1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 #define DEBUG 62 63 #include <linux/kernel.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/of_platform.h> 80 #include <linux/ip.h> 81 #include <linux/tcp.h> 82 #include <linux/udp.h> 83 #include <linux/in.h> 84 #include <linux/net_tstamp.h> 85 86 #include <asm/io.h> 87 #ifdef CONFIG_PPC 88 #include <asm/reg.h> 89 #include <asm/mpc85xx.h> 90 #endif 91 #include <asm/irq.h> 92 #include <linux/uaccess.h> 93 #include <linux/module.h> 94 #include <linux/dma-mapping.h> 95 #include <linux/crc32.h> 96 #include <linux/mii.h> 97 #include <linux/phy.h> 98 #include <linux/phy_fixed.h> 99 #include <linux/of.h> 100 #include <linux/of_net.h> 101 102 #include "gianfar.h" 103 104 #define TX_TIMEOUT (5*HZ) 105 106 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 107 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 108 MODULE_LICENSE("GPL"); 109 110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 111 dma_addr_t buf) 112 { 113 u32 lstatus; 114 115 bdp->bufPtr = cpu_to_be32(buf); 116 117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 119 lstatus |= BD_LFLAG(RXBD_WRAP); 120 121 gfar_wmb(); 122 123 bdp->lstatus = cpu_to_be32(lstatus); 124 } 125 126 static void gfar_init_tx_rx_base(struct gfar_private *priv) 127 { 128 struct gfar __iomem *regs = priv->gfargrp[0].regs; 129 u32 __iomem *baddr; 130 int i; 131 132 baddr = ®s->tbase0; 133 for (i = 0; i < priv->num_tx_queues; i++) { 134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 135 baddr += 2; 136 } 137 138 baddr = ®s->rbase0; 139 for (i = 0; i < priv->num_rx_queues; i++) { 140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 141 baddr += 2; 142 } 143 } 144 145 static void gfar_init_rqprm(struct gfar_private *priv) 146 { 147 struct gfar __iomem *regs = priv->gfargrp[0].regs; 148 u32 __iomem *baddr; 149 int i; 150 151 baddr = ®s->rqprm0; 152 for (i = 0; i < priv->num_rx_queues; i++) { 153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 155 baddr++; 156 } 157 } 158 159 static void gfar_rx_offload_en(struct gfar_private *priv) 160 { 161 /* set this when rx hw offload (TOE) functions are being used */ 162 priv->uses_rxfcb = 0; 163 164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 165 priv->uses_rxfcb = 1; 166 167 if (priv->hwts_rx_en || priv->rx_filer_enable) 168 priv->uses_rxfcb = 1; 169 } 170 171 static void gfar_mac_rx_config(struct gfar_private *priv) 172 { 173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 174 u32 rctrl = 0; 175 176 if (priv->rx_filer_enable) { 177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 178 /* Program the RIR0 reg with the required distribution */ 179 if (priv->poll_mode == GFAR_SQ_POLLING) 180 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 181 else /* GFAR_MQ_POLLING */ 182 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 183 } 184 185 /* Restore PROMISC mode */ 186 if (priv->ndev->flags & IFF_PROMISC) 187 rctrl |= RCTRL_PROM; 188 189 if (priv->ndev->features & NETIF_F_RXCSUM) 190 rctrl |= RCTRL_CHECKSUMMING; 191 192 if (priv->extended_hash) 193 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 194 195 if (priv->padding) { 196 rctrl &= ~RCTRL_PAL_MASK; 197 rctrl |= RCTRL_PADDING(priv->padding); 198 } 199 200 /* Enable HW time stamping if requested from user space */ 201 if (priv->hwts_rx_en) 202 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 203 204 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 205 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 206 207 /* Clear the LFC bit */ 208 gfar_write(®s->rctrl, rctrl); 209 /* Init flow control threshold values */ 210 gfar_init_rqprm(priv); 211 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 212 rctrl |= RCTRL_LFC; 213 214 /* Init rctrl based on our settings */ 215 gfar_write(®s->rctrl, rctrl); 216 } 217 218 static void gfar_mac_tx_config(struct gfar_private *priv) 219 { 220 struct gfar __iomem *regs = priv->gfargrp[0].regs; 221 u32 tctrl = 0; 222 223 if (priv->ndev->features & NETIF_F_IP_CSUM) 224 tctrl |= TCTRL_INIT_CSUM; 225 226 if (priv->prio_sched_en) 227 tctrl |= TCTRL_TXSCHED_PRIO; 228 else { 229 tctrl |= TCTRL_TXSCHED_WRRS; 230 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 231 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 232 } 233 234 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 235 tctrl |= TCTRL_VLINS; 236 237 gfar_write(®s->tctrl, tctrl); 238 } 239 240 static void gfar_configure_coalescing(struct gfar_private *priv, 241 unsigned long tx_mask, unsigned long rx_mask) 242 { 243 struct gfar __iomem *regs = priv->gfargrp[0].regs; 244 u32 __iomem *baddr; 245 246 if (priv->mode == MQ_MG_MODE) { 247 int i = 0; 248 249 baddr = ®s->txic0; 250 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 251 gfar_write(baddr + i, 0); 252 if (likely(priv->tx_queue[i]->txcoalescing)) 253 gfar_write(baddr + i, priv->tx_queue[i]->txic); 254 } 255 256 baddr = ®s->rxic0; 257 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 258 gfar_write(baddr + i, 0); 259 if (likely(priv->rx_queue[i]->rxcoalescing)) 260 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 261 } 262 } else { 263 /* Backward compatible case -- even if we enable 264 * multiple queues, there's only single reg to program 265 */ 266 gfar_write(®s->txic, 0); 267 if (likely(priv->tx_queue[0]->txcoalescing)) 268 gfar_write(®s->txic, priv->tx_queue[0]->txic); 269 270 gfar_write(®s->rxic, 0); 271 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 272 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 273 } 274 } 275 276 static void gfar_configure_coalescing_all(struct gfar_private *priv) 277 { 278 gfar_configure_coalescing(priv, 0xFF, 0xFF); 279 } 280 281 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 282 { 283 struct gfar_private *priv = netdev_priv(dev); 284 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 285 unsigned long tx_packets = 0, tx_bytes = 0; 286 int i; 287 288 for (i = 0; i < priv->num_rx_queues; i++) { 289 rx_packets += priv->rx_queue[i]->stats.rx_packets; 290 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 291 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 292 } 293 294 dev->stats.rx_packets = rx_packets; 295 dev->stats.rx_bytes = rx_bytes; 296 dev->stats.rx_dropped = rx_dropped; 297 298 for (i = 0; i < priv->num_tx_queues; i++) { 299 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 300 tx_packets += priv->tx_queue[i]->stats.tx_packets; 301 } 302 303 dev->stats.tx_bytes = tx_bytes; 304 dev->stats.tx_packets = tx_packets; 305 306 return &dev->stats; 307 } 308 309 /* Set the appropriate hash bit for the given addr */ 310 /* The algorithm works like so: 311 * 1) Take the Destination Address (ie the multicast address), and 312 * do a CRC on it (little endian), and reverse the bits of the 313 * result. 314 * 2) Use the 8 most significant bits as a hash into a 256-entry 315 * table. The table is controlled through 8 32-bit registers: 316 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 317 * gaddr7. This means that the 3 most significant bits in the 318 * hash index which gaddr register to use, and the 5 other bits 319 * indicate which bit (assuming an IBM numbering scheme, which 320 * for PowerPC (tm) is usually the case) in the register holds 321 * the entry. 