem *regs = gfargrp->regs; 2787 struct gfar_private *priv= gfargrp->priv; 2788 struct net_device *dev = priv->ndev; 2789 2790 /* Save ievent for future reference */ 2791 u32 events = gfar_read(®s->ievent); 2792 2793 /* Clear IEVENT */ 2794 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2795 2796 /* Magic Packet is not an error. */ 2797 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2798 (events & IEVENT_MAG)) 2799 events &= ~IEVENT_MAG; 2800 2801 /* Hmm... */ 2802 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2803 netdev_dbg(dev, 2804 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2805 events, gfar_read(®s->imask)); 2806 2807 /* Update the error counters */ 2808 if (events & IEVENT_TXE) { 2809 dev->stats.tx_errors++; 2810 2811 if (events & IEVENT_LC) 2812 dev->stats.tx_window_errors++; 2813 if (events & IEVENT_CRL) 2814 dev->stats.tx_aborted_errors++; 2815 if (events & IEVENT_XFUN) { 2816 netif_dbg(priv, tx_err, dev, 2817 "TX FIFO underrun, packet dropped\n"); 2818 dev->stats.tx_dropped++; 2819 atomic64_inc(&priv->extra_stats.tx_underrun); 2820 2821 schedule_work(&priv->reset_task); 2822 } 2823 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2824 } 2825 if (events & IEVENT_BSY) { 2826 dev->stats.rx_over_errors++; 2827 atomic64_inc(&priv->extra_stats.rx_bsy); 2828 2829 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2830 gfar_read(®s->rstat)); 2831 } 2832 if (events & IEVENT_BABR) { 2833 dev->stats.rx_errors++; 2834 atomic64_inc(&priv->extra_stats.rx_babr); 2835 2836 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2837 } 2838 if (events & IEVENT_EBERR) { 2839 atomic64_inc(&priv->extra_stats.eberr); 2840 netif_dbg(priv, rx_err, dev, "bus error\n"); 2841 } 2842 if (events & IEVENT_RXC) 2843 netif_dbg(priv, rx_status, dev, "control frame\n"); 2844 2845 if (events & IEVENT_BABT) { 2846 atomic64_inc(&priv->extra_stats.tx_babt); 2847 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2848 } 2849 return IRQ_HANDLED; 2850 } 2851 2852 /* The interrupt handler for devices with one interrupt */ 2853 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2854 { 2855 struct gfar_priv_grp *gfargrp = grp_id; 2856 2857 /* Save ievent for future reference */ 2858 u32 events = gfar_read(&gfargrp->regs->ievent); 2859 2860 /* Check for reception */ 2861 if (events & IEVENT_RX_MASK) 2862 gfar_receive(irq, grp_id); 2863 2864 /* Check for transmit completion */ 2865 if (events & IEVENT_TX_MASK) 2866 gfar_transmit(irq, grp_id); 2867 2868 /* Check for errors */ 2869 if (events & IEVENT_ERR_MASK) 2870 gfar_error(irq, grp_id); 2871 2872 return IRQ_HANDLED; 2873 } 2874 2875 #ifdef CONFIG_NET_POLL_CONTROLLER 2876 /* Polling 'interrupt' - used by things like netconsole to send skbs 2877 * without having to re-enable interrupts. It's not called while 2878 * the interrupt routine is executing. 2879 */ 2880 static void gfar_netpoll(struct net_device *dev) 2881 { 2882 struct gfar_private *priv = netdev_priv(dev); 2883 int i; 2884 2885 /* If the device has multiple interrupts, run tx/rx */ 2886 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2887 for (i = 0; i < priv->num_grps; i++) { 2888 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2889 2890 disable_irq(gfar_irq(grp, TX)->irq); 2891 disable_irq(gfar_irq(grp, RX)->irq); 2892 disable_irq(gfar_irq(grp, ER)->irq); 2893 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2894 enable_irq(gfar_irq(grp, ER)->irq); 2895 enable_irq(gfar_irq(grp, RX)->irq); 2896 enable_irq(gfar_irq(grp, TX)->irq); 