1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109 
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 			    dma_addr_t buf)
112 {
113 	u32 lstatus;
114 
115 	bdp->bufPtr = cpu_to_be32(buf);
116 
117 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 		lstatus |= BD_LFLAG(RXBD_WRAP);
120 
121 	gfar_wmb();
122 
123 	bdp->lstatus = cpu_to_be32(lstatus);
124 }
125 
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 	u32 __iomem *baddr;
130 	int i;
131 
132 	baddr = &regs->tbase0;
133 	for (i = 0; i < priv->num_tx_queues; i++) {
134 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 		baddr += 2;
136 	}
137 
138 	baddr = &regs->rbase0;
139 	for (i = 0; i < priv->num_rx_queues; i++) {
140 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 		baddr += 2;
142 	}
143 }
144 
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 	u32 __iomem *baddr;
149 	int i;
150 
151 	baddr = &regs->rqprm0;
152 	for (i = 0; i < priv->num_rx_queues; i++) {
153 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 		baddr++;
156 	}
157 }
158 
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 	/* set this when rx hw offload (TOE) functions are being used */
162 	priv->uses_rxfcb = 0;
163 
164 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 		priv->uses_rxfcb = 1;
166 
167 	if (priv->hwts_rx_en || priv->rx_filer_enable)
168 		priv->uses_rxfcb = 1;
169 }
170 
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 	u32 rctrl = 0;
175 
176 	if (priv->rx_filer_enable) {
177 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 		/* Program the RIR0 reg with the required distribution */
179 		if (priv->poll_mode == GFAR_SQ_POLLING)
180 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181 		else /* GFAR_MQ_POLLING */
182 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183 	}
184 
185 	/* Restore PROMISC mode */
186 	if (priv->ndev->flags & IFF_PROMISC)
187 		rctrl |= RCTRL_PROM;
188 
189 	if (priv->ndev->features & NETIF_F_RXCSUM)
190 		rctrl |= RCTRL_CHECKSUMMING;
191 
192 	if (priv->extended_hash)
193 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194 
195 	if (priv->padding) {
196 		rctrl &= ~RCTRL_PAL_MASK;
197 		rctrl |= RCTRL_PADDING(priv->padding);
198 	}
199 
200 	/* Enable HW time stamping if requested from user space */
201 	if (priv->hwts_rx_en)
202 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203 
204 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206 
207 	/* Clear the LFC bit */
208 	gfar_write(&regs->rctrl, rctrl);
209 	/* Init flow control threshold values */
210 	gfar_init_rqprm(priv);
211 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212 	rctrl |= RCTRL_LFC;
213 
214 	/* Init rctrl based on our settings */
215 	gfar_write(&regs->rctrl, rctrl);
216 }
217 
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 	u32 tctrl = 0;
222 
223 	if (priv->ndev->features & NETIF_F_IP_CSUM)
224 		tctrl |= TCTRL_INIT_CSUM;
225 
226 	if (priv->prio_sched_en)
227 		tctrl |= TCTRL_TXSCHED_PRIO;
228 	else {
229 		tctrl |= TCTRL_TXSCHED_WRRS;
230 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232 	}
233 
234 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 		tctrl |= TCTRL_VLINS;
236 
237 	gfar_write(&regs->tctrl, tctrl);
238 }
239 
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 			       unsigned long tx_mask, unsigned long rx_mask)
242 {
243 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 	u32 __iomem *baddr;
245 
246 	if (priv->mode == MQ_MG_MODE) {
247 		int i = 0;
248 
249 		baddr = &regs->txic0;
250 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 			gfar_write(baddr + i, 0);
252 			if (likely(priv->tx_queue[i]->txcoalescing))
253 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 		}
255 
256 		baddr = &regs->rxic0;
257 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 			gfar_write(baddr + i, 0);
259 			if (likely(priv->rx_queue[i]->rxcoalescing))
260 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 		}
262 	} else {
263 		/* Backward compatible case -- even if we enable
264 		 * multiple queues, there's only single reg to program
265 		 */
266 		gfar_write(&regs->txic, 0);
267 		if (likely(priv->tx_queue[0]->txcoalescing))
268 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269 
270 		gfar_write(&regs->rxic, 0);
271 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273 	}
274 }
275 
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280 
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 	struct gfar_private *priv = netdev_priv(dev);
284 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 	unsigned long tx_packets = 0, tx_bytes = 0;
286 	int i;
287 
288 	for (i = 0; i < priv->num_rx_queues; i++) {
289 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 	}
293 
294 	dev->stats.rx_packets = rx_packets;
295 	dev->stats.rx_bytes   = rx_bytes;
296 	dev->stats.rx_dropped = rx_dropped;
297 
298 	for (i = 0; i < priv->num_tx_queues; i++) {
299 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 	}
302 
303 	dev->stats.tx_bytes   = tx_bytes;
304 	dev->stats.tx_packets = tx_packets;
305 
306 	return &dev->stats;
307 }
308 
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 	u32 tempval;
326 	struct gfar_private *priv = netdev_priv(dev);
327 	u32 result = ether_crc(ETH_ALEN, addr);
328 	int width = priv->hash_width;
329 	u8 whichbit = (result >> (32 - width)) & 0x1f;
330 	u8 whichreg = result >> (32 - width + 5);
331 	u32 value = (1 << (31-whichbit));
332 
333 	tempval = gfar_read(priv->hash_regs[whichreg]);
334 	tempval |= value;
335 	gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337 
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 				  const u8 *addr)
343 {
344 	struct gfar_private *priv = netdev_priv(dev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 tempval;
347 	u32 __iomem *macptr = &regs->macstnaddr1;
348 
349 	macptr += num*2;
350 
351 	/* For a station address of 0x12345678ABCD in transmission
352 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 	 * MACnADDR2 is set to 0x34120000.
354 	 */
355 	tempval = (addr[5] << 24) | (addr[4] << 16) |
356 		  (addr[3] << 8)  |  addr[2];
357 
358 	gfar_write(macptr, tempval);
359 
360 	tempval = (addr[1] << 24) | (addr[0] << 16);
361 
362 	gfar_write(macptr+1, tempval);
363 }
364 
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 	eth_mac_addr(dev, p);
368 
369 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370 
371 	return 0;
372 }
373 
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376 	int i;
377 	for (i = 0; i < priv->num_grps; i++) {
378 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
379 		/* Clear IEVENT */
380 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381 
382 		/* Initialize IMASK */
383 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384 	}
385 }
386 
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389 	int i;
390 	for (i = 0; i < priv->num_grps; i++) {
391 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 		/* Unmask the interrupts we look for */
393 		gfar_write(&regs->imask, IMASK_DEFAULT);
394 	}
395 }
396 
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399 	int i;
400 
401 	for (i = 0; i < priv->num_tx_queues; i++) {
402 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403 					    GFP_KERNEL);
404 		if (!priv->tx_queue[i])
405 			return -ENOMEM;
406 
407 		priv->tx_queue[i]->tx_skbuff = NULL;
408 		priv->tx_queue[i]->qindex = i;
409 		priv->tx_queue[i]->dev = priv->ndev;
410 		spin_lock_init(&(priv->tx_queue[i]->txlock));
411 	}
412 	return 0;
413 }
414 
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417 	int i;
418 
419 	for (i = 0; i < priv->num_rx_queues; i++) {
420 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421 					    GFP_KERNEL);
422 		if (!priv->rx_queue[i])
423 			return -ENOMEM;
424 
425 		priv->rx_queue[i]->qindex = i;
426 		priv->rx_queue[i]->ndev = priv->ndev;
427 	}
428 	return 0;
429 }
430 
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433 	int i;
434 
435 	for (i = 0; i < priv->num_tx_queues; i++)
436 		kfree(priv->tx_queue[i]);
437 }
438 
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++)
444 		kfree(priv->rx_queue[i]);
445 }
446 
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAXGROUPS; i++)
452 		if (priv->gfargrp[i].regs)
453 			iounmap(priv->gfargrp[i].regs);
454 }
455 
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458 	int i, j;
459 
460 	for (i = 0; i < priv->num_grps; i++)
461 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
462 			kfree(priv->gfargrp[i].irqinfo[j]);
463 			priv->gfargrp[i].irqinfo[j] = NULL;
464 		}
465 
466 	free_netdev(priv->ndev);
467 }
468 
469 static void disable_napi(struct gfar_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < priv->num_grps; i++) {
474 		napi_disable(&priv->gfargrp[i].napi_rx);
475 		napi_disable(&priv->gfargrp[i].napi_tx);
476 	}
477 }
478 
479 static void enable_napi(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_grps; i++) {
484 		napi_enable(&priv->gfargrp[i].napi_rx);
485 		napi_enable(&priv->gfargrp[i].napi_tx);
486 	}
487 }
488 
489 static int gfar_parse_group(struct device_node *np,
490 			    struct gfar_private *priv, const char *model)
491 {
492 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493 	int i;
494 
495 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
496 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497 					  GFP_KERNEL);
498 		if (!grp->irqinfo[i])
499 			return -ENOMEM;
500 	}
501 
502 	grp->regs = of_iomap(np, 0);
503 	if (!grp->regs)
504 		return -ENOMEM;
505 
506 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507 
508 	/* If we aren't the FEC we have multiple interrupts */
509 	if (model && strcasecmp(model, "FEC")) {
510 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512 		if (!gfar_irq(grp, TX)->irq ||
513 		    !gfar_irq(grp, RX)->irq ||
514 		    !gfar_irq(grp, ER)->irq)
515 			return -EINVAL;
516 	}
517 
518 	grp->priv = priv;
519 	spin_lock_init(&grp->grplock);
520 	if (priv->mode == MQ_MG_MODE) {
521 		u32 rxq_mask, txq_mask;
522 		int ret;
523 
524 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526 
527 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528 		if (!ret) {
529 			grp->rx_bit_map = rxq_mask ?
530 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531 		}
532 
533 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534 		if (!ret) {
535 			grp->tx_bit_map = txq_mask ?
536 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537 		}
538 
539 		if (priv->poll_mode == GFAR_SQ_POLLING) {
540 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543 		}
544 	} else {
545 		grp->rx_bit_map = 0xFF;
546 		grp->tx_bit_map = 0xFF;
547 	}
548 
549 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550 	 * right to left, so we need to revert the 8 bits to get the q index
551 	 */
552 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554 
555 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556 	 * also assign queues to groups
557 	 */
558 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559 		if (!grp->rx_queue)
560 			grp->rx_queue = priv->rx_queue[i];
561 		grp->num_rx_queues++;
562 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564 		priv->rx_queue[i]->grp = grp;
565 	}
566 
567 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568 		if (!grp->tx_queue)
569 			grp->tx_queue = priv->tx_queue[i];
570 		grp->num_tx_queues++;
571 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572 		priv->tqueue |= (TQUEUE_EN0 >> i);
573 		priv->tx_queue[i]->grp = grp;
574 	}
575 
576 	priv->num_grps++;
577 
578 	return 0;
579 }
580 
581 static int gfar_of_group_count(struct device_node *np)
582 {
583 	struct device_node *child;
584 	int num = 0;
585 
586 	for_each_available_child_of_node(np, child)
587 		if (of_node_name_eq(child, "queue-group"))
588 			num++;
589 
590 	return num;
591 }
592 
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598 	struct gfar_private *priv = netdev_priv(dev);
599 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
600 	u32 ecntrl;
601 
602 	ecntrl = gfar_read(&regs->ecntrl);
603 
604 	if (ecntrl & ECNTRL_SGMII_MODE)
605 		return PHY_INTERFACE_MODE_SGMII;
606 
607 	if (ecntrl & ECNTRL_TBI_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MODE)
609 			return PHY_INTERFACE_MODE_RTBI;
610 		else
611 			return PHY_INTERFACE_MODE_TBI;
612 	}
613 
614 	if (ecntrl & ECNTRL_REDUCED_MODE) {
615 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616 			return PHY_INTERFACE_MODE_RMII;
617 		}
618 		else {
619 			phy_interface_t interface = priv->interface;
620 
621 			/* This isn't autodetected right now, so it must
622 			 * be set by the device tree or platform code.