322 */ 323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 324 { 325 u32 tempval; 326 struct gfar_private *priv = netdev_priv(dev); 327 u32 result = ether_crc(ETH_ALEN, addr); 328 int width = priv->hash_width; 329 u8 whichbit = (result >> (32 - width)) & 0x1f; 330 u8 whichreg = result >> (32 - width + 5); 331 u32 value = (1 << (31-whichbit)); 332 333 tempval = gfar_read(priv->hash_regs[whichreg]); 334 tempval |= value; 335 gfar_write(priv->hash_regs[whichreg], tempval); 336 } 337 338 /* There are multiple MAC Address register pairs on some controllers 339 * This function sets the numth pair to a given address 340 */ 341 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 342 const u8 *addr) 343 { 344 struct gfar_private *priv = netdev_priv(dev); 345 struct gfar __iomem *regs = priv->gfargrp[0].regs; 346 u32 tempval; 347 u32 __iomem *macptr = ®s->macstnaddr1; 348 349 macptr += num*2; 350 351 /* For a station address of 0x12345678ABCD in transmission 352 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 353 * MACnADDR2 is set to 0x34120000. 354 */ 355 tempval = (addr[5] << 24) | (addr[4] << 16) | 356 (addr[3] << 8) | addr[2]; 357 358 gfar_write(macptr, tempval); 359 360 tempval = (addr[1] << 24) | (addr[0] << 16); 361 362 gfar_write(macptr+1, tempval); 363 } 364 365 static int gfar_set_mac_addr(struct net_device *dev, void *p) 366 { 367 eth_mac_addr(dev, p); 368 369 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 370 371 return 0; 372 } 373 374 static void gfar_ints_disable(struct gfar_private *priv) 375 { 376 int i; 377 for (i = 0; i < priv->num_grps; i++) { 378 struct gfar __iomem *regs = priv->gfargrp[i].regs; 379 /* Clear IEVENT */ 380 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 381 382 /* Initialize IMASK */ 383 gfar_write(®s->imask, IMASK_INIT_CLEAR); 384 } 385 } 386 387 static void gfar_ints_enable(struct gfar_private *priv) 388 { 389 int i; 390 for (i = 0; i < priv->num_grps; i++) { 391 struct gfar __iomem *regs = priv->gfargrp[i].regs; 392 /* Unmask the interrupts we look for */ 393 gfar_write(®s->imask, IMASK_DEFAULT); 394 } 395 } 396 397 static int gfar_alloc_tx_queues(struct gfar_private *priv) 398 { 399 int i; 400 401 for (i = 0; i < priv->num_tx_queues; i++) { 402 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 403 GFP_KERNEL); 404 if (!priv->tx_queue[i]) 405 return -ENOMEM; 406 407 priv->tx_queue[i]->tx_skbuff = NULL; 408 priv->tx_queue[i]->qindex = i; 409 priv->tx_queue[i]->dev = priv->ndev; 410 spin_lock_init(&(priv->tx_queue[i]->txlock)); 411 } 412 return 0; 413 } 414 415 static int gfar_alloc_rx_queues(struct gfar_private *priv) 416 { 417 int i; 418 419 for (i = 0; i < priv->num_rx_queues; i++) { 420 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 421 GFP_KERNEL); 422 if (!priv->rx_queue[i]) 423 return -ENOMEM; 424 425 priv->rx_queue[i]->qindex = i; 426 priv->rx_queue[i]->ndev = priv->ndev; 427 } 428 return 0; 429 } 430 431 static void gfar_free_tx_queues(struct gfar_private *priv) 432 { 433 int i; 434 435 for (i = 0; i < priv->num_tx_queues; i++) 436 kfree(priv->tx_queue[i]); 437 } 438 439 static void gfar_free_rx_queues(struct gfar_private *priv) 440 { 441 int i; 442 443 for (i = 0; i < priv->num_rx_queues; i++) 444 kfree(priv->rx_queue[i]); 445 } 446 447 static void unmap_group_regs(struct gfar_private *priv) 448 { 449 int i; 450 451 for (i = 0; i < MAXGROUPS; i++) 452 if (priv->gfargrp[i].regs) 453 iounmap(priv->gfargrp[i].regs); 454 } 455 456 static void free_gfar_dev(struct gfar_private *priv) 457 { 458 int i, j; 459 460 for (i = 0; i < priv->num_grps; i++) 461 for (j = 0; j < GFAR_NUM_IRQS; j++) { 462 kfree(priv->gfargrp[i].irqinfo[j]); 463 priv->gfargrp[i].irqinfo[j] = NULL; 464 } 465 466 free_netdev(priv->ndev); 467 } 468 469 static void disable_napi(struct gfar_private *priv) 470 { 471 int i; 472 473 for (i = 0; i < priv->num_grps; i++) { 474 napi_disable(&priv->gfargrp[i].napi_rx); 475 napi_disable(&priv->gfargrp[i].napi_tx); 476 } 477 } 478 479 static void enable_napi(struct gfar_private *priv) 480 { 481 int i; 482 483 for (i = 0; i < priv->num_grps; i++) { 484 napi_enable(&priv->gfargrp[i].napi_rx); 485 napi_enable(&priv->gfargrp[i].napi_tx); 486 } 487 } 488 489 static int gfar_parse_group(struct device_node *np, 490 struct gfar_private *priv, const char *model) 491 { 492 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 493 int i; 494 495 for (i = 0; i < GFAR_NUM_IRQS; i++) { 496 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 497 GFP_KERNEL); 498 if (!grp->irqinfo[i]) 499 return -ENOMEM; 500 } 501 502 grp->regs = of_iomap(np, 0); 503 if (!grp->regs) 504 return -ENOMEM; 505 506 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 507 508 /* If we aren't the FEC we have multiple interrupts */ 509 if (model && strcasecmp(model, "FEC")) { 510 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 511 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 512 if (!gfar_irq(grp, TX)->irq || 513 !gfar_irq(grp, RX)->irq || 514 !gfar_irq(grp, ER)->irq) 515 return -EINVAL; 516 } 517 518 grp->priv = priv; 519 spin_lock_init(&grp->grplock); 520 if (priv->mode == MQ_MG_MODE) { 521 u32 rxq_mask, txq_mask; 522 int ret; 523 524 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 525 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 526 527 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 528 if (!ret) { 529 grp->rx_bit_map = rxq_mask ? 530 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 531 } 532 533 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 534 if (!ret) { 535 grp->tx_bit_map = txq_mask ? 536 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 537 } 538 539 if (priv->poll_mode == GFAR_SQ_POLLING) { 540 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 541 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 542 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 543 } 544 } else { 545 grp->rx_bit_map = 0xFF; 546 grp->tx_bit_map = 0xFF; 547 } 548 549 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 550 * right to left, so we need to revert the 8 bits to get the q index 551 */ 552 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 553 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 554 555 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 556 * also assign queues to groups 557 */ 558 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 559 if (!grp->rx_queue) 560 grp->rx_queue = priv->rx_queue[i]; 561 grp->num_rx_queues++; 562 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 563 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 564 priv->rx_queue[i]->grp = grp; 565 } 566 567 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 568 if (!grp->tx_queue) 569 grp->tx_queue = priv->tx_queue[i]; 570 grp->num_tx_queues++; 571 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 572 priv->tqueue |= (TQUEUE_EN0 >> i); 573 priv->tx_queue[i]->grp = grp; 574 } 575 576 priv->num_grps++; 577 578 return 0; 579 } 580 581 static int gfar_of_group_count(struct device_node *np) 582 { 583 struct device_node *child; 584 int num = 0; 585 586 for_each_available_child_of_node(np, child) 587 if (of_node_name_eq(child, "queue-group")) 588 num++; 589 590 return num; 591 } 592 593 /* Reads the controller's registers