2897 } 2898 } else { 2899 for (i = 0; i < priv->num_grps; i++) { 2900 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2901 2902 disable_irq(gfar_irq(grp, TX)->irq); 2903 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2904 enable_irq(gfar_irq(grp, TX)->irq); 2905 } 2906 } 2907 } 2908 #endif 2909 2910 static void free_grp_irqs(struct gfar_priv_grp *grp) 2911 { 2912 free_irq(gfar_irq(grp, TX)->irq, grp); 2913 free_irq(gfar_irq(grp, RX)->irq, grp); 2914 free_irq(gfar_irq(grp, ER)->irq, grp); 2915 } 2916 2917 static int register_grp_irqs(struct gfar_priv_grp *grp) 2918 { 2919 struct gfar_private *priv = grp->priv; 2920 struct net_device *dev = priv->ndev; 2921 int err; 2922 2923 /* If the device has multiple interrupts, register for 2924 * them. Otherwise, only register for the one 2925 */ 2926 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2927 /* Install our interrupt handlers for Error, 2928 * Transmit, and Receive 2929 */ 2930 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2931 gfar_irq(grp, ER)->name, grp); 2932 if (err < 0) { 2933 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2934 gfar_irq(grp, ER)->irq); 2935 2936 goto err_irq_fail; 2937 } 2938 enable_irq_wake(gfar_irq(grp, ER)->irq); 2939 2940 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2941 gfar_irq(grp, TX)->name, grp); 2942 if (err < 0) { 2943 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2944 gfar_irq(grp, TX)->irq); 2945 goto tx_irq_fail; 2946 } 2947 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2948 gfar_irq(grp, RX)->name, grp); 2949 if (err < 0) { 2950 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2951 gfar_irq(grp, RX)->irq); 2952 goto rx_irq_fail; 2953 } 2954 enable_irq_wake(gfar_irq(grp, RX)->irq); 2955 2956 } else { 2957 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2958 gfar_irq(grp, TX)->name, grp); 2959 if (err < 0) { 2960 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2961 gfar_irq(grp, TX)->irq); 2962 goto err_irq_fail; 2963 } 2964 enable_irq_wake(gfar_irq(grp, TX)->irq); 2965 } 2966 2967 return 0; 2968 2969 rx_irq_fail: 2970 free_irq(gfar_irq(grp, TX)->irq, grp); 2971 tx_irq_fail: 2972 free_irq(gfar_irq(grp, ER)->irq, grp); 2973 err_irq_fail: 2974 return err; 2975 2976 } 2977 2978 static void gfar_free_irq(struct gfar_private *priv) 2979 { 2980 int i; 2981 2982 /* Free the IRQs */ 2983 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2984 for (i = 0; i < priv->num_grps; i++) 2985 free_grp_irqs(&priv->gfargrp[i]); 2986 } else { 2987 for (i = 0; i < priv->num_grps; i++) 2988 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2989 &priv->gfargrp[i]); 2990 } 2991 } 2992 2993 static int gfar_request_irq(struct gfar_private *priv) 2994 { 2995 int err, i, j; 2996 2997 for (i = 0; i < priv->num_grps; i++) { 2998 err = register_grp_irqs(&priv->gfargrp[i]); 2999 if (err) { 3000 for (j = 0; j < i; j++) 3001 free_grp_irqs(&priv->gfargrp[j]); 3002 return err; 3003 } 3004 } 3005 3006 return 0; 3007 } 3008 3009 /* Called when something needs to use the ethernet device 3010 * Returns 0 for success. 