1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 
106 #include "gianfar.h"
107 
108 #define TX_TIMEOUT      (5*HZ)
109 
110 const char gfar_driver_version[] = "2.0";
111 
112 static int gfar_enet_open(struct net_device *dev);
113 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
114 static void gfar_reset_task(struct work_struct *work);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
118 				int alloc_cnt);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static noinline void gfar_update_link_state(struct gfar_private *priv);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *ofdev);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll_rx(struct napi_struct *napi, int budget);
134 static int gfar_poll_tx(struct napi_struct *napi, int budget);
135 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
141 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
142 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
143 static void gfar_halt_nodisable(struct gfar_private *priv);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 				  const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148 
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152 
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 			    dma_addr_t buf)
155 {
156 	u32 lstatus;
157 
158 	bdp->bufPtr = cpu_to_be32(buf);
159 
160 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 		lstatus |= BD_LFLAG(RXBD_WRAP);
163 
164 	gfar_wmb();
165 
166 	bdp->lstatus = cpu_to_be32(lstatus);
167 }
168 
169 static void gfar_init_bds(struct net_device *ndev)
170 {
171 	struct gfar_private *priv = netdev_priv(ndev);
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	struct gfar_priv_tx_q *tx_queue = NULL;
174 	struct gfar_priv_rx_q *rx_queue = NULL;
175 	struct txbd8 *txbdp;
176 	u32 __iomem *rfbptr;
177 	int i, j;
178 
179 	for (i = 0; i < priv->num_tx_queues; i++) {
180 		tx_queue = priv->tx_queue[i];
181 		/* Initialize some variables in our dev structure */
182 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
184 		tx_queue->cur_tx = tx_queue->tx_bd_base;
185 		tx_queue->skb_curtx = 0;
186 		tx_queue->skb_dirtytx = 0;
187 
188 		/* Initialize Transmit Descriptor Ring */
189 		txbdp = tx_queue->tx_bd_base;
190 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
191 			txbdp->lstatus = 0;
192 			txbdp->bufPtr = 0;
193 			txbdp++;
194 		}
195 
196 		/* Set the last descriptor in the ring to indicate wrap */
197 		txbdp--;
198 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
199 					    TXBD_WRAP);
200 	}
201 
202 	rfbptr = &regs->rfbptr0;
203 	for (i = 0; i < priv->num_rx_queues; i++) {
204 		rx_queue = priv->rx_queue[i];
205 
206 		rx_queue->next_to_clean = 0;
207 		rx_queue->next_to_use = 0;
208 		rx_queue->next_to_alloc = 0;
209 
210 		/* make sure next_to_clean != next_to_use after this
211 		 * by leaving at least 1 unused descriptor
212 		 */
213 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
214 
215 		rx_queue->rfbptr = rfbptr;
216 		rfbptr += 2;
217 	}
218 }
219 
220 static int gfar_alloc_skb_resources(struct net_device *ndev)
221 {
222 	void *vaddr;
223 	dma_addr_t addr;
224 	int i, j;
225 	struct gfar_private *priv = netdev_priv(ndev);
226 	struct device *dev = priv->dev;
227 	struct gfar_priv_tx_q *tx_queue = NULL;
228 	struct gfar_priv_rx_q *rx_queue = NULL;
229 
230 	priv->total_tx_ring_size = 0;
231 	for (i = 0; i < priv->num_tx_queues; i++)
232 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
233 
234 	priv->total_rx_ring_size = 0;
235 	for (i = 0; i < priv->num_rx_queues; i++)
236 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
237 
238 	/* Allocate memory for the buffer descriptors */
239 	vaddr = dma_alloc_coherent(dev,
240 				   (priv->total_tx_ring_size *
241 				    sizeof(struct txbd8)) +
242 				   (priv->total_rx_ring_size *
243 				    sizeof(struct rxbd8)),
244 				   &addr, GFP_KERNEL);
245 	if (!vaddr)
246 		return -ENOMEM;
247 
248 	for (i = 0; i < priv->num_tx_queues; i++) {
249 		tx_queue = priv->tx_queue[i];
250 		tx_queue->tx_bd_base = vaddr;
251 		tx_queue->tx_bd_dma_base = addr;
252 		tx_queue->dev = ndev;
253 		/* enet DMA only understands physical addresses */
254 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
255 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
256 	}
257 
258 	/* Start the rx descriptor ring where the tx ring leaves off */
259 	for (i = 0; i < priv->num_rx_queues; i++) {
260 		rx_queue = priv->rx_queue[i];
261 		rx_queue->rx_bd_base = vaddr;
262 		rx_queue->rx_bd_dma_base = addr;
263 		rx_queue->ndev = ndev;
264 		rx_queue->dev = dev;
265 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
266 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
267 	}
268 
269 	/* Setup the skbuff rings */
270 	for (i = 0; i < priv->num_tx_queues; i++) {
271 		tx_queue = priv->tx_queue[i];
272 		tx_queue->tx_skbuff =
273 			kmalloc_array(tx_queue->tx_ring_size,
274 				      sizeof(*tx_queue->tx_skbuff),
275 				      GFP_KERNEL);
276 		if (!tx_queue->tx_skbuff)
277 			goto cleanup;
278 
279 		for (j = 0; j < tx_queue->tx_ring_size; j++)
280 			tx_queue->tx_skbuff[j] = NULL;
281 	}
282 
283 	for (i = 0; i < priv->num_rx_queues; i++) {
284 		rx_queue = priv->rx_queue[i];
285 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
286 					    sizeof(*rx_queue->rx_buff),
287 					    GFP_KERNEL);
288 		if (!rx_queue->rx_buff)
289 			goto cleanup;
290 	}
291 
292 	gfar_init_bds(ndev);
293 
294 	return 0;
295 
296 cleanup:
297 	free_skb_resources(priv);
298 	return -ENOMEM;
299 }
300 
301 static void gfar_init_tx_rx_base(struct gfar_private *priv)
302 {
303 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
304 	u32 __iomem *baddr;
305 	int i;
306 
307 	baddr = &regs->tbase0;
308 	for (i = 0; i < priv->num_tx_queues; i++) {
309 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
310 		baddr += 2;
311 	}
312 
313 	baddr = &regs->rbase0;
314 	for (i = 0; i < priv->num_rx_queues; i++) {
315 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
316 		baddr += 2;
317 	}
318 }
319 
320 static void gfar_init_rqprm(struct gfar_private *priv)
321 {
322 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
323 	u32 __iomem *baddr;
324 	int i;
325 
326 	baddr = &regs->rqprm0;
327 	for (i = 0; i < priv->num_rx_queues; i++) {
328 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
329 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
330 		baddr++;
331 	}
332 }
333 
334 static void gfar_rx_offload_en(struct gfar_private *priv)
335 {
336 	/* set this when rx hw offload (TOE) functions are being used */
337 	priv->uses_rxfcb = 0;
338 
339 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
340 		priv->uses_rxfcb = 1;
341 
342 	if (priv->hwts_rx_en || priv->rx_filer_enable)
343 		priv->uses_rxfcb = 1;
344 }
345 
346 static void gfar_mac_rx_config(struct gfar_private *priv)
347 {
348 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 	u32 rctrl = 0;
350 
351 	if (priv->rx_filer_enable) {
352 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
353 		/* Program the RIR0 reg with the required distribution */
354 		if (priv->poll_mode == GFAR_SQ_POLLING)
355 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
356 		else /* GFAR_MQ_POLLING */
357 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
358 	}
359 
360 	/* Restore PROMISC mode */
361 	if (priv->ndev->flags & IFF_PROMISC)
362 		rctrl |= RCTRL_PROM;
363 
364 	if (priv->ndev->features & NETIF_F_RXCSUM)
365 		rctrl |= RCTRL_CHECKSUMMING;
366 
367 	if (priv->extended_hash)
368 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
369 
370 	if (priv->padding) {
371 		rctrl &= ~RCTRL_PAL_MASK;
372 		rctrl |= RCTRL_PADDING(priv->padding);
373 	}
374 
375 	/* Enable HW time stamping if requested from user space */
376 	if (priv->hwts_rx_en)
377 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
378 
379 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
380 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
381 
382 	/* Clear the LFC bit */
383 	gfar_write(&regs->rctrl, rctrl);
384 	/* Init flow control threshold values */
385 	gfar_init_rqprm(priv);
386 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
387 	rctrl |= RCTRL_LFC;
388 
389 	/* Init rctrl based on our settings */
390 	gfar_write(&regs->rctrl, rctrl);
391 }
392 
393 static void gfar_mac_tx_config(struct gfar_private *priv)
394 {
395 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
396 	u32 tctrl = 0;
397 
398 	if (priv->ndev->features & NETIF_F_IP_CSUM)
399 		tctrl |= TCTRL_INIT_CSUM;
400 
401 	if (priv->prio_sched_en)
402 		tctrl |= TCTRL_TXSCHED_PRIO;
403 	else {
404 		tctrl |= TCTRL_TXSCHED_WRRS;
405 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407 	}
408 
409 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
410 		tctrl |= TCTRL_VLINS;
411 
412 	gfar_write(&regs->tctrl, tctrl);
413 }
414 
415 static void gfar_configure_coalescing(struct gfar_private *priv,
416 			       unsigned long tx_mask, unsigned long rx_mask)
417 {
418 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
419 	u32 __iomem *baddr;
420 
421 	if (priv->mode == MQ_MG_MODE) {
422 		int i = 0;
423 
424 		baddr = &regs->txic0;
425 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
426 			gfar_write(baddr + i, 0);
427 			if (likely(priv->tx_queue[i]->txcoalescing))
428 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
429 		}
430 
431 		baddr = &regs->rxic0;
432 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
433 			gfar_write(baddr + i, 0);
434 			if (likely(priv->rx_queue[i]->rxcoalescing))
435 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
436 		}
437 	} else {
438 		/* Backward compatible case -- even if we enable
439 		 * multiple queues, there's only single reg to program
440 		 */
441 		gfar_write(&regs->txic, 0);
442 		if (likely(priv->tx_queue[0]->txcoalescing))
443 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
444 
445 		gfar_write(&regs->rxic, 0);
446 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
447 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
448 	}
449 }
450 
451 void gfar_configure_coalescing_all(struct gfar_private *priv)
452 {
453 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
454 }
455 
456 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
457 {
458 	struct gfar_private *priv = netdev_priv(dev);
459 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
460 	unsigned long tx_packets = 0, tx_bytes = 0;
461 	int i;
462 
463 	for (i = 0; i < priv->num_rx_queues; i++) {
464 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
465 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
466 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
467 	}
468 
469 	dev->stats.rx_packets = rx_packets;
470 	dev->stats.rx_bytes   = rx_bytes;
471 	dev->stats.rx_dropped = rx_dropped;
472 
473 	for (i = 0; i < priv->num_tx_queues; i++) {
474 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
475 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
476 	}
477 
478 	dev->stats.tx_bytes   = tx_bytes;
479 	dev->stats.tx_packets = tx_packets;
480 
481 	return &dev->stats;
482 }
483 
484 static int gfar_set_mac_addr(struct net_device *dev, void *p)
485 {
486 	eth_mac_addr(dev, p);
487 
488 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
489 
490 	return 0;
491 }
492 
493 static const struct net_device_ops gfar_netdev_ops = {
494 	.ndo_open = gfar_enet_open,
495 	.ndo_start_xmit = gfar_start_xmit,
496 	.ndo_stop = gfar_close,
497 	.ndo_change_mtu = gfar_change_mtu,
498 	.ndo_set_features = gfar_set_features,
499 	.ndo_set_rx_mode = gfar_set_multi,
500 	.ndo_tx_timeout = gfar_timeout,
501 	.ndo_do_ioctl = gfar_ioctl,
502 	.ndo_get_stats = gfar_get_stats,
503 	.ndo_change_carrier = fixed_phy_change_carrier,
504 	.ndo_set_mac_address = gfar_set_mac_addr,
505 	.ndo_validate_addr = eth_validate_addr,
506 #ifdef CONFIG_NET_POLL_CONTROLLER
507 	.ndo_poll_controller = gfar_netpoll,
508 #endif
509 };
510 
511 static void gfar_ints_disable(struct gfar_private *priv)
512 {
513 	int i;
514 	for (i = 0; i < priv->num_grps; i++) {
515 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
516 		/* Clear IEVENT */
517 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
518 
519 		/* Initialize IMASK */
520 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
521 	}
522 }
523 
524 static void gfar_ints_enable(struct gfar_private *priv)
525 {
526 	int i;
527 	for (i = 0; i < priv->num_grps; i++) {
528 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
529 		/* Unmask the interrupts we look for */
530 		gfar_write(&regs->imask, IMASK_DEFAULT);
531 	}
532 }
533 
534 static int gfar_alloc_tx_queues(struct gfar_private *priv)
535 {
536 	int i;
537 
538 	for (i = 0; i < priv->num_tx_queues; i++) {
539 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
540 					    GFP_KERNEL);
541 		if (!priv->tx_queue[i])
542 			return -ENOMEM;
543 
544 		priv->tx_queue[i]->tx_skbuff = NULL;
545 		priv->tx_queue[i]->qindex = i;
546 		priv->tx_queue[i]->dev = priv->ndev;
547 		spin_lock_init(&(priv->tx_queue[i]->txlock));
548 	}
549 	return 0;
550 }
551 
552 static int gfar_alloc_rx_queues(struct gfar_private *priv)
553 {
554 	int i;
555 
556 	for (i = 0; i < priv->num_rx_queues; i++) {
557 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
558 					    GFP_KERNEL);
559 		if (!priv->rx_queue[i])
560 			return -ENOMEM;
561 
562 		priv->rx_queue[i]->qindex = i;
563 		priv->rx_queue[i]->ndev = priv->ndev;
564 	}
565 	return 0;
566 }
567 
568 static void gfar_free_tx_queues(struct gfar_private *priv)
569 {
570 	int i;
571 
572 	for (i = 0; i < priv->num_tx_queues; i++)
573 		kfree(priv->tx_queue[i]);
574 }
575 
576 static void gfar_free_rx_queues(struct gfar_private *priv)
577 {
578 	int i;
579 
580 	for (i = 0; i < priv->num_rx_queues; i++)
581 		kfree(priv->rx_queue[i]);
582 }
583 
584 static void unmap_group_regs(struct gfar_private *priv)
585 {
586 	int i;
587 
588 	for (i = 0; i < MAXGROUPS; i++)
589 		if (priv->gfargrp[i].regs)
590 			iounmap(priv->gfargrp[i].regs);
591 }
592 
593 static void free_gfar_dev(struct gfar_private *priv)
594 {
595 	int i, j;
596 
597 	for (i = 0; i < priv->num_grps; i++)
598 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
599 			kfree(priv->gfargrp[i].irqinfo[j]);
600 			priv->gfargrp[i].irqinfo[j] = NULL;
601 		}
602 
603 	free_netdev(priv->ndev);
604 }
605 
606 static void disable_napi(struct gfar_private *priv)
607 {
608 	int i;
609 
610 	for (i = 0; i < priv->num_grps; i++) {
611 		napi_disable(&priv->gfargrp[i].napi_rx);
612 		napi_disable(&priv->gfargrp[i].napi_tx);
613 	}
614 }
615 
616 static void enable_napi(struct gfar_private *priv)
617 {
618 	int i;
619 
620 	for (i = 0; i < priv->num_grps; i++) {
621 		napi_enable(&priv->gfargrp[i].napi_rx);
622 		napi_enable(&priv->gfargrp[i].napi_tx);
623 	}
624 }
625 
626 static int gfar_parse_group(struct device_node *np,
627 			    struct gfar_private *priv, const char *model)
628 {
629 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
630 	int i;
631 
632 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
633 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
634 					  GFP_KERNEL);
635 		if (!grp->irqinfo[i])
636 			return -ENOMEM;
637 	}
638 
639 	grp->regs = of_iomap(np, 0);
640 	if (!grp->regs)
641 		return -ENOMEM;
642 
643 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
644 
645 	/* If we aren't the FEC we have multiple interrupts */
646 	if (model && strcasecmp(model, "FEC")) {
647 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
648 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
649 		if (!gfar_irq(grp, TX)->irq ||
650 		    !gfar_irq(grp, RX)->irq ||
651 		    !gfar_irq(grp, ER)->irq)
652 			return -EINVAL;
653 	}
654 
655 	grp->priv = priv;
656 	spin_lock_init(&grp->grplock);
657 	if (priv->mode == MQ_MG_MODE) {
658 		u32 rxq_mask, txq_mask;
659 		int ret;
660 
661 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
662 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 
664 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
665 		if (!ret) {
666 			grp->rx_bit_map = rxq_mask ?