623 			 */
624 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625 				return PHY_INTERFACE_MODE_RGMII_ID;
626 
627 			return PHY_INTERFACE_MODE_RGMII;
628 		}
629 	}
630 
631 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632 		return PHY_INTERFACE_MODE_GMII;
633 
634 	return PHY_INTERFACE_MODE_MII;
635 }
636 
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639 	const char *model;
640 	const void *mac_addr;
641 	int err = 0, i;
642 	phy_interface_t interface;
643 	struct net_device *dev = NULL;
644 	struct gfar_private *priv = NULL;
645 	struct device_node *np = ofdev->dev.of_node;
646 	struct device_node *child = NULL;
647 	u32 stash_len = 0;
648 	u32 stash_idx = 0;
649 	unsigned int num_tx_qs, num_rx_qs;
650 	unsigned short mode, poll_mode;
651 
652 	if (!np)
653 		return -ENODEV;
654 
655 	if (of_device_is_compatible(np, "fsl,etsec2")) {
656 		mode = MQ_MG_MODE;
657 		poll_mode = GFAR_SQ_POLLING;
658 	} else {
659 		mode = SQ_SG_MODE;
660 		poll_mode = GFAR_SQ_POLLING;
661 	}
662 
663 	if (mode == SQ_SG_MODE) {
664 		num_tx_qs = 1;
665 		num_rx_qs = 1;
666 	} else { /* MQ_MG_MODE */
667 		/* get the actual number of supported groups */
668 		unsigned int num_grps = gfar_of_group_count(np);
669 
670 		if (num_grps == 0 || num_grps > MAXGROUPS) {
671 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672 				num_grps);
673 			pr_err("Cannot do alloc_etherdev, aborting\n");
674 			return -EINVAL;
675 		}
676 
677 		if (poll_mode == GFAR_SQ_POLLING) {
678 			num_tx_qs = num_grps; /* one txq per int group */
679 			num_rx_qs = num_grps; /* one rxq per int group */
680 		} else { /* GFAR_MQ_POLLING */
681 			u32 tx_queues, rx_queues;
682 			int ret;
683 
684 			/* parse the num of HW tx and rx queues */
685 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
686 						   &tx_queues);
687 			num_tx_qs = ret ? 1 : tx_queues;
688 
689 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
690 						   &rx_queues);
691 			num_rx_qs = ret ? 1 : rx_queues;
692 		}
693 	}
694 
695 	if (num_tx_qs > MAX_TX_QS) {
696 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697 		       num_tx_qs, MAX_TX_QS);
698 		pr_err("Cannot do alloc_etherdev, aborting\n");
699 		return -EINVAL;
700 	}
701 
702 	if (num_rx_qs > MAX_RX_QS) {
703 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704 		       num_rx_qs, MAX_RX_QS);
705 		pr_err("Cannot do alloc_etherdev, aborting\n");
706 		return -EINVAL;
707 	}
708 
709 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710 	dev = *pdev;
711 	if (NULL == dev)
712 		return -ENOMEM;
713 
714 	priv = netdev_priv(dev);
715 	priv->ndev = dev;
716 
717 	priv->mode = mode;
718 	priv->poll_mode = poll_mode;
719 
720 	priv->num_tx_queues = num_tx_qs;
721 	netif_set_real_num_rx_queues(dev, num_rx_qs);
722 	priv->num_rx_queues = num_rx_qs;
723 
724 	err = gfar_alloc_tx_queues(priv);
725 	if (err)
726 		goto tx_alloc_failed;
727 
728 	err = gfar_alloc_rx_queues(priv);
729 	if (err)
730 		goto rx_alloc_failed;
731 
732 	err = of_property_read_string(np, "model", &model);
733 	if (err) {
734 		pr_err("Device model property missing, aborting\n");
735 		goto rx_alloc_failed;
736 	}
737 
738 	/* Init Rx queue filer rule set linked list */
739 	INIT_LIST_HEAD(&priv->rx_list.list);
740 	priv->rx_list.count = 0;
741 	mutex_init(&priv->rx_queue_access);
742 
743 	for (i = 0; i < MAXGROUPS; i++)
744 		priv->gfargrp[i].regs = NULL;
745 
746 	/* Parse and initialize group specific information */
747 	if (priv->mode == MQ_MG_MODE) {
748 		for_each_available_child_of_node(np, child) {
749 			if (!of_node_name_eq(child, "queue-group"))
750 				continue;
751 
752 			err = gfar_parse_group(child, priv, model);
753 			if (err) {
754 				of_node_put(child);
755 				goto err_grp_init;
756 			}
757 		}
758 	} else { /* SQ_SG_MODE */
759 		err = gfar_parse_group(np, priv, model);
760 		if (err)
761 			goto err_grp_init;
762 	}
763 
764 	if (of_property_read_bool(np, "bd-stash")) {
765 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
766 		priv->bd_stash_en = 1;
767 	}
768 
769 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
770 
771 	if (err == 0)
772 		priv->rx_stash_size = stash_len;
773 
774 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
775 
776 	if (err == 0)
777 		priv->rx_stash_index = stash_idx;
778 
779 	if (stash_len || stash_idx)
780 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
781 
782 	mac_addr = of_get_mac_address(np);
783 
784 	if (!IS_ERR(mac_addr)) {
785 		ether_addr_copy(dev->dev_addr, mac_addr);
786 	} else {
787 		eth_hw_addr_random(dev);
788 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
789 	}
790 
791 	if (model && !strcasecmp(model, "TSEC"))
792 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
793 				     FSL_GIANFAR_DEV_HAS_COALESCE |
794 				     FSL_GIANFAR_DEV_HAS_RMON |
795 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
796 
797 	if (model && !strcasecmp(model, "eTSEC"))
798 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
799 				     FSL_GIANFAR_DEV_HAS_COALESCE |
800 				     FSL_GIANFAR_DEV_HAS_RMON |
801 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
802 				     FSL_GIANFAR_DEV_HAS_CSUM |
803 				     FSL_GIANFAR_DEV_HAS_VLAN |
804 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
805 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
806 				     FSL_GIANFAR_DEV_HAS_TIMER |
807 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
808 
809 	/* Use PHY connection type from the DT node if one is specified there.
810 	 * rgmii-id really needs to be specified. Other types can be
811 	 * detected by hardware
812 	 */
813 	err = of_get_phy_mode(np, &interface);
814 	if (!err)
815 		priv->interface = interface;
816 	else
817 		priv->interface = gfar_get_interface(dev);
818 
819 	if (of_find_property(np, "fsl,magic-packet", NULL))
820 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
821 
822 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
823 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
824 
825 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
826 
827 	/* In the case of a fixed PHY, the DT node associated
828 	 * to the PHY is the Ethernet MAC DT node.
829 	 */
830 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
831 		err = of_phy_register_fixed_link(np);
832 		if (err)
833 			goto err_grp_init;
834 
835 		priv->phy_node = of_node_get(np);
836 	}
837 
838 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
839 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
840 
841 	return 0;
842 
843 err_grp_init:
844 	unmap_group_regs(priv);
845 rx_alloc_failed:
846 	gfar_free_rx_queues(priv);
847 tx_alloc_failed:
848 	gfar_free_tx_queues(priv);
849 	free_gfar_dev(priv);
850 	return err;
851 }
852 
853 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
854 				   u32 class)
855 {
856 	u32 rqfpr = FPR_FILER_MASK;
857 	u32 rqfcr = 0x0;
858 
859 	rqfar--;
860 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
861 	priv->ftp_rqfpr[rqfar] = rqfpr;
862 	priv->ftp_rqfcr[rqfar] = rqfcr;
863 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
864 
865 	rqfar--;
866 	rqfcr = RQFCR_CMP_NOMATCH;
867 	priv->ftp_rqfpr[rqfar] = rqfpr;
868 	priv->ftp_rqfcr[rqfar] = rqfcr;
869 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
870 
871 	rqfar--;
872 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
873 	rqfpr = class;
874 	priv->ftp_rqfcr[rqfar] = rqfcr;
875 	priv->ftp_rqfpr[rqfar] = rqfpr;
876 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
877 
878 	rqfar--;
879 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
880 	rqfpr = class;
881 	priv->ftp_rqfcr[rqfar] = rqfcr;
882 	priv->ftp_rqfpr[rqfar] = rqfpr;
883 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
884 
885 	return rqfar;
886 }
887 
888 static void gfar_init_filer_table(struct gfar_private *priv)
889 {
890 	int i = 0x0;
891 	u32 rqfar = MAX_FILER_IDX;
892 	u32 rqfcr = 0x0;
893 	u32 rqfpr = FPR_FILER_MASK;
894 
895 	/* Default rule */
896 	rqfcr = RQFCR_CMP_MATCH;
897 	priv->ftp_rqfcr[rqfar] = rqfcr;
898 	priv->ftp_rqfpr[rqfar] = rqfpr;
899 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900 
901 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
902 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
903 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
904 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
905 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
906 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
907 
908 	/* cur_filer_idx indicated the first non-masked rule */
909 	priv->cur_filer_idx = rqfar;
910 
911 	/* Rest are masked rules */
912 	rqfcr = RQFCR_CMP_NOMATCH;
913 	for (i = 0; i < rqfar; i++) {
914 		priv->ftp_rqfcr[i] = rqfcr;
915 		priv->ftp_rqfpr[i] = rqfpr;
916 		gfar_write_filer(priv, i, rqfcr, rqfpr);
917 	}
918 }
919 
920 #ifdef CONFIG_PPC
921 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
922 {
923 	unsigned int pvr = mfspr(SPRN_PVR);
924 	unsigned int svr = mfspr(SPRN_SVR);
925 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
926 	unsigned int rev = svr & 0xffff;
927 
928 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
929 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
930 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
931 		priv->errata |= GFAR_ERRATA_74;
932 
933 	/* MPC8313 and MPC837x all rev */
934 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
935 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
936 		priv->errata |= GFAR_ERRATA_76;
937 
938 	/* MPC8313 Rev < 2.0 */
939 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
940 		priv->errata |= GFAR_ERRATA_12;
941 }
942 
943 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
944 {
945 	unsigned int svr = mfspr(SPRN_SVR);
946 
947 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
948 		priv->errata |= GFAR_ERRATA_12;
949 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
950 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
951 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
952 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
953 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
954 }
955 #endif
956 
957 static void gfar_detect_errata(struct gfar_private *priv)
958 {
959 	struct device *dev = &priv->ofdev->dev;
960 
961 	/* no plans to fix */
962 	priv->errata |= GFAR_ERRATA_A002;
963 
964 #ifdef CONFIG_PPC
965 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
966 		__gfar_detect_errata_85xx(priv);
967 	else /* non-mpc85xx parts, i.e. e300 core based */
968 		__gfar_detect_errata_83xx(priv);
969 #endif
970 
971 	if (priv->errata)
972 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
973 			 priv->errata);
974 }
975 
976 static void gfar_init_addr_hash_table(struct gfar_private *priv)
977 {
978 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
979 
980 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
981 		priv->extended_hash = 1;
982 		priv->hash_width = 9;
983 
984 		priv->hash_regs[0] = &regs->igaddr0;
985 		priv->hash_regs[1] = &regs->igaddr1;
986 		priv->hash_regs[2] = &regs->igaddr2;
987 		priv->hash_regs[3] = &regs->igaddr3;
988 		priv->hash_regs[4] = &regs->igaddr4;
989 		priv->hash_regs[5] = &regs->igaddr5;
990 		priv->hash_regs[6] = &regs->igaddr6;
991 		priv->hash_regs[7] = &regs->igaddr7;
992 		priv->hash_regs[8] = &regs->gaddr0;
993 		priv->hash_regs[9] = &regs->gaddr1;
994 		priv->hash_regs[10] = &regs->gaddr2;
995 		priv->hash_regs[11] = &regs->gaddr3;
996 		priv->hash_regs[12] = &regs->gaddr4;
997 		priv->hash_regs[13] = &regs->gaddr5;
998 		priv->hash_regs[14] = &regs->gaddr6;
999 		priv->hash_regs[15] = &regs->gaddr7;
1000 
1001 	} else {
1002 		priv->extended_hash = 0;
1003 		priv->hash_width = 8;
1004 
1005 		priv->hash_regs[0] = &regs->gaddr0;
1006 		priv->hash_regs[1] = &regs->gaddr1;
1007 		priv->hash_regs[2] = &regs->gaddr2;
1008 		priv->hash_regs[3] = &regs->gaddr3;
1009 		priv->hash_regs[4] = &regs->gaddr4;
1010 		priv->hash_regs[5] = &regs->gaddr5;
1011 		priv->hash_regs[6] = &regs->gaddr6;
1012 		priv->hash_regs[7] = &regs->gaddr7;
1013 	}
1014 }
1015 
1016 static int __gfar_is_rx_idle(struct gfar_private *priv)
1017 {
1018 	u32 res;
1019 
1020 	/* Normaly TSEC should not hang on GRS commands, so we should
1021 	 * actually wait for IEVENT_GRSC flag.
1022 	 */
1023 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1024 		return 0;
1025 
1026 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1027 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1028 	 * and the Rx can be safely reset.
1029 	 */
1030 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1031 	res &= 0x7f807f80;
1032 	if ((res & 0xffff) == (res >> 16))
1033 		return 1;
1034 
1035 	return 0;
1036 }
1037 
1038 /* Halt the receive and transmit queues */
1039 static void gfar_halt_nodisable(struct gfar_private *priv)
1040 {
1041 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1042 	u32 tempval;
1043 	unsigned int timeout;
1044 	int stopped;
1045 
1046 	gfar_ints_disable(priv);
1047 
1048 	if (gfar_is_dma_stopped(priv))
1049 		return;
1050 
1051 	/* Stop the DMA, and wait for it to stop */
1052 	tempval = gfar_read(&regs->dmactrl);
1053 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1054 	gfar_write(&regs->dmactrl, tempval);
1055 
1056 retry:
1057 	timeout = 1000;
1058 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1059 		cpu_relax();
1060 		timeout--;
1061 	}
1062 
1063 	if (!timeout)
1064 		stopped = gfar_is_dma_stopped(priv);
1065 
1066 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1067 	    !__gfar_is_rx_idle(priv))
1068 		goto retry;
1069 }
1070 
1071 /* Halt the receive and transmit queues */
1072 static void gfar_halt(struct gfar_private *priv)
1073 {
1074 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1075 	u32 tempval;
1076 
1077 	/* Dissable the Rx/Tx hw queues */
1078 	gfar_write(&regs->rqueue, 0);
1079 	gfar_write(&regs->tqueue, 0);
1080 
1081 	mdelay(10);
1082 
1083 	gfar_halt_nodisable(priv);
1084 
1085 	/* Disable Rx/Tx DMA */
1086 	tempval = gfar_read(&regs->maccfg1);
1087 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1088 	gfar_write(&regs->maccfg1, tempval);
1089 }
1090 
1091 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1092 {
1093 	struct txbd8 *txbdp;
1094 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1095 	int i, j;
1096 
1097 	txbdp = tx_queue->tx_bd_base;
1098 
1099 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1100 		if (!tx_queue->tx_skbuff[i])
1101 			continue;
1102 
1103 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1105 		txbdp->lstatus = 0;
1106 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1107 		     j++) {
1108 			txbdp++;
1109 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1110 				       be16_to_cpu(txbdp->length),
1111 				       DMA_TO_DEVICE);
1112 		}
1113 		txbdp++;
1114 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1115 		tx_queue->tx_skbuff[i] = NULL;
1116 	}
1117 	kfree(tx_queue->tx_skbuff);
1118 	tx_queue->tx_skbuff = NULL;
1119 }
1120 
1121 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1122 {
1123 	int i;
1124 
1125 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1126 
1127 	dev_kfree_skb(rx_queue->skb);
1128 
1129 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1130 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1131 
1132 		rxbdp->lstatus = 0;
1133 		rxbdp->bufPtr = 0;
1134 		rxbdp++;
1135 
1136 		if (!rxb->page)
1137 			continue;
1138 
1139 		dma_unmap_page(rx_queue->dev, rxb->dma,
1140 			       PAGE_SIZE, DMA_FROM_DEVICE);
1141 		__free_page(rxb->page);
1142 
1143 		rxb->page = NULL;
1144 	}
1145 
1146 	kfree(rx_queue->rx_buff);
1147 	rx_queue->rx_buff = NULL;
1148 }
1149 
1150 /* If there are any tx skbs or rx skbs still around, free them.