3011 */ 3012 static int gfar_enet_open(struct net_device *dev) 3013 { 3014 struct gfar_private *priv = netdev_priv(dev); 3015 int err; 3016 3017 err = init_phy(dev); 3018 if (err) 3019 return err; 3020 3021 err = gfar_request_irq(priv); 3022 if (err) 3023 return err; 3024 3025 err = startup_gfar(dev); 3026 if (err) 3027 return err; 3028 3029 return err; 3030 } 3031 3032 /* Stops the kernel queue, and halts the controller */ 3033 static int gfar_close(struct net_device *dev) 3034 { 3035 struct gfar_private *priv = netdev_priv(dev); 3036 3037 cancel_work_sync(&priv->reset_task); 3038 stop_gfar(dev); 3039 3040 /* Disconnect from the PHY */ 3041 phy_disconnect(dev->phydev); 3042 3043 gfar_free_irq(priv); 3044 3045 return 0; 3046 } 3047 3048 /* Clears each of the exact match registers to zero, so they 3049 * don't interfere with normal reception 3050 */ 3051 static void gfar_clear_exact_match(struct net_device *dev) 3052 { 3053 int idx; 3054 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3055 3056 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3057 gfar_set_mac_for_addr(dev, idx, zero_arr); 3058 } 3059 3060 /* Update the hash table based on the current list of multicast 3061 * addresses we subscribe to. Also, change the promiscuity of 3062 * the device based on the flags (this function is called 3063 * whenever dev->flags is changed 3064 */ 3065 static void gfar_set_multi(struct net_device *dev) 3066 { 3067 struct netdev_hw_addr *ha; 3068 struct gfar_private *priv = netdev_priv(dev); 3069 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3070 u32 tempval; 3071 3072 if (dev->flags & IFF_PROMISC) { 3073 /* Set RCTRL to PROM */ 3074 tempval = gfar_read(®s->rctrl); 3075 tempval |= RCTRL_PROM; 3076 gfar_write(®s->rctrl, tempval); 3077 } else { 3078 /* Set RCTRL to not PROM */ 3079 tempval = gfar_read(®s->rctrl); 3080 tempval &= ~(RCTRL_PROM); 3081 gfar_write(®s->rctrl, tempval); 3082 } 3083 3084 if (dev->flags & IFF_ALLMULTI) { 3085 /* Set the hash to rx all multicast frames */ 3086 gfar_write(®s->igaddr0, 0xffffffff); 3087 gfar_write(®s->igaddr1, 0xffffffff); 3088 gfar_write(®s->igaddr2, 0xffffffff); 3089 gfar_write(®s->igaddr3, 0xffffffff); 3090 gfar_write(®s->igaddr4, 0xffffffff); 3091 gfar_write(®s->igaddr5, 0xffffffff); 3092 gfar_write(®s->igaddr6, 0xffffffff); 3093 gfar_write(®s->igaddr7, 0xffffffff); 3094 gfar_write(®s->gaddr0, 0xffffffff); 3095 gfar_write(®s->gaddr1, 0xffffffff); 3096 gfar_write(®s->gaddr2, 0xffffffff); 3097 gfar_write(®s->gaddr3, 0xffffffff); 3098 gfar_write(®s->gaddr4, 0xffffffff); 3099 gfar_write(®s->gaddr5, 0xffffffff); 3100 gfar_write(®s->gaddr6, 0xffffffff); 3101 gfar_write(®s->gaddr7, 0xffffffff); 3102 } else { 3103 int em_num; 3104 int idx; 3105 3106 /* zero out the hash */ 3107 gfar_write(®s->igaddr0, 0x0); 3108 gfar_write(®s->igaddr1, 0x0); 3109 gfar_write(®s->igaddr2, 0x0); 3110 gfar_write(®s->igaddr3, 0x0); 3111 gfar_write(®s->igaddr4, 0x0); 3112 gfar_write(®s->igaddr5, 0x0); 3113 gfar_write(®s->igaddr6, 0x0); 3114 gfar_write(®s->igaddr7, 0x0); 3115 gfar_write(®s->gaddr0, 0x0); 3116 gfar_write(®s->gaddr1, 0x0); 3117 gfar_write(®s->gaddr2, 0x0); 3118 gfar_write(®s->gaddr3, 0x0); 3119 gfar_write(®s->gaddr4, 0x0); 3120 gfar_write(®s->gaddr5, 0x0); 3121 gfar_write(®s->gaddr6, 0x0); 3122 gfar_write(®s->gaddr7, 0x0); 3123 3124 /* If we have extended hash tables, we need to 3125 * clear the exact match registers to prepare for 3126 * setting them 3127 */ 3128 if (priv->extended_hash) { 3129 em_num = GFAR_EM_NUM + 1; 3130 gfar_clear_exact_match(dev); 3131 idx = 1; 3132 } else { 3133 idx = 0; 3134 em_num = 0; 3135 } 3136 3137 if (netdev_mc_empty(dev)) 3138 return; 3139 3140 /* Parse the list, and set the appropriate bits */ 3141 netdev_for_each_mc_addr(ha, dev) { 3142 if (idx < em_num) { 3143 gfar_set_mac_for_addr(dev, idx, ha->addr); 3144 idx++; 3145 } else 3146 gfar_set_hash_for_addr(dev, ha->addr); 3147 } 3148 } 3149 } 3150 3151 void gfar_mac_reset(struct gfar_private *priv) 3152 { 3153 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3154 u32 tempval; 3155 3156 /* Reset MAC layer */ 3157 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3158 3159 /* We need to delay at least 3 TX clocks */ 3160 udelay(3); 3161 3162 /* the soft reset bit is not self-resetting, so we need to 3163 * clear it before resuming normal operation 3164 */ 3165 gfar_write(®s->maccfg1, 0); 3166 3167 udelay(3); 3168 3169 gfar_rx_offload_en(priv); 3170 3171 /* Initialize the max receive frame/buffer lengths */ 3172 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3173 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3174 3175 /* Initialize the Minimum Frame Length Register */ 3176 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3177 3178 /* Initialize MACCFG2. */ 3179 tempval = MACCFG2_INIT_SETTINGS; 3180 3181 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3182 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3183 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3184 */ 3185 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3186 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3187 3188 gfar_write(®s->maccfg2, tempval); 3189 3190 /* Clear mac addr hash registers */ 3191 gfar_write(®s->igaddr0, 0); 3192 gfar_write(®s->igaddr1, 0); 3193 gfar_write(®s->igaddr2, 0); 3194 gfar_write(®s->igaddr3, 0); 3195 gfar_write(®s->igaddr4, 0); 3196 gfar_write(®s->igaddr5, 0); 3197 gfar_write(®s->igaddr6, 0); 3198 gfar_write(®s->igaddr7, 0); 3199 3200 gfar_write(®s->gaddr0, 0); 3201 gfar_write(®s->gaddr1, 0); 3202 gfar_write(®s->gaddr2, 0); 3203 gfar_write(®s->gaddr3, 0); 3204 gfar_write(®s->gaddr4, 0); 3205 gfar_write(®s->gaddr5, 0); 3206 gfar_write(®s->gaddr6, 0); 3207 gfar_write(®s->gaddr7, 0); 3208 3209 if (priv->extended_hash) 3210 gfar_clear_exact_match(priv->ndev); 3211 3212 gfar_mac_rx_config(priv); 3213 3214 gfar_mac_tx_config(priv); 3215 3216 gfar_set_mac_address(priv->ndev); 3217 3218 gfar_set_multi(priv->ndev); 3219 3220 /* clear ievent and imask before configuring coalescing */ 3221 gfar_ints_disable(priv); 3222 3223 /* Configure the coalescing support */ 3224 gfar_configure_coalescing_all(priv); 3225 } 3226 3227 static void gfar_hw_init(struct gfar_private *priv) 3228 { 3229 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3230 u32 attrs; 3231 3232 /* Stop the DMA engine now, in case it was running before 3233 * (The firmware could have used it, and left it running). 3234 */ 3235 gfar_halt(priv); 3236 3237 gfar_mac_reset(priv); 3238 3239 /* Zero out the rmon mib registers if it has them */ 3240 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3241 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3242 3243 /* Mask off the CAM interrupts */ 3244 gfar_write(®s->rmon.cam1, 0xffffffff); 3245 gfar_write(®s->rmon.cam2, 0xffffffff); 3246 } 3247 3248 /* Initialize ECNTRL */ 3249 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3250 3251 /* Set the extraction length and index */ 3252 attrs = ATTRELI_EL(priv->rx_stash_size) | 3253 ATTRELI_EI(priv->rx_stash_index); 3254 3255 gfar_write(®s->attreli, attrs); 3256 3257 /* Start with defaults, and add stashing 3258 * depending on driver parameters 3259 */ 3260 attrs = ATTR_INIT_SETTINGS; 3261 3262 if (priv->bd_stash_en) 3263 attrs |= ATTR_BDSTASH; 3264 3265 if (priv->rx_stash_size != 0) 3266 attrs |= ATTR_BUFSTASH; 3267 3268 gfar_write(®s->attr, attrs); 3269 3270 /* FIFO configs */ 3271 