667 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
668 		}
669 
670 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
671 		if (!ret) {
672 			grp->tx_bit_map = txq_mask ?
673 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
674 		}
675 
676 		if (priv->poll_mode == GFAR_SQ_POLLING) {
677 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
678 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
679 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 		}
681 	} else {
682 		grp->rx_bit_map = 0xFF;
683 		grp->tx_bit_map = 0xFF;
684 	}
685 
686 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
687 	 * right to left, so we need to revert the 8 bits to get the q index
688 	 */
689 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
690 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
691 
692 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
693 	 * also assign queues to groups
694 	 */
695 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
696 		if (!grp->rx_queue)
697 			grp->rx_queue = priv->rx_queue[i];
698 		grp->num_rx_queues++;
699 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
700 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
701 		priv->rx_queue[i]->grp = grp;
702 	}
703 
704 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
705 		if (!grp->tx_queue)
706 			grp->tx_queue = priv->tx_queue[i];
707 		grp->num_tx_queues++;
708 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
709 		priv->tqueue |= (TQUEUE_EN0 >> i);
710 		priv->tx_queue[i]->grp = grp;
711 	}
712 
713 	priv->num_grps++;
714 
715 	return 0;
716 }
717 
718 static int gfar_of_group_count(struct device_node *np)
719 {
720 	struct device_node *child;
721 	int num = 0;
722 
723 	for_each_available_child_of_node(np, child)
724 		if (of_node_name_eq(child, "queue-group"))
725 			num++;
726 
727 	return num;
728 }
729 
730 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
731 {
732 	const char *model;
733 	const char *ctype;
734 	const void *mac_addr;
735 	int err = 0, i;
736 	struct net_device *dev = NULL;
737 	struct gfar_private *priv = NULL;
738 	struct device_node *np = ofdev->dev.of_node;
739 	struct device_node *child = NULL;
740 	u32 stash_len = 0;
741 	u32 stash_idx = 0;
742 	unsigned int num_tx_qs, num_rx_qs;
743 	unsigned short mode, poll_mode;
744 
745 	if (!np)
746 		return -ENODEV;
747 
748 	if (of_device_is_compatible(np, "fsl,etsec2")) {
749 		mode = MQ_MG_MODE;
750 		poll_mode = GFAR_SQ_POLLING;
751 	} else {
752 		mode = SQ_SG_MODE;
753 		poll_mode = GFAR_SQ_POLLING;
754 	}
755 
756 	if (mode == SQ_SG_MODE) {
757 		num_tx_qs = 1;
758 		num_rx_qs = 1;
759 	} else { /* MQ_MG_MODE */
760 		/* get the actual number of supported groups */
761 		unsigned int num_grps = gfar_of_group_count(np);
762 
763 		if (num_grps == 0 || num_grps > MAXGROUPS) {
764 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
765 				num_grps);
766 			pr_err("Cannot do alloc_etherdev, aborting\n");
767 			return -EINVAL;
768 		}
769 
770 		if (poll_mode == GFAR_SQ_POLLING) {
771 			num_tx_qs = num_grps; /* one txq per int group */
772 			num_rx_qs = num_grps; /* one rxq per int group */
773 		} else { /* GFAR_MQ_POLLING */
774 			u32 tx_queues, rx_queues;
775 			int ret;
776 
777 			/* parse the num of HW tx and rx queues */
778 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
779 						   &tx_queues);
780 			num_tx_qs = ret ? 1 : tx_queues;
781 
782 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
783 						   &rx_queues);
784 			num_rx_qs = ret ? 1 : rx_queues;
785 		}
786 	}
787 
788 	if (num_tx_qs > MAX_TX_QS) {
789 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
790 		       num_tx_qs, MAX_TX_QS);
791 		pr_err("Cannot do alloc_etherdev, aborting\n");
792 		return -EINVAL;
793 	}
794 
795 	if (num_rx_qs > MAX_RX_QS) {
796 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
797 		       num_rx_qs, MAX_RX_QS);
798 		pr_err("Cannot do alloc_etherdev, aborting\n");
799 		return -EINVAL;
800 	}
801 
802 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
803 	dev = *pdev;
804 	if (NULL == dev)
805 		return -ENOMEM;
806 
807 	priv = netdev_priv(dev);
808 	priv->ndev = dev;
809 
810 	priv->mode = mode;
811 	priv->poll_mode = poll_mode;
812 
813 	priv->num_tx_queues = num_tx_qs;
814 	netif_set_real_num_rx_queues(dev, num_rx_qs);
815 	priv->num_rx_queues = num_rx_qs;
816 
817 	err = gfar_alloc_tx_queues(priv);
818 	if (err)
819 		goto tx_alloc_failed;
820 
821 	err = gfar_alloc_rx_queues(priv);
822 	if (err)
823 		goto rx_alloc_failed;
824 
825 	err = of_property_read_string(np, "model", &model);
826 	if (err) {
827 		pr_err("Device model property missing, aborting\n");
828 		goto rx_alloc_failed;
829 	}
830 
831 	/* Init Rx queue filer rule set linked list */
832 	INIT_LIST_HEAD(&priv->rx_list.list);
833 	priv->rx_list.count = 0;
834 	mutex_init(&priv->rx_queue_access);
835 
836 	for (i = 0; i < MAXGROUPS; i++)
837 		priv->gfargrp[i].regs = NULL;
838 
839 	/* Parse and initialize group specific information */
840 	if (priv->mode == MQ_MG_MODE) {
841 		for_each_available_child_of_node(np, child) {
842 			if (!of_node_name_eq(child, "queue-group"))
843 				continue;
844 
845 			err = gfar_parse_group(child, priv, model);
846 			if (err)
847 				goto err_grp_init;
848 		}
849 	} else { /* SQ_SG_MODE */
850 		err = gfar_parse_group(np, priv, model);
851 		if (err)
852 			goto err_grp_init;
853 	}
854 
855 	if (of_property_read_bool(np, "bd-stash")) {
856 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
857 		priv->bd_stash_en = 1;
858 	}
859 
860 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
861 
862 	if (err == 0)
863 		priv->rx_stash_size = stash_len;
864 
865 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
866 
867 	if (err == 0)
868 		priv->rx_stash_index = stash_idx;
869 
870 	if (stash_len || stash_idx)
871 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
872 
873 	mac_addr = of_get_mac_address(np);
874 
875 	if (!IS_ERR(mac_addr))
876 		ether_addr_copy(dev->dev_addr, mac_addr);
877 
878 	if (model && !strcasecmp(model, "TSEC"))
879 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
880 				     FSL_GIANFAR_DEV_HAS_COALESCE |
881 				     FSL_GIANFAR_DEV_HAS_RMON |
882 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
883 
884 	if (model && !strcasecmp(model, "eTSEC"))
885 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
886 				     FSL_GIANFAR_DEV_HAS_COALESCE |
887 				     FSL_GIANFAR_DEV_HAS_RMON |
888 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
889 				     FSL_GIANFAR_DEV_HAS_CSUM |
890 				     FSL_GIANFAR_DEV_HAS_VLAN |
891 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
892 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
893 				     FSL_GIANFAR_DEV_HAS_TIMER |
894 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
895 
896 	err = of_property_read_string(np, "phy-connection-type", &ctype);
897 
898 	/* We only care about rgmii-id.  The rest are autodetected */
899 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
900 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
901 	else
902 		priv->interface = PHY_INTERFACE_MODE_MII;
903 
904 	if (of_find_property(np, "fsl,magic-packet", NULL))
905 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
906 
907 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
909 
910 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911 
912 	/* In the case of a fixed PHY, the DT node associated
913 	 * to the PHY is the Ethernet MAC DT node.
914 	 */
915 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916 		err = of_phy_register_fixed_link(np);
917 		if (err)
918 			goto err_grp_init;
919 
920 		priv->phy_node = of_node_get(np);
921 	}
922 
923 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
924 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925 
926 	return 0;
927 
928 err_grp_init:
929 	unmap_group_regs(priv);
930 rx_alloc_failed:
931 	gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933 	gfar_free_tx_queues(priv);
934 	free_gfar_dev(priv);
935 	return err;
936 }
937 
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940 	struct hwtstamp_config config;
941 	struct gfar_private *priv = netdev_priv(netdev);
942 
943 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944 		return -EFAULT;
945 
946 	/* reserved for future extensions */
947 	if (config.flags)
948 		return -EINVAL;
949 
950 	switch (config.tx_type) {
951 	case HWTSTAMP_TX_OFF:
952 		priv->hwts_tx_en = 0;
953 		break;
954 	case HWTSTAMP_TX_ON:
955 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 			return -ERANGE;
957 		priv->hwts_tx_en = 1;
958 		break;
959 	default:
960 		return -ERANGE;
961 	}
962 
963 	switch (config.rx_filter) {
964 	case HWTSTAMP_FILTER_NONE:
965 		if (priv->hwts_rx_en) {
966 			priv->hwts_rx_en = 0;
967 			reset_gfar(netdev);
968 		}
969 		break;
970 	default:
971 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972 			return -ERANGE;
973 		if (!priv->hwts_rx_en) {
974 			priv->hwts_rx_en = 1;
975 			reset_gfar(netdev);
976 		}
977 		config.rx_filter = HWTSTAMP_FILTER_ALL;
978 		break;
979 	}
980 
981 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982 		-EFAULT : 0;
983 }
984 
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987 	struct hwtstamp_config config;
988 	struct gfar_private *priv = netdev_priv(netdev);
989 
990 	config.flags = 0;
991 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992 	config.rx_filter = (priv->hwts_rx_en ?