to determine what interface 594 * connects it to the PHY. 595 */ 596 static phy_interface_t gfar_get_interface(struct net_device *dev) 597 { 598 struct gfar_private *priv = netdev_priv(dev); 599 struct gfar __iomem *regs = priv->gfargrp[0].regs; 600 u32 ecntrl; 601 602 ecntrl = gfar_read(®s->ecntrl); 603 604 if (ecntrl & ECNTRL_SGMII_MODE) 605 return PHY_INTERFACE_MODE_SGMII; 606 607 if (ecntrl & ECNTRL_TBI_MODE) { 608 if (ecntrl & ECNTRL_REDUCED_MODE) 609 return PHY_INTERFACE_MODE_RTBI; 610 else 611 return PHY_INTERFACE_MODE_TBI; 612 } 613 614 if (ecntrl & ECNTRL_REDUCED_MODE) { 615 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 616 return PHY_INTERFACE_MODE_RMII; 617 } 618 else { 619 phy_interface_t interface = priv->interface; 620 621 /* This isn't autodetected right now, so it must 622 * be set by the device tree or platform code. 623 */ 624 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 625 return PHY_INTERFACE_MODE_RGMII_ID; 626 627 return PHY_INTERFACE_MODE_RGMII; 628 } 629 } 630 631 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 632 return PHY_INTERFACE_MODE_GMII; 633 634 return PHY_INTERFACE_MODE_MII; 635 } 636 637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 638 { 639 const char *model; 640 const void *mac_addr; 641 int err = 0, i; 642 phy_interface_t interface; 643 struct net_device *dev = NULL; 644 struct gfar_private *priv = NULL; 645 struct device_node *np = ofdev->dev.of_node; 646 struct device_node *child = NULL; 647 u32 stash_len = 0; 648 u32 stash_idx = 0; 649 unsigned int num_tx_qs, num_rx_qs; 650 unsigned short mode, poll_mode; 651 652 if (!np) 653 return -ENODEV; 654 655 if (of_device_is_compatible(np, "fsl,etsec2")) { 656 mode = MQ_MG_MODE; 657 poll_mode = GFAR_SQ_POLLING; 658 } else { 659 mode = SQ_SG_MODE; 660 poll_mode = GFAR_SQ_POLLING; 661 } 662 663 if (mode == SQ_SG_MODE) { 664 num_tx_qs = 1; 665 num_rx_qs = 1; 666 } else { /* MQ_MG_MODE */ 667 /* get the actual number of supported groups */ 668 unsigned int num_grps = gfar_of_group_count(np); 669 670 if (num_grps == 0 || num_grps > MAXGROUPS) { 671 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 672 num_grps); 673 pr_err("Cannot do alloc_etherdev, aborting\n"); 674 return -EINVAL; 675 } 676 677 if (poll_mode == GFAR_SQ_POLLING) { 678 num_tx_qs = num_grps; /* one txq per int group */ 679 num_rx_qs = num_grps; /* one rxq per int group */ 680 } else { /* GFAR_MQ_POLLING */ 681 u32 tx_queues, rx_queues; 682 int ret; 683 684 /* parse the num of HW tx and rx queues */ 685 ret = of_property_read_u32(np, "fsl,num_tx_queues", 686 &tx_queues); 687 num_tx_qs = ret ? 1 : tx_queues; 688 689 ret = of_property_read_u32(np, "fsl,num_rx_queues", 690 &rx_queues); 691 num_rx_qs = ret ? 1 : rx_queues; 692 } 693 } 694 695 if (num_tx_qs > MAX_TX_QS) { 696 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 697 num_tx_qs, MAX_TX_QS); 698 pr_err("Cannot do alloc_etherdev, aborting\n"); 699 return -EINVAL; 700 } 701 702 if (num_rx_qs > MAX_RX_QS) { 703 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 704 num_rx_qs, MAX_RX_QS); 705 pr_err("Cannot do alloc_etherdev, aborting\n"); 706 return -EINVAL; 707 } 708 709 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 710 dev = *pdev; 711 if (NULL == dev) 712 return -ENOMEM; 713 714 priv = netdev_priv(dev); 715 priv->ndev = dev; 716 717 priv->mode = mode; 718 priv->poll_mode = poll_mode; 719 720 priv->num_tx_queues = num_tx_qs; 721 netif_set_real_num_rx_queues(dev, num_rx_qs); 722 priv->num_rx_queues = num_rx_qs; 723 724 err = gfar_alloc_tx_queues(priv); 725 if (err) 726 goto tx_alloc_failed; 727 728 err = gfar_alloc_rx_queues(priv); 729 if (err) 730 goto rx_alloc_failed; 731 732 err = of_property_read_string(np, "model", &model); 733 if (err) { 734 pr_err("Device model property missing, aborting\n"); 735 goto rx_alloc_failed; 736 } 737 738 /* Init Rx queue filer rule set linked list */ 739 INIT_LIST_HEAD(&priv->rx_list.list); 740 priv->rx_list.count = 0; 741 mutex_init(&priv->rx_queue_access); 742 743 for (i = 0; i < MAXGROUPS; i++) 744 priv->gfargrp[i].regs = NULL; 745 746 /* Parse and initialize group specific information */ 747 if (priv->mode == MQ_MG_MODE) { 748 for_each_available_child_of_node(np, child) { 749 if (!of_node_name_eq(child, "queue-group")) 750 continue; 751 752 err = gfar_parse_group(child, priv, model); 753 if (err) { 754 of_node_put(child); 755 goto err_grp_init; 756 } 757 } 758 } else { /* SQ_SG_MODE */ 759 err = gfar_parse_group(np, priv, model); 760 if (err) 761 goto err_grp_init; 762 } 763 764 if (of_property_read_bool(np, "bd-stash")) { 765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 766 priv->bd_stash_en = 1; 767 } 768 769 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 770 771 if (err == 0) 772 priv->rx_stash_size = stash_len; 773 774 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 775 776 if (err == 0) 777 priv->rx_stash_index = stash_idx; 778 779 if (stash_len || stash_idx) 780 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 781 782 mac_addr = of_get_mac_address(np); 783 784 if (!IS_ERR(mac_addr)) { 785 ether_addr_copy(dev->dev_addr, mac_addr); 786 } else { 787 eth_hw_addr_random(dev); 788 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 789 } 790 791 if (model && !strcasecmp(model, "TSEC")) 792 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 793 FSL_GIANFAR_DEV_HAS_COALESCE | 794 FSL_GIANFAR_DEV_HAS_RMON | 795 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 796 797 if (model && !strcasecmp(model, "eTSEC")) 798 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 799 FSL_GIANFAR_DEV_HAS_COALESCE | 800 FSL_GIANFAR_DEV_HAS_RMON | 801 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 802 FSL_GIANFAR_DEV_HAS_CSUM | 803 FSL_GIANFAR_DEV_HAS_VLAN | 804 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 805 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 806 FSL_GIANFAR_DEV_HAS_TIMER | 807 FSL_GIANFAR_DEV_HAS_RX_FILER; 808 809 /* Use PHY connection type from the DT node if one is specified there. 810 * rgmii-id really needs to be specified. Other types can be 811 * detected by hardware 812 */ 813 err = of_get_phy_mode(np, &interface); 814 if (!err) 815 priv->interface = interface; 816 else 817 priv->interface = gfar_get_interface(dev); 818 819 if (of_find_property(np, "fsl,magic-packet", NULL)) 820 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 821 822 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 823 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 824 825 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 826 827 /* In the case of a fixed PHY, the DT node associated 828 * to the PHY is the Ethernet MAC DT node. 829 */ 830 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 831 err = of_phy_register_fixed_link(np); 832 if (err) 833 goto err_grp_init; 834 835 priv->phy_node = of_node_get(np); 836 } 837 838 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 839 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 840 841 return 0; 842 843 err_grp_init: 844 unmap_group_regs(priv); 845 rx_alloc_failed: 846 gfar_free_rx_queues(priv); 847 tx_alloc_failed: 848 gfar_free_tx_queues(priv); 849 free_gfar_dev(priv); 850 return err; 851 } 852 853 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 