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3272 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3273 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3274 3275 /* Program the interrupt steering regs, only for MG devices */ 3276 if (priv->num_grps > 1) 3277 gfar_write_isrg(priv); 3278 } 3279 3280 static const struct net_device_ops gfar_netdev_ops = { 3281 .ndo_open = gfar_enet_open, 3282 .ndo_start_xmit = gfar_start_xmit, 3283 .ndo_stop = gfar_close, 3284 .ndo_change_mtu = gfar_change_mtu, 3285 .ndo_set_features = gfar_set_features, 3286 .ndo_set_rx_mode = gfar_set_multi, 3287 .ndo_tx_timeout = gfar_timeout, 3288 .ndo_do_ioctl = gfar_ioctl, 3289 .ndo_get_stats = gfar_get_stats, 3290 .ndo_change_carrier = fixed_phy_change_carrier, 3291 .ndo_set_mac_address = gfar_set_mac_addr, 3292 .ndo_validate_addr = eth_validate_addr, 3293 #ifdef CONFIG_NET_POLL_CONTROLLER 3294 .ndo_poll_controller = gfar_netpoll, 3295 #endif 3296 }; 3297 3298 /* Set up the ethernet device structure, private data, 3299 * and anything else we need before we start 3300 */ 3301 static int gfar_probe(struct platform_device *ofdev) 3302 { 3303 struct device_node *np = ofdev->dev.of_node; 3304 struct net_device *dev = NULL; 3305 struct gfar_private *priv = NULL; 3306 int err = 0, i; 3307 3308 err = gfar_of_init(ofdev, &dev); 3309 3310 if (err) 3311 return err; 3312 3313 priv = netdev_priv(dev); 3314 priv->ndev = dev; 3315 priv->ofdev = ofdev; 3316 priv->dev = &ofdev->dev; 3317 SET_NETDEV_DEV(dev, &ofdev->dev); 3318 3319 INIT_WORK(&priv->reset_task, gfar_reset_task); 3320 3321 platform_set_drvdata(ofdev, priv); 3322 3323 gfar_detect_errata(priv); 3324 3325 /* Set the dev->base_addr to the gfar reg region */ 3326 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3327 3328 /* Fill in the dev structure */ 3329 dev->watchdog_timeo = TX_TIMEOUT; 3330 /* MTU range: 50 - 9586 */ 3331 dev->mtu = 1500; 3332 dev->min_mtu = 50; 3333 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3334 dev->netdev_ops = &gfar_netdev_ops; 3335 dev->ethtool_ops = &gfar_ethtool_ops; 3336 3337 /* Register for napi ...We are registering NAPI for each grp */ 3338 for (i = 0; i < priv->num_grps; i++) { 3339 if (priv->poll_mode == GFAR_SQ_POLLING) { 3340 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3341 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3342 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3343 gfar_poll_tx_sq, 2); 3344 } else { 3345 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3346 gfar_poll_rx, GFAR_DEV_WEIGHT); 3347 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3348 gfar_poll_tx, 2); 3349 } 3350 } 3351 3352 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3353 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3354 NETIF_F_RXCSUM; 3355 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3356 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3357 } 3358 3359 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3360 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3361 NETIF_F_HW_VLAN_CTAG_RX; 3362 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3363 } 3364 3365 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3366 3367 gfar_init_addr_hash_table(priv); 3368 3369 /* Insert receive time stamps into padding alignment bytes, and 3370 * plus 2 bytes padding to ensure the cpu alignment. 