993 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994 
995 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996 		-EFAULT : 0;
997 }
998 
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001 	struct phy_device *phydev = dev->phydev;
1002 
1003 	if (!netif_running(dev))
1004 		return -EINVAL;
1005 
1006 	if (cmd == SIOCSHWTSTAMP)
1007 		return gfar_hwtstamp_set(dev, rq);
1008 	if (cmd == SIOCGHWTSTAMP)
1009 		return gfar_hwtstamp_get(dev, rq);
1010 
1011 	if (!phydev)
1012 		return -ENODEV;
1013 
1014 	return phy_mii_ioctl(phydev, rq, cmd);
1015 }
1016 
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018 				   u32 class)
1019 {
1020 	u32 rqfpr = FPR_FILER_MASK;
1021 	u32 rqfcr = 0x0;
1022 
1023 	rqfar--;
1024 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025 	priv->ftp_rqfpr[rqfar] = rqfpr;
1026 	priv->ftp_rqfcr[rqfar] = rqfcr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	rqfar--;
1030 	rqfcr = RQFCR_CMP_NOMATCH;
1031 	priv->ftp_rqfpr[rqfar] = rqfpr;
1032 	priv->ftp_rqfcr[rqfar] = rqfcr;
1033 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034 
1035 	rqfar--;
1036 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037 	rqfpr = class;
1038 	priv->ftp_rqfcr[rqfar] = rqfcr;
1039 	priv->ftp_rqfpr[rqfar] = rqfpr;
1040 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041 
1042 	rqfar--;
1043 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044 	rqfpr = class;
1045 	priv->ftp_rqfcr[rqfar] = rqfcr;
1046 	priv->ftp_rqfpr[rqfar] = rqfpr;
1047 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048 
1049 	return rqfar;
1050 }
1051 
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054 	int i = 0x0;
1055 	u32 rqfar = MAX_FILER_IDX;
1056 	u32 rqfcr = 0x0;
1057 	u32 rqfpr = FPR_FILER_MASK;
1058 
1059 	/* Default rule */
1060 	rqfcr = RQFCR_CMP_MATCH;
1061 	priv->ftp_rqfcr[rqfar] = rqfcr;
1062 	priv->ftp_rqfpr[rqfar] = rqfpr;
1063 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064 
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071 
1072 	/* cur_filer_idx indicated the first non-masked rule */
1073 	priv->cur_filer_idx = rqfar;
1074 
1075 	/* Rest are masked rules */
1076 	rqfcr = RQFCR_CMP_NOMATCH;
1077 	for (i = 0; i < rqfar; i++) {
1078 		priv->ftp_rqfcr[i] = rqfcr;
1079 		priv->ftp_rqfpr[i] = rqfpr;
1080 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1081 	}
1082 }
1083 
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087 	unsigned int pvr = mfspr(SPRN_PVR);
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090 	unsigned int rev = svr & 0xffff;
1091 
1092 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1093 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095 		priv->errata |= GFAR_ERRATA_74;
1096 
1097 	/* MPC8313 and MPC837x all rev */
1098 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100 		priv->errata |= GFAR_ERRATA_76;
1101 
1102 	/* MPC8313 Rev < 2.0 */
1103 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104 		priv->errata |= GFAR_ERRATA_12;
1105 }
1106 
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109 	unsigned int svr = mfspr(SPRN_SVR);
1110 
1111 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112 		priv->errata |= GFAR_ERRATA_12;
1113 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1114 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1115 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1116 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1117 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1118 }
1119 #endif
1120 
1121 static void gfar_detect_errata(struct gfar_private *priv)
1122 {
1123 	struct device *dev = &priv->ofdev->dev;
1124 
1125 	/* no plans to fix */
1126 	priv->errata |= GFAR_ERRATA_A002;
1127 
1128 #ifdef CONFIG_PPC
1129 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1130 		__gfar_detect_errata_85xx(priv);
1131 	else /* non-mpc85xx parts, i.e. e300 core based */
1132 		__gfar_detect_errata_83xx(priv);
1133 #endif
1134 
1135 	if (priv->errata)
1136 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1137 			 priv->errata);
1138 }
1139 
1140 void gfar_mac_reset(struct gfar_private *priv)
1141 {
1142 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1143 	u32 tempval;
1144 
1145 	/* Reset MAC layer */
1146 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1147 
1148 	/* We need to delay at least 3 TX clocks */
1149 	udelay(3);
1150 
1151 	/* the soft reset bit is not self-resetting, so we need to
1152 	 * clear it before resuming normal operation
1153 	 */
1154 	gfar_write(&regs->maccfg1, 0);
1155 
1156 	udelay(3);
1157 
1158 	gfar_rx_offload_en(priv);
1159 
1160 	/* Initialize the max receive frame/buffer lengths */
1161 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1162 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1163 
1164 	/* Initialize the Minimum Frame Length Register */
1165 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1166 
1167 	/* Initialize MACCFG2. */
1168 	tempval = MACCFG2_INIT_SETTINGS;
1169 
1170 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1171 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1172 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1173 	 */
1174 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1175 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1176 
1177 	gfar_write(&regs->maccfg2, tempval);
1178 
1179 	/* Clear mac addr hash registers */
1180 	gfar_write(&regs->igaddr0, 0);
1181 	gfar_write(&regs->igaddr1, 0);
1182 	gfar_write(&regs->igaddr2, 0);
1183 	gfar_write(&regs->igaddr3, 0);
1184 	gfar_write(&regs->igaddr4, 0);
1185 	gfar_write(&regs->igaddr5, 0);
1186 	gfar_write(&regs->igaddr6, 0);
1187 	gfar_write(&regs->igaddr7, 0);
1188 
1189 	gfar_write(&regs->gaddr0, 0);
1190 	gfar_write(&regs->gaddr1, 0);
1191 	gfar_write(&regs->gaddr2, 0);
1192 	gfar_write(&regs->gaddr3, 0);
1193 	gfar_write(&regs->gaddr4, 0);
1194 	gfar_write(&regs->gaddr5, 0);
1195 	gfar_write(&regs->gaddr6, 0);
1196 	gfar_write(&regs->gaddr7, 0);
1197 
1198 	if (priv->extended_hash)
1199 		gfar_clear_exact_match(priv->ndev);
1200 
1201 	gfar_mac_rx_config(priv);
1202 
1203 	gfar_mac_tx_config(priv);
1204 
1205 	gfar_set_mac_address(priv->ndev);
1206 
1207 	gfar_set_multi(priv->ndev);
1208 
1209 	/* clear ievent and imask before configuring coalescing */
1210 	gfar_ints_disable(priv);
1211 
1212 	/* Configure the coalescing support */
1213 	gfar_configure_coalescing_all(priv);
1214 }
1215 
1216 static void gfar_hw_init(struct gfar_private *priv)
1217 {
1218 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1219 	u32 attrs;
1220 
1221 	/* Stop the DMA engine now, in case it was running before
1222 	 * (The firmware could have used it, and left it running).
1223 	 */
1224 	gfar_halt(priv);
1225 
1226 	gfar_mac_reset(priv);
1227 
1228 	/* Zero out the rmon mib registers if it has them */
1229 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1230 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1231 
1232 		/* Mask off the CAM interrupts */
1233 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1234 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1235 	}
1236 
1237 	/* Initialize ECNTRL */
1238 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1239 
1240 	/* Set the extraction length and index */
1241 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1242 		ATTRELI_EI(priv->rx_stash_index);
1243 
1244 	gfar_write(&regs->attreli, attrs);
1245 
1246 	/* Start with defaults, and add stashing
1247 	 * depending on driver parameters
1248 	 */
1249 	attrs = ATTR_INIT_SETTINGS;
1250 
1251 	if (priv->bd_stash_en)
1252 		attrs |= ATTR_BDSTASH;
1253 
1254 	if (priv->rx_stash_size != 0)
1255 		attrs |= ATTR_BUFSTASH;
1256 
1257 	gfar_write(&regs->attr, attrs);
1258 
1259 	/* FIFO configs */
1260 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1261 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1262 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1263 
1264 	/* Program the interrupt steering regs, only for MG devices */
1265 	if (priv->num_grps > 1)
1266 		gfar_write_isrg(priv);
1267 }
1268 
1269 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1270 {
1271 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1272 
1273 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1274 		priv->extended_hash = 1;
1275 		priv->hash_width = 9;
1276 
1277 		priv->hash_regs[0] = &regs->igaddr0;
1278 		priv->hash_regs[1] = &regs->igaddr1;
1279 		priv->hash_regs[2] = &regs->igaddr2;
1280 		priv->hash_regs[3] = &regs->igaddr3;
1281 		priv->hash_regs[4] = &regs->igaddr4;
1282 		priv->hash_regs[5] = &regs->igaddr5;
1283 		priv->hash_regs[6] = &regs->igaddr6;
1284 		priv->hash_regs[7] = &regs->igaddr7;
1285 		priv->hash_regs[8] = &regs->gaddr0;
1286 		priv->hash_regs[9] = &regs->gaddr1;
1287 		priv->hash_regs[10] = &regs->gaddr2;
1288 		priv->hash_regs[11] = &regs->gaddr3;
1289 		priv->hash_regs[12] = &regs->gaddr4;
1290 		priv->hash_regs[13] = &regs->gaddr5;
1291 		priv->hash_regs[14] = &regs->gaddr6;
1292 		priv->hash_regs[15] = &regs->gaddr7;
1293 
1294 	} else {
1295 		priv->extended_hash = 0;
1296 		priv->hash_width = 8;
1297 
1298 		priv->hash_regs[0] = &regs->gaddr0;
1299 		priv->hash_regs[1] = &regs->gaddr1;
1300 		priv->hash_regs[2] = &regs->gaddr2;
1301 		priv->hash_regs[3] = &regs->gaddr3;
1302 		priv->hash_regs[4] = &regs->gaddr4;
1303 		priv->hash_regs[5] = &regs->gaddr5;
1304 		priv->hash_regs[6] = &regs->gaddr6;
1305 		priv->hash_regs[7] = &regs->gaddr7;
1306 	}
1307 }
1308 
1309 /* Set up the ethernet device structure, private data,
1310  * and anything else we need before we start
1311  */
1312 static int gfar_probe(struct platform_device *ofdev)
1313 {
1314 	struct device_node *np = ofdev->dev.of_node;
1315 	struct net_device *dev = NULL;
1316 	struct gfar_private *priv = NULL;
1317 	int err = 0, i;
1318 
1319 	err = gfar_of_init(ofdev, &dev);
1320 
1321 	if (err)
1322 		return err;
1323 
1324 	priv = netdev_priv(dev);
1325 	priv->ndev = dev;
1326 	priv->ofdev = ofdev;
1327 	priv->dev = &ofdev->dev;
1328 	SET_NETDEV_DEV(dev, &ofdev->dev);
1329 
1330 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1331 
1332 	platform_set_drvdata(ofdev, priv);
1333 
1334 	gfar_detect_errata(priv);
1335 
1336 	/* Set the dev->base_addr to the gfar reg region */
1337 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338 
1339 	/* Fill in the dev structure */
1340 	dev->watchdog_timeo = TX_TIMEOUT;
1341 	/* MTU range: 50 - 9586 */
1342 	dev->mtu = 1500;
1343 	dev->min_mtu = 50;
1344 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1345 	dev->netdev_ops = &gfar_netdev_ops;
1346 	dev->ethtool_ops = &gfar_ethtool_ops;
1347 
1348 	/* Register for napi ...We are registering NAPI for each grp */
1349 	for (i = 0; i < priv->num_grps; i++) {
1350 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1351 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1352 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1353 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1354 				       gfar_poll_tx_sq, 2);
1355 		} else {
1356 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1357 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1358 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1359 				       gfar_poll_tx, 2);
1360 		}
1361 	}
1362 
1363 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1364 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1365 				   NETIF_F_RXCSUM;
1366 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1367 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1368 	}
1369 
1370 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1371 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1372 				    NETIF_F_HW_VLAN_CTAG_RX;
1373 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1374 	}
1375 
1376 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1377 
1378 	gfar_init_addr_hash_table(priv);
1379 
1380 	/* Insert receive time stamps into padding alignment bytes, and
1381 	 * plus 2 bytes padding to ensure the cpu alignment.
1382 	 */
1383 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 		priv->padding = 8 + DEFAULT_PADDING;
1385 
1386 	if (dev->features & NETIF_F_IP_CSUM ||
1387 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1388 		dev->needed_headroom = GMAC_FCB_LEN;
1389 
1390 	/* Initializing some of the rx/tx queue level parameters */
1391 	for (i = 0; i < priv->num_tx_queues; i++) {
1392 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1393 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1394 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1395 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1396 	}
1397 
1398 	for (i = 0; i < priv->num_rx_queues; i++) {
1399 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1400 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1401 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1402 	}
1403 
1404 	/* Always enable rx filer if available */
1405 	priv->rx_filer_enable =
1406 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1407 	/* Enable most messages by default */
1408 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1409 	/* use pritority h/w tx queue scheduling for single queue devices */
1410 	if (priv->num_tx_queues == 1)
1411 		priv->prio_sched_en = 1;
1412 
1413 	set_bit(GFAR_DOWN, &priv->state);
1414 
1415 	gfar_hw_init(priv);
1416 
1417 	/* Carrier starts down, phylib will bring it up */
1418 	netif_carrier_off(dev);
1419 
1420 	err = register_netdev(dev);
1421 
1422 	if (err) {
1423 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1424 		goto register_fail;
1425 	}
1426 
1427 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1428 		priv->wol_supported |= GFAR_WOL_MAGIC;
1429 
1430 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1431 	    priv->rx_filer_enable)
1432 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1433 
1434 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1435 
1436 	/* fill out IRQ number and name fields */
1437 	for (i = 0; i < priv->num_grps; i++) {
1438 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1439 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1440 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1441 				dev->name, "_g", '0' + i, "_tx");
1442 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1443 				dev->name, "_g", '0' + i, "_rx");
1444 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1445 				dev->name, "_g", '0' + i, "_er");
1446 		} else
1447 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1448 	}
1449 
1450 	/* Initialize the filer table */
1451 	gfar_init_filer_table(priv);
1452 
1453 	/* Print out the device info */
1454 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1455 
1456 	/* Even more device info helps when determining which kernel
1457 	 * provided which set of benchmarks.