854 u32 class) 855 { 856 u32 rqfpr = FPR_FILER_MASK; 857 u32 rqfcr = 0x0; 858 859 rqfar--; 860 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 861 priv->ftp_rqfpr[rqfar] = rqfpr; 862 priv->ftp_rqfcr[rqfar] = rqfcr; 863 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 864 865 rqfar--; 866 rqfcr = RQFCR_CMP_NOMATCH; 867 priv->ftp_rqfpr[rqfar] = rqfpr; 868 priv->ftp_rqfcr[rqfar] = rqfcr; 869 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 870 871 rqfar--; 872 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 873 rqfpr = class; 874 priv->ftp_rqfcr[rqfar] = rqfcr; 875 priv->ftp_rqfpr[rqfar] = rqfpr; 876 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 877 878 rqfar--; 879 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 880 rqfpr = class; 881 priv->ftp_rqfcr[rqfar] = rqfcr; 882 priv->ftp_rqfpr[rqfar] = rqfpr; 883 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 884 885 return rqfar; 886 } 887 888 static void gfar_init_filer_table(struct gfar_private *priv) 889 { 890 int i = 0x0; 891 u32 rqfar = MAX_FILER_IDX; 892 u32 rqfcr = 0x0; 893 u32 rqfpr = FPR_FILER_MASK; 894 895 /* Default rule */ 896 rqfcr = RQFCR_CMP_MATCH; 897 priv->ftp_rqfcr[rqfar] = rqfcr; 898 priv->ftp_rqfpr[rqfar] = rqfpr; 899 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 900 901 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 902 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 903 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 906 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 907 908 /* cur_filer_idx indicated the first non-masked rule */ 909 priv->cur_filer_idx = rqfar; 910 911 /* Rest are masked rules */ 912 rqfcr = RQFCR_CMP_NOMATCH; 913 for (i = 0; i < rqfar; i++) { 914 priv->ftp_rqfcr[i] = rqfcr; 915 priv->ftp_rqfpr[i] = rqfpr; 916 gfar_write_filer(priv, i, rqfcr, rqfpr); 917 } 918 } 919 920 #ifdef CONFIG_PPC 921 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 922 { 923 unsigned int pvr = mfspr(SPRN_PVR); 924 unsigned int svr = mfspr(SPRN_SVR); 925 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 926 unsigned int rev = svr & 0xffff; 927 928 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 929 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 930 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 931 priv->errata |= GFAR_ERRATA_74; 932 933 /* MPC8313 and MPC837x all rev */ 934 if ((pvr == 0x80850010 && mod == 0x80b0) || 935 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 936 priv->errata |= GFAR_ERRATA_76; 937 938 /* MPC8313 Rev < 2.0 */ 939 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 940 priv->errata |= GFAR_ERRATA_12; 941 } 942 943 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 944 { 945 unsigned int svr = mfspr(SPRN_SVR); 946 947 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 948 priv->errata |= GFAR_ERRATA_12; 949 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 950 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 951 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 952 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 953 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 954 } 955 #endif 956 957 static void gfar_detect_errata(struct gfar_private *priv) 958 { 959 struct device *dev = &priv->ofdev->dev; 960 961 /* no plans to fix */ 962 priv->errata |= GFAR_ERRATA_A002; 963 964 #ifdef CONFIG_PPC 965 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 966 __gfar_detect_errata_85xx(priv); 967 else /* non-mpc85xx parts, i.e. e300 core based */ 968 __gfar_detect_errata_83xx(priv); 969 #endif 970 971 if (priv->errata) 972 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 973 priv->errata); 974 } 975 976 static void gfar_init_addr_hash_table(struct gfar_private *priv) 977 { 978 struct gfar __iomem *regs = priv->gfargrp[0].regs; 979 980 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 981 priv->extended_hash = 1; 982 priv->hash_width = 9; 983 984 priv->hash_regs[0] = ®s->igaddr0; 985 priv->hash_regs[1] = ®s->igaddr1; 986 priv->hash_regs[2] = ®s->igaddr2; 987 priv->hash_regs[3] = ®s->igaddr3; 988 priv->hash_regs[4] = ®s->igaddr4; 989 priv->hash_regs[5] = ®s->igaddr5; 990 priv->hash_regs[6] = ®s->igaddr6; 991 priv->hash_regs[7] = ®s->igaddr7; 992 priv->hash_regs[8] = ®s->gaddr0; 993 priv->hash_regs[9] = ®s->gaddr1; 994 priv->hash_regs[10] = ®s->gaddr2; 995 priv->hash_regs[11] = ®s->gaddr3; 996 priv->hash_regs[12] = ®s->gaddr4; 997 priv->hash_regs[13] = ®s->gaddr5; 998 priv->hash_regs[14] = ®s->gaddr6; 999 priv->hash_regs[15] = ®s->gaddr7; 1000 1001 } else { 1002 priv->extended_hash = 0; 1003 priv->hash_width = 8; 1004 1005 priv->hash_regs[0] = ®s->gaddr0; 1006 priv->hash_regs[1] = ®s->gaddr1; 1007 priv->hash_regs[2] = ®s->gaddr2; 1008 priv->hash_regs[3] = ®s->gaddr3; 1009 priv->hash_regs[4] = ®s->gaddr4; 1010 priv->hash_regs[5] = ®s->gaddr5; 1011 priv->hash_regs[6] = ®s->gaddr6; 1012 priv->hash_regs[7] = ®s->gaddr7; 1013 } 1014 } 1015 1016 static int __gfar_is_rx_idle(struct gfar_private *priv) 1017 { 1018 u32 res; 1019 1020 /* Normaly TSEC should not hang on GRS commands, so we should 1021 * actually wait for IEVENT_GRSC flag. 1022 */ 1023 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1024 return 0; 1025 1026 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1027 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1028 * and the Rx can be safely reset. 1029 */ 1030 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1031 res &= 0x7f807f80; 1032 if ((res & 0xffff) == (res >> 16)) 1033 return 1; 1034 1035 return 0; 1036 } 1037 1038 /* Halt the receive and transmit queues */ 1039 static void gfar_halt_nodisable(struct gfar_private *priv) 1040 { 1041 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1042 u32 tempval; 1043 unsigned int timeout; 1044 int stopped; 1045 1046 gfar_ints_disable(priv); 1047 1048 if (gfar_is_dma_stopped(priv)) 1049 return; 1050 1051 /* Stop the DMA, and wait for it to stop */ 1052 tempval = gfar_read(®s->dmactrl); 1053 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1054 gfar_write(®s->dmactrl, tempval); 1055 1056 retry: 1057 timeout = 1000; 1058 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1059 cpu_relax(); 1060 timeout--; 1061 } 1062 1063 if (!timeout) 1064 stopped = gfar_is_dma_stopped(priv); 1065 1066 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1067 !