3371 */ 3372 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3373 priv->padding = 8 + DEFAULT_PADDING; 3374 3375 if (dev->features & NETIF_F_IP_CSUM || 3376 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3377 dev->needed_headroom = GMAC_FCB_LEN; 3378 3379 /* Initializing some of the rx/tx queue level parameters */ 3380 for (i = 0; i < priv->num_tx_queues; i++) { 3381 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3382 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3383 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3384 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3385 } 3386 3387 for (i = 0; i < priv->num_rx_queues; i++) { 3388 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3389 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3390 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3391 } 3392 3393 /* Always enable rx filer if available */ 3394 priv->rx_filer_enable = 3395 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3396 /* Enable most messages by default */ 3397 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3398 /* use pritority h/w tx queue scheduling for single queue devices */ 3399 if (priv->num_tx_queues == 1) 3400 priv->prio_sched_en = 1; 3401 3402 set_bit(GFAR_DOWN, &priv->state); 3403 3404 gfar_hw_init(priv); 3405 3406 /* Carrier starts down, phylib will bring it up */ 3407 netif_carrier_off(dev); 3408 3409 err = register_netdev(dev); 3410 3411 if (err) { 3412 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3413 goto register_fail; 3414 } 3415 3416 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3417 priv->wol_supported |= GFAR_WOL_MAGIC; 3418 3419 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3420 priv->rx_filer_enable) 3421 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3422 3423 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3424 3425 /* fill out IRQ number and name fields */ 3426 for (i = 0; i < priv->num_grps; i++) { 3427 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3428 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3429 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3430 dev->name, "_g", '0' + i, "_tx"); 3431 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3432 dev->name, "_g", '0' + i, "_rx"); 3433 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3434 dev->name, "_g", '0' + i, "_er"); 3435 } else 3436 strcpy(gfar_irq(grp, TX)->name, dev->name); 3437 } 3438 3439 /* Initialize the filer table */ 3440 gfar_init_filer_table(priv); 3441 3442 /* Print out the device info */ 3443 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3444 3445 /* Even more device info helps when determining which kernel 3446 * provided which set of benchmarks. 3447 */ 3448 netdev_info(dev, "Running with NAPI enabled\n"); 3449 for (i = 0; i < priv->num_rx_queues; i++) 3450 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3451 i, priv->rx_queue[i]->rx_ring_size); 3452 for (i = 0; i < priv->num_tx_queues; i++) 3453 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3454 i, priv->tx_queue[i]->tx_ring_size); 3455 3456 return 0; 3457 3458 register_fail: 3459 if (of_phy_is_fixed_link(np)) 3460 of_phy_deregister_fixed_link(np); 3461 unmap_group_regs(priv); 3462 gfar_free_rx_queues(priv); 3463 gfar_free_tx_queues(priv); 3464 of_node_put(priv->phy_node); 3465 of_node_put(priv->tbi_node); 3466 free_gfar_dev(priv); 3467 return err; 3468 } 3469 3470 static int gfar_remove(struct platform_device *ofdev) 3471 { 3472 struct gfar_private *priv = platform_get_drvdata(ofdev); 3473 struct device_node *np = ofdev->dev.of_node; 3474 3475 of_node_put(priv->phy_node); 3476 of_node_put(priv->tbi_node); 