1458 	 */
1459 	netdev_info(dev, "Running with NAPI enabled\n");
1460 	for (i = 0; i < priv->num_rx_queues; i++)
1461 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1462 			    i, priv->rx_queue[i]->rx_ring_size);
1463 	for (i = 0; i < priv->num_tx_queues; i++)
1464 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1465 			    i, priv->tx_queue[i]->tx_ring_size);
1466 
1467 	return 0;
1468 
1469 register_fail:
1470 	if (of_phy_is_fixed_link(np))
1471 		of_phy_deregister_fixed_link(np);
1472 	unmap_group_regs(priv);
1473 	gfar_free_rx_queues(priv);
1474 	gfar_free_tx_queues(priv);
1475 	of_node_put(priv->phy_node);
1476 	of_node_put(priv->tbi_node);
1477 	free_gfar_dev(priv);
1478 	return err;
1479 }
1480 
1481 static int gfar_remove(struct platform_device *ofdev)
1482 {
1483 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1484 	struct device_node *np = ofdev->dev.of_node;
1485 
1486 	of_node_put(priv->phy_node);
1487 	of_node_put(priv->tbi_node);
1488 
1489 	unregister_netdev(priv->ndev);
1490 
1491 	if (of_phy_is_fixed_link(np))
1492 		of_phy_deregister_fixed_link(np);
1493 
1494 	unmap_group_regs(priv);
1495 	gfar_free_rx_queues(priv);
1496 	gfar_free_tx_queues(priv);
1497 	free_gfar_dev(priv);
1498 
1499 	return 0;
1500 }
1501 
1502 #ifdef CONFIG_PM
1503 
1504 static void __gfar_filer_disable(struct gfar_private *priv)
1505 {
1506 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1507 	u32 temp;
1508 
1509 	temp = gfar_read(&regs->rctrl);
1510 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1511 	gfar_write(&regs->rctrl, temp);
1512 }
1513 
1514 static void __gfar_filer_enable(struct gfar_private *priv)
1515 {
1516 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1517 	u32 temp;
1518 
1519 	temp = gfar_read(&regs->rctrl);
1520 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1521 	gfar_write(&regs->rctrl, temp);
1522 }
1523 
1524 /* Filer rules implementing wol capabilities */
1525 static void gfar_filer_config_wol(struct gfar_private *priv)
1526 {
1527 	unsigned int i;
1528 	u32 rqfcr;
1529 
1530 	__gfar_filer_disable(priv);
1531 
1532 	/* clear the filer table, reject any packet by default */
1533 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1534 	for (i = 0; i <= MAX_FILER_IDX; i++)
1535 		gfar_write_filer(priv, i, rqfcr, 0);
1536 
1537 	i = 0;
1538 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1539 		/* unicast packet, accept it */
1540 		struct net_device *ndev = priv->ndev;
1541 		/* get the default rx queue index */
1542 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1543 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1544 				    (ndev->dev_addr[1] << 8) |
1545 				     ndev->dev_addr[2];
1546 
1547 		rqfcr = (qindex << 10) | RQFCR_AND |
1548 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1549 
1550 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1551 
1552 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1553 				(ndev->dev_addr[4] << 8) |
1554 				 ndev->dev_addr[5];
1555 		rqfcr = (qindex << 10) | RQFCR_GPI |
1556 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1557 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1558 	}
1559 
1560 	__gfar_filer_enable(priv);
1561 }
1562 
1563 static void gfar_filer_restore_table(struct gfar_private *priv)
1564 {
1565 	u32 rqfcr, rqfpr;
1566 	unsigned int i;
1567 
1568 	__gfar_filer_disable(priv);
1569 
1570 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1571 		rqfcr = priv->ftp_rqfcr[i];
1572 		rqfpr = priv->ftp_rqfpr[i];
1573 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1574 	}
1575 
1576 	__gfar_filer_enable(priv);
1577 }
1578 
1579 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1580 static void gfar_start_wol_filer(struct gfar_private *priv)
1581 {
1582 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1583 	u32 tempval;
1584 	int i = 0;
1585 
1586 	/* Enable Rx hw queues */
1587 	gfar_write(&regs->rqueue, priv->rqueue);
1588 
1589 	/* Initialize DMACTRL to have WWR and WOP */
1590 	tempval = gfar_read(&regs->dmactrl);
1591 	tempval |= DMACTRL_INIT_SETTINGS;
1592 	gfar_write(&regs->dmactrl, tempval);
1593 
1594 	/* Make sure we aren't stopped */
1595 	tempval = gfar_read(&regs->dmactrl);
1596 	tempval &= ~DMACTRL_GRS;
1597 	gfar_write(&regs->dmactrl, tempval);
1598 
1599 	for (i = 0; i < priv->num_grps; i++) {
1600 		regs = priv->gfargrp[i].regs;
1601 		/* Clear RHLT, so that the DMA starts polling now */
1602 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1603 		/* enable the Filer General Purpose Interrupt */
1604 		gfar_write(&regs->imask, IMASK_FGPI);
1605 	}
1606 
1607 	/* Enable Rx DMA */
1608 	tempval = gfar_read(&regs->maccfg1);
1609 	tempval |= MACCFG1_RX_EN;
1610 	gfar_write(&regs->maccfg1, tempval);
1611 }
1612 
1613 static int gfar_suspend(struct device *dev)
1614 {
1615 	struct gfar_private *priv = dev_get_drvdata(dev);
1616 	struct net_device *ndev = priv->ndev;
1617 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1618 	u32 tempval;
1619 	u16 wol = priv->wol_opts;
1620 
1621 	if (!netif_running(ndev))
1622 		return 0;
1623 
1624 	disable_napi(priv);
1625 	netif_tx_lock(ndev);
1626 	netif_device_detach(ndev);
1627 	netif_tx_unlock(ndev);
1628 
1629 	gfar_halt(priv);
1630 
1631 	if (wol & GFAR_WOL_MAGIC) {
1632 		/* Enable interrupt on Magic Packet */
1633 		gfar_write(&regs->imask, IMASK_MAG);
1634 
1635 		/* Enable Magic Packet mode */
1636 		tempval = gfar_read(&regs->maccfg2);
1637 		tempval |= MACCFG2_MPEN;
1638 		gfar_write(&regs->maccfg2, tempval);
1639 
1640 		/* re-enable the Rx block */
1641 		tempval = gfar_read(&regs->maccfg1);
1642 		tempval |= MACCFG1_RX_EN;
1643 		gfar_write(&regs->maccfg1, tempval);
1644 
1645 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1646 		gfar_filer_config_wol(priv);
1647 		gfar_start_wol_filer(priv);
1648 
1649 	} else {
1650 		phy_stop(ndev->phydev);
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 static int gfar_resume(struct device *dev)
1657 {
1658 	struct gfar_private *priv = dev_get_drvdata(dev);
1659 	struct net_device *ndev = priv->ndev;
1660 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1661 	u32 tempval;
1662 	u16 wol = priv->wol_opts;
1663 
1664 	if (!netif_running(ndev))
1665 		return 0;
1666 
1667 	if (wol & GFAR_WOL_MAGIC) {
1668 		/* Disable Magic Packet mode */
1669 		tempval = gfar_read(&regs->maccfg2);
1670 		tempval &= ~MACCFG2_MPEN;
1671 		gfar_write(&regs->maccfg2, tempval);
1672 
1673 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1674 		/* need to stop rx only, tx is already down */
1675 		gfar_halt(priv);
1676 		gfar_filer_restore_table(priv);
1677 
1678 	} else {
1679 		phy_start(ndev->phydev);
1680 	}
1681 
1682 	gfar_start(priv);
1683 
1684 	netif_device_attach(ndev);
1685 	enable_napi(priv);
1686 
1687 	return 0;
1688 }
1689 
1690 static int gfar_restore(struct device *dev)
1691 {
1692 	struct gfar_private *priv = dev_get_drvdata(dev);
1693 	struct net_device *ndev = priv->ndev;
1694 
1695 	if (!netif_running(ndev)) {
1696 		netif_device_attach(ndev);
1697 
1698 		return 0;
1699 	}
1700 
1701 	gfar_init_bds(ndev);
1702 
1703 	gfar_mac_reset(priv);
1704 
1705 	gfar_init_tx_rx_base(priv);
1706 
1707 	gfar_start(priv);
1708 
1709 	priv->oldlink = 0;
1710 	priv->oldspeed = 0;
1711 	priv->oldduplex = -1;
1712 
1713 	if (ndev->phydev)
1714 		phy_start(ndev->phydev);
1715 
1716 	netif_device_attach(ndev);
1717 	enable_napi(priv);
1718 
1719 	return 0;
1720 }
1721 
1722 static const struct dev_pm_ops gfar_pm_ops = {
1723 	.suspend = gfar_suspend,
1724 	.resume = gfar_resume,
1725 	.freeze = gfar_suspend,
1726 	.thaw = gfar_resume,
1727 	.restore = gfar_restore,
1728 };
1729 
1730 #define GFAR_PM_OPS (&gfar_pm_ops)
1731 
1732 #else
1733 
1734 #define GFAR_PM_OPS NULL
1735 
1736 #endif
1737 
1738 /* Reads the controller's registers to determine what interface
1739  * connects it to the PHY.
1740  */
1741 static phy_interface_t gfar_get_interface(struct net_device *dev)
1742 {
1743 	struct gfar_private *priv = netdev_priv(dev);
1744 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1745 	u32 ecntrl;
1746 
1747 	ecntrl = gfar_read(&regs->ecntrl);
1748 
1749 	if (ecntrl & ECNTRL_SGMII_MODE)
1750 		return PHY_INTERFACE_MODE_SGMII;
1751 
1752 	if (ecntrl & ECNTRL_TBI_MODE) {
1753 		if (ecntrl & ECNTRL_REDUCED_MODE)
1754 			return PHY_INTERFACE_MODE_RTBI;
1755 		else
1756 			return PHY_INTERFACE_MODE_TBI;
1757 	}
1758 
1759 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1760 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1761 			return PHY_INTERFACE_MODE_RMII;
1762 		}
1763 		else {
1764 			phy_interface_t interface = priv->interface;
1765 
1766 			/* This isn't autodetected right now, so it must
1767 			 * be set by the device tree or platform code.
1768 			 */
1769 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1770 				return PHY_INTERFACE_MODE_RGMII_ID;
1771 
1772 			return PHY_INTERFACE_MODE_RGMII;
1773 		}
1774 	}
1775 
1776 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1777 		return PHY_INTERFACE_MODE_GMII;
1778 
1779 	return PHY_INTERFACE_MODE_MII;
1780 }
1781 
1782 
1783 /* Initializes driver's PHY state, and attaches to the PHY.
1784  * Returns 0 on success.
1785  */
1786 static int init_phy(struct net_device *dev)
1787 {
1788 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1789 	struct gfar_private *priv = netdev_priv(dev);
1790 	phy_interface_t interface;
1791 	struct phy_device *phydev;
1792 	struct ethtool_eee edata;
1793 
1794 	linkmode_set_bit_array(phy_10_100_features_array,
1795 			       ARRAY_SIZE(phy_10_100_features_array),
1796 			       mask);
1797 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1798 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1799 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1800 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1801 
1802 	priv->oldlink = 0;
1803 	priv->oldspeed = 0;
1804 	priv->oldduplex = -1;
1805 
1806 	interface = gfar_get_interface(dev);
1807 
1808 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1809 				interface);
1810 	if (!phydev) {
1811 		dev_err(&dev->dev, "could not attach to PHY\n");
1812 		return -ENODEV;
1813 	}
1814 
1815 	if (interface == PHY_INTERFACE_MODE_SGMII)
1816 		gfar_configure_serdes(dev);
1817 
1818 	/* Remove any features not supported by the controller */
1819 	linkmode_and(phydev->supported, phydev->supported, mask);
1820 	linkmode_copy(phydev->advertising, phydev->supported);
1821 
1822 	/* Add support for flow control */
1823 	phy_support_asym_pause(phydev);
1824 
1825 	/* disable EEE autoneg, EEE not supported by eTSEC */
1826 	memset(&edata, 0, sizeof(struct ethtool_eee));
1827 	phy_ethtool_set_eee(phydev, &edata);
1828 
1829 	return 0;
1830 }
1831 
1832 /* Initialize TBI PHY interface for communicating with the
1833  * SERDES lynx PHY on the chip.  We communicate with this PHY
1834  * through the MDIO bus on each controller, treating it as a
1835  * "normal" PHY at the address found in the TBIPA register.  We assume
1836  * that the TBIPA register is valid.  Either the MDIO bus code will set
1837  * it to a value that doesn't conflict with other PHYs on the bus, or the
1838  * value doesn't matter, as there are no other PHYs on the bus.
1839  */
1840 static void gfar_configure_serdes(struct net_device *dev)
1841 {
1842 	struct gfar_private *priv = netdev_priv(dev);
1843 	struct phy_device *tbiphy;
1844 
1845 	if (!priv->tbi_node) {
1846 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1847 				    "device tree specify a tbi-handle\n");
1848 		return;
1849 	}
1850 
1851 	tbiphy = of_phy_find_device(priv->tbi_node);
1852 	if (!tbiphy) {
1853 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1854 		return;
1855 	}
1856 
1857 	/* If the link is already up, we must already be ok, and don't need to
1858 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1859 	 * everything for us?  Resetting it takes the link down and requires
1860 	 * several seconds for it to come back.
1861 	 */
1862 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1863 		put_device(&tbiphy->mdio.dev);
1864 		return;
1865 	}
1866 
1867 	/* Single clk mode, mii mode off(for serdes communication) */
1868 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1869 
1870 	phy_write(tbiphy, MII_ADVERTISE,
1871 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1872 		  ADVERTISE_1000XPSE_ASYM);
1873 
1874 	phy_write(tbiphy, MII_BMCR,
1875 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1876 		  BMCR_SPEED1000);
1877 
1878 	put_device(&tbiphy->mdio.dev);
1879 }
1880 
1881 static int __gfar_is_rx_idle(struct gfar_private *priv)
1882 {
1883 	u32 res;
1884 
1885 	/* Normaly TSEC should not hang on GRS commands, so we should
1886 	 * actually wait for IEVENT_GRSC flag.
1887 	 */
1888 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1889 		return 0;
1890 
1891 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1892 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1893 	 * and the Rx can be safely reset.
1894 	 */
1895 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1896 	res &= 0x7f807f80;
1897 	if ((res & 0xffff) == (res >> 16))
1898 		return 1;
1899 
1900 	return 0;
1901 }
1902 
1903 /* Halt the receive and transmit queues */
1904 static void gfar_halt_nodisable(struct gfar_private *priv)
1905 {
1906 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1907 	u32 tempval;
1908 	unsigned int timeout;
1909 	int stopped;
1910 
1911 	gfar_ints_disable(priv);
1912 
1913 	if (gfar_is_dma_stopped(priv))
1914 		return;
1915 
1916 	/* Stop the DMA, and wait for it to stop */
1917 	tempval = gfar_read(&regs->dmactrl);
1918 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1919 	gfar_write(&regs->dmactrl, tempval);
1920 
1921 retry:
1922 	timeout = 1000;
1923 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1924 		cpu_relax();
1925 		timeout--;
1926 	}
1927 
1928 	if (!timeout)
1929 		stopped = gfar_is_dma_stopped(priv);
1930 
1931 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1932 	    !__gfar_is_rx_idle(priv))
1933 		goto retry;
1934 }
1935 
1936 /* Halt the receive and transmit queues */
1937 void gfar_halt(struct gfar_private *priv)
1938 {
1939 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1940 	u32 tempval;
1941 
1942 	/* Dissable the Rx/Tx hw queues */
1943 	gfar_write(&regs->rqueue, 0);
1944 	gfar_write(&regs->tqueue, 0);
1945 
1946 	mdelay(10);
1947 
1948 	gfar_halt_nodisable(priv);
1949 
1950 	/* Disable Rx/Tx DMA */
1951 	tempval = gfar_read(&regs->maccfg1);
1952 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1953 	gfar_write(&regs->maccfg1, tempval);
1954 }
1955 
1956 void stop_gfar(struct net_device *dev)
1957 {
1958 	struct gfar_private *priv = netdev_priv(dev);
1959 
1960 	netif_tx_stop_all_queues(dev);
1961 
1962 	smp_mb__before_atomic();
1963 	set_bit(GFAR_DOWN, &priv->state);
1964 	smp_mb__after_atomic();
1965 
1966 	disable_napi(priv);
1967 
1968 	/* disable ints and gracefully shut down Rx/Tx DMA */
1969 	gfar_halt(priv);
1970 
1971 	phy_stop(dev->phydev);
1972 
1973 	free_skb_resources(priv);
1974 }
1975 
1976 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1977 {
1978 	struct txbd8 *txbdp;
1979 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1980 	int i, j;
1981 
1982 	txbdp = tx_queue->tx_bd_base;
1983 
1984 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1985 		if (!tx_queue->tx_skbuff[i])
1986 			continue;
1987 
1988 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1989 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1990 		txbdp->lstatus = 0;
1991 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1992 		     j++) {
1993 			txbdp++;
1994 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1995 				       be16_to_cpu(txbdp->length),
1996 				       DMA_TO_DEVICE);
1997 		}
1998 		txbdp++;
1999 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
2000 		tx_queue->tx_skbuff[i] = NULL;
2001 	}
2002 	kfree(tx_queue->tx_skbuff);
2003 	tx_queue->tx_skbuff = NULL;
2004 }
2005 
2006 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2007 {
2008 	int i;
2009 
2010 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2011 
2012 	if (rx_queue->skb)
2013 		dev_kfree_skb(rx_queue->skb);
2014 
2015 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2016 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2017 
2018 		rxbdp->lstatus = 0;
2019 		rxbdp->bufPtr = 0;
2020 		rxbdp++;
2021 
2022 		if (!rxb->page)
2023 			continue;
2024 
2025 		dma_unmap_page(rx_queue->dev, rxb->dma,
2026 			       PAGE_SIZE, DMA_FROM_DEVICE);
2027 		__free_page(rxb->page);
2028 
2029 		rxb->page = NULL;
2030 	}
2031 
2032 	kfree(rx_queue->rx_buff);
2033 	rx_queue->rx_buff = NULL;
2034 }
2035 
2036 /* If there are any tx skbs or rx skbs still around, free them.