1151  * Then free tx_skbuff and rx_skbuff
1152  */
1153 static void free_skb_resources(struct gfar_private *priv)
1154 {
1155 	struct gfar_priv_tx_q *tx_queue = NULL;
1156 	struct gfar_priv_rx_q *rx_queue = NULL;
1157 	int i;
1158 
1159 	/* Go through all the buffer descriptors and free their data buffers */
1160 	for (i = 0; i < priv->num_tx_queues; i++) {
1161 		struct netdev_queue *txq;
1162 
1163 		tx_queue = priv->tx_queue[i];
1164 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1165 		if (tx_queue->tx_skbuff)
1166 			free_skb_tx_queue(tx_queue);
1167 		netdev_tx_reset_queue(txq);
1168 	}
1169 
1170 	for (i = 0; i < priv->num_rx_queues; i++) {
1171 		rx_queue = priv->rx_queue[i];
1172 		if (rx_queue->rx_buff)
1173 			free_skb_rx_queue(rx_queue);
1174 	}
1175 
1176 	dma_free_coherent(priv->dev,
1177 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1178 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1179 			  priv->tx_queue[0]->tx_bd_base,
1180 			  priv->tx_queue[0]->tx_bd_dma_base);
1181 }
1182 
1183 void stop_gfar(struct net_device *dev)
1184 {
1185 	struct gfar_private *priv = netdev_priv(dev);
1186 
1187 	netif_tx_stop_all_queues(dev);
1188 
1189 	smp_mb__before_atomic();
1190 	set_bit(GFAR_DOWN, &priv->state);
1191 	smp_mb__after_atomic();
1192 
1193 	disable_napi(priv);
1194 
1195 	/* disable ints and gracefully shut down Rx/Tx DMA */
1196 	gfar_halt(priv);
1197 
1198 	phy_stop(dev->phydev);
1199 
1200 	free_skb_resources(priv);
1201 }
1202 
1203 static void gfar_start(struct gfar_private *priv)
1204 {
1205 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1206 	u32 tempval;
1207 	int i = 0;
1208 
1209 	/* Enable Rx/Tx hw queues */
1210 	gfar_write(&regs->rqueue, priv->rqueue);
1211 	gfar_write(&regs->tqueue, priv->tqueue);
1212 
1213 	/* Initialize DMACTRL to have WWR and WOP */
1214 	tempval = gfar_read(&regs->dmactrl);
1215 	tempval |= DMACTRL_INIT_SETTINGS;
1216 	gfar_write(&regs->dmactrl, tempval);
1217 
1218 	/* Make sure we aren't stopped */
1219 	tempval = gfar_read(&regs->dmactrl);
1220 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1221 	gfar_write(&regs->dmactrl, tempval);
1222 
1223 	for (i = 0; i < priv->num_grps; i++) {
1224 		regs = priv->gfargrp[i].regs;
1225 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1226 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1227 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1228 	}
1229 
1230 	/* Enable Rx/Tx DMA */
1231 	tempval = gfar_read(&regs->maccfg1);
1232 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1233 	gfar_write(&regs->maccfg1, tempval);
1234 
1235 	gfar_ints_enable(priv);
1236 
1237 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1238 }
1239 
1240 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1241 {
1242 	struct page *page;
1243 	dma_addr_t addr;
1244 
1245 	page = dev_alloc_page();
1246 	if (unlikely(!page))
1247 		return false;
1248 
1249 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1250 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1251 		__free_page(page);
1252 
1253 		return false;
1254 	}
1255 
1256 	rxb->dma = addr;
1257 	rxb->page = page;
1258 	rxb->page_offset = 0;
1259 
1260 	return true;
1261 }
1262 
1263 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1264 {
1265 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1266 	struct gfar_extra_stats *estats = &priv->extra_stats;
1267 
1268 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1269 	atomic64_inc(&estats->rx_alloc_err);
1270 }
1271 
1272 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1273 				int alloc_cnt)
1274 {
1275 	struct rxbd8 *bdp;
1276 	struct gfar_rx_buff *rxb;
1277 	int i;
1278 
1279 	i = rx_queue->next_to_use;
1280 	bdp = &rx_queue->rx_bd_base[i];
1281 	rxb = &rx_queue->rx_buff[i];
1282 
1283 	while (alloc_cnt--) {
1284 		/* try reuse page */
1285 		if (unlikely(!rxb->page)) {
1286 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1287 				gfar_rx_alloc_err(rx_queue);
1288 				break;
1289 			}
1290 		}
1291 
1292 		/* Setup the new RxBD */
1293 		gfar_init_rxbdp(rx_queue, bdp,
1294 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1295 
1296 		/* Update to the next pointer */
1297 		bdp++;
1298 		rxb++;
1299 
1300 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1301 			i = 0;
1302 			bdp = rx_queue->rx_bd_base;
1303 			rxb = rx_queue->rx_buff;
1304 		}
1305 	}
1306 
1307 	rx_queue->next_to_use = i;
1308 	rx_queue->next_to_alloc = i;
1309 }
1310 
1311 static void gfar_init_bds(struct net_device *ndev)
1312 {
1313 	struct gfar_private *priv = netdev_priv(ndev);
1314 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315 	struct gfar_priv_tx_q *tx_queue = NULL;
1316 	struct gfar_priv_rx_q *rx_queue = NULL;
1317 	struct txbd8 *txbdp;
1318 	u32 __iomem *rfbptr;
1319 	int i, j;
1320 
1321 	for (i = 0; i < priv->num_tx_queues; i++) {
1322 		tx_queue = priv->tx_queue[i];
1323 		/* Initialize some variables in our dev structure */
1324 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1325 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1326 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1327 		tx_queue->skb_curtx = 0;
1328 		tx_queue->skb_dirtytx = 0;
1329 
1330 		/* Initialize Transmit Descriptor Ring */
1331 		txbdp = tx_queue->tx_bd_base;
1332 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1333 			txbdp->lstatus = 0;
1334 			txbdp->bufPtr = 0;
1335 			txbdp++;
1336 		}
1337 
1338 		/* Set the last descriptor in the ring to indicate wrap */
1339 		txbdp--;
1340 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1341 					    TXBD_WRAP);
1342 	}
1343 
1344 	rfbptr = &regs->rfbptr0;
1345 	for (i = 0; i < priv->num_rx_queues; i++) {
1346 		rx_queue = priv->rx_queue[i];
1347 
1348 		rx_queue->next_to_clean = 0;
1349 		rx_queue->next_to_use = 0;
1350 		rx_queue->next_to_alloc = 0;
1351 
1352 		/* make sure next_to_clean != next_to_use after this
1353 		 * by leaving at least 1 unused descriptor
1354 		 */
1355 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1356 
1357 		rx_queue->rfbptr = rfbptr;
1358 		rfbptr += 2;
1359 	}
1360 }
1361 
1362 static int gfar_alloc_skb_resources(struct net_device *ndev)
1363 {
1364 	void *vaddr;
1365 	dma_addr_t addr;
1366 	int i, j;
1367 	struct gfar_private *priv = netdev_priv(ndev);
1368 	struct device *dev = priv->dev;
1369 	struct gfar_priv_tx_q *tx_queue = NULL;
1370 	struct gfar_priv_rx_q *rx_queue = NULL;
1371 
1372 	priv->total_tx_ring_size = 0;
1373 	for (i = 0; i < priv->num_tx_queues; i++)
1374 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1375 
1376 	priv->total_rx_ring_size = 0;
1377 	for (i = 0; i < priv->num_rx_queues; i++)
1378 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1379 
1380 	/* Allocate memory for the buffer descriptors */
1381 	vaddr = dma_alloc_coherent(dev,
1382 				   (priv->total_tx_ring_size *
1383 				    sizeof(struct txbd8)) +
1384 				   (priv->total_rx_ring_size *
1385 				    sizeof(struct rxbd8)),
1386 				   &addr, GFP_KERNEL);
1387 	if (!vaddr)
1388 		return -ENOMEM;
1389 
1390 	for (i = 0; i < priv->num_tx_queues; i++) {
1391 		tx_queue = priv->tx_queue[i];
1392 		tx_queue->tx_bd_base = vaddr;
1393 		tx_queue->tx_bd_dma_base = addr;
1394 		tx_queue->dev = ndev;
1395 		/* enet DMA only understands physical addresses */
1396 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1398 	}
1399 
1400 	/* Start the rx descriptor ring where the tx ring leaves off */
1401 	for (i = 0; i < priv->num_rx_queues; i++) {
1402 		rx_queue = priv->rx_queue[i];
1403 		rx_queue->rx_bd_base = vaddr;
1404 		rx_queue->rx_bd_dma_base = addr;
1405 		rx_queue->ndev = ndev;
1406 		rx_queue->dev = dev;
1407 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1409 	}
1410 
1411 	/* Setup the skbuff rings */
1412 	for (i = 0; i < priv->num_tx_queues; i++) {
1413 		tx_queue = priv->tx_queue[i];
1414 		tx_queue->tx_skbuff =
1415 			kmalloc_array(tx_queue->tx_ring_size,
1416 				      sizeof(*tx_queue->tx_skbuff),
1417 				      GFP_KERNEL);
1418 		if (!tx_queue->tx_skbuff)
1419 			goto cleanup;
1420 
1421 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1422 			tx_queue->tx_skbuff[j] = NULL;
1423 	}
1424 
1425 	for (i = 0; i < priv->num_rx_queues; i++) {
1426 		rx_queue = priv->rx_queue[i];
1427 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1428 					    sizeof(*rx_queue->rx_buff),
1429 					    GFP_KERNEL);
1430 		if (!rx_queue->rx_buff)
1431 			goto cleanup;
1432 	}
1433 
1434 	gfar_init_bds(ndev);
1435 
1436 	return 0;
1437 
1438 cleanup:
1439 	free_skb_resources(priv);
1440 	return -ENOMEM;
1441 }
1442 
1443 /* Bring the controller up and running */
1444 int startup_gfar(struct net_device *ndev)
1445 {
1446 	struct gfar_private *priv = netdev_priv(ndev);
1447 	int err;
1448 
1449 	gfar_mac_reset(priv);
1450 
1451 	err = gfar_alloc_skb_resources(ndev);
1452 	if (err)
1453 		return err;
1454 
1455 	gfar_init_tx_rx_base(priv);
1456 
1457 	smp_mb__before_atomic();
1458 	clear_bit(GFAR_DOWN, &priv->state);
1459 	smp_mb__after_atomic();
1460 
1461 	/* Start Rx/Tx DMA and enable the interrupts */
1462 	gfar_start(priv);
1463 
1464 	/* force link state update after mac reset */
1465 	priv->oldlink = 0;
1466 	priv->oldspeed = 0;
1467 	priv->oldduplex = -1;
1468 
1469 	phy_start(ndev->phydev);
1470 
1471 	enable_napi(priv);
1472 
1473 	netif_tx_wake_all_queues(ndev);
1474 
1475 	return 0;
1476 }
1477 
1478 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1479 {
1480 	struct net_device *ndev = priv->ndev;
1481 	struct phy_device *phydev = ndev->phydev;
1482 	u32 val = 0;
1483 
1484 	if (!phydev->duplex)
1485 		return val;
1486 
1487 	if (!priv->pause_aneg_en) {
1488 		if (priv->tx_pause_en)
1489 			val |= MACCFG1_TX_FLOW;
1490 		if (priv->rx_pause_en)
1491 			val |= MACCFG1_RX_FLOW;
1492 	} else {
1493 		u16 lcl_adv, rmt_adv;
1494 		u8 flowctrl;
1495 		/* get link partner capabilities */
1496 		rmt_adv = 0;
1497 		if (phydev->pause)
1498 			rmt_adv = LPA_PAUSE_CAP;
1499 		if (phydev->asym_pause)
1500 			rmt_adv |= LPA_PAUSE_ASYM;
1501 
1502 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1503 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1504 		if (flowctrl & FLOW_CTRL_TX)
1505 			val |= MACCFG1_TX_FLOW;
1506 		if (flowctrl & FLOW_CTRL_RX)
1507 			val |= MACCFG1_RX_FLOW;
1508 	}
1509 
1510 	return val;
1511 }
1512 
1513 static noinline void gfar_update_link_state(struct gfar_private *priv)
1514 {
1515 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516 	struct net_device *ndev = priv->ndev;
1517 	struct phy_device *phydev = ndev->phydev;
1518 	struct gfar_priv_rx_q *rx_queue = NULL;
1519 	int i;
1520 
1521 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1522 		return;
1523 
1524 	if (phydev->link) {
1525 		u32 tempval1 = gfar_read(&regs->maccfg1);
1526 		u32 tempval = gfar_read(&regs->maccfg2);
1527 		u32 ecntrl = gfar_read(&regs->ecntrl);
1528 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1529 
1530 		if (phydev->duplex != priv->oldduplex) {
1531 			if (!(phydev->duplex))
1532 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1533 			else
1534 				tempval |= MACCFG2_FULL_DUPLEX;
1535 
1536 			priv->oldduplex = phydev->duplex;
1537 		}
1538 
1539 		if (phydev->speed != priv->oldspeed) {
1540 			switch (phydev->speed) {
1541 			case 1000:
1542 				tempval =
1543 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1544 
1545 				ecntrl &= ~(ECNTRL_R100);
1546 				break;
1547 			case 100:
1548 			case 10:
1549 				tempval =
1550 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1551 
1552 				/* Reduced mode distinguishes
1553 				 * between 10 and 100
1554 				 */
1555 				if (phydev->speed == SPEED_100)
1556 					ecntrl |= ECNTRL_R100;
1557 				else
1558 					ecntrl &= ~(ECNTRL_R100);
1559 				break;
1560 			default:
1561 				netif_warn(priv, link, priv->ndev,
1562 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1563 					   phydev->speed);
1564 				break;
1565 			}
1566 
1567 			priv->oldspeed = phydev->speed;
1568 		}
1569 
1570 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1571 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1572 
1573 		/* Turn last free buffer recording on */
1574 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1575 			for (i = 0; i < priv->num_rx_queues; i++) {
1576 				u32 bdp_dma;
1577 
1578 				rx_queue = priv->rx_queue[i];
1579 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1580 				gfar_write(rx_queue->rfbptr, bdp_dma);
1581 			}
1582 
1583 			priv->tx_actual_en = 1;
1584 		}
1585 
1586 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1587 			priv->tx_actual_en = 0;
1588 
1589 		gfar_write(&regs->maccfg1, tempval1);
1590 		gfar_write(&regs->maccfg2, tempval);
1591 		gfar_write(&regs->ecntrl, ecntrl);
1592 
1593 		if (!priv->oldlink)
1594 			priv->oldlink = 1;
1595 
1596 	} else if (priv->oldlink) {
1597 		priv->oldlink = 0;
1598 		priv->oldspeed = 0;
1599 		priv->oldduplex = -1;
1600 	}
1601 
1602 	if (netif_msg_link(priv))
1603 		phy_print_status(phydev);
1604 }
1605 
1606 /* Called every time the controller might need to be made
1607  * aware of new link state.  The PHY code conveys this
1608  * information through variables in the phydev structure, and this
1609  * function converts those variables into the appropriate
1610  * register values, and can bring down the device if needed.