3477 3478 unregister_netdev(priv->ndev); 3479 3480 if (of_phy_is_fixed_link(np)) 3481 of_phy_deregister_fixed_link(np); 3482 3483 unmap_group_regs(priv); 3484 gfar_free_rx_queues(priv); 3485 gfar_free_tx_queues(priv); 3486 free_gfar_dev(priv); 3487 3488 return 0; 3489 } 3490 3491 #ifdef CONFIG_PM 3492 3493 static void __gfar_filer_disable(struct gfar_private *priv) 3494 { 3495 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3496 u32 temp; 3497 3498 temp = gfar_read(®s->rctrl); 3499 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3500 gfar_write(®s->rctrl, temp); 3501 } 3502 3503 static void __gfar_filer_enable(struct gfar_private *priv) 3504 { 3505 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3506 u32 temp; 3507 3508 temp = gfar_read(®s->rctrl); 3509 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3510 gfar_write(®s->rctrl, temp); 3511 } 3512 3513 /* Filer rules implementing wol capabilities */ 3514 static void gfar_filer_config_wol(struct gfar_private *priv) 3515 { 3516 unsigned int i; 3517 u32 rqfcr; 3518 3519 __gfar_filer_disable(priv); 3520 3521 /* clear the filer table, reject any packet by default */ 3522 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3523 for (i = 0; i <= MAX_FILER_IDX; i++) 3524 gfar_write_filer(priv, i, rqfcr, 0); 3525 3526 i = 0; 3527 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3528 /* unicast packet, accept it */ 3529 struct net_device *ndev = priv->ndev; 3530 /* get the default rx queue index */ 3531 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3532 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3533 (ndev->dev_addr[1] << 8) | 3534 ndev->dev_addr[2]; 3535 3536 rqfcr = (qindex << 10) | RQFCR_AND | 3537 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3538 3539 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3540 3541 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3542 (ndev->dev_addr[4] << 8) | 3543 ndev->dev_addr[5]; 3544 rqfcr = (qindex << 10) | RQFCR_GPI | 3545 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3546 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3547 } 3548 3549 __gfar_filer_enable(priv); 3550 } 3551 3552 static void gfar_filer_restore_table(struct gfar_private *priv) 3553 { 3554 u32 rqfcr, rqfpr; 3555 unsigned int i; 3556 3557 __gfar_filer_disable(priv); 3558 3559 for (i = 0; i <= MAX_FILER_IDX; i++) { 3560 rqfcr = priv->ftp_rqfcr[i]; 3561 rqfpr = priv->ftp_rqfpr[i]; 3562 gfar_write_filer(priv, i, rqfcr, rqfpr); 3563 } 3564 3565 __gfar_filer_enable(priv); 3566 } 3567 3568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3569 static void gfar_start_wol_filer(struct gfar_private *priv) 3570 { 3571 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3572 u32 tempval; 3573 int i = 0; 3574 3575 /* Enable Rx hw queues */ 3576 gfar_write(®s->rqueue, priv->rqueue); 3577 3578 /* Initialize DMACTRL to have WWR and WOP */ 3579 tempval = gfar_read(®s->dmactrl); 3580 tempval |= DMACTRL_INIT_SETTINGS; 3581 gfar_write(®s->dmactrl, tempval); 3582 3583 /* Make sure we aren't stopped */ 3584 tempval = gfar_read(®s->dmactrl); 3585 tempval &= ~DMACTRL_GRS; 3586 gfar_write(®s->dmactrl, tempval); 3587 3588 for (i = 0; i < priv->num_grps; i++) { 3589 regs = priv->gfargrp[i].regs; 3590 /* Clear RHLT, so that the DMA starts polling now */ 3591 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3592 /* enable the Filer General Purpose Interrupt */ 3593 gfar_write(®s->imask, IMASK_FGPI); 3594 } 3595 3596 /* Enable Rx DMA */ 3597 tempval = gfar_read(®s->maccfg1); 3598 tempval |= MACCFG1_RX_EN; 3599 gfar_write(®s->maccfg1, tempval); 3600 } 3601 3602 static int gfar_suspend(struct device *dev) 3603 { 3604 struct gfar_private *priv = dev_get_drvdata(dev); 3605 struct net_device *ndev = priv->ndev; 3606 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3607 u32 tempval; 3608 u16 wol = priv->wol_opts; 3609 3610 if (!netif_running(ndev)) 3611 return 0; 3612 3613 disable_napi(priv); 3614 netif_tx_lock(ndev); 3615 netif_device_detach(ndev); 3616 netif_tx_unlock(ndev); 3617 3618 gfar_halt(priv); 3619 3620 if (wol & GFAR_WOL_MAGIC) { 3621 /* Enable interrupt on Magic Packet */ 3622 gfar_write(®s->imask, IMASK_MAG); 3623 3624 /* Enable Magic Packet mode */ 3625 tempval = gfar_read(®s->maccfg2); 3626 tempval |= MACCFG2_MPEN; 3627 gfar_write(®s->maccfg2, tempval); 3628 3629 /* re-enable the Rx block */ 3630 tempval = gfar_read(®s->maccfg1); 3631 tempval |= MACCFG1_RX_EN; 3632 gfar_write(®s->maccfg1, tempval); 3633 3634 } else if (wol & GFAR_WOL_FILER_UCAST) { 3635 gfar_filer_config_wol(priv); 3636 gfar_start_wol_filer(priv); 3637 3638 } else { 3639 phy_stop(ndev->phydev); 3640 } 3641 3642 return 0; 3643 } 3644 3645 static int gfar_resume(struct device *dev) 3646 { 3647 struct gfar_private *priv = dev_get_drvdata(dev); 3648 struct net_device *ndev = priv->ndev; 3649 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3650 u32 tempval; 3651 u16 wol = priv->wol_opts; 3652 3653 if (!netif_running(ndev)) 3654 return 0; 3655 3656 if (wol & GFAR_WOL_MAGIC) { 3657 /* Disable Magic Packet mode */ 3658 tempval = gfar_read(®s->maccfg2); 3659 tempval &= ~MACCFG2_MPEN; 3660 gfar_write(®s->maccfg2, tempval); 3661 3662 } else if (wol & GFAR_WOL_FILER_UCAST) { 3663 /* need to stop rx only, tx is already down */ 3664 gfar_halt(priv); 3665 gfar_filer_restore_table(priv); 3666 3667 } else { 3668 phy_start(ndev->phydev); 3669 } 3670 3671 gfar_start(priv); 3672 3673 netif_device_attach(ndev); 3674 enable_napi(priv); 3675 3676 return 0; 3677 } 3678 3679 static int gfar_restore(struct device *dev) 3680 { 3681 struct gfar_private *priv = dev_get_drvdata(dev); 3682 struct net_device *ndev = priv->ndev; 3683 3684 if (!netif_running(ndev)) { 3685 netif_device_attach(ndev); 3686 3687 return 0; 3688 } 3689 3690 gfar_init_bds(ndev); 3691 3692 gfar_mac_reset(priv); 3693 3694 gfar_init_tx_rx_base(priv); 3695 3696 gfar_start(priv); 3697 3698 priv->oldlink = 0; 3699 priv->oldspeed = 0; 3700 priv->oldduplex = -1; 3701 3702 if (ndev->phydev) 3703 phy_start(ndev->phydev); 3704 3705 netif_device_attach(ndev); 3706 enable_napi(priv); 3707 3708 return 0; 3709 } 3710 3711 static const struct dev_pm_ops gfar_pm_ops = { 3712 .suspend = gfar_suspend, 3713 .resume = gfar_resume, 3714 .freeze = gfar_suspend, 3715 .thaw = gfar_resume, 3716 .restore = gfar_restore, 3717 }; 3718 3719 #define GFAR_PM_OPS (&gfar_pm_ops) 3720 3721 #else 3722 3723 #define GFAR_PM_OPS NULL 3724 3725 #endif 3726 3727 static const struct of_device_id gfar_match[] = 3728 { 3729 { 3730 .type = "network", 3731 .compatible = "gianfar", 3732 }, 3733 { 3734 .compatible = "fsl,etsec2", 3735 }, 3736 {}, 3737 }; 3738 MODULE_DEVICE_TABLE(of, gfar_match); 3739 3740 /* Structure for a device driver */ 3741 static struct platform_driver gfar_driver = { 3742 .driver = { 3743 .name = "fsl-gianfar", 3744 .pm = GFAR_PM_OPS, 3745 .of_match_table = gfar_match, 3746 }, 3747 .probe = gfar_probe, 3748 .remove = gfar_remove, 3749 }; 3750 3751 module_platform_driver(gfar_driver); 3752