__gfar_is_rx_idle(priv)) 1068 goto retry; 1069 } 1070 1071 /* Halt the receive and transmit queues */ 1072 static void gfar_halt(struct gfar_private *priv) 1073 { 1074 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1075 u32 tempval; 1076 1077 /* Dissable the Rx/Tx hw queues */ 1078 gfar_write(®s->rqueue, 0); 1079 gfar_write(®s->tqueue, 0); 1080 1081 mdelay(10); 1082 1083 gfar_halt_nodisable(priv); 1084 1085 /* Disable Rx/Tx DMA */ 1086 tempval = gfar_read(®s->maccfg1); 1087 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1088 gfar_write(®s->maccfg1, tempval); 1089 } 1090 1091 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1092 { 1093 struct txbd8 *txbdp; 1094 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1095 int i, j; 1096 1097 txbdp = tx_queue->tx_bd_base; 1098 1099 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1100 if (!tx_queue->tx_skbuff[i]) 1101 continue; 1102 1103 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1104 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1105 txbdp->lstatus = 0; 1106 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1107 j++) { 1108 txbdp++; 1109 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1110 be16_to_cpu(txbdp->length), 1111 DMA_TO_DEVICE); 1112 } 1113 txbdp++; 1114 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1115 tx_queue->tx_skbuff[i] = NULL; 1116 } 1117 kfree(tx_queue->tx_skbuff); 1118 tx_queue->tx_skbuff = NULL; 1119 } 1120 1121 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1122 { 1123 int i; 1124 1125 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1126 1127 dev_kfree_skb(rx_queue->skb); 1128 1129 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1130 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1131 1132 rxbdp->lstatus = 0; 1133 rxbdp->bufPtr = 0; 1134 rxbdp++; 1135 1136 if (!rxb->page) 1137 continue; 1138 1139 dma_unmap_page(rx_queue->dev, rxb->dma, 1140 PAGE_SIZE, DMA_FROM_DEVICE); 1141 __free_page(rxb->page); 1142 1143 rxb->page = NULL; 1144 } 1145 1146 kfree(rx_queue->rx_buff); 1147 rx_queue->rx_buff = NULL; 1148 } 1149 1150 /* If there are any tx skbs or rx skbs still around, free them. 1151 * Then free tx_skbuff and rx_skbuff 1152 */ 1153 static void free_skb_resources(struct gfar_private *priv) 1154 { 1155 struct gfar_priv_tx_q *tx_queue = NULL; 1156 struct gfar_priv_rx_q *rx_queue = NULL; 1157 int i; 1158 1159 /* Go through all the buffer descriptors and free their data buffers */ 1160 for (i = 0; i < priv->num_tx_queues; i++) { 1161 struct netdev_queue *txq; 1162 1163 tx_queue = priv->tx_queue[i]; 1164 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1165 if (tx_queue->tx_skbuff) 1166 free_skb_tx_queue(tx_queue); 1167 netdev_tx_reset_queue(txq); 1168 } 1169 1170 for (i = 0; i < priv->num_rx_queues; i++) { 1171 rx_queue = priv->rx_queue[i]; 1172 if (rx_queue->rx_buff) 1173 free_skb_rx_queue(rx_queue); 1174 } 1175 1176 dma_free_coherent(priv->dev, 1177 sizeof(struct txbd8) * priv->total_tx_ring_size + 1178 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1179 priv->tx_queue[0]->tx_bd_base, 1180 priv->tx_queue[0]->tx_bd_dma_base); 1181 } 1182 1183 void stop_gfar(struct net_device *dev) 1184 { 1185 struct gfar_private *priv = netdev_priv(dev); 1186 1187 netif_tx_stop_all_queues(dev); 1188 1189 smp_mb__before_atomic(); 1190 set_bit(GFAR_DOWN, &priv->state); 1191 smp_mb__after_atomic(); 1192 1193 disable_napi(priv); 1194 1195 /* disable ints and gracefully shut down Rx/Tx DMA */ 1196 gfar_halt(priv); 1197 1198 phy_stop(dev->phydev); 1199 1200 free_skb_resources(priv); 1201 } 1202 1203 static void gfar_start(struct gfar_private *priv) 1204 { 1205 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1206 u32 tempval; 1207 int i = 0; 1208 1209 /* Enable Rx/Tx hw queues */ 1210 gfar_write(®s->rqueue, priv->rqueue); 1211 gfar_write(®s->tqueue, priv->tqueue); 1212 1213 /* Initialize DMACTRL to have WWR and WOP */ 1214 tempval = gfar_read(®s->dmactrl); 1215 tempval |= DMACTRL_INIT_SETTINGS; 1216 gfar_write(®s->dmactrl, tempval); 1217 1218 /* Make sure we aren't stopped */ 1219 tempval = gfar_read(®s->dmactrl); 1220 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1221 gfar_write(®s->dmactrl, tempval); 1222 1223 for (i = 0; i < priv->num_grps; i++) { 1224 regs = priv->gfargrp[i].regs; 1225 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1226 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1227 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1228 } 1229 1230 /* Enable Rx/Tx DMA */ 1231 tempval = gfar_read(®s->maccfg1); 1232 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1233 gfar_write(®s->maccfg1, tempval); 1234 1235 gfar_ints_enable(priv); 1236 1237 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1238 } 1239 1240 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1241 { 1242 struct page *page; 1243 dma_addr_t addr; 1244 1245 page = dev_alloc_page(); 1246 if (unlikely(!page)) 1247 return false; 1248 1249 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1250 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1251 __free_page(page); 1252 1253 return false; 1254 } 1255 1256 rxb->dma = addr; 1257 rxb->page = page; 1258 rxb->page_offset = 0; 1259 1260 return true; 1261 } 1262 1263 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1264 { 1265 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1266 struct gfar_extra_stats *estats = &priv->extra_stats; 1267 1268 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1269 atomic64_inc(&estats->rx_alloc_err); 1270 } 1271 1272 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1273 int alloc_cnt) 1274 { 1275 struct rxbd8 *bdp; 1276 struct gfar_rx_buff *rxb; 1277 int i; 1278 1279 i = rx_queue->next_to_use; 1280 bdp = &rx_queue->rx_bd_base[i]; 1281 rxb = &rx_queue->rx_buff[i]; 1282 1283 while (alloc_cnt--) { 1284 /* try reuse page */ 1285 if (unlikely(!rxb->page)) { 1286 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1287 gfar_rx_alloc_err(rx_queue); 1288 break; 1289 } 1290 } 1291 1292 /* Setup the new RxBD */ 1293 gfar_init_rxbdp(rx_queue, bdp, 1294 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1295 1296 /* Update to the next pointer */ 1297 bdp++; 1298 rxb++; 1299 1300 if (unlikely(++i == rx_queue->rx_ring_size)) { 1301 i = 0; 1302 bdp = rx_queue->rx_bd_base; 1303 rxb = rx_queue->rx_buff; 1304 } 1305 } 1306 1307 rx_queue->next_to_use = i; 1308 rx_queue->next_to_alloc = i; 1309 } 1310 1311 static void gfar_init_bds(struct net_device *ndev) 1312 { 1313 struct gfar_private *priv = netdev_priv(ndev); 1314 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1315 struct gfar_priv_tx_q *tx_queue = NULL; 1316 struct gfar_priv_rx_q *rx_queue = NULL; 1317 struct txbd8 *txbdp; 1318 u32 __iomem *rfbptr; 1319 int i, j; 1320 1321 for (i = 0; i < priv->num_tx_queues; i++) { 1322 tx_queue = priv->tx_queue[i]; 1323 /* Initialize some variables in our dev structure */ 1324 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1325 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1326 tx_queue->cur_tx = tx_queue->tx_bd_base; 1327 tx_queue->skb_curtx = 0; 1328 tx_queue->skb_dirtytx = 0; 1329 1330 /* Initialize Transmit Descriptor Ring */ 1331 txbdp = tx_queue->tx_bd_base; 1332 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1333 txbdp->lstatus = 0; 1334 txbdp->bufPtr = 0; 1335 txbdp++; 1336 } 1337 1338 /* Set the last descriptor in the ring to indicate wrap */ 1339 txbdp--; 1340 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1341 TXBD_WRAP); 1342 } 1343 1344 rfbptr = ®s->rfbptr0; 1345 for (i = 0; i < priv->num_rx_queues; i++) { 1346 rx_queue = priv->rx_queue[i]; 1347 1348 rx_queue->next_to_clean = 0; 1349 rx_queue->next_to_use = 0; 1350 rx_queue->next_to_alloc = 0; 1351 1352 /* make sure next_to_clean != next_to_use after this 1353 * by leaving at least 1 unused descriptor 1354 */ 1355 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1356 1357 rx_queue->rfbptr = rfbptr; 1358 rfbptr += 2; 1359 } 1360 } 1361 1362 static int gfar_alloc_skb_resources(struct net_device *ndev) 1363 { 1364 void *vaddr; 1365 dma_addr_t addr; 1366 int i, j; 1367 struct gfar_private *priv = netdev_priv(ndev); 