2037  * Then free tx_skbuff and rx_skbuff
2038  */
2039 static void free_skb_resources(struct gfar_private *priv)
2040 {
2041 	struct gfar_priv_tx_q *tx_queue = NULL;
2042 	struct gfar_priv_rx_q *rx_queue = NULL;
2043 	int i;
2044 
2045 	/* Go through all the buffer descriptors and free their data buffers */
2046 	for (i = 0; i < priv->num_tx_queues; i++) {
2047 		struct netdev_queue *txq;
2048 
2049 		tx_queue = priv->tx_queue[i];
2050 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2051 		if (tx_queue->tx_skbuff)
2052 			free_skb_tx_queue(tx_queue);
2053 		netdev_tx_reset_queue(txq);
2054 	}
2055 
2056 	for (i = 0; i < priv->num_rx_queues; i++) {
2057 		rx_queue = priv->rx_queue[i];
2058 		if (rx_queue->rx_buff)
2059 			free_skb_rx_queue(rx_queue);
2060 	}
2061 
2062 	dma_free_coherent(priv->dev,
2063 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2064 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2065 			  priv->tx_queue[0]->tx_bd_base,
2066 			  priv->tx_queue[0]->tx_bd_dma_base);
2067 }
2068 
2069 void gfar_start(struct gfar_private *priv)
2070 {
2071 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2072 	u32 tempval;
2073 	int i = 0;
2074 
2075 	/* Enable Rx/Tx hw queues */
2076 	gfar_write(&regs->rqueue, priv->rqueue);
2077 	gfar_write(&regs->tqueue, priv->tqueue);
2078 
2079 	/* Initialize DMACTRL to have WWR and WOP */
2080 	tempval = gfar_read(&regs->dmactrl);
2081 	tempval |= DMACTRL_INIT_SETTINGS;
2082 	gfar_write(&regs->dmactrl, tempval);
2083 
2084 	/* Make sure we aren't stopped */
2085 	tempval = gfar_read(&regs->dmactrl);
2086 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2087 	gfar_write(&regs->dmactrl, tempval);
2088 
2089 	for (i = 0; i < priv->num_grps; i++) {
2090 		regs = priv->gfargrp[i].regs;
2091 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2092 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2093 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2094 	}
2095 
2096 	/* Enable Rx/Tx DMA */
2097 	tempval = gfar_read(&regs->maccfg1);
2098 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2099 	gfar_write(&regs->maccfg1, tempval);
2100 
2101 	gfar_ints_enable(priv);
2102 
2103 	netif_trans_update(priv->ndev); /* prevent tx timeout */
2104 }
2105 
2106 static void free_grp_irqs(struct gfar_priv_grp *grp)
2107 {
2108 	free_irq(gfar_irq(grp, TX)->irq, grp);
2109 	free_irq(gfar_irq(grp, RX)->irq, grp);
2110 	free_irq(gfar_irq(grp, ER)->irq, grp);
2111 }
2112 
2113 static int register_grp_irqs(struct gfar_priv_grp *grp)
2114 {
2115 	struct gfar_private *priv = grp->priv;
2116 	struct net_device *dev = priv->ndev;
2117 	int err;
2118 
2119 	/* If the device has multiple interrupts, register for
2120 	 * them.  Otherwise, only register for the one
2121 	 */
2122 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2123 		/* Install our interrupt handlers for Error,
2124 		 * Transmit, and Receive
2125 		 */
2126 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2127 				  gfar_irq(grp, ER)->name, grp);
2128 		if (err < 0) {
2129 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2130 				  gfar_irq(grp, ER)->irq);
2131 
2132 			goto err_irq_fail;
2133 		}
2134 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2135 
2136 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2137 				  gfar_irq(grp, TX)->name, grp);
2138 		if (err < 0) {
2139 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2140 				  gfar_irq(grp, TX)->irq);
2141 			goto tx_irq_fail;
2142 		}
2143 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2144 				  gfar_irq(grp, RX)->name, grp);
2145 		if (err < 0) {
2146 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2147 				  gfar_irq(grp, RX)->irq);
2148 			goto rx_irq_fail;
2149 		}
2150 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2151 
2152 	} else {
2153 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2154 				  gfar_irq(grp, TX)->name, grp);
2155 		if (err < 0) {
2156 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2157 				  gfar_irq(grp, TX)->irq);
2158 			goto err_irq_fail;
2159 		}
2160 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2161 	}
2162 
2163 	return 0;
2164 
2165 rx_irq_fail:
2166 	free_irq(gfar_irq(grp, TX)->irq, grp);
2167 tx_irq_fail:
2168 	free_irq(gfar_irq(grp, ER)->irq, grp);
2169 err_irq_fail:
2170 	return err;
2171 
2172 }
2173 
2174 static void gfar_free_irq(struct gfar_private *priv)
2175 {
2176 	int i;
2177 
2178 	/* Free the IRQs */
2179 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2180 		for (i = 0; i < priv->num_grps; i++)
2181 			free_grp_irqs(&priv->gfargrp[i]);
2182 	} else {
2183 		for (i = 0; i < priv->num_grps; i++)
2184 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2185 				 &priv->gfargrp[i]);
2186 	}
2187 }
2188 
2189 static int gfar_request_irq(struct gfar_private *priv)
2190 {
2191 	int err, i, j;
2192 
2193 	for (i = 0; i < priv->num_grps; i++) {
2194 		err = register_grp_irqs(&priv->gfargrp[i]);
2195 		if (err) {
2196 			for (j = 0; j < i; j++)
2197 				free_grp_irqs(&priv->gfargrp[j]);
2198 			return err;
2199 		}
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 /* Bring the controller up and running */
2206 int startup_gfar(struct net_device *ndev)
2207 {
2208 	struct gfar_private *priv = netdev_priv(ndev);
2209 	int err;
2210 
2211 	gfar_mac_reset(priv);
2212 
2213 	err = gfar_alloc_skb_resources(ndev);
2214 	if (err)
2215 		return err;
2216 
2217 	gfar_init_tx_rx_base(priv);
2218 
2219 	smp_mb__before_atomic();
2220 	clear_bit(GFAR_DOWN, &priv->state);
2221 	smp_mb__after_atomic();
2222 
2223 	/* Start Rx/Tx DMA and enable the interrupts */
2224 	gfar_start(priv);
2225 
2226 	/* force link state update after mac reset */
2227 	priv->oldlink = 0;
2228 	priv->oldspeed = 0;
2229 	priv->oldduplex = -1;
2230 
2231 	phy_start(ndev->phydev);
2232 
2233 	enable_napi(priv);
2234 
2235 	netif_tx_wake_all_queues(ndev);
2236 
2237 	return 0;
2238 }
2239 
2240 /* Called when something needs to use the ethernet device
2241  * Returns 0 for success.
2242  */
2243 static int gfar_enet_open(struct net_device *dev)
2244 {
2245 	struct gfar_private *priv = netdev_priv(dev);
2246 	int err;
2247 
2248 	err = init_phy(dev);
2249 	if (err)
2250 		return err;
2251 
2252 	err = gfar_request_irq(priv);
2253 	if (err)
2254 		return err;
2255 
2256 	err = startup_gfar(dev);
2257 	if (err)
2258 		return err;
2259 
2260 	return err;
2261 }
2262 
2263 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2264 {
2265 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2266 
2267 	memset(fcb, 0, GMAC_FCB_LEN);
2268 
2269 	return fcb;
2270 }
2271 
2272 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2273 				    int fcb_length)
2274 {
2275 	/* If we're here, it's a IP packet with a TCP or UDP
2276 	 * payload.  We set it to checksum, using a pseudo-header
2277 	 * we provide
2278 	 */
2279 	u8 flags = TXFCB_DEFAULT;
2280 
2281 	/* Tell the controller what the protocol is
2282 	 * And provide the already calculated phcs
2283 	 */
2284 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2285 		flags |= TXFCB_UDP;
2286 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2287 	} else
2288 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2289 
2290 	/* l3os is the distance between the start of the
2291 	 * frame (skb->data) and the start of the IP hdr.
2292 	 * l4os is the distance between the start of the
2293 	 * l3 hdr and the l4 hdr
2294 	 */
2295 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2296 	fcb->l4os = skb_network_header_len(skb);
2297 
2298 	fcb->flags = flags;
2299 }
2300 
2301 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2302 {
2303 	fcb->flags |= TXFCB_VLN;
2304 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2305 }
2306 
2307 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2308 				      struct txbd8 *base, int ring_size)
2309 {
2310 	struct txbd8 *new_bd = bdp + stride;
2311 
2312 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2313 }
2314 
2315 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2316 				      int ring_size)
2317 {
2318 	return skip_txbd(bdp, 1, base, ring_size);
2319 }
2320 
2321 /* eTSEC12: csum generation not supported for some fcb offsets */
2322 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2323 				       unsigned long fcb_addr)
2324 {
2325 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2326 	       (fcb_addr % 0x20) > 0x18);
2327 }
2328 
2329 /* eTSEC76: csum generation for frames larger than 2500 may
2330  * cause excess delays before start of transmission
2331  */
2332 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2333 				       unsigned int len)
2334 {
2335 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2336 	       (len > 2500));
2337 }
2338 
2339 /* This is called by the kernel when a frame is ready for transmission.
2340  * It is pointed to by the dev->hard_start_xmit function pointer
2341  */
2342 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2343 {
2344 	struct gfar_private *priv = netdev_priv(dev);
2345 	struct gfar_priv_tx_q *tx_queue = NULL;
2346 	struct netdev_queue *txq;
2347 	struct gfar __iomem *regs = NULL;
2348 	struct txfcb *fcb = NULL;
2349 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2350 	u32 lstatus;
2351 	skb_frag_t *frag;
2352 	int i, rq = 0;
2353 	int do_tstamp, do_csum, do_vlan;
2354 	u32 bufaddr;
2355 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2356 
2357 	rq = skb->queue_mapping;
2358 	tx_queue = priv->tx_queue[rq];
2359 	txq = netdev_get_tx_queue(dev, rq);
2360 	base = tx_queue->tx_bd_base;
2361 	regs = tx_queue->grp->regs;
2362 
2363 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2364 	do_vlan = skb_vlan_tag_present(skb);
2365 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2366 		    priv->hwts_tx_en;
2367 
2368 	if (do_csum || do_vlan)
2369 		fcb_len = GMAC_FCB_LEN;
2370 
2371 	/* check if time stamp should be generated */
2372 	if (unlikely(do_tstamp))
2373 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2374 
2375 	/* make space for additional header when fcb is needed */
2376 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2377 		struct sk_buff *skb_new;
2378 
2379 		skb_new = skb_realloc_headroom(skb, fcb_len);
2380 		if (!skb_new) {
2381 			dev->stats.tx_errors++;
2382 			dev_kfree_skb_any(skb);
2383 			return NETDEV_TX_OK;
2384 		}
2385 
2386 		if (skb->sk)
2387 			skb_set_owner_w(skb_new, skb->sk);
2388 		dev_consume_skb_any(skb);
2389 		skb = skb_new;
2390 	}
2391 
2392 	/* total number of fragments in the SKB */
2393 	nr_frags = skb_shinfo(skb)->nr_frags;
2394 
2395 	/* calculate the required number of TxBDs for this skb */
2396 	if (unlikely(do_tstamp))
2397 		nr_txbds = nr_frags + 2;
2398 	else
2399 		nr_txbds = nr_frags + 1;
2400 
2401 	/* check if there is space to queue this packet */
2402 	if (nr_txbds > tx_queue->num_txbdfree) {
2403 		/* no space, stop the queue */
2404 		netif_tx_stop_queue(txq);
2405 		dev->stats.tx_fifo_errors++;
2406 		return NETDEV_TX_BUSY;
2407 	}
2408 
2409 	/* Update transmit stats */
2410 	bytes_sent = skb->len;
2411 	tx_queue->stats.tx_bytes += bytes_sent;
2412 	/* keep Tx bytes on wire for BQL accounting */
2413 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2414 	tx_queue->stats.tx_packets++;
2415 
2416 	txbdp = txbdp_start = tx_queue->cur_tx;
2417 	lstatus = be32_to_cpu(txbdp->lstatus);
2418 
2419 	/* Add TxPAL between FCB and frame if required */
2420 	if (unlikely(do_tstamp)) {
2421 		skb_push(skb, GMAC_TXPAL_LEN);
2422 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2423 	}
2424 
2425 	/* Add TxFCB if required */
2426 	if (fcb_len) {
2427 		fcb = gfar_add_fcb(skb);
2428 		lstatus |= BD_LFLAG(TXBD_TOE);
2429 	}
2430 
2431 	/* Set up checksumming */
2432 	if (do_csum) {
2433 		gfar_tx_checksum(skb, fcb, fcb_len);
2434 
2435 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2436 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2437 			__skb_pull(skb, GMAC_FCB_LEN);
2438 			skb_checksum_help(skb);
2439 			if (do_vlan || do_tstamp) {
2440 				/* put back a new fcb for vlan/tstamp TOE */
2441 				fcb = gfar_add_fcb(skb);
2442 			} else {
2443 				/* Tx TOE not used */
2444 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2445 				fcb = NULL;
2446 			}
2447 		}
2448 	}
2449 
2450 	if (do_vlan)
2451 		gfar_tx_vlan(skb, fcb);
2452 
2453 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2454 				 DMA_TO_DEVICE);
2455 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2456 		goto dma_map_err;
2457 
2458 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2459 
2460 	/* Time stamp insertion requires one additional TxBD */
2461 	if (unlikely(do_tstamp))
2462 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2463 						 tx_queue->tx_ring_size);
2464 
2465 	if (likely(!nr_frags)) {
2466 		if (likely(!do_tstamp))
2467 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2468 	} else {
2469 		u32 lstatus_start = lstatus;
2470 
2471 		/* Place the fragment addresses and lengths into the TxBDs */
2472 		frag = &skb_shinfo(skb)->frags[0];
2473 		for (i = 0; i < nr_frags; i++, frag++) {
2474 			unsigned int size;
2475 
2476 			/* Point at the next BD, wrapping as needed */
2477 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2478 
2479 			size = skb_frag_size(frag);
2480 
2481 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2482 				  BD_LFLAG(TXBD_READY);
2483 
2484 			/* Handle the last BD specially */
2485 			if (i == nr_frags - 1)
2486 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2487 
2488 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2489 						   size, DMA_TO_DEVICE);
2490 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2491 				goto dma_map_err;
2492 
2493 			/* set the TxBD length and buffer pointer */
2494 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2495 			txbdp->lstatus = cpu_to_be32(lstatus);
2496 		}
2497 
2498 		lstatus = lstatus_start;
2499 	}
2500 
2501 	/* If time stamping is requested one additional TxBD must be set up. The
2502 	 * first TxBD points to the FCB and must have a data length of
2503 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2504 	 * the full frame length.