1611  */
1612 static void adjust_link(struct net_device *dev)
1613 {
1614 	struct gfar_private *priv = netdev_priv(dev);
1615 	struct phy_device *phydev = dev->phydev;
1616 
1617 	if (unlikely(phydev->link != priv->oldlink ||
1618 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1619 				       phydev->speed != priv->oldspeed))))
1620 		gfar_update_link_state(priv);
1621 }
1622 
1623 /* Initialize TBI PHY interface for communicating with the
1624  * SERDES lynx PHY on the chip.  We communicate with this PHY
1625  * through the MDIO bus on each controller, treating it as a
1626  * "normal" PHY at the address found in the TBIPA register.  We assume
1627  * that the TBIPA register is valid.  Either the MDIO bus code will set
1628  * it to a value that doesn't conflict with other PHYs on the bus, or the
1629  * value doesn't matter, as there are no other PHYs on the bus.
1630  */
1631 static void gfar_configure_serdes(struct net_device *dev)
1632 {
1633 	struct gfar_private *priv = netdev_priv(dev);
1634 	struct phy_device *tbiphy;
1635 
1636 	if (!priv->tbi_node) {
1637 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1638 				    "device tree specify a tbi-handle\n");
1639 		return;
1640 	}
1641 
1642 	tbiphy = of_phy_find_device(priv->tbi_node);
1643 	if (!tbiphy) {
1644 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1645 		return;
1646 	}
1647 
1648 	/* If the link is already up, we must already be ok, and don't need to
1649 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1650 	 * everything for us?  Resetting it takes the link down and requires
1651 	 * several seconds for it to come back.
1652 	 */
1653 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1654 		put_device(&tbiphy->mdio.dev);
1655 		return;
1656 	}
1657 
1658 	/* Single clk mode, mii mode off(for serdes communication) */
1659 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1660 
1661 	phy_write(tbiphy, MII_ADVERTISE,
1662 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1663 		  ADVERTISE_1000XPSE_ASYM);
1664 
1665 	phy_write(tbiphy, MII_BMCR,
1666 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1667 		  BMCR_SPEED1000);
1668 
1669 	put_device(&tbiphy->mdio.dev);
1670 }
1671 
1672 /* Initializes driver's PHY state, and attaches to the PHY.
1673  * Returns 0 on success.
1674  */
1675 static int init_phy(struct net_device *dev)
1676 {
1677 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1678 	struct gfar_private *priv = netdev_priv(dev);
1679 	phy_interface_t interface = priv->interface;
1680 	struct phy_device *phydev;
1681 	struct ethtool_eee edata;
1682 
1683 	linkmode_set_bit_array(phy_10_100_features_array,
1684 			       ARRAY_SIZE(phy_10_100_features_array),
1685 			       mask);
1686 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1687 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1688 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1689 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1690 
1691 	priv->oldlink = 0;
1692 	priv->oldspeed = 0;
1693 	priv->oldduplex = -1;
1694 
1695 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1696 				interface);
1697 	if (!phydev) {
1698 		dev_err(&dev->dev, "could not attach to PHY\n");
1699 		return -ENODEV;
1700 	}
1701 
1702 	if (interface == PHY_INTERFACE_MODE_SGMII)
1703 		gfar_configure_serdes(dev);
1704 
1705 	/* Remove any features not supported by the controller */
1706 	linkmode_and(phydev->supported, phydev->supported, mask);
1707 	linkmode_copy(phydev->advertising, phydev->supported);
1708 
1709 	/* Add support for flow control */
1710 	phy_support_asym_pause(phydev);
1711 
1712 	/* disable EEE autoneg, EEE not supported by eTSEC */
1713 	memset(&edata, 0, sizeof(struct ethtool_eee));
1714 	phy_ethtool_set_eee(phydev, &edata);
1715 
1716 	return 0;
1717 }
1718 
1719 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1720 {
1721 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1722 
1723 	memset(fcb, 0, GMAC_FCB_LEN);
1724 
1725 	return fcb;
1726 }
1727 
1728 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1729 				    int fcb_length)
1730 {
1731 	/* If we're here, it's a IP packet with a TCP or UDP
1732 	 * payload.  We set it to checksum, using a pseudo-header
1733 	 * we provide
1734 	 */
1735 	u8 flags = TXFCB_DEFAULT;
1736 
1737 	/* Tell the controller what the protocol is
1738 	 * And provide the already calculated phcs
1739 	 */
1740 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1741 		flags |= TXFCB_UDP;
1742 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1743 	} else
1744 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1745 
1746 	/* l3os is the distance between the start of the
1747 	 * frame (skb->data) and the start of the IP hdr.
1748 	 * l4os is the distance between the start of the
1749 	 * l3 hdr and the l4 hdr
1750 	 */
1751 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1752 	fcb->l4os = skb_network_header_len(skb);
1753 
1754 	fcb->flags = flags;
1755 }
1756 
1757 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1758 {
1759 	fcb->flags |= TXFCB_VLN;
1760 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1761 }
1762 
1763 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1764 				      struct txbd8 *base, int ring_size)
1765 {
1766 	struct txbd8 *new_bd = bdp + stride;
1767 
1768 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1769 }
1770 
1771 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1772 				      int ring_size)
1773 {
1774 	return skip_txbd(bdp, 1, base, ring_size);
1775 }
1776 
1777 /* eTSEC12: csum generation not supported for some fcb offsets */
1778 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1779 				       unsigned long fcb_addr)
1780 {
1781 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1782 	       (fcb_addr % 0x20) > 0x18);
1783 }
1784 
1785 /* eTSEC76: csum generation for frames larger than 2500 may
1786  * cause excess delays before start of transmission
1787  */
1788 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1789 				       unsigned int len)
1790 {
1791 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1792 	       (len > 2500));
1793 }
1794 
1795 /* This is called by the kernel when a frame is ready for transmission.
1796  * It is pointed to by the dev->hard_start_xmit function pointer
1797  */
1798 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1799 {
1800 	struct gfar_private *priv = netdev_priv(dev);
1801 	struct gfar_priv_tx_q *tx_queue = NULL;
1802 	struct netdev_queue *txq;
1803 	struct gfar __iomem *regs = NULL;
1804 	struct txfcb *fcb = NULL;
1805 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1806 	u32 lstatus;
1807 	skb_frag_t *frag;
1808 	int i, rq = 0;
1809 	int do_tstamp, do_csum, do_vlan;
1810 	u32 bufaddr;
1811 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1812 
1813 	rq = skb->queue_mapping;
1814 	tx_queue = priv->tx_queue[rq];
1815 	txq = netdev_get_tx_queue(dev, rq);
1816 	base = tx_queue->tx_bd_base;
1817 	regs = tx_queue->grp->regs;
1818 
1819 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1820 	do_vlan = skb_vlan_tag_present(skb);
1821 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1822 		    priv->hwts_tx_en;
1823 
1824 	if (do_csum || do_vlan)
1825 		fcb_len = GMAC_FCB_LEN;
1826 
1827 	/* check if time stamp should be generated */
1828 	if (unlikely(do_tstamp))
1829 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1830 
1831 	/* make space for additional header when fcb is needed */
1832 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1833 		struct sk_buff *skb_new;
1834 
1835 		skb_new = skb_realloc_headroom(skb, fcb_len);
1836 		if (!skb_new) {
1837 			dev->stats.tx_errors++;
1838 			dev_kfree_skb_any(skb);
1839 			return NETDEV_TX_OK;
1840 		}
1841 
1842 		if (skb->sk)
1843 			skb_set_owner_w(skb_new, skb->sk);
1844 		dev_consume_skb_any(skb);
1845 		skb = skb_new;
1846 	}
1847 
1848 	/* total number of fragments in the SKB */
1849 	nr_frags = skb_shinfo(skb)->nr_frags;
1850 
1851 	/* calculate the required number of TxBDs for this skb */
1852 	if (unlikely(do_tstamp))
1853 		nr_txbds = nr_frags + 2;
1854 	else
1855 		nr_txbds = nr_frags + 1;
1856 
1857 	/* check if there is space to queue this packet */
1858 	if (nr_txbds > tx_queue->num_txbdfree) {
1859 		/* no space, stop the queue */
1860 		netif_tx_stop_queue(txq);
1861 		dev->stats.tx_fifo_errors++;
1862 		return NETDEV_TX_BUSY;
1863 	}
1864 
1865 	/* Update transmit stats */
1866 	bytes_sent = skb->len;
1867 	tx_queue->stats.tx_bytes += bytes_sent;
1868 	/* keep Tx bytes on wire for BQL accounting */
1869 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1870 	tx_queue->stats.tx_packets++;
1871 
1872 	txbdp = txbdp_start = tx_queue->cur_tx;
1873 	lstatus = be32_to_cpu(txbdp->lstatus);
1874 
1875 	/* Add TxPAL between FCB and frame if required */
1876 	if (unlikely(do_tstamp)) {
1877 		skb_push(skb, GMAC_TXPAL_LEN);
1878 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1879 	}
1880 
1881 	/* Add TxFCB if required */
1882 	if (fcb_len) {
1883 		fcb = gfar_add_fcb(skb);
1884 		lstatus |= BD_LFLAG(TXBD_TOE);
1885 	}
1886 
1887 	/* Set up checksumming */
1888 	if (do_csum) {
1889 		gfar_tx_checksum(skb, fcb, fcb_len);
1890 
1891 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1892 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1893 			__skb_pull(skb, GMAC_FCB_LEN);
1894 			skb_checksum_help(skb);
1895 			if (do_vlan || do_tstamp) {
1896 				/* put back a new fcb for vlan/tstamp TOE */
1897 				fcb = gfar_add_fcb(skb);
1898 			} else {
1899 				/* Tx TOE not used */
1900 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1901 				fcb = NULL;
1902 			}
1903 		}
1904 	}
1905 
1906 	if (do_vlan)
1907 		gfar_tx_vlan(skb, fcb);
1908 
1909 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1910 				 DMA_TO_DEVICE);
1911 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912 		goto dma_map_err;
1913 
1914 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1915 
1916 	/* Time stamp insertion requires one additional TxBD */
1917 	if (unlikely(do_tstamp))
1918 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1919 						 tx_queue->tx_ring_size);
1920 
1921 	if (likely(!nr_frags)) {
1922 		if (likely(!do_tstamp))
1923 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1924 	} else {
1925 		u32 lstatus_start = lstatus;
1926 
1927 		/* Place the fragment addresses and lengths into the TxBDs */
1928 		frag = &skb_shinfo(skb)->frags[0];
1929 		for (i = 0; i < nr_frags; i++, frag++) {
1930 			unsigned int size;
1931 
1932 			/* Point at the next BD, wrapping as needed */
1933 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1934 
1935 			size = skb_frag_size(frag);
1936 
1937 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1938 				  BD_LFLAG(TXBD_READY);
1939 
1940 			/* Handle the last BD specially */
1941 			if (i == nr_frags - 1)
1942 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1943 
1944 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1945 						   size, DMA_TO_DEVICE);
1946 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1947 				goto dma_map_err;
1948 
1949 			/* set the TxBD length and buffer pointer */
1950 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1951 			txbdp->lstatus = cpu_to_be32(lstatus);
1952 		}
1953 
1954 		lstatus = lstatus_start;
1955 	}
1956 
1957 	/* If time stamping is requested one additional TxBD must be set up. The
1958 	 * first TxBD points to the FCB and must have a data length of
1959 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1960 	 * the full frame length.
1961 	 */
1962 	if (unlikely(do_tstamp)) {
1963 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1964 
1965 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1966 		bufaddr += fcb_len;
1967 
1968 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1969 			      (skb_headlen(skb) - fcb_len);
1970 		if (!nr_frags)
1971 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1972 
1973 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1974 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1975 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1976 
1977 		/* Setup tx hardware time stamping */
1978 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1979 		fcb->ptp = 1;
1980 	} else {
1981 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1982 	}
1983 
1984 	netdev_tx_sent_queue(txq, bytes_sent);
1985 
1986 	gfar_wmb();
1987 
1988 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1989 
1990 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1991 
1992 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1993 
1994 	/* Update the current skb pointer to the next entry we will use
1995 	 * (wrapping if necessary)
1996 	 */
1997 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1998 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1999 
2000 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2001 
2002 	/* We can work in parallel with gfar_clean_tx_ring(), except
2003 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2004 	 * when we were reading the num_txbdfree and checking for available
2005 	 * space, that's because outside of this function it can only grow.
2006 	 */
2007 	spin_lock_bh(&tx_queue->txlock);
2008 	/* reduce TxBD free count */
2009 	tx_queue->num_txbdfree -= (nr_txbds);
2010 	spin_unlock_bh(&tx_queue->txlock);
2011 
2012 	/* If the next BD still needs to be cleaned up, then the bds
2013 	 * are full.  We need to tell the kernel to stop sending us stuff.