1368 struct device *dev = priv->dev; 1369 struct gfar_priv_tx_q *tx_queue = NULL; 1370 struct gfar_priv_rx_q *rx_queue = NULL; 1371 1372 priv->total_tx_ring_size = 0; 1373 for (i = 0; i < priv->num_tx_queues; i++) 1374 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1375 1376 priv->total_rx_ring_size = 0; 1377 for (i = 0; i < priv->num_rx_queues; i++) 1378 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1379 1380 /* Allocate memory for the buffer descriptors */ 1381 vaddr = dma_alloc_coherent(dev, 1382 (priv->total_tx_ring_size * 1383 sizeof(struct txbd8)) + 1384 (priv->total_rx_ring_size * 1385 sizeof(struct rxbd8)), 1386 &addr, GFP_KERNEL); 1387 if (!vaddr) 1388 return -ENOMEM; 1389 1390 for (i = 0; i < priv->num_tx_queues; i++) { 1391 tx_queue = priv->tx_queue[i]; 1392 tx_queue->tx_bd_base = vaddr; 1393 tx_queue->tx_bd_dma_base = addr; 1394 tx_queue->dev = ndev; 1395 /* enet DMA only understands physical addresses */ 1396 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1397 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1398 } 1399 1400 /* Start the rx descriptor ring where the tx ring leaves off */ 1401 for (i = 0; i < priv->num_rx_queues; i++) { 1402 rx_queue = priv->rx_queue[i]; 1403 rx_queue->rx_bd_base = vaddr; 1404 rx_queue->rx_bd_dma_base = addr; 1405 rx_queue->ndev = ndev; 1406 rx_queue->dev = dev; 1407 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1408 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1409 } 1410 1411 /* Setup the skbuff rings */ 1412 for (i = 0; i < priv->num_tx_queues; i++) { 1413 tx_queue = priv->tx_queue[i]; 1414 tx_queue->tx_skbuff = 1415 kmalloc_array(tx_queue->tx_ring_size, 1416 sizeof(*tx_queue->tx_skbuff), 1417 GFP_KERNEL); 1418 if (!tx_queue->tx_skbuff) 1419 goto cleanup; 1420 1421 for (j = 0; j < tx_queue->tx_ring_size; j++) 1422 tx_queue->tx_skbuff[j] = NULL; 1423 } 1424 1425 for (i = 0; i < priv->num_rx_queues; i++) { 1426 rx_queue = priv->rx_queue[i]; 1427 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1428 sizeof(*rx_queue->rx_buff), 1429 GFP_KERNEL); 1430 if (!rx_queue->rx_buff) 1431 goto cleanup; 1432 } 1433 1434 gfar_init_bds(ndev); 1435 1436 return 0; 1437 1438 cleanup: 1439 free_skb_resources(priv); 1440 return -ENOMEM; 1441 } 1442 1443 /* Bring the controller up and running */ 1444 int startup_gfar(struct net_device *ndev) 1445 { 1446 struct gfar_private *priv = netdev_priv(ndev); 1447 int err; 1448 1449 gfar_mac_reset(priv); 1450 1451 err = gfar_alloc_skb_resources(ndev); 1452 if (err) 1453 return err; 1454 1455 gfar_init_tx_rx_base(priv); 1456 1457 smp_mb__before_atomic(); 1458 clear_bit(GFAR_DOWN, &priv->state); 1459 smp_mb__after_atomic(); 1460 1461 /* Start Rx/Tx DMA and enable the interrupts */ 1462 gfar_start(priv); 1463 1464 /* force link state update after mac reset */ 1465 priv->oldlink = 0; 1466 priv->oldspeed = 0; 1467 priv->oldduplex = -1; 1468 1469 phy_start(ndev->phydev); 1470 1471 enable_napi(priv); 1472 1473 netif_tx_wake_all_queues(ndev); 1474 1475 return 0; 1476 } 1477 1478 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1479 { 1480 struct net_device *ndev = priv->ndev; 1481 struct phy_device *phydev = ndev->phydev; 1482 u32 val = 0; 1483 1484 if (!phydev->duplex) 1485 return val; 1486 1487 if (!priv->pause_aneg_en) { 1488 if (priv->tx_pause_en) 1489 val |= MACCFG1_TX_FLOW; 1490 if (priv->rx_pause_en) 1491 val |= MACCFG1_RX_FLOW; 1492 } else { 1493 u16 lcl_adv, rmt_adv; 1494 u8 flowctrl; 1495 /* get link partner capabilities */ 1496 rmt_adv = 0; 1497 if (phydev->pause) 1498 rmt_adv = LPA_PAUSE_CAP; 1499 if (phydev->asym_pause) 1500 rmt_adv |= LPA_PAUSE_ASYM; 1501 1502 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1503 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1504 if (flowctrl & FLOW_CTRL_TX) 1505 val |= MACCFG1_TX_FLOW; 1506 if (flowctrl & FLOW_CTRL_RX) 1507 val |= MACCFG1_RX_FLOW; 1508 } 1509 1510 return val; 1511 } 1512 1513 static noinline void gfar_update_link_state(struct gfar_private *priv) 1514 { 1515 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1516 struct net_device *ndev = priv->ndev; 1517 struct phy_device *phydev = ndev->phydev; 1518 struct gfar_priv_rx_q *rx_queue = NULL; 1519 int i; 1520 1521 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1522 return; 1523 1524 if (phydev->link) { 1525 u32 tempval1 = gfar_read(®s->maccfg1); 1526 u32 tempval = gfar_read(®s->maccfg2); 1527 u32 ecntrl = gfar_read(®s->ecntrl); 1528 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1529 1530 if (phydev->duplex != priv->oldduplex) { 1531 if (!(phydev->duplex)) 1532 tempval &= ~(MACCFG2_FULL_DUPLEX); 1533 else 1534 tempval |= MACCFG2_FULL_DUPLEX; 1535 1536 priv->oldduplex = phydev->duplex; 1537 } 1538 1539 if (phydev->speed != priv->oldspeed) { 1540 switch (phydev->speed) { 1541 case 1000: 1542 tempval = 1543 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1544 1545 ecntrl &= ~(ECNTRL_R100); 1546 break; 1547 case 100: 1548 case 10: 1549 tempval = 1550 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1551 1552 /* Reduced mode distinguishes 1553 * between 10 and 100 1554 */ 1555 if (phydev->speed == SPEED_100) 1556 ecntrl |= ECNTRL_R100; 1557 else 1558 ecntrl &= ~(ECNTRL_R100); 1559 break; 1560 default: 1561 netif_warn(priv, link, priv->ndev, 1562 "Ack! Speed (%d) is not 10/100/1000!\n", 1563 phydev->speed); 1564 break; 1565 } 1566 1567 priv->oldspeed = phydev->speed; 1568 } 1569 1570 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1571 tempval1 |= gfar_get_flowctrl_cfg(priv); 1572 1573 /* Turn last free buffer recording on */ 1574 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1575 for (i = 0; i < priv->num_rx_queues; i++) { 1576 u32 bdp_dma; 1577 1578 rx_queue = priv->rx_queue[i]; 1579 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1580 gfar_write(rx_queue->rfbptr, bdp_dma); 1581 } 1582 1583 priv->tx_actual_en = 1; 1584 } 1585 1586 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1587 priv->tx_actual_en = 0; 1588 1589 gfar_write(®s->maccfg1, tempval1); 1590 gfar_write(®s->maccfg2, tempval); 1591 gfar_write(®s->ecntrl, ecntrl); 1592 1593 if (!priv->oldlink) 1594 priv->oldlink = 1; 1595 1596 } else if (priv->oldlink) { 1597 priv->oldlink = 0; 1598 priv->oldspeed = 0; 1599 priv->oldduplex = -1; 1600 } 1601 1602 if (netif_msg_link(priv)) 1603 phy_print_status(phydev); 1604 } 1605 1606 /* Called every time the controller might need to be made 1607 * aware of new link state. The PHY code conveys this 1608 * information through variables in the phydev structure, and this 1609 * function converts those variables into the appropriate 1610 * register values, and can bring down the device if needed. 