2505 	 */
2506 	if (unlikely(do_tstamp)) {
2507 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2508 
2509 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2510 		bufaddr += fcb_len;
2511 
2512 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2513 			      (skb_headlen(skb) - fcb_len);
2514 		if (!nr_frags)
2515 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2516 
2517 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2518 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2519 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2520 
2521 		/* Setup tx hardware time stamping */
2522 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2523 		fcb->ptp = 1;
2524 	} else {
2525 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2526 	}
2527 
2528 	netdev_tx_sent_queue(txq, bytes_sent);
2529 
2530 	gfar_wmb();
2531 
2532 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2533 
2534 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2535 
2536 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2537 
2538 	/* Update the current skb pointer to the next entry we will use
2539 	 * (wrapping if necessary)
2540 	 */
2541 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2542 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2543 
2544 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2545 
2546 	/* We can work in parallel with gfar_clean_tx_ring(), except
2547 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2548 	 * when we were reading the num_txbdfree and checking for available
2549 	 * space, that's because outside of this function it can only grow.
2550 	 */
2551 	spin_lock_bh(&tx_queue->txlock);
2552 	/* reduce TxBD free count */
2553 	tx_queue->num_txbdfree -= (nr_txbds);
2554 	spin_unlock_bh(&tx_queue->txlock);
2555 
2556 	/* If the next BD still needs to be cleaned up, then the bds
2557 	 * are full.  We need to tell the kernel to stop sending us stuff.
2558 	 */
2559 	if (!tx_queue->num_txbdfree) {
2560 		netif_tx_stop_queue(txq);
2561 
2562 		dev->stats.tx_fifo_errors++;
2563 	}
2564 
2565 	/* Tell the DMA to go go go */
2566 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2567 
2568 	return NETDEV_TX_OK;
2569 
2570 dma_map_err:
2571 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2572 	if (do_tstamp)
2573 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2574 	for (i = 0; i < nr_frags; i++) {
2575 		lstatus = be32_to_cpu(txbdp->lstatus);
2576 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2577 			break;
2578 
2579 		lstatus &= ~BD_LFLAG(TXBD_READY);
2580 		txbdp->lstatus = cpu_to_be32(lstatus);
2581 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2582 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2583 			       DMA_TO_DEVICE);
2584 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2585 	}
2586 	gfar_wmb();
2587 	dev_kfree_skb_any(skb);
2588 	return NETDEV_TX_OK;
2589 }
2590 
2591 /* Stops the kernel queue, and halts the controller */
2592 static int gfar_close(struct net_device *dev)
2593 {
2594 	struct gfar_private *priv = netdev_priv(dev);
2595 
2596 	cancel_work_sync(&priv->reset_task);
2597 	stop_gfar(dev);
2598 
2599 	/* Disconnect from the PHY */
2600 	phy_disconnect(dev->phydev);
2601 
2602 	gfar_free_irq(priv);
2603 
2604 	return 0;
2605 }
2606 
2607 /* Changes the mac address if the controller is not running. */
2608 static int gfar_set_mac_address(struct net_device *dev)
2609 {
2610 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2611 
2612 	return 0;
2613 }
2614 
2615 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2616 {
2617 	struct gfar_private *priv = netdev_priv(dev);
2618 
2619 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2620 		cpu_relax();
2621 
2622 	if (dev->flags & IFF_UP)
2623 		stop_gfar(dev);
2624 
2625 	dev->mtu = new_mtu;
2626 
2627 	if (dev->flags & IFF_UP)
2628 		startup_gfar(dev);
2629 
2630 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2631 
2632 	return 0;
2633 }
2634 
2635 void reset_gfar(struct net_device *ndev)
2636 {
2637 	struct gfar_private *priv = netdev_priv(ndev);
2638 
2639 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2640 		cpu_relax();
2641 
2642 	stop_gfar(ndev);
2643 	startup_gfar(ndev);
2644 
2645 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2646 }
2647 
2648 /* gfar_reset_task gets scheduled when a packet has not been
2649  * transmitted after a set amount of time.
2650  * For now, assume that clearing out all the structures, and
2651  * starting over will fix the problem.
2652  */
2653 static void gfar_reset_task(struct work_struct *work)
2654 {
2655 	struct gfar_private *priv = container_of(work, struct gfar_private,
2656 						 reset_task);
2657 	reset_gfar(priv->ndev);
2658 }
2659 
2660 static void gfar_timeout(struct net_device *dev)
2661 {
2662 	struct gfar_private *priv = netdev_priv(dev);
2663 
2664 	dev->stats.tx_errors++;
2665 	schedule_work(&priv->reset_task);
2666 }
2667 
2668 /* Interrupt Handler for Transmit complete */
2669 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2670 {
2671 	struct net_device *dev = tx_queue->dev;
2672 	struct netdev_queue *txq;
2673 	struct gfar_private *priv = netdev_priv(dev);
2674 	struct txbd8 *bdp, *next = NULL;
2675 	struct txbd8 *lbdp = NULL;
2676 	struct txbd8 *base = tx_queue->tx_bd_base;
2677 	struct sk_buff *skb;
2678 	int skb_dirtytx;
2679 	int tx_ring_size = tx_queue->tx_ring_size;
2680 	int frags = 0, nr_txbds = 0;
2681 	int i;
2682 	int howmany = 0;
2683 	int tqi = tx_queue->qindex;
2684 	unsigned int bytes_sent = 0;
2685 	u32 lstatus;
2686 	size_t buflen;
2687 
2688 	txq = netdev_get_tx_queue(dev, tqi);
2689 	bdp = tx_queue->dirty_tx;
2690 	skb_dirtytx = tx_queue->skb_dirtytx;
2691 
2692 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2693 
2694 		frags = skb_shinfo(skb)->nr_frags;
2695 
2696 		/* When time stamping, one additional TxBD must be freed.
2697 		 * Also, we need to dma_unmap_single() the TxPAL.
2698 		 */
2699 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2700 			nr_txbds = frags + 2;
2701 		else
2702 			nr_txbds = frags + 1;
2703 
2704 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2705 
2706 		lstatus = be32_to_cpu(lbdp->lstatus);
2707 
2708 		/* Only clean completed frames */
2709 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2710 		    (lstatus & BD_LENGTH_MASK))
2711 			break;
2712 
2713 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2714 			next = next_txbd(bdp, base, tx_ring_size);
2715 			buflen = be16_to_cpu(next->length) +
2716 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2717 		} else
2718 			buflen = be16_to_cpu(bdp->length);
2719 
2720 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2721 				 buflen, DMA_TO_DEVICE);
2722 
2723 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2724 			struct skb_shared_hwtstamps shhwtstamps;
2725 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2726 					  ~0x7UL);
2727 
2728 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2729 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2730 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2731 			skb_tstamp_tx(skb, &shhwtstamps);
2732 			gfar_clear_txbd_status(bdp);
2733 			bdp = next;
2734 		}
2735 
2736 		gfar_clear_txbd_status(bdp);
2737 		bdp = next_txbd(bdp, base, tx_ring_size);
2738 
2739 		for (i = 0; i < frags; i++) {
2740 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2741 				       be16_to_cpu(bdp->length),
2742 				       DMA_TO_DEVICE);
2743 			gfar_clear_txbd_status(bdp);
2744 			bdp = next_txbd(bdp, base, tx_ring_size);
2745 		}
2746 
2747 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2748 
2749 		dev_kfree_skb_any(skb);
2750 
2751 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2752 
2753 		skb_dirtytx = (skb_dirtytx + 1) &
2754 			      TX_RING_MOD_MASK(tx_ring_size);
2755 
2756 		howmany++;
2757 		spin_lock(&tx_queue->txlock);
2758 		tx_queue->num_txbdfree += nr_txbds;
2759 		spin_unlock(&tx_queue->txlock);
2760 	}
2761 
2762 	/* If we freed a buffer, we can restart transmission, if necessary */
2763 	if (tx_queue->num_txbdfree &&
2764 	    netif_tx_queue_stopped(txq) &&
2765 	    !(test_bit(GFAR_DOWN, &priv->state)))
2766 		netif_wake_subqueue(priv->ndev, tqi);
2767 
2768 	/* Update dirty indicators */
2769 	tx_queue->skb_dirtytx = skb_dirtytx;
2770 	tx_queue->dirty_tx = bdp;
2771 
2772 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2773 }
2774 
2775 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2776 {
2777 	struct page *page;
2778 	dma_addr_t addr;
2779 
2780 	page = dev_alloc_page();
2781 	if (unlikely(!page))
2782 		return false;
2783 
2784 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2785 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2786 		__free_page(page);
2787 
2788 		return false;
2789 	}
2790 
2791 	rxb->dma = addr;
2792 	rxb->page = page;
2793 	rxb->page_offset = 0;
2794 
2795 	return true;
2796 }
2797 
2798 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2799 {
2800 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2801 	struct gfar_extra_stats *estats = &priv->extra_stats;
2802 
2803 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2804 	atomic64_inc(&estats->rx_alloc_err);
2805 }
2806 
2807 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2808 				int alloc_cnt)
2809 {
2810 	struct rxbd8 *bdp;
2811 	struct gfar_rx_buff *rxb;
2812 	int i;
2813 
2814 	i = rx_queue->next_to_use;
2815 	bdp = &rx_queue->rx_bd_base[i];
2816 	rxb = &rx_queue->rx_buff[i];
2817 
2818 	while (alloc_cnt--) {
2819 		/* try reuse page */
2820 		if (unlikely(!rxb->page)) {
2821 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2822 				gfar_rx_alloc_err(rx_queue);
2823 				break;
2824 			}
2825 		}
2826 
2827 		/* Setup the new RxBD */
2828 		gfar_init_rxbdp(rx_queue, bdp,
2829 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2830 
2831 		/* Update to the next pointer */
2832 		bdp++;
2833 		rxb++;
2834 
2835 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2836 			i = 0;
2837 			bdp = rx_queue->rx_bd_base;
2838 			rxb = rx_queue->rx_buff;
2839 		}
2840 	}
2841 
2842 	rx_queue->next_to_use = i;
2843 	rx_queue->next_to_alloc = i;
2844 }
2845 
2846 static void count_errors(u32 lstatus, struct net_device *ndev)
2847 {
2848 	struct gfar_private *priv = netdev_priv(ndev);
2849 	struct net_device_stats *stats = &ndev->stats;
2850 	struct gfar_extra_stats *estats = &priv->extra_stats;
2851 
2852 	/* If the packet was truncated, none of the other errors matter */
2853 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2854 		stats->rx_length_errors++;
2855 
2856 		atomic64_inc(&estats->rx_trunc);
2857 
2858 		return;
2859 	}
2860 	/* Count the errors, if there were any */
2861 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2862 		stats->rx_length_errors++;
2863 
2864 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2865 			atomic64_inc(&estats->rx_large);
2866 		else
2867 			atomic64_inc(&estats->rx_short);
2868 	}
2869 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2870 		stats->rx_frame_errors++;
2871 		atomic64_inc(&estats->rx_nonoctet);
2872 	}
2873 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2874 		atomic64_inc(&estats->rx_crcerr);
2875 		stats->rx_crc_errors++;
2876 	}
2877 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2878 		atomic64_inc(&estats->rx_overrun);
2879 		stats->rx_over_errors++;
2880 	}
2881 }
2882 
2883 irqreturn_t gfar_receive(int irq, void *grp_id)
2884 {
2885 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2886 	unsigned long flags;
2887 	u32 imask, ievent;
2888 
2889 	ievent = gfar_read(&grp->regs->ievent);
2890 
2891 	if (unlikely(ievent & IEVENT_FGPI)) {
2892 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2893 		return IRQ_HANDLED;
2894 	}
2895 
2896 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2897 		spin_lock_irqsave(&grp->grplock, flags);
2898 		imask = gfar_read(&grp->regs->imask);
2899 		imask &= IMASK_RX_DISABLED;
2900 		gfar_write(&grp->regs->imask, imask);
2901 		spin_unlock_irqrestore(&grp->grplock, flags);
2902 		__napi_schedule(&grp->napi_rx);
2903 	} else {
2904 		/* Clear IEVENT, so interrupts aren't called again
2905 		 * because of the packets that have already arrived.
2906 		 */
2907 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2908 	}
2909 
2910 	return IRQ_HANDLED;
2911 }
2912 
2913 /* Interrupt Handler for Transmit complete */
2914 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2915 {
2916 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2917 	unsigned long flags;
2918 	u32 imask;
2919 
2920 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2921 		spin_lock_irqsave(&grp->grplock, flags);
2922 		imask = gfar_read(&grp->regs->imask);
2923 		imask &= IMASK_TX_DISABLED;
2924 		gfar_write(&grp->regs->imask, imask);
2925 		spin_unlock_irqrestore(&grp->grplock, flags);
2926 		__napi_schedule(&grp->napi_tx);
2927 	} else {
2928 		/* Clear IEVENT, so interrupts aren't called again
2929 		 * because of the packets that have already arrived.