2014 	 */
2015 	if (!tx_queue->num_txbdfree) {
2016 		netif_tx_stop_queue(txq);
2017 
2018 		dev->stats.tx_fifo_errors++;
2019 	}
2020 
2021 	/* Tell the DMA to go go go */
2022 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2023 
2024 	return NETDEV_TX_OK;
2025 
2026 dma_map_err:
2027 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2028 	if (do_tstamp)
2029 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2030 	for (i = 0; i < nr_frags; i++) {
2031 		lstatus = be32_to_cpu(txbdp->lstatus);
2032 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2033 			break;
2034 
2035 		lstatus &= ~BD_LFLAG(TXBD_READY);
2036 		txbdp->lstatus = cpu_to_be32(lstatus);
2037 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2038 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2039 			       DMA_TO_DEVICE);
2040 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2041 	}
2042 	gfar_wmb();
2043 	dev_kfree_skb_any(skb);
2044 	return NETDEV_TX_OK;
2045 }
2046 
2047 /* Changes the mac address if the controller is not running. */
2048 static int gfar_set_mac_address(struct net_device *dev)
2049 {
2050 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2051 
2052 	return 0;
2053 }
2054 
2055 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2056 {
2057 	struct gfar_private *priv = netdev_priv(dev);
2058 
2059 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2060 		cpu_relax();
2061 
2062 	if (dev->flags & IFF_UP)
2063 		stop_gfar(dev);
2064 
2065 	dev->mtu = new_mtu;
2066 
2067 	if (dev->flags & IFF_UP)
2068 		startup_gfar(dev);
2069 
2070 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2071 
2072 	return 0;
2073 }
2074 
2075 static void reset_gfar(struct net_device *ndev)
2076 {
2077 	struct gfar_private *priv = netdev_priv(ndev);
2078 
2079 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2080 		cpu_relax();
2081 
2082 	stop_gfar(ndev);
2083 	startup_gfar(ndev);
2084 
2085 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2086 }
2087 
2088 /* gfar_reset_task gets scheduled when a packet has not been
2089  * transmitted after a set amount of time.
2090  * For now, assume that clearing out all the structures, and
2091  * starting over will fix the problem.
2092  */
2093 static void gfar_reset_task(struct work_struct *work)
2094 {
2095 	struct gfar_private *priv = container_of(work, struct gfar_private,
2096 						 reset_task);
2097 	reset_gfar(priv->ndev);
2098 }
2099 
2100 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2101 {
2102 	struct gfar_private *priv = netdev_priv(dev);
2103 
2104 	dev->stats.tx_errors++;
2105 	schedule_work(&priv->reset_task);
2106 }
2107 
2108 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2109 {
2110 	struct hwtstamp_config config;
2111 	struct gfar_private *priv = netdev_priv(netdev);
2112 
2113 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2114 		return -EFAULT;
2115 
2116 	/* reserved for future extensions */
2117 	if (config.flags)
2118 		return -EINVAL;
2119 
2120 	switch (config.tx_type) {
2121 	case HWTSTAMP_TX_OFF:
2122 		priv->hwts_tx_en = 0;
2123 		break;
2124 	case HWTSTAMP_TX_ON:
2125 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2126 			return -ERANGE;
2127 		priv->hwts_tx_en = 1;
2128 		break;
2129 	default:
2130 		return -ERANGE;
2131 	}
2132 
2133 	switch (config.rx_filter) {
2134 	case HWTSTAMP_FILTER_NONE:
2135 		if (priv->hwts_rx_en) {
2136 			priv->hwts_rx_en = 0;
2137 			reset_gfar(netdev);
2138 		}
2139 		break;
2140 	default:
2141 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2142 			return -ERANGE;
2143 		if (!priv->hwts_rx_en) {
2144 			priv->hwts_rx_en = 1;
2145 			reset_gfar(netdev);
2146 		}
2147 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2148 		break;
2149 	}
2150 
2151 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2152 		-EFAULT : 0;
2153 }
2154 
2155 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2156 {
2157 	struct hwtstamp_config config;
2158 	struct gfar_private *priv = netdev_priv(netdev);
2159 
2160 	config.flags = 0;
2161 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2162 	config.rx_filter = (priv->hwts_rx_en ?
2163 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2164 
2165 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2166 		-EFAULT : 0;
2167 }
2168 
2169 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2170 {
2171 	struct phy_device *phydev = dev->phydev;
2172 
2173 	if (!netif_running(dev))
2174 		return -EINVAL;
2175 
2176 	if (cmd == SIOCSHWTSTAMP)
2177 		return gfar_hwtstamp_set(dev, rq);
2178 	if (cmd == SIOCGHWTSTAMP)
2179 		return gfar_hwtstamp_get(dev, rq);
2180 
2181 	if (!phydev)
2182 		return -ENODEV;
2183 
2184 	return phy_mii_ioctl(phydev, rq, cmd);
2185 }
2186 
2187 /* Interrupt Handler for Transmit complete */
2188 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2189 {
2190 	struct net_device *dev = tx_queue->dev;
2191 	struct netdev_queue *txq;
2192 	struct gfar_private *priv = netdev_priv(dev);
2193 	struct txbd8 *bdp, *next = NULL;
2194 	struct txbd8 *lbdp = NULL;
2195 	struct txbd8 *base = tx_queue->tx_bd_base;
2196 	struct sk_buff *skb;
2197 	int skb_dirtytx;
2198 	int tx_ring_size = tx_queue->tx_ring_size;
2199 	int frags = 0, nr_txbds = 0;
2200 	int i;
2201 	int howmany = 0;
2202 	int tqi = tx_queue->qindex;
2203 	unsigned int bytes_sent = 0;
2204 	u32 lstatus;
2205 	size_t buflen;
2206 
2207 	txq = netdev_get_tx_queue(dev, tqi);
2208 	bdp = tx_queue->dirty_tx;
2209 	skb_dirtytx = tx_queue->skb_dirtytx;
2210 
2211 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2212 		bool do_tstamp;
2213 
2214 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2215 			    priv->hwts_tx_en;
2216 
2217 		frags = skb_shinfo(skb)->nr_frags;
2218 
2219 		/* When time stamping, one additional TxBD must be freed.
2220 		 * Also, we need to dma_unmap_single() the TxPAL.
2221 		 */
2222 		if (unlikely(do_tstamp))
2223 			nr_txbds = frags + 2;
2224 		else
2225 			nr_txbds = frags + 1;
2226 
2227 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2228 
2229 		lstatus = be32_to_cpu(lbdp->lstatus);
2230 
2231 		/* Only clean completed frames */
2232 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2233 		    (lstatus & BD_LENGTH_MASK))
2234 			break;
2235 
2236 		if (unlikely(do_tstamp)) {
2237 			next = next_txbd(bdp, base, tx_ring_size);
2238 			buflen = be16_to_cpu(next->length) +
2239 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2240 		} else
2241 			buflen = be16_to_cpu(bdp->length);
2242 
2243 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2244 				 buflen, DMA_TO_DEVICE);
2245 
2246 		if (unlikely(do_tstamp)) {
2247 			struct skb_shared_hwtstamps shhwtstamps;
2248 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2249 					  ~0x7UL);
2250 
2251 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2252 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2253 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2254 			skb_tstamp_tx(skb, &shhwtstamps);
2255 			gfar_clear_txbd_status(bdp);
2256 			bdp = next;
2257 		}
2258 
2259 		gfar_clear_txbd_status(bdp);
2260 		bdp = next_txbd(bdp, base, tx_ring_size);
2261 
2262 		for (i = 0; i < frags; i++) {
2263 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2264 				       be16_to_cpu(bdp->length),
2265 				       DMA_TO_DEVICE);
2266 			gfar_clear_txbd_status(bdp);
2267 			bdp = next_txbd(bdp, base, tx_ring_size);
2268 		}
2269 
2270 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2271 
2272 		dev_kfree_skb_any(skb);
2273 
2274 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2275 
2276 		skb_dirtytx = (skb_dirtytx + 1) &
2277 			      TX_RING_MOD_MASK(tx_ring_size);
2278 
2279 		howmany++;
2280 		spin_lock(&tx_queue->txlock);
2281 		tx_queue->num_txbdfree += nr_txbds;
2282 		spin_unlock(&tx_queue->txlock);
2283 	}
2284 
2285 	/* If we freed a buffer, we can restart transmission, if necessary */
2286 	if (tx_queue->num_txbdfree &&
2287 	    netif_tx_queue_stopped(txq) &&
2288 	    !(test_bit(GFAR_DOWN, &priv->state)))
2289 		netif_wake_subqueue(priv->ndev, tqi);
2290 
2291 	/* Update dirty indicators */
2292 	tx_queue->skb_dirtytx = skb_dirtytx;
2293 	tx_queue->dirty_tx = bdp;
2294 
2295 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2296 }
2297 
2298 static void count_errors(u32 lstatus, struct net_device *ndev)
2299 {
2300 	struct gfar_private *priv = netdev_priv(ndev);
2301 	struct net_device_stats *stats = &ndev->stats;
2302 	struct gfar_extra_stats *estats = &priv->extra_stats;
2303 
2304 	/* If the packet was truncated, none of the other errors matter */
2305 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2306 		stats->rx_length_errors++;
2307 
2308 		atomic64_inc(&estats->rx_trunc);
2309 
2310 		return;
2311 	}
2312 	/* Count the errors, if there were any */
2313 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2314 		stats->rx_length_errors++;
2315 
2316 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2317 			atomic64_inc(&estats->rx_large);
2318 		else
2319 			atomic64_inc(&estats->rx_short);
2320 	}
2321 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2322 		stats->rx_frame_errors++;
2323 		atomic64_inc(&estats->rx_nonoctet);
2324 	}
2325 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2326 		atomic64_inc(&estats->rx_crcerr);
2327 		stats->rx_crc_errors++;
2328 	}
2329 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2330 		atomic64_inc(&estats->rx_overrun);
2331 		stats->rx_over_errors++;
2332 	}
2333 }
2334 
2335 static irqreturn_t gfar_receive(int irq, void *grp_id)
2336 {
2337 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2338 	unsigned long flags;
2339 	u32 imask, ievent;
2340 
2341 	ievent = gfar_read(&grp->regs->ievent);
2342 
2343 	if (unlikely(ievent & IEVENT_FGPI)) {
2344 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2345 		return IRQ_HANDLED;
2346 	}
2347 
2348 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2349 		spin_lock_irqsave(&grp->grplock, flags);
2350 		imask = gfar_read(&grp->regs->imask);
2351 		imask &= IMASK_RX_DISABLED;
2352 		gfar_write(&grp->regs->imask, imask);
2353 		spin_unlock_irqrestore(&grp->grplock, flags);
2354 		__napi_schedule(&grp->napi_rx);
2355 	} else {
2356 		/* Clear IEVENT, so interrupts aren't called again
2357 		 * because of the packets that have already arrived.
2358 		 */
2359 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2360 	}
2361 
2362 	return IRQ_HANDLED;
2363 }
2364 
2365 /* Interrupt Handler for Transmit complete */
2366 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2367 {
2368 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2369 	unsigned long flags;
2370 	u32 imask;
2371 
2372 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2373 		spin_lock_irqsave(&grp->grplock, flags);
2374 		imask = gfar_read(&grp->regs->imask);
2375 		imask &= IMASK_TX_DISABLED;
2376 		gfar_write(&grp->regs->imask, imask);
2377 		spin_unlock_irqrestore(&grp->grplock, flags);
2378 		__napi_schedule(&grp->napi_tx);
2379 	} else {
2380 		/* Clear IEVENT, so interrupts aren't called again
2381 		 * because of the packets that have already arrived.
2382 		 */
2383 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2384 	}
2385 
2386 	return IRQ_HANDLED;
2387 }
2388 
2389 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2390 			     struct sk_buff *skb, bool first)
2391 {
2392 	int size = lstatus & BD_LENGTH_MASK;
2393 	struct page *page = rxb->page;
2394 
2395 	if (likely(first)) {
2396 		skb_put(skb, size);
2397 	} else {
2398 		/* the last fragments' length contains the full frame length */
2399 		if (lstatus & BD_LFLAG(RXBD_LAST))
2400 			size -= skb->len;
2401 
2402 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403 				rxb->page_offset + RXBUF_ALIGNMENT,
2404 				size, GFAR_RXB_TRUESIZE);
2405 	}
2406 
2407 	/* try reuse page */
2408 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409 		return false;
2410 
2411 	/* change offset to the other half */
2412 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413 
2414 	page_ref_inc(page);
2415 
2416 	return true;
2417 }
2418 
2419 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420 			       struct gfar_rx_buff *old_rxb)
2421 {
2422 	struct gfar_rx_buff *new_rxb;
2423 	u16 nta = rxq->next_to_alloc;
2424 
2425 	new_rxb = &rxq->rx_buff[nta];
2426 
2427 	/* find next buf that can reuse a page */
2428 	nta++;
2429 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430 
2431 	/* copy page reference */
2432 	*new_rxb = *old_rxb;
2433 
2434 	/* sync for use by the device */
2435 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436 					 old_rxb->page_offset,
2437 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438 }
2439 
2440 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441 					    u32 lstatus, struct sk_buff *skb)
2442 {
2443 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444 	struct page *page = rxb->page;
2445 	bool first = false;
2446 
2447 	if (likely(!skb)) {
2448 		void *buff_addr = page_address(page) + rxb->page_offset;
2449 
2450 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451 		if (unlikely(!skb)) {
2452 			gfar_rx_alloc_err(rx_queue);
2453 			return NULL;
2454 		}
2455 		skb_reserve(skb, RXBUF_ALIGNMENT);
2456 		first = true;
2457 	}
2458 
2459 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461 
2462 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463 		/* reuse the free half of the page */
2464 		gfar_reuse_rx_page(rx_queue, rxb);
2465 	} else {
2466 		/* page cannot be reused, unmap it */
2467 		dma_unmap_page(rx_queue->dev, rxb->dma,
2468 			       PAGE_SIZE, DMA_FROM_DEVICE);
2469 	}
2470 
2471 	/* clear rxb content */
2472 	rxb->page = NULL;
2473 
2474 	return skb;
2475 }
2476 
2477 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478 {
2479 	/* If valid headers were found, and valid sums
2480 	 * were verified, then we tell the kernel that no
2481 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2482 	 */
2483 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484 	    (RXFCB_CIP | RXFCB_CTU))
2485 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2486 	else
2487 		skb_checksum_none_assert(skb);
2488 }
2489 
2490 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2491 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492 {
2493 	struct gfar_private *priv = netdev_priv(ndev);
2494 	struct rxfcb *fcb = NULL;
2495 
2496 	/* fcb is at the beginning if exists */
2497 	fcb = (struct rxfcb *)skb->data;
2498 
2499 	/* Remove the FCB from the skb
2500 	 * Remove the padded bytes, if there are any
2501 	 */
2502 	if (priv->uses_rxfcb)
2503 		skb_pull(skb, GMAC_FCB_LEN);
2504 
2505 	/* Get receive timestamp from the skb */
2506 	if (priv->hwts_rx_en) {
2507 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508 		u64 *ns = (u64 *) skb->data;
2509 
2510 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512 	}
2513 
2514 	if (priv->padding)
2515 		skb_pull(skb, priv->padding);
2516 
2517 	/* Trim off the FCS */
2518 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519 
2520 	if (ndev->features & NETIF_F_RXCSUM)
2521 		gfar_rx_checksum(skb, fcb);
2522 
2523 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524 	 * Even if vlan rx accel is disabled, on some chips
2525 	 * RXFCB_VLN is pseudo randomly set.