2930 		 */
2931 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2932 	}
2933 
2934 	return IRQ_HANDLED;
2935 }
2936 
2937 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2938 			     struct sk_buff *skb, bool first)
2939 {
2940 	int size = lstatus & BD_LENGTH_MASK;
2941 	struct page *page = rxb->page;
2942 
2943 	if (likely(first)) {
2944 		skb_put(skb, size);
2945 	} else {
2946 		/* the last fragments' length contains the full frame length */
2947 		if (lstatus & BD_LFLAG(RXBD_LAST))
2948 			size -= skb->len;
2949 
2950 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2951 				rxb->page_offset + RXBUF_ALIGNMENT,
2952 				size, GFAR_RXB_TRUESIZE);
2953 	}
2954 
2955 	/* try reuse page */
2956 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2957 		return false;
2958 
2959 	/* change offset to the other half */
2960 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2961 
2962 	page_ref_inc(page);
2963 
2964 	return true;
2965 }
2966 
2967 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2968 			       struct gfar_rx_buff *old_rxb)
2969 {
2970 	struct gfar_rx_buff *new_rxb;
2971 	u16 nta = rxq->next_to_alloc;
2972 
2973 	new_rxb = &rxq->rx_buff[nta];
2974 
2975 	/* find next buf that can reuse a page */
2976 	nta++;
2977 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2978 
2979 	/* copy page reference */
2980 	*new_rxb = *old_rxb;
2981 
2982 	/* sync for use by the device */
2983 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2984 					 old_rxb->page_offset,
2985 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2986 }
2987 
2988 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2989 					    u32 lstatus, struct sk_buff *skb)
2990 {
2991 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2992 	struct page *page = rxb->page;
2993 	bool first = false;
2994 
2995 	if (likely(!skb)) {
2996 		void *buff_addr = page_address(page) + rxb->page_offset;
2997 
2998 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2999 		if (unlikely(!skb)) {
3000 			gfar_rx_alloc_err(rx_queue);
3001 			return NULL;
3002 		}
3003 		skb_reserve(skb, RXBUF_ALIGNMENT);
3004 		first = true;
3005 	}
3006 
3007 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3008 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3009 
3010 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3011 		/* reuse the free half of the page */
3012 		gfar_reuse_rx_page(rx_queue, rxb);
3013 	} else {
3014 		/* page cannot be reused, unmap it */
3015 		dma_unmap_page(rx_queue->dev, rxb->dma,
3016 			       PAGE_SIZE, DMA_FROM_DEVICE);
3017 	}
3018 
3019 	/* clear rxb content */
3020 	rxb->page = NULL;
3021 
3022 	return skb;
3023 }
3024 
3025 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3026 {
3027 	/* If valid headers were found, and valid sums
3028 	 * were verified, then we tell the kernel that no
3029 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3030 	 */
3031 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3032 	    (RXFCB_CIP | RXFCB_CTU))
3033 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3034 	else
3035 		skb_checksum_none_assert(skb);
3036 }
3037 
3038 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3039 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3040 {
3041 	struct gfar_private *priv = netdev_priv(ndev);
3042 	struct rxfcb *fcb = NULL;
3043 
3044 	/* fcb is at the beginning if exists */
3045 	fcb = (struct rxfcb *)skb->data;
3046 
3047 	/* Remove the FCB from the skb
3048 	 * Remove the padded bytes, if there are any
3049 	 */
3050 	if (priv->uses_rxfcb)
3051 		skb_pull(skb, GMAC_FCB_LEN);
3052 
3053 	/* Get receive timestamp from the skb */
3054 	if (priv->hwts_rx_en) {
3055 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3056 		u64 *ns = (u64 *) skb->data;
3057 
3058 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3059 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3060 	}
3061 
3062 	if (priv->padding)
3063 		skb_pull(skb, priv->padding);
3064 
3065 	/* Trim off the FCS */
3066 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
3067 
3068 	if (ndev->features & NETIF_F_RXCSUM)
3069 		gfar_rx_checksum(skb, fcb);
3070 
3071 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3072 	 * Even if vlan rx accel is disabled, on some chips
3073 	 * RXFCB_VLN is pseudo randomly set.
3074 	 */
3075 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3076 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3077 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3078 				       be16_to_cpu(fcb->vlctl));
3079 }
3080 
3081 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3082  * until the budget/quota has been reached. Returns the number
3083  * of frames handled
3084  */
3085 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3086 {
3087 	struct net_device *ndev = rx_queue->ndev;
3088 	struct gfar_private *priv = netdev_priv(ndev);
3089 	struct rxbd8 *bdp;
3090 	int i, howmany = 0;
3091 	struct sk_buff *skb = rx_queue->skb;
3092 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3093 	unsigned int total_bytes = 0, total_pkts = 0;
3094 
3095 	/* Get the first full descriptor */
3096 	i = rx_queue->next_to_clean;
3097 
3098 	while (rx_work_limit--) {
3099 		u32 lstatus;
3100 
3101 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3102 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3103 			cleaned_cnt = 0;
3104 		}
3105 
3106 		bdp = &rx_queue->rx_bd_base[i];
3107 		lstatus = be32_to_cpu(bdp->lstatus);
3108 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3109 			break;
3110 
3111 		/* order rx buffer descriptor reads */
3112 		rmb();
3113 
3114 		/* fetch next to clean buffer from the ring */
3115 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3116 		if (unlikely(!skb))
3117 			break;
3118 
3119 		cleaned_cnt++;
3120 		howmany++;
3121 
3122 		if (unlikely(++i == rx_queue->rx_ring_size))
3123 			i = 0;
3124 
3125 		rx_queue->next_to_clean = i;
3126 
3127 		/* fetch next buffer if not the last in frame */
3128 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3129 			continue;
3130 
3131 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3132 			count_errors(lstatus, ndev);
3133 
3134 			/* discard faulty buffer */
3135 			dev_kfree_skb(skb);
3136 			skb = NULL;
3137 			rx_queue->stats.rx_dropped++;
3138 			continue;
3139 		}
3140 
3141 		gfar_process_frame(ndev, skb);
3142 
3143 		/* Increment the number of packets */
3144 		total_pkts++;
3145 		total_bytes += skb->len;
3146 
3147 		skb_record_rx_queue(skb, rx_queue->qindex);
3148 
3149 		skb->protocol = eth_type_trans(skb, ndev);
3150 
3151 		/* Send the packet up the stack */
3152 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3153 
3154 		skb = NULL;
3155 	}
3156 
3157 	/* Store incomplete frames for completion */
3158 	rx_queue->skb = skb;
3159 
3160 	rx_queue->stats.rx_packets += total_pkts;
3161 	rx_queue->stats.rx_bytes += total_bytes;
3162 
3163 	if (cleaned_cnt)
3164 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3165 
3166 	/* Update Last Free RxBD pointer for LFC */
3167 	if (unlikely(priv->tx_actual_en)) {
3168 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3169 
3170 		gfar_write(rx_queue->rfbptr, bdp_dma);
3171 	}
3172 
3173 	return howmany;
3174 }
3175 
3176 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3177 {
3178 	struct gfar_priv_grp *gfargrp =
3179 		container_of(napi, struct gfar_priv_grp, napi_rx);
3180 	struct gfar __iomem *regs = gfargrp->regs;
3181 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3182 	int work_done = 0;
3183 
3184 	/* Clear IEVENT, so interrupts aren't called again
3185 	 * because of the packets that have already arrived
3186 	 */
3187 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3188 
3189 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3190 
3191 	if (work_done < budget) {
3192 		u32 imask;
3193 		napi_complete_done(napi, work_done);
3194 		/* Clear the halt bit in RSTAT */
3195 		gfar_write(&regs->rstat, gfargrp->rstat);
3196 
3197 		spin_lock_irq(&gfargrp->grplock);
3198 		imask = gfar_read(&regs->imask);
3199 		imask |= IMASK_RX_DEFAULT;
3200 		gfar_write(&regs->imask, imask);
3201 		spin_unlock_irq(&gfargrp->grplock);
3202 	}
3203 
3204 	return work_done;
3205 }
3206 
3207 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3208 {
3209 	struct gfar_priv_grp *gfargrp =
3210 		container_of(napi, struct gfar_priv_grp, napi_tx);
3211 	struct gfar __iomem *regs = gfargrp->regs;
3212 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3213 	u32 imask;
3214 
3215 	/* Clear IEVENT, so interrupts aren't called again
3216 	 * because of the packets that have already arrived
3217 	 */
3218 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3219 
3220 	/* run Tx cleanup to completion */
3221 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3222 		gfar_clean_tx_ring(tx_queue);
3223 
3224 	napi_complete(napi);
3225 
3226 	spin_lock_irq(&gfargrp->grplock);
3227 	imask = gfar_read(&regs->imask);
3228 	imask |= IMASK_TX_DEFAULT;
3229 	gfar_write(&regs->imask, imask);
3230 	spin_unlock_irq(&gfargrp->grplock);
3231 
3232 	return 0;
3233 }
3234 
3235 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3236 {
3237 	struct gfar_priv_grp *gfargrp =
3238 		container_of(napi, struct gfar_priv_grp, napi_rx);
3239 	struct gfar_private *priv = gfargrp->priv;
3240 	struct gfar __iomem *regs = gfargrp->regs;
3241 	struct gfar_priv_rx_q *rx_queue = NULL;
3242 	int work_done = 0, work_done_per_q = 0;
3243 	int i, budget_per_q = 0;
3244 	unsigned long rstat_rxf;
3245 	int num_act_queues;
3246 
3247 	/* Clear IEVENT, so interrupts aren't called again
3248 	 * because of the packets that have already arrived
3249 	 */
3250 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3251 
3252 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3253 
3254 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3255 	if (num_act_queues)
3256 		budget_per_q = budget/num_act_queues;
3257 
3258 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3259 		/* skip queue if not active */
3260 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3261 			continue;
3262 
3263 		rx_queue = priv->rx_queue[i];
3264 		work_done_per_q =
3265 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3266 		work_done += work_done_per_q;
3267 
3268 		/* finished processing this queue */
3269 		if (work_done_per_q < budget_per_q) {
3270 			/* clear active queue hw indication */
3271 			gfar_write(&regs->rstat,
3272 				   RSTAT_CLEAR_RXF0 >> i);
3273 			num_act_queues--;
3274 
3275 			if (!num_act_queues)
3276 				break;
3277 		}
3278 	}
3279 
3280 	if (!num_act_queues) {
3281 		u32 imask;
3282 		napi_complete_done(napi, work_done);
3283 
3284 		/* Clear the halt bit in RSTAT */
3285 		gfar_write(&regs->rstat, gfargrp->rstat);
3286 
3287 		spin_lock_irq(&gfargrp->grplock);
3288 		imask = gfar_read(&regs->imask);
3289 		imask |= IMASK_RX_DEFAULT;
3290 		gfar_write(&regs->imask, imask);
3291 		spin_unlock_irq(&gfargrp->grplock);
3292 	}
3293 
3294 	return work_done;
3295 }
3296 
3297 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3298 {
3299 	struct gfar_priv_grp *gfargrp =
3300 		container_of(napi, struct gfar_priv_grp, napi_tx);
3301 	struct gfar_private *priv = gfargrp->priv;
3302 	struct gfar __iomem *regs = gfargrp->regs;
3303 	struct gfar_priv_tx_q *tx_queue = NULL;
3304 	int has_tx_work = 0;
3305 	int i;
3306 
3307 	/* Clear IEVENT, so interrupts aren't called again
3308 	 * because of the packets that have already arrived
3309 	 */
3310 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3311 
3312 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3313 		tx_queue = priv->tx_queue[i];
3314 		/* run Tx cleanup to completion */
3315 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3316 			gfar_clean_tx_ring(tx_queue);
3317 			has_tx_work = 1;
3318 		}
3319 	}
3320 
3321 	if (!has_tx_work) {
3322 		u32 imask;
3323 		napi_complete(napi);
3324 
3325 		spin_lock_irq(&gfargrp->grplock);
3326 		imask = gfar_read(&regs->imask);
3327 		imask |= IMASK_TX_DEFAULT;
3328 		gfar_write(&regs->imask, imask);
3329 		spin_unlock_irq(&gfargrp->grplock);
3330 	}
3331 
3332 	return 0;
3333 }
3334 
3335 
3336 #ifdef CONFIG_NET_POLL_CONTROLLER
3337 /* Polling 'interrupt' - used by things like netconsole to send skbs
3338  * without having to re-enable interrupts. It's not called while
3339  * the interrupt routine is executing.
3340  */
3341 static void gfar_netpoll(struct net_device *dev)
3342 {
3343 	struct gfar_private *priv = netdev_priv(dev);
3344 	int i;
3345 
3346 	/* If the device has multiple interrupts, run tx/rx */
3347 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3348 		for (i = 0; i < priv->num_grps; i++) {
3349 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3350 
3351 			disable_irq(gfar_irq(grp, TX)->irq);
3352 			disable_irq(gfar_irq(grp, RX)->irq);
3353 			disable_irq(gfar_irq(grp, ER)->irq);
3354 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3355 			enable_irq(gfar_irq(grp, ER)->irq);
3356 			enable_irq(gfar_irq(grp, RX)->irq);
3357 			enable_irq(gfar_irq(grp, TX)->irq);
3358 		}
3359 	} else {
3360 		for (i = 0; i < priv->num_grps; i++) {
3361 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3362 
3363 			disable_irq(gfar_irq(grp, TX)->irq);
3364 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3365 			enable_irq(gfar_irq(grp, TX)->irq);
3366 		}
3367 	}
3368 }
3369 #endif
3370 
3371 /* The interrupt handler for devices with one interrupt */
3372 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3373 {
3374 	struct gfar_priv_grp *gfargrp = grp_id;
3375 
3376 	/* Save ievent for future reference */
3377 	u32 events = gfar_read(&gfargrp->regs->ievent);
3378 
3379 	/* Check for reception */
3380 	if (events & IEVENT_RX_MASK)
3381 		gfar_receive(irq, grp_id);
3382 
3383 	/* Check for transmit completion */
3384 	if (events & IEVENT_TX_MASK)
3385 		gfar_transmit(irq, grp_id);
3386 
3387 	/* Check for errors */
3388 	if (events & IEVENT_ERR_MASK)
3389 		gfar_error(irq, grp_id);
3390 
3391 	return IRQ_HANDLED;
3392 }
3393 
3394 /* Called every time the controller might need to be made
3395  * aware of new link state.  The PHY code conveys this
3396  * information through variables in the phydev structure, and this
3397  * function converts those variables into the appropriate
3398  * register values, and can bring down the device if needed.