2526 	 */
2527 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530 				       be16_to_cpu(fcb->vlctl));
2531 }
2532 
2533 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534  * until the budget/quota has been reached. Returns the number
2535  * of frames handled
2536  */
2537 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538 			      int rx_work_limit)
2539 {
2540 	struct net_device *ndev = rx_queue->ndev;
2541 	struct gfar_private *priv = netdev_priv(ndev);
2542 	struct rxbd8 *bdp;
2543 	int i, howmany = 0;
2544 	struct sk_buff *skb = rx_queue->skb;
2545 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546 	unsigned int total_bytes = 0, total_pkts = 0;
2547 
2548 	/* Get the first full descriptor */
2549 	i = rx_queue->next_to_clean;
2550 
2551 	while (rx_work_limit--) {
2552 		u32 lstatus;
2553 
2554 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556 			cleaned_cnt = 0;
2557 		}
2558 
2559 		bdp = &rx_queue->rx_bd_base[i];
2560 		lstatus = be32_to_cpu(bdp->lstatus);
2561 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562 			break;
2563 
2564 		/* order rx buffer descriptor reads */
2565 		rmb();
2566 
2567 		/* fetch next to clean buffer from the ring */
2568 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2569 		if (unlikely(!skb))
2570 			break;
2571 
2572 		cleaned_cnt++;
2573 		howmany++;
2574 
2575 		if (unlikely(++i == rx_queue->rx_ring_size))
2576 			i = 0;
2577 
2578 		rx_queue->next_to_clean = i;
2579 
2580 		/* fetch next buffer if not the last in frame */
2581 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2582 			continue;
2583 
2584 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2585 			count_errors(lstatus, ndev);
2586 
2587 			/* discard faulty buffer */
2588 			dev_kfree_skb(skb);
2589 			skb = NULL;
2590 			rx_queue->stats.rx_dropped++;
2591 			continue;
2592 		}
2593 
2594 		gfar_process_frame(ndev, skb);
2595 
2596 		/* Increment the number of packets */
2597 		total_pkts++;
2598 		total_bytes += skb->len;
2599 
2600 		skb_record_rx_queue(skb, rx_queue->qindex);
2601 
2602 		skb->protocol = eth_type_trans(skb, ndev);
2603 
2604 		/* Send the packet up the stack */
2605 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2606 
2607 		skb = NULL;
2608 	}
2609 
2610 	/* Store incomplete frames for completion */
2611 	rx_queue->skb = skb;
2612 
2613 	rx_queue->stats.rx_packets += total_pkts;
2614 	rx_queue->stats.rx_bytes += total_bytes;
2615 
2616 	if (cleaned_cnt)
2617 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2618 
2619 	/* Update Last Free RxBD pointer for LFC */
2620 	if (unlikely(priv->tx_actual_en)) {
2621 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2622 
2623 		gfar_write(rx_queue->rfbptr, bdp_dma);
2624 	}
2625 
2626 	return howmany;
2627 }
2628 
2629 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2630 {
2631 	struct gfar_priv_grp *gfargrp =
2632 		container_of(napi, struct gfar_priv_grp, napi_rx);
2633 	struct gfar __iomem *regs = gfargrp->regs;
2634 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2635 	int work_done = 0;
2636 
2637 	/* Clear IEVENT, so interrupts aren't called again
2638 	 * because of the packets that have already arrived
2639 	 */
2640 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2641 
2642 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2643 
2644 	if (work_done < budget) {
2645 		u32 imask;
2646 		napi_complete_done(napi, work_done);
2647 		/* Clear the halt bit in RSTAT */
2648 		gfar_write(&regs->rstat, gfargrp->rstat);
2649 
2650 		spin_lock_irq(&gfargrp->grplock);
2651 		imask = gfar_read(&regs->imask);
2652 		imask |= IMASK_RX_DEFAULT;
2653 		gfar_write(&regs->imask, imask);
2654 		spin_unlock_irq(&gfargrp->grplock);
2655 	}
2656 
2657 	return work_done;
2658 }
2659 
2660 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2661 {
2662 	struct gfar_priv_grp *gfargrp =
2663 		container_of(napi, struct gfar_priv_grp, napi_tx);
2664 	struct gfar __iomem *regs = gfargrp->regs;
2665 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2666 	u32 imask;
2667 
2668 	/* Clear IEVENT, so interrupts aren't called again
2669 	 * because of the packets that have already arrived
2670 	 */
2671 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2672 
2673 	/* run Tx cleanup to completion */
2674 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2675 		gfar_clean_tx_ring(tx_queue);
2676 
2677 	napi_complete(napi);
2678 
2679 	spin_lock_irq(&gfargrp->grplock);
2680 	imask = gfar_read(&regs->imask);
2681 	imask |= IMASK_TX_DEFAULT;
2682 	gfar_write(&regs->imask, imask);
2683 	spin_unlock_irq(&gfargrp->grplock);
2684 
2685 	return 0;
2686 }
2687 
2688 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2689 {
2690 	struct gfar_priv_grp *gfargrp =
2691 		container_of(napi, struct gfar_priv_grp, napi_rx);
2692 	struct gfar_private *priv = gfargrp->priv;
2693 	struct gfar __iomem *regs = gfargrp->regs;
2694 	struct gfar_priv_rx_q *rx_queue = NULL;
2695 	int work_done = 0, work_done_per_q = 0;
2696 	int i, budget_per_q = 0;
2697 	unsigned long rstat_rxf;
2698 	int num_act_queues;
2699 
2700 	/* Clear IEVENT, so interrupts aren't called again
2701 	 * because of the packets that have already arrived
2702 	 */
2703 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2704 
2705 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2706 
2707 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2708 	if (num_act_queues)
2709 		budget_per_q = budget/num_act_queues;
2710 
2711 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2712 		/* skip queue if not active */
2713 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2714 			continue;
2715 
2716 		rx_queue = priv->rx_queue[i];
2717 		work_done_per_q =
2718 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2719 		work_done += work_done_per_q;
2720 
2721 		/* finished processing this queue */
2722 		if (work_done_per_q < budget_per_q) {
2723 			/* clear active queue hw indication */
2724 			gfar_write(&regs->rstat,
2725 				   RSTAT_CLEAR_RXF0 >> i);
2726 			num_act_queues--;
2727 
2728 			if (!num_act_queues)
2729 				break;
2730 		}
2731 	}
2732 
2733 	if (!num_act_queues) {
2734 		u32 imask;
2735 		napi_complete_done(napi, work_done);
2736 
2737 		/* Clear the halt bit in RSTAT */
2738 		gfar_write(&regs->rstat, gfargrp->rstat);
2739 
2740 		spin_lock_irq(&gfargrp->grplock);
2741 		imask = gfar_read(&regs->imask);
2742 		imask |= IMASK_RX_DEFAULT;
2743 		gfar_write(&regs->imask, imask);
2744 		spin_unlock_irq(&gfargrp->grplock);
2745 	}
2746 
2747 	return work_done;
2748 }
2749 
2750 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2751 {
2752 	struct gfar_priv_grp *gfargrp =
2753 		container_of(napi, struct gfar_priv_grp, napi_tx);
2754 	struct gfar_private *priv = gfargrp->priv;
2755 	struct gfar __iomem *regs = gfargrp->regs;
2756 	struct gfar_priv_tx_q *tx_queue = NULL;
2757 	int has_tx_work = 0;
2758 	int i;
2759 
2760 	/* Clear IEVENT, so interrupts aren't called again
2761 	 * because of the packets that have already arrived
2762 	 */
2763 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2764 
2765 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2766 		tx_queue = priv->tx_queue[i];
2767 		/* run Tx cleanup to completion */
2768 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2769 			gfar_clean_tx_ring(tx_queue);
2770 			has_tx_work = 1;
2771 		}
2772 	}
2773 
2774 	if (!has_tx_work) {
2775 		u32 imask;
2776 		napi_complete(napi);
2777 
2778 		spin_lock_irq(&gfargrp->grplock);
2779 		imask = gfar_read(&regs->imask);
2780 		imask |= IMASK_TX_DEFAULT;
2781 		gfar_write(&regs->imask, imask);
2782 		spin_unlock_irq(&gfargrp->grplock);
2783 	}
2784 
2785 	return 0;
2786 }
2787 
2788 /* GFAR error interrupt handler */
2789 static irqreturn_t gfar_error(int irq, void *grp_id)
2790 {
2791 	struct gfar_priv_grp *gfargrp = grp_id;
2792 	struct gfar __iomem *regs = gfargrp->regs;
2793 	struct gfar_private *priv= gfargrp->priv;
2794 	struct net_device *dev = priv->ndev;
2795 
2796 	/* Save ievent for future reference */
2797 	u32 events = gfar_read(&regs->ievent);
2798 
2799 	/* Clear IEVENT */
2800 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2801 
2802 	/* Magic Packet is not an error. */
2803 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2804 	    (events & IEVENT_MAG))
2805 		events &= ~IEVENT_MAG;
2806 
2807 	/* Hmm... */
2808 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2809 		netdev_dbg(dev,
2810 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2811 			   events, gfar_read(&regs->imask));
2812 
2813 	/* Update the error counters */
2814 	if (events & IEVENT_TXE) {
2815 		dev->stats.tx_errors++;
2816 
2817 		if (events & IEVENT_LC)
2818 			dev->stats.tx_window_errors++;
2819 		if (events & IEVENT_CRL)
2820 			dev->stats.tx_aborted_errors++;
2821 		if (events & IEVENT_XFUN) {
2822 			netif_dbg(priv, tx_err, dev,
2823 				  "TX FIFO underrun, packet dropped\n");
2824 			dev->stats.tx_dropped++;
2825 			atomic64_inc(&priv->extra_stats.tx_underrun);
2826 
2827 			schedule_work(&priv->reset_task);
2828 		}
2829 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2830 	}
2831 	if (events & IEVENT_BSY) {
2832 		dev->stats.rx_over_errors++;
2833 		atomic64_inc(&priv->extra_stats.rx_bsy);
2834 
2835 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2836 			  gfar_read(&regs->rstat));
2837 	}
2838 	if (events & IEVENT_BABR) {
2839 		dev->stats.rx_errors++;
2840 		atomic64_inc(&priv->extra_stats.rx_babr);
2841 
2842 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2843 	}
2844 	if (events & IEVENT_EBERR) {
2845 		atomic64_inc(&priv->extra_stats.eberr);
2846 		netif_dbg(priv, rx_err, dev, "bus error\n");
2847 	}
2848 	if (events & IEVENT_RXC)
2849 		netif_dbg(priv, rx_status, dev, "control frame\n");
2850 
2851 	if (events & IEVENT_BABT) {
2852 		atomic64_inc(&priv->extra_stats.tx_babt);
2853 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2854 	}
2855 	return IRQ_HANDLED;
2856 }
2857 
2858 /* The interrupt handler for devices with one interrupt */
2859 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2860 {
2861 	struct gfar_priv_grp *gfargrp = grp_id;
2862 
2863 	/* Save ievent for future reference */
2864 	u32 events = gfar_read(&gfargrp->regs->ievent);
2865 
2866 	/* Check for reception */
2867 	if (events & IEVENT_RX_MASK)
2868 		gfar_receive(irq, grp_id);
2869 
2870 	/* Check for transmit completion */
2871 	if (events & IEVENT_TX_MASK)
2872 		gfar_transmit(irq, grp_id);
2873 
2874 	/* Check for errors */
2875 	if (events & IEVENT_ERR_MASK)
2876 		gfar_error(irq, grp_id);
2877 
2878 	return IRQ_HANDLED;
2879 }
2880 
2881 #ifdef CONFIG_NET_POLL_CONTROLLER
2882 /* Polling 'interrupt' - used by things like netconsole to send skbs
2883  * without having to re-enable interrupts. It's not called while
2884  * the interrupt routine is executing.
2885  */
2886 static void gfar_netpoll(struct net_device *dev)
2887 {
2888 	struct gfar_private *priv = netdev_priv(dev);
2889 	int i;
2890 
2891 	/* If the device has multiple interrupts, run tx/rx */
2892 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893 		for (i = 0; i < priv->num_grps; i++) {
2894 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2895 
2896 			disable_irq(gfar_irq(grp, TX)->irq);
2897 			disable_irq(gfar_irq(grp, RX)->irq);
2898 			disable_irq(gfar_irq(grp, ER)->irq);
2899 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2900 			enable_irq(gfar_irq(grp, ER)->irq);
2901 			enable_irq(gfar_irq(grp, RX)->irq);
2902 			enable_irq(gfar_irq(grp, TX)->irq);
2903 		}
2904 	} else {
2905 		for (i = 0; i < priv->num_grps; i++) {
2906 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2907 
2908 			disable_irq(gfar_irq(grp, TX)->irq);
2909 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2910 			enable_irq(gfar_irq(grp, TX)->irq);
2911 		}
2912 	}
2913 }
2914 #endif
2915 
2916 static void free_grp_irqs(struct gfar_priv_grp *grp)
2917 {
2918 	free_irq(gfar_irq(grp, TX)->irq, grp);
2919 	free_irq(gfar_irq(grp, RX)->irq, grp);
2920 	free_irq(gfar_irq(grp, ER)->irq, grp);
2921 }
2922 
2923 static int register_grp_irqs(struct gfar_priv_grp *grp)
2924 {
2925 	struct gfar_private *priv = grp->priv;
2926 	struct net_device *dev = priv->ndev;
2927 	int err;
2928 
2929 	/* If the device has multiple interrupts, register for
2930 	 * them.  Otherwise, only register for the one
2931 	 */
2932 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2933 		/* Install our interrupt handlers for Error,
2934 		 * Transmit, and Receive
2935 		 */
2936 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2937 				  gfar_irq(grp, ER)->name, grp);
2938 		if (err < 0) {
2939 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2940 				  gfar_irq(grp, ER)->irq);
2941 
2942 			goto err_irq_fail;
2943 		}
2944 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2945 
2946 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2947 				  gfar_irq(grp, TX)->name, grp);
2948 		if (err < 0) {
2949 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2950 				  gfar_irq(grp, TX)->irq);
2951 			goto tx_irq_fail;
2952 		}
2953 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2954 				  gfar_irq(grp, RX)->name, grp);
2955 		if (err < 0) {
2956 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2957 				  gfar_irq(grp, RX)->irq);
2958 			goto rx_irq_fail;
2959 		}
2960 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2961 
2962 	} else {
2963 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2964 				  gfar_irq(grp, TX)->name, grp);
2965 		if (err < 0) {
2966 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2967 				  gfar_irq(grp, TX)->irq);
2968 			goto err_irq_fail;
2969 		}
2970 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2971 	}
2972 
2973 	return 0;
2974 
2975 rx_irq_fail:
2976 	free_irq(gfar_irq(grp, TX)->irq, grp);
2977 tx_irq_fail:
2978 	free_irq(gfar_irq(grp, ER)->irq, grp);
2979 err_irq_fail:
2980 	return err;
2981 
2982 }
2983 
2984 static void gfar_free_irq(struct gfar_private *priv)
2985 {
2986 	int i;
2987 
2988 	/* Free the IRQs */
2989 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2990 		for (i = 0; i < priv->num_grps; i++)
2991 			free_grp_irqs(&priv->gfargrp[i]);
2992 	} else {
2993 		for (i = 0; i < priv->num_grps; i++)
2994 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2995 				 &priv->gfargrp[i]);
2996 	}
2997 }
2998 
2999 static int gfar_request_irq(struct gfar_private *priv)
3000 {
3001 	int err, i, j;
3002 
3003 	for (i = 0; i < priv->num_grps; i++) {
3004 		err = register_grp_irqs(&priv->gfargrp[i]);
3005 		if (err) {
3006 			for (j = 0; j < i; j++)
3007 				free_grp_irqs(&priv->gfargrp[j]);
3008 			return err;
3009 		}
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 /* Called when something needs to use the ethernet device
3016  * Returns 0 for success.
3017  */
3018 static int gfar_enet_open(struct net_device *dev)
3019 {
3020 	struct gfar_private *priv = netdev_priv(dev);
3021 	int err;
3022 
3023 	err = init_phy(dev);
3024 	if (err)
3025 		return err;
3026 
3027 	err = gfar_request_irq(priv);
3028 	if (err)
3029 		return err;
3030 
3031 	err = startup_gfar(dev);
3032 	if (err)
3033 		return err;
3034 
3035 	return err;
3036 }
3037 
3038 /* Stops the kernel queue, and halts the controller */
3039 static int gfar_close(struct net_device *dev)
3040 {
3041 	struct gfar_private *priv = netdev_priv(dev);
3042 
3043 	cancel_work_sync(&priv->reset_task);
3044 	stop_gfar(dev);
3045 
3046 	/* Disconnect from the PHY */
3047 	phy_disconnect(dev->phydev);
3048 
3049 	gfar_free_irq(priv);
3050 
3051 	return 0;
3052 }
3053 
3054 /* Clears each of the exact match registers to zero, so they
3055  * don't interfere with normal reception
3056  */
3057 static void gfar_clear_exact_match(struct net_device *dev)
3058 {
3059 	int idx;
3060 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3061 
3062 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3063 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3064 }
3065 
3066 /* Update the hash table based on the current list of multicast
3067  * addresses we subscribe to.  Also, change the promiscuity of
3068  * the device based on the flags (this function is called
3069  * whenever dev->flags is changed
3070  */
3071 static void gfar_set_multi(struct net_device *dev)
3072 {
3073 	struct netdev_hw_addr *ha;
3074 	struct gfar_private *priv = netdev_priv(dev);
3075 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3076 	u32 tempval;
3077 
3078 	if (dev->flags & IFF_PROMISC) {
3079 		/* Set RCTRL to PROM */
3080 		tempval = gfar_read(&regs->rctrl);
3081 		tempval |= RCTRL_PROM;
3082 		gfar_write(&regs->rctrl, tempval);
3083 	} else {
3084 		/* Set RCTRL to not PROM */
3085 		tempval = gfar_read(&regs->rctrl);
3086 		tempval &= ~(RCTRL_PROM);
3087 		gfar_write(&regs->rctrl, tempval);
3088 	}
3089 
3090 	if (dev->flags & IFF_ALLMULTI) {
3091 		/* Set the hash to rx all multicast frames */
3092 		gfar_write(&regs->igaddr0, 0xffffffff);
3093 		gfar_write(&regs->igaddr1, 0xffffffff);
3094 		gfar_write(&regs->igaddr2, 0xffffffff);
3095 		gfar_write(&regs->igaddr3, 0xffffffff);
3096 		gfar_write(&regs->igaddr4, 0xffffffff);
3097 		gfar_write(&regs->igaddr5, 0xffffffff);
3098 		gfar_write(&regs->igaddr6, 0xffffffff);
3099 		gfar_write(&regs->igaddr7, 0xffffffff);
3100 		gfar_write(&regs->gaddr0, 0xffffffff);
3101 		gfar_write(&regs->gaddr1, 0xffffffff);
3102 		gfar_write(&regs->gaddr2, 0xffffffff);
3103 		gfar_write(&regs->gaddr3, 0xffffffff);
3104 		gfar_write(&regs->gaddr4, 0xffffffff);
3105 		gfar_write(&regs->gaddr5, 0xffffffff);
3106 		gfar_write(&regs->gaddr6, 0xffffffff);
3107 		gfar_write(&regs->gaddr7, 0xffffffff);
3108 	} else {
3109 		int em_num;
3110 		int idx;
3111 
3112 		/* zero out the hash */
3113 		gfar_write(&regs->igaddr0, 0x0);
3114 		gfar_write(&regs->igaddr1, 0x0);
3115 		gfar_write(&regs->igaddr2, 0x0);
3116 		gfar_write(&regs->igaddr3, 0x0);
3117 		gfar_write(&regs->igaddr4, 0x0);
3118 		gfar_write(&regs->igaddr5, 0x0);
3119 		gfar_write(&regs->igaddr6, 0x0);
3120 		gfar_write(&regs->igaddr7, 0x0);
3121 		gfar_write(&regs->gaddr0, 0x0);
3122 		gfar_write(&regs->gaddr1, 0x0);
3123 		gfar_write(&regs->gaddr2, 0x0);
3124 		gfar_write(&regs->gaddr3, 0x0);
3125 		gfar_write(&regs->gaddr4, 0x0);
3126 		gfar_write(&regs->gaddr5, 0x0);
3127 		gfar_write(&regs->gaddr6, 0x0);
3128 		gfar_write(&regs->gaddr7, 0x0);
3129 
3130 		/* If we have extended hash tables, we need to
3131 		 * clear the exact match registers to prepare for
3132 		 * setting them
3133 		 */
3134 		if (priv->extended_hash) {
3135 			em_num = GFAR_EM_NUM + 1;
3136 			gfar_clear_exact_match(dev);
3137 			idx = 1;
3138 		} else {
3139 			idx = 0;
3140 			em_num = 0;
3141 		}
3142 
3143 		if (netdev_mc_empty(dev))
3144 			return;
3145 
3146 		/* Parse the list, and set the appropriate bits */
3147 		netdev_for_each_mc_addr(ha, dev) {
3148 			if (idx < em_num) {
3149 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3150 				idx++;
3151 			} else
3152 				gfar_set_hash_for_addr(dev, ha->addr);
3153 		}
3154 	}
3155 }
3156 
3157 void gfar_mac_reset(struct gfar_private *priv)
3158 {
3159 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160 	u32 tempval;
3161 
3162 	/* Reset MAC layer */
3163 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3164 
3165 	/* We need to delay at least 3 TX clocks */
3166 	udelay(3);
3167 
3168 	/* the soft reset bit is not self-resetting, so we need to
3169 	 * clear it before resuming normal operation
3170 	 */
3171 	gfar_write(&regs->maccfg1, 0);
3172 
3173 	udelay(3);
3174 
3175 	gfar_rx_offload_en(priv);
3176 
3177 	/* Initialize the max receive frame/buffer lengths */
3178 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3179 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3180 
3181 	/* Initialize the Minimum Frame Length Register */
3182 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3183 
3184 	/* Initialize MACCFG2. */
3185 	tempval = MACCFG2_INIT_SETTINGS;
3186 
3187 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3188 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3189 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3190 	 */
3191 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3192 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3193 
3194 	gfar_write(&regs->maccfg2, tempval);
3195 
3196 	/* Clear mac addr hash registers */
3197 	gfar_write(&regs->igaddr0, 0);
3198 	gfar_write(&regs->igaddr1, 0);
3199 	gfar_write(&regs->igaddr2, 0);
3200 	gfar_write(&regs->igaddr3, 0);
3201 	gfar_write(&regs->igaddr4, 0);
3202 	gfar_write(&regs->igaddr5, 0);
3203 	gfar_write(&regs->igaddr6, 0);
3204 	gfar_write(&regs->igaddr7, 0);
3205 
3206 	gfar_write(&regs->gaddr0, 0);
3207 	gfar_write(&regs->gaddr1, 0);
3208 	gfar_write(&regs->gaddr2, 0);
3209 	gfar_write(&regs->gaddr3, 0);
3210 	gfar_write(&regs->gaddr4, 0);
3211 	gfar_write(&regs->gaddr5, 0);
3212 	gfar_write(&regs->gaddr6, 0);
3213 	gfar_write(&regs->gaddr7, 0);
3214 
3215 	if (priv->extended_hash)
3216 		gfar_clear_exact_match(priv->ndev);
3217 
3218 	gfar_mac_rx_config(priv);
3219 
3220 	gfar_mac_tx_config(priv);
3221 
3222 	gfar_set_mac_address(priv->ndev);
3223 
3224 	gfar_set_multi(priv->ndev);
3225 
3226 	/* clear ievent and imask before configuring coalescing */
3227 	gfar_ints_disable(priv);
3228 
3229 	/* Configure the coalescing support */
3230 	gfar_configure_coalescing_all(priv);
3231 }
3232 
3233 static void gfar_hw_init(struct gfar_private *priv)
3234 {
3235 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3236 	u32 attrs;
3237 
3238 	/* Stop the DMA engine now, in case it was running before
3239 	 * (The firmware could have used it, and left it running).
3240 	 */
3241 	gfar_halt(priv);
3242 
3243 	gfar_mac_reset(priv);
3244 
3245 	/* Zero out the rmon mib registers if it has them */
3246 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3247 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3248 
3249 		/* Mask off the CAM interrupts */
3250 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3251 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3252 	}
3253 
3254 	/* Initialize ECNTRL */
3255 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3256 
3257 	/* Set the extraction length and index */
3258 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3259 		ATTRELI_EI(priv->rx_stash_index);
3260 
3261 	gfar_write(&regs->attreli, attrs);
3262 
3263 	/* Start with defaults, and add stashing
3264 	 * depending on driver parameters
3265 	 */
3266 	attrs = ATTR_INIT_SETTINGS;
3267 
3268 	if (priv->bd_stash_en)
3269 		attrs |= ATTR_BDSTASH;
3270 
3271 	if (priv->rx_stash_size != 0)
3272 		attrs |= ATTR_BUFSTASH;
3273 
3274 	gfar_write(&regs->attr, attrs);
3275 
3276 	/* FIFO configs */
3277 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3278 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3279 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3280 
3281 	/* Program the interrupt steering regs, only for MG devices */
3282 	if (priv->num_grps > 1)
3283 		gfar_write_isrg(priv);
3284 }
3285 
3286 static const struct net_device_ops gfar_netdev_ops = {
3287 	.ndo_open = gfar_enet_open,
3288 	.ndo_start_xmit = gfar_start_xmit,
3289 	.ndo_stop = gfar_close,
3290 	.ndo_change_mtu = gfar_change_mtu,
3291 	.ndo_set_features = gfar_set_features,
3292 	.ndo_set_rx_mode = gfar_set_multi,
3293 	.ndo_tx_timeout = gfar_timeout,
3294 	.ndo_do_ioctl = gfar_ioctl,
3295 	.ndo_get_stats = gfar_get_stats,
3296 	.ndo_change_carrier = fixed_phy_change_carrier,
3297 	.ndo_set_mac_address = gfar_set_mac_addr,
3298 	.ndo_validate_addr = eth_validate_addr,
3299 #ifdef CONFIG_NET_POLL_CONTROLLER
3300 	.ndo_poll_controller = gfar_netpoll,
3301 #endif
3302 };
3303 
3304 /* Set up the ethernet device structure, private data,
3305  * and anything else we need before we start
3306  */
3307 static int gfar_probe(struct platform_device *ofdev)
3308 {
3309 	struct device_node *np = ofdev->dev.of_node;
3310 	struct net_device *dev = NULL;
3311 	struct gfar_private *priv = NULL;
3312 	int err = 0, i;
3313 
3314 	err = gfar_of_init(ofdev, &dev);
3315 
3316 	if (err)
3317 		return err;
3318 
3319 	priv = netdev_priv(dev);
3320 	priv->ndev = dev;
3321 	priv->ofdev = ofdev;
3322 	priv->dev = &ofdev->dev;
3323 	SET_NETDEV_DEV(dev, &ofdev->dev);
3324 
3325 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3326 
3327 	platform_set_drvdata(ofdev, priv);
3328 
3329 	gfar_detect_errata(priv);
3330 
3331 	/* Set the dev->base_addr to the gfar reg region */
3332 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3333 
3334 	/* Fill in the dev structure */
3335 	dev->watchdog_timeo = TX_TIMEOUT;
3336 	/* MTU range: 50 - 9586 */
3337 	dev->mtu = 1500;
3338 	dev->min_mtu = 50;
3339 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3340 	dev->netdev_ops = &gfar_netdev_ops;
3341 	dev->ethtool_ops = &gfar_ethtool_ops;
3342 
3343 	/* Register for napi ...We are registering NAPI for each grp */
3344 	for (i = 0; i < priv->num_grps; i++) {
3345 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3346 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3347 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3348 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3349 				       gfar_poll_tx_sq, 2);
3350 		} else {
3351 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3352 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3353 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3354 				       gfar_poll_tx, 2);
3355 		}
3356 	}
3357 
3358 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3359 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3360 				   NETIF_F_RXCSUM;
3361 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3362 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3363 	}
3364 
3365 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3366 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3367 				    NETIF_F_HW_VLAN_CTAG_RX;
3368 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3369 	}
3370 
3371 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3372 
3373 	gfar_init_addr_hash_table(priv);
3374 
3375 	/* Insert receive time stamps into padding alignment bytes, and
3376 	 * plus 2 bytes padding to ensure the cpu alignment.