3399  */
3400 static void adjust_link(struct net_device *dev)
3401 {
3402 	struct gfar_private *priv = netdev_priv(dev);
3403 	struct phy_device *phydev = dev->phydev;
3404 
3405 	if (unlikely(phydev->link != priv->oldlink ||
3406 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3407 				       phydev->speed != priv->oldspeed))))
3408 		gfar_update_link_state(priv);
3409 }
3410 
3411 /* Update the hash table based on the current list of multicast
3412  * addresses we subscribe to.  Also, change the promiscuity of
3413  * the device based on the flags (this function is called
3414  * whenever dev->flags is changed
3415  */
3416 static void gfar_set_multi(struct net_device *dev)
3417 {
3418 	struct netdev_hw_addr *ha;
3419 	struct gfar_private *priv = netdev_priv(dev);
3420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3421 	u32 tempval;
3422 
3423 	if (dev->flags & IFF_PROMISC) {
3424 		/* Set RCTRL to PROM */
3425 		tempval = gfar_read(&regs->rctrl);
3426 		tempval |= RCTRL_PROM;
3427 		gfar_write(&regs->rctrl, tempval);
3428 	} else {
3429 		/* Set RCTRL to not PROM */
3430 		tempval = gfar_read(&regs->rctrl);
3431 		tempval &= ~(RCTRL_PROM);
3432 		gfar_write(&regs->rctrl, tempval);
3433 	}
3434 
3435 	if (dev->flags & IFF_ALLMULTI) {
3436 		/* Set the hash to rx all multicast frames */
3437 		gfar_write(&regs->igaddr0, 0xffffffff);
3438 		gfar_write(&regs->igaddr1, 0xffffffff);
3439 		gfar_write(&regs->igaddr2, 0xffffffff);
3440 		gfar_write(&regs->igaddr3, 0xffffffff);
3441 		gfar_write(&regs->igaddr4, 0xffffffff);
3442 		gfar_write(&regs->igaddr5, 0xffffffff);
3443 		gfar_write(&regs->igaddr6, 0xffffffff);
3444 		gfar_write(&regs->igaddr7, 0xffffffff);
3445 		gfar_write(&regs->gaddr0, 0xffffffff);
3446 		gfar_write(&regs->gaddr1, 0xffffffff);
3447 		gfar_write(&regs->gaddr2, 0xffffffff);
3448 		gfar_write(&regs->gaddr3, 0xffffffff);
3449 		gfar_write(&regs->gaddr4, 0xffffffff);
3450 		gfar_write(&regs->gaddr5, 0xffffffff);
3451 		gfar_write(&regs->gaddr6, 0xffffffff);
3452 		gfar_write(&regs->gaddr7, 0xffffffff);
3453 	} else {
3454 		int em_num;
3455 		int idx;
3456 
3457 		/* zero out the hash */
3458 		gfar_write(&regs->igaddr0, 0x0);
3459 		gfar_write(&regs->igaddr1, 0x0);
3460 		gfar_write(&regs->igaddr2, 0x0);
3461 		gfar_write(&regs->igaddr3, 0x0);
3462 		gfar_write(&regs->igaddr4, 0x0);
3463 		gfar_write(&regs->igaddr5, 0x0);
3464 		gfar_write(&regs->igaddr6, 0x0);
3465 		gfar_write(&regs->igaddr7, 0x0);
3466 		gfar_write(&regs->gaddr0, 0x0);
3467 		gfar_write(&regs->gaddr1, 0x0);
3468 		gfar_write(&regs->gaddr2, 0x0);
3469 		gfar_write(&regs->gaddr3, 0x0);
3470 		gfar_write(&regs->gaddr4, 0x0);
3471 		gfar_write(&regs->gaddr5, 0x0);
3472 		gfar_write(&regs->gaddr6, 0x0);
3473 		gfar_write(&regs->gaddr7, 0x0);
3474 
3475 		/* If we have extended hash tables, we need to
3476 		 * clear the exact match registers to prepare for
3477 		 * setting them
3478 		 */
3479 		if (priv->extended_hash) {
3480 			em_num = GFAR_EM_NUM + 1;
3481 			gfar_clear_exact_match(dev);
3482 			idx = 1;
3483 		} else {
3484 			idx = 0;
3485 			em_num = 0;
3486 		}
3487 
3488 		if (netdev_mc_empty(dev))
3489 			return;
3490 
3491 		/* Parse the list, and set the appropriate bits */
3492 		netdev_for_each_mc_addr(ha, dev) {
3493 			if (idx < em_num) {
3494 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3495 				idx++;
3496 			} else
3497 				gfar_set_hash_for_addr(dev, ha->addr);
3498 		}
3499 	}
3500 }
3501 
3502 
3503 /* Clears each of the exact match registers to zero, so they
3504  * don't interfere with normal reception
3505  */
3506 static void gfar_clear_exact_match(struct net_device *dev)
3507 {
3508 	int idx;
3509 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3510 
3511 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3512 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3513 }
3514 
3515 /* Set the appropriate hash bit for the given addr */
3516 /* The algorithm works like so:
3517  * 1) Take the Destination Address (ie the multicast address), and
3518  * do a CRC on it (little endian), and reverse the bits of the
3519  * result.
3520  * 2) Use the 8 most significant bits as a hash into a 256-entry
3521  * table.  The table is controlled through 8 32-bit registers:
3522  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3523  * gaddr7.  This means that the 3 most significant bits in the
3524  * hash index which gaddr register to use, and the 5 other bits
3525  * indicate which bit (assuming an IBM numbering scheme, which
3526  * for PowerPC (tm) is usually the case) in the register holds
3527  * the entry.
3528  */
3529 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3530 {
3531 	u32 tempval;
3532 	struct gfar_private *priv = netdev_priv(dev);
3533 	u32 result = ether_crc(ETH_ALEN, addr);
3534 	int width = priv->hash_width;
3535 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3536 	u8 whichreg = result >> (32 - width + 5);
3537 	u32 value = (1 << (31-whichbit));
3538 
3539 	tempval = gfar_read(priv->hash_regs[whichreg]);
3540 	tempval |= value;
3541 	gfar_write(priv->hash_regs[whichreg], tempval);
3542 }
3543 
3544 
3545 /* There are multiple MAC Address register pairs on some controllers
3546  * This function sets the numth pair to a given address
3547  */
3548 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3549 				  const u8 *addr)
3550 {
3551 	struct gfar_private *priv = netdev_priv(dev);
3552 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3553 	u32 tempval;
3554 	u32 __iomem *macptr = &regs->macstnaddr1;
3555 
3556 	macptr += num*2;
3557 
3558 	/* For a station address of 0x12345678ABCD in transmission
3559 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3560 	 * MACnADDR2 is set to 0x34120000.
3561 	 */
3562 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3563 		  (addr[3] << 8)  |  addr[2];
3564 
3565 	gfar_write(macptr, tempval);
3566 
3567 	tempval = (addr[1] << 24) | (addr[0] << 16);
3568 
3569 	gfar_write(macptr+1, tempval);
3570 }
3571 
3572 /* GFAR error interrupt handler */
3573 static irqreturn_t gfar_error(int irq, void *grp_id)
3574 {
3575 	struct gfar_priv_grp *gfargrp = grp_id;
3576 	struct gfar __iomem *regs = gfargrp->regs;
3577 	struct gfar_private *priv= gfargrp->priv;
3578 	struct net_device *dev = priv->ndev;
3579 
3580 	/* Save ievent for future reference */
3581 	u32 events = gfar_read(&regs->ievent);
3582 
3583 	/* Clear IEVENT */
3584 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3585 
3586 	/* Magic Packet is not an error. */
3587 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3588 	    (events & IEVENT_MAG))
3589 		events &= ~IEVENT_MAG;
3590 
3591 	/* Hmm... */
3592 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3593 		netdev_dbg(dev,
3594 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3595 			   events, gfar_read(&regs->imask));
3596 
3597 	/* Update the error counters */
3598 	if (events & IEVENT_TXE) {
3599 		dev->stats.tx_errors++;
3600 
3601 		if (events & IEVENT_LC)
3602 			dev->stats.tx_window_errors++;
3603 		if (events & IEVENT_CRL)
3604 			dev->stats.tx_aborted_errors++;
3605 		if (events & IEVENT_XFUN) {
3606 			netif_dbg(priv, tx_err, dev,
3607 				  "TX FIFO underrun, packet dropped\n");
3608 			dev->stats.tx_dropped++;
3609 			atomic64_inc(&priv->extra_stats.tx_underrun);
3610 
3611 			schedule_work(&priv->reset_task);
3612 		}
3613 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3614 	}
3615 	if (events & IEVENT_BSY) {
3616 		dev->stats.rx_over_errors++;
3617 		atomic64_inc(&priv->extra_stats.rx_bsy);
3618 
3619 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3620 			  gfar_read(&regs->rstat));
3621 	}
3622 	if (events & IEVENT_BABR) {
3623 		dev->stats.rx_errors++;
3624 		atomic64_inc(&priv->extra_stats.rx_babr);
3625 
3626 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3627 	}
3628 	if (events & IEVENT_EBERR) {
3629 		atomic64_inc(&priv->extra_stats.eberr);
3630 		netif_dbg(priv, rx_err, dev, "bus error\n");
3631 	}
3632 	if (events & IEVENT_RXC)
3633 		netif_dbg(priv, rx_status, dev, "control frame\n");
3634 
3635 	if (events & IEVENT_BABT) {
3636 		atomic64_inc(&priv->extra_stats.tx_babt);
3637 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3638 	}
3639 	return IRQ_HANDLED;
3640 }
3641 
3642 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3643 {
3644 	struct net_device *ndev = priv->ndev;
3645 	struct phy_device *phydev = ndev->phydev;
3646 	u32 val = 0;
3647 
3648 	if (!phydev->duplex)
3649 		return val;
3650 
3651 	if (!priv->pause_aneg_en) {
3652 		if (priv->tx_pause_en)
3653 			val |= MACCFG1_TX_FLOW;
3654 		if (priv->rx_pause_en)
3655 			val |= MACCFG1_RX_FLOW;
3656 	} else {
3657 		u16 lcl_adv, rmt_adv;
3658 		u8 flowctrl;
3659 		/* get link partner capabilities */
3660 		rmt_adv = 0;
3661 		if (phydev->pause)
3662 			rmt_adv = LPA_PAUSE_CAP;
3663 		if (phydev->asym_pause)
3664 			rmt_adv |= LPA_PAUSE_ASYM;
3665 
3666 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3667 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3668 		if (flowctrl & FLOW_CTRL_TX)
3669 			val |= MACCFG1_TX_FLOW;
3670 		if (flowctrl & FLOW_CTRL_RX)
3671 			val |= MACCFG1_RX_FLOW;
3672 	}
3673 
3674 	return val;
3675 }
3676 
3677 static noinline void gfar_update_link_state(struct gfar_private *priv)
3678 {
3679 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3680 	struct net_device *ndev = priv->ndev;
3681 	struct phy_device *phydev = ndev->phydev;
3682 	struct gfar_priv_rx_q *rx_queue = NULL;
3683 	int i;
3684 
3685 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3686 		return;
3687 
3688 	if (phydev->link) {
3689 		u32 tempval1 = gfar_read(&regs->maccfg1);
3690 		u32 tempval = gfar_read(&regs->maccfg2);
3691 		u32 ecntrl = gfar_read(&regs->ecntrl);
3692 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3693 
3694 		if (phydev->duplex != priv->oldduplex) {
3695 			if (!(phydev->duplex))
3696 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3697 			else
3698 				tempval |= MACCFG2_FULL_DUPLEX;
3699 
3700 			priv->oldduplex = phydev->duplex;
3701 		}
3702 
3703 		if (phydev->speed != priv->oldspeed) {
3704 			switch (phydev->speed) {
3705 			case 1000:
3706 				tempval =
3707 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3708 
3709 				ecntrl &= ~(ECNTRL_R100);
3710 				break;
3711 			case 100:
3712 			case 10:
3713 				tempval =
3714 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3715 
3716 				/* Reduced mode distinguishes
3717 				 * between 10 and 100
3718 				 */
3719 				if (phydev->speed == SPEED_100)
3720 					ecntrl |= ECNTRL_R100;
3721 				else
3722 					ecntrl &= ~(ECNTRL_R100);
3723 				break;
3724 			default:
3725 				netif_warn(priv, link, priv->ndev,
3726 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3727 					   phydev->speed);
3728 				break;
3729 			}
3730 
3731 			priv->oldspeed = phydev->speed;
3732 		}
3733 
3734 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3735 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3736 
3737 		/* Turn last free buffer recording on */
3738 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3739 			for (i = 0; i < priv->num_rx_queues; i++) {
3740 				u32 bdp_dma;
3741 
3742 				rx_queue = priv->rx_queue[i];
3743 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3744 				gfar_write(rx_queue->rfbptr, bdp_dma);
3745 			}
3746 
3747 			priv->tx_actual_en = 1;
3748 		}
3749 
3750 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3751 			priv->tx_actual_en = 0;
3752 
3753 		gfar_write(&regs->maccfg1, tempval1);
3754 		gfar_write(&regs->maccfg2, tempval);
3755 		gfar_write(&regs->ecntrl, ecntrl);
3756 
3757 		if (!priv->oldlink)
3758 			priv->oldlink = 1;
3759 
3760 	} else if (priv->oldlink) {
3761 		priv->oldlink = 0;
3762 		priv->oldspeed = 0;
3763 		priv->oldduplex = -1;
3764 	}
3765 
3766 	if (netif_msg_link(priv))
3767 		phy_print_status(phydev);
3768 }
3769 
3770 static const struct of_device_id gfar_match[] =
3771 {
3772 	{
3773 		.type = "network",
3774 		.compatible = "gianfar",
3775 	},
3776 	{
3777 		.compatible = "fsl,etsec2",
3778 	},
3779 	{},
3780 };
3781 MODULE_DEVICE_TABLE(of, gfar_match);
3782 
3783 /* Structure for a device driver */
3784 static struct platform_driver gfar_driver = {
3785 	.driver = {
3786 		.name = "fsl-gianfar",
3787 		.pm = GFAR_PM_OPS,
3788 		.of_match_table = gfar_match,
3789 	},
3790 	.probe = gfar_probe,
3791 	.remove = gfar_remove,
3792 };
3793 
3794 module_platform_driver(gfar_driver);
3795