3377 	 */
3378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3379 		priv->padding = 8 + DEFAULT_PADDING;
3380 
3381 	if (dev->features & NETIF_F_IP_CSUM ||
3382 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3383 		dev->needed_headroom = GMAC_FCB_LEN;
3384 
3385 	/* Initializing some of the rx/tx queue level parameters */
3386 	for (i = 0; i < priv->num_tx_queues; i++) {
3387 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3388 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3389 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3390 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3391 	}
3392 
3393 	for (i = 0; i < priv->num_rx_queues; i++) {
3394 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3395 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3396 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3397 	}
3398 
3399 	/* Always enable rx filer if available */
3400 	priv->rx_filer_enable =
3401 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3402 	/* Enable most messages by default */
3403 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3404 	/* use pritority h/w tx queue scheduling for single queue devices */
3405 	if (priv->num_tx_queues == 1)
3406 		priv->prio_sched_en = 1;
3407 
3408 	set_bit(GFAR_DOWN, &priv->state);
3409 
3410 	gfar_hw_init(priv);
3411 
3412 	/* Carrier starts down, phylib will bring it up */
3413 	netif_carrier_off(dev);
3414 
3415 	err = register_netdev(dev);
3416 
3417 	if (err) {
3418 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3419 		goto register_fail;
3420 	}
3421 
3422 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3423 		priv->wol_supported |= GFAR_WOL_MAGIC;
3424 
3425 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3426 	    priv->rx_filer_enable)
3427 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3428 
3429 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3430 
3431 	/* fill out IRQ number and name fields */
3432 	for (i = 0; i < priv->num_grps; i++) {
3433 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3434 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3435 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3436 				dev->name, "_g", '0' + i, "_tx");
3437 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3438 				dev->name, "_g", '0' + i, "_rx");
3439 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3440 				dev->name, "_g", '0' + i, "_er");
3441 		} else
3442 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3443 	}
3444 
3445 	/* Initialize the filer table */
3446 	gfar_init_filer_table(priv);
3447 
3448 	/* Print out the device info */
3449 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3450 
3451 	/* Even more device info helps when determining which kernel
3452 	 * provided which set of benchmarks.
3453 	 */
3454 	netdev_info(dev, "Running with NAPI enabled\n");
3455 	for (i = 0; i < priv->num_rx_queues; i++)
3456 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3457 			    i, priv->rx_queue[i]->rx_ring_size);
3458 	for (i = 0; i < priv->num_tx_queues; i++)
3459 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3460 			    i, priv->tx_queue[i]->tx_ring_size);
3461 
3462 	return 0;
3463 
3464 register_fail:
3465 	if (of_phy_is_fixed_link(np))
3466 		of_phy_deregister_fixed_link(np);
3467 	unmap_group_regs(priv);
3468 	gfar_free_rx_queues(priv);
3469 	gfar_free_tx_queues(priv);
3470 	of_node_put(priv->phy_node);
3471 	of_node_put(priv->tbi_node);
3472 	free_gfar_dev(priv);
3473 	return err;
3474 }
3475 
3476 static int gfar_remove(struct platform_device *ofdev)
3477 {
3478 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3479 	struct device_node *np = ofdev->dev.of_node;
3480 
3481 	of_node_put(priv->phy_node);
3482 	of_node_put(priv->tbi_node);
3483 
3484 	unregister_netdev(priv->ndev);
3485 
3486 	if (of_phy_is_fixed_link(np))
3487 		of_phy_deregister_fixed_link(np);
3488 
3489 	unmap_group_regs(priv);
3490 	gfar_free_rx_queues(priv);
3491 	gfar_free_tx_queues(priv);
3492 	free_gfar_dev(priv);
3493 
3494 	return 0;
3495 }
3496 
3497 #ifdef CONFIG_PM
3498 
3499 static void __gfar_filer_disable(struct gfar_private *priv)
3500 {
3501 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502 	u32 temp;
3503 
3504 	temp = gfar_read(&regs->rctrl);
3505 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3506 	gfar_write(&regs->rctrl, temp);
3507 }
3508 
3509 static void __gfar_filer_enable(struct gfar_private *priv)
3510 {
3511 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3512 	u32 temp;
3513 
3514 	temp = gfar_read(&regs->rctrl);
3515 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3516 	gfar_write(&regs->rctrl, temp);
3517 }
3518 
3519 /* Filer rules implementing wol capabilities */
3520 static void gfar_filer_config_wol(struct gfar_private *priv)
3521 {
3522 	unsigned int i;
3523 	u32 rqfcr;
3524 
3525 	__gfar_filer_disable(priv);
3526 
3527 	/* clear the filer table, reject any packet by default */
3528 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3529 	for (i = 0; i <= MAX_FILER_IDX; i++)
3530 		gfar_write_filer(priv, i, rqfcr, 0);
3531 
3532 	i = 0;
3533 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3534 		/* unicast packet, accept it */
3535 		struct net_device *ndev = priv->ndev;
3536 		/* get the default rx queue index */
3537 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3538 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3539 				    (ndev->dev_addr[1] << 8) |
3540 				     ndev->dev_addr[2];
3541 
3542 		rqfcr = (qindex << 10) | RQFCR_AND |
3543 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3544 
3545 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3546 
3547 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3548 				(ndev->dev_addr[4] << 8) |
3549 				 ndev->dev_addr[5];
3550 		rqfcr = (qindex << 10) | RQFCR_GPI |
3551 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3552 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3553 	}
3554 
3555 	__gfar_filer_enable(priv);
3556 }
3557 
3558 static void gfar_filer_restore_table(struct gfar_private *priv)
3559 {
3560 	u32 rqfcr, rqfpr;
3561 	unsigned int i;
3562 
3563 	__gfar_filer_disable(priv);
3564 
3565 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3566 		rqfcr = priv->ftp_rqfcr[i];
3567 		rqfpr = priv->ftp_rqfpr[i];
3568 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3569 	}
3570 
3571 	__gfar_filer_enable(priv);
3572 }
3573 
3574 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3575 static void gfar_start_wol_filer(struct gfar_private *priv)
3576 {
3577 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3578 	u32 tempval;
3579 	int i = 0;
3580 
3581 	/* Enable Rx hw queues */
3582 	gfar_write(&regs->rqueue, priv->rqueue);
3583 
3584 	/* Initialize DMACTRL to have WWR and WOP */
3585 	tempval = gfar_read(&regs->dmactrl);
3586 	tempval |= DMACTRL_INIT_SETTINGS;
3587 	gfar_write(&regs->dmactrl, tempval);
3588 
3589 	/* Make sure we aren't stopped */
3590 	tempval = gfar_read(&regs->dmactrl);
3591 	tempval &= ~DMACTRL_GRS;
3592 	gfar_write(&regs->dmactrl, tempval);
3593 
3594 	for (i = 0; i < priv->num_grps; i++) {
3595 		regs = priv->gfargrp[i].regs;
3596 		/* Clear RHLT, so that the DMA starts polling now */
3597 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3598 		/* enable the Filer General Purpose Interrupt */
3599 		gfar_write(&regs->imask, IMASK_FGPI);
3600 	}
3601 
3602 	/* Enable Rx DMA */
3603 	tempval = gfar_read(&regs->maccfg1);
3604 	tempval |= MACCFG1_RX_EN;
3605 	gfar_write(&regs->maccfg1, tempval);
3606 }
3607 
3608 static int gfar_suspend(struct device *dev)
3609 {
3610 	struct gfar_private *priv = dev_get_drvdata(dev);
3611 	struct net_device *ndev = priv->ndev;
3612 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3613 	u32 tempval;
3614 	u16 wol = priv->wol_opts;
3615 
3616 	if (!netif_running(ndev))
3617 		return 0;
3618 
3619 	disable_napi(priv);
3620 	netif_tx_lock(ndev);
3621 	netif_device_detach(ndev);
3622 	netif_tx_unlock(ndev);
3623 
3624 	gfar_halt(priv);
3625 
3626 	if (wol & GFAR_WOL_MAGIC) {
3627 		/* Enable interrupt on Magic Packet */
3628 		gfar_write(&regs->imask, IMASK_MAG);
3629 
3630 		/* Enable Magic Packet mode */
3631 		tempval = gfar_read(&regs->maccfg2);
3632 		tempval |= MACCFG2_MPEN;
3633 		gfar_write(&regs->maccfg2, tempval);
3634 
3635 		/* re-enable the Rx block */
3636 		tempval = gfar_read(&regs->maccfg1);
3637 		tempval |= MACCFG1_RX_EN;
3638 		gfar_write(&regs->maccfg1, tempval);
3639 
3640 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3641 		gfar_filer_config_wol(priv);
3642 		gfar_start_wol_filer(priv);
3643 
3644 	} else {
3645 		phy_stop(ndev->phydev);
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 static int gfar_resume(struct device *dev)
3652 {
3653 	struct gfar_private *priv = dev_get_drvdata(dev);
3654 	struct net_device *ndev = priv->ndev;
3655 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3656 	u32 tempval;
3657 	u16 wol = priv->wol_opts;
3658 
3659 	if (!netif_running(ndev))
3660 		return 0;
3661 
3662 	if (wol & GFAR_WOL_MAGIC) {
3663 		/* Disable Magic Packet mode */
3664 		tempval = gfar_read(&regs->maccfg2);
3665 		tempval &= ~MACCFG2_MPEN;
3666 		gfar_write(&regs->maccfg2, tempval);
3667 
3668 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3669 		/* need to stop rx only, tx is already down */
3670 		gfar_halt(priv);
3671 		gfar_filer_restore_table(priv);
3672 
3673 	} else {
3674 		phy_start(ndev->phydev);
3675 	}
3676 
3677 	gfar_start(priv);
3678 
3679 	netif_device_attach(ndev);
3680 	enable_napi(priv);
3681 
3682 	return 0;
3683 }
3684 
3685 static int gfar_restore(struct device *dev)
3686 {
3687 	struct gfar_private *priv = dev_get_drvdata(dev);
3688 	struct net_device *ndev = priv->ndev;
3689 
3690 	if (!netif_running(ndev)) {
3691 		netif_device_attach(ndev);
3692 
3693 		return 0;
3694 	}
3695 
3696 	gfar_init_bds(ndev);
3697 
3698 	gfar_mac_reset(priv);
3699 
3700 	gfar_init_tx_rx_base(priv);
3701 
3702 	gfar_start(priv);
3703 
3704 	priv->oldlink = 0;
3705 	priv->oldspeed = 0;
3706 	priv->oldduplex = -1;
3707 
3708 	if (ndev->phydev)
3709 		phy_start(ndev->phydev);
3710 
3711 	netif_device_attach(ndev);
3712 	enable_napi(priv);
3713 
3714 	return 0;
3715 }
3716 
3717 static const struct dev_pm_ops gfar_pm_ops = {
3718 	.suspend = gfar_suspend,
3719 	.resume = gfar_resume,
3720 	.freeze = gfar_suspend,
3721 	.thaw = gfar_resume,
3722 	.restore = gfar_restore,
3723 };
3724 
3725 #define GFAR_PM_OPS (&gfar_pm_ops)
3726 
3727 #else
3728 
3729 #define GFAR_PM_OPS NULL
3730 
3731 #endif
3732 
3733 static const struct of_device_id gfar_match[] =
3734 {
3735 	{
3736 		.type = "network",
3737 		.compatible = "gianfar",
3738 	},
3739 	{
3740 		.compatible = "fsl,etsec2",
3741 	},
3742 	{},
3743 };
3744 MODULE_DEVICE_TABLE(of, gfar_match);
3745 
3746 /* Structure for a device driver */
3747 static struct platform_driver gfar_driver = {
3748 	.driver = {
3749 		.name = "fsl-gianfar",
3750 		.pm = GFAR_PM_OPS,
3751 		.of_match_table = gfar_match,
3752 	},
3753 	.probe = gfar_probe,
3754 	.remove = gfar_remove,
3755 };
3756 
3757 module_platform_driver(gfar_driver);
3758