1611 */ 1612 static void adjust_link(struct net_device *dev) 1613 { 1614 struct gfar_private *priv = netdev_priv(dev); 1615 struct phy_device *phydev = dev->phydev; 1616 1617 if (unlikely(phydev->link != priv->oldlink || 1618 (phydev->link && (phydev->duplex != priv->oldduplex || 1619 phydev->speed != priv->oldspeed)))) 1620 gfar_update_link_state(priv); 1621 } 1622 1623 /* Initialize TBI PHY interface for communicating with the 1624 * SERDES lynx PHY on the chip. We communicate with this PHY 1625 * through the MDIO bus on each controller, treating it as a 1626 * "normal" PHY at the address found in the TBIPA register. We assume 1627 * that the TBIPA register is valid. Either the MDIO bus code will set 1628 * it to a value that doesn't conflict with other PHYs on the bus, or the 1629 * value doesn't matter, as there are no other PHYs on the bus. 1630 */ 1631 static void gfar_configure_serdes(struct net_device *dev) 1632 { 1633 struct gfar_private *priv = netdev_priv(dev); 1634 struct phy_device *tbiphy; 1635 1636 if (!priv->tbi_node) { 1637 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1638 "device tree specify a tbi-handle\n"); 1639 return; 1640 } 1641 1642 tbiphy = of_phy_find_device(priv->tbi_node); 1643 if (!tbiphy) { 1644 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1645 return; 1646 } 1647 1648 /* If the link is already up, we must already be ok, and don't need to 1649 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1650 * everything for us? Resetting it takes the link down and requires 1651 * several seconds for it to come back. 1652 */ 1653 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1654 put_device(&tbiphy->mdio.dev); 1655 return; 1656 } 1657 1658 /* Single clk mode, mii mode off(for serdes communication) */ 1659 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1660 1661 phy_write(tbiphy, MII_ADVERTISE, 1662 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1663 ADVERTISE_1000XPSE_ASYM); 1664 1665 phy_write(tbiphy, MII_BMCR, 1666 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1667 BMCR_SPEED1000); 1668 1669 put_device(&tbiphy->mdio.dev); 1670 } 1671 1672 /* Initializes driver's PHY state, and attaches to the PHY. 1673 * Returns 0 on success. 1674 */ 1675 static int init_phy(struct net_device *dev) 1676 { 1677 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1678 struct gfar_private *priv = netdev_priv(dev); 1679 phy_interface_t interface = priv->interface; 1680 struct phy_device *phydev; 1681 struct ethtool_eee edata; 1682 1683 linkmode_set_bit_array(phy_10_100_features_array, 1684 ARRAY_SIZE(phy_10_100_features_array), 1685 mask); 1686 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1687 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1688 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1689 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1690 1691 priv->oldlink = 0; 1692 priv->oldspeed = 0; 1693 priv->oldduplex = -1; 1694 1695 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1696 interface); 1697 if (!phydev) { 1698 dev_err(&dev->dev, "could not attach to PHY\n"); 1699 return -ENODEV; 1700 } 1701 1702 if (interface == PHY_INTERFACE_MODE_SGMII) 1703 gfar_configure_serdes(dev); 1704 1705 /* Remove any features not supported by the controller */ 1706 linkmode_and(phydev->supported, phydev->supported, mask); 1707 linkmode_copy(phydev->advertising, phydev->supported); 1708 1709 /* Add support for flow control */ 1710 phy_support_asym_pause(phydev); 1711 1712 /* disable EEE autoneg, EEE not supported by eTSEC */ 1713 memset(&edata, 0, sizeof(struct ethtool_eee)); 1714 phy_ethtool_set_eee(phydev, &edata); 1715 1716 return 0; 1717 } 1718 1719 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1720 { 1721 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1722 1723 memset(fcb, 0, GMAC_FCB_LEN); 1724 1725 return fcb; 1726 } 1727 1728 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1729 int fcb_length) 1730 { 1731 /* If we're here, it's a IP packet with a TCP or UDP 1732 * payload. We set it to checksum, using a pseudo-header 1733 * we provide 1734 */ 1735 u8 flags = TXFCB_DEFAULT; 1736 1737 /* Tell the controller what the protocol is 1738 * And provide the already calculated phcs 1739 */ 1740 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1741 flags |= TXFCB_UDP; 1742 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1743 } else 1744 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1745 1746 /* l3os is the distance between the start of the 1747 * frame (skb->data) and the start of the IP hdr. 1748 * l4os is the distance between the start of the 1749 * l3 hdr and the l4 hdr 1750 */ 1751 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1752 fcb->l4os = skb_network_header_len(skb); 1753 1754 fcb->flags = flags; 1755 } 1756 1757 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1758 { 1759 fcb->flags |= TXFCB_VLN; 1760 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1761 } 1762 1763 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1764 struct txbd8 *base, int ring_size) 1765 { 1766 struct txbd8 *new_bd = bdp + stride; 1767 1768 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1769 } 1770 1771 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1772 int ring_size) 1773 { 1774 return skip_txbd(bdp, 1, base, ring_size); 1775 } 1776 1777 /* eTSEC12: csum generation not supported for some fcb offsets */ 1778 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1779 unsigned long fcb_addr) 1780 { 1781 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1782 (fcb_addr % 0x20) > 0x18); 1783 } 1784 1785 /* eTSEC76: csum generation for frames larger than 2500 may 1786 * cause excess delays before start of transmission 1787 */ 1788 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1789 unsigned int len) 1790 { 1791 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1792 (len > 2500)); 1793 } 1794 1795 /* This is called by the kernel when a frame is ready for transmission. 1796 * It is pointed to by the dev->hard_start_xmit function pointer 1797 */ 1798 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1799 { 1800 struct gfar_private *priv = netdev_priv(dev); 1801 struct gfar_priv_tx_q *tx_queue = NULL; 1802 struct netdev_queue *txq; 1803 struct gfar __iomem *regs = NULL; 1804 struct txfcb *fcb = NULL; 1805 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1806 u32 lstatus; 1807 skb_frag_t *frag; 1808 int i, rq = 0; 1809 int do_tstamp, do_csum, do_vlan; 1810 u32 bufaddr; 1811 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1812 1813 rq = skb->queue_mapping; 1814 tx_queue = priv->tx_queue[rq]; 1815 txq = netdev_get_tx_queue(dev, rq); 1816 base = tx_queue->tx_bd_base; 1817 regs = tx_queue->grp->regs; 1818 1819 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1820 do_vlan = skb_vlan_tag_present(skb); 1821 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1822 priv->hwts_tx_en; 1823 1824 if (do_csum || do_vlan) 1825 fcb_len = GMAC_FCB_LEN; 1826 1827 /* check if time stamp should be generated */ 1828 if (unlikely(do_tstamp)) 1829 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1830 1831 /* make space for additional header when fcb is needed */ 1832 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 1833 struct sk_buff *skb_new; 1834 1835 skb_new = skb_realloc_headroom(skb, fcb_len); 1836 if (!skb_new) { 1837 dev->stats.tx_errors++; 1838 dev_kfree_skb_any(skb); 1839 return NETDEV_TX_OK; 1840 } 1841 1842 if (skb->sk) 1843 skb_set_owner_w(skb_new, skb->sk); 1844 dev_consume_skb_any(skb); 1845 skb = skb_new; 1846 } 1847 1848 /* total number of fragments in the SKB */ 1849 nr_frags = skb_shinfo(skb)->nr_frags; 1850 1851 /* calculate the required number of TxBDs for this skb */ 1852 if (unlikely(do_tstamp)) 1853 nr_txbds = nr_frags + 2; 1854 else 1855 nr_txbds = nr_frags + 1; 1856 1857 /* check if there is space to queue this packet */ 1858 if (nr_txbds > tx_queue->num_txbdfree) { 1859 /* no space, stop the queue */ 1860 netif_tx_stop_queue(txq); 1861 dev->stats.tx_fifo_errors++; 1862 return NETDEV_TX_BUSY; 1863 } 1864 1865 /* Update transmit stats */ 1866 bytes_sent = skb->len; 1867 tx_queue->stats.tx_bytes += bytes_sent; 1868 /* keep Tx bytes on wire for BQL accounting */ 1869 GFAR_CB(skb)->bytes_sent = bytes_sent; 1870 tx_queue->stats.tx_packets++; 1871 1872 txbdp = txbdp_start = tx_queue->cur_tx; 1873 lstatus = be32_to_cpu(txbdp->lstatus); 1874 1875 /* Add TxPAL between FCB and frame if required */ 1876 if (unlikely(do_tstamp)) { 1877 skb_push(skb, GMAC_TXPAL_LEN); 1878 memset(skb->data, 0, GMAC_TXPAL_LEN); 1879 } 1880 1881 /* Add TxFCB if required */ 1882 if (fcb_len) { 1883 fcb = gfar_add_fcb(skb); 1884 lstatus |= BD_LFLAG(TXBD_TOE); 1885 } 1886 1887 /* Set up checksumming */ 1888 if (do_csum) { 1889 gfar_tx_checksum(skb, fcb, fcb_len); 1890 1891 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1892 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1893 __skb_pull(skb, GMAC_FCB_LEN); 1894 skb_checksum_help(skb); 1895 if (do_vlan || do_tstamp) { 1896 /* put back a new fcb for vlan/tstamp TOE */ 1897 fcb = gfar_add_fcb(skb); 1898 } else { 1899 /* Tx TOE not used */ 1900 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1901 fcb = NULL; 1902 } 1903 } 1904 } 1905 1906 if (do_vlan) 1907 gfar_tx_vlan(skb, fcb); 1908 1909 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1910 DMA_TO_DEVICE); 1911 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1912 goto dma_map_err; 1913 1914 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1915 1916 /* Time stamp insertion requires one additional TxBD */ 1917 if (unlikely(do_tstamp)) 1918 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1919 tx_queue->tx_ring_size); 1920 1921 if (likely(!nr_frags)) { 1922 if (likely(!do_tstamp)) 1923 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1924 } else { 1925 u32 lstatus_start = lstatus; 1926 1927 /* Place the fragment addresses and lengths into the TxBDs */ 1928 frag = &skb_shinfo(skb)->frags[0]; 1929 for (i = 0; i < nr_frags; i++, frag++) { 1930 unsigned int size; 1931 1932 /* Point at the next BD, wrapping as needed */ 1933 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1934 1935 size = skb_frag_size(frag); 1936 1937 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1938 BD_LFLAG(TXBD_READY); 1939 1940 /* Handle the last BD specially */ 1941 if (i == nr_frags - 1) 1942 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1943 1944 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1945 size, DMA_TO_DEVICE); 1946 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1947 goto dma_map_err; 1948 1949 /* set the TxBD length and buffer pointer */ 1950 txbdp->bufPtr = cpu_to_be32(bufaddr); 1951 txbdp->lstatus = cpu_to_be32(lstatus); 1952 } 1953 1954 lstatus = lstatus_start; 1955 } 1956 1957 /* If time stamping is requested one additional TxBD must be set up. The 1958 * first TxBD points to the FCB and must have a data length of 1959 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1960 * the full frame length. 1961 */ 1962 if (unlikely(do_tstamp)) { 1963 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1964 1965 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1966 bufaddr += fcb_len; 1967 1968 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1969 (skb_headlen(skb) - fcb_len); 1970 if (!nr_frags) 1971 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1972 1973 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1974 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1975 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1976 1977 /* Setup tx hardware time stamping */ 1978 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1979 fcb->ptp = 1; 1980 } else { 1981 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1982 } 1983 1984 netdev_tx_sent_queue(txq, bytes_sent); 1985 1986 gfar_wmb(); 1987 1988 txbdp_start->lstatus = cpu_to_be32(lstatus); 1989 1990 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1991 1992 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1993 1994 /* Update the current skb pointer to the next entry we will use 1995 * (wrapping if necessary) 1996 */ 1997 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1998 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1999 2000 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2001 2002 /* We can work in parallel with gfar_clean_tx_ring(), except 2003 * when modifying num_txbdfree. Note that we didn't grab the lock 2004 * when we were reading the num_txbdfree and checking for available 2005 * space, that's because outside of this function it can only grow. 2006 */ 2007 spin_lock_bh(&tx_queue->txlock); 2008 /* reduce TxBD free count */ 2009 tx_queue->num_txbdfree -= (nr_txbds); 2010 spin_unlock_bh(&tx_queue->txlock); 2011 2012 /* If the next BD still needs to be cleaned up, then the bds 2013 * are full. We need to tell the kernel to stop sending us stuff. 2014 */ 2015 if (!tx_queue->num_txbdfree) { 2016 netif_tx_stop_queue(txq); 2017 2018 dev->stats.tx_fifo_errors++; 2019 } 2020 2021 /* Tell the DMA to go go go */ 2022 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2023 2024 return NETDEV_TX_OK; 2025 2026 dma_map_err: 2027 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2028 if (do_tstamp) 2029 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2030 for (i = 0; i < nr_frags; i++) { 2031 lstatus = be32_to_cpu(txbdp->lstatus); 2032 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2033 break; 2034 2035 lstatus &= ~BD_LFLAG(TXBD_READY); 2036 txbdp->lstatus = cpu_to_be32(lstatus); 2037 bufaddr = be32_to_cpu(txbdp->bufPtr); 2038 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2039 DMA_TO_DEVICE); 2040 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2041 } 2042 gfar_wmb(); 2043 dev_kfree_skb_any(skb); 2044 return NETDEV_TX_OK; 2045 } 2046 2047 /* Changes the mac address if the controller is not running. */ 2048 static int gfar_set_mac_address(struct net_device *dev) 2049 { 2050 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2051 2052 return 0; 2053 } 2054 2055 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2056 { 2057 struct gfar_private *priv = netdev_priv(dev); 2058 2059 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2060 cpu_relax(); 2061 2062 if (dev->flags & IFF_UP) 2063 stop_gfar(dev); 2064 2065 dev->mtu = new_mtu; 2066 2067 if (dev->flags & IFF_UP) 2068 startup_gfar(dev); 2069 2070 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2071 2072 return 0; 2073 } 2074 2075 static void reset_gfar(struct net_device *ndev) 2076 { 2077 struct gfar_private *priv = netdev_priv(ndev); 2078 2079 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2080 cpu_relax(); 2081 2082 stop_gfar(ndev); 2083 startup_gfar(ndev); 2084 2085 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2086 } 2087 2088 /* gfar_reset_task gets scheduled when a packet has not been 2089 * transmitted after a set amount of time. 2090 * For now, assume that clearing out all the structures, and 2091 * starting over will fix the problem. 2092 */ 2093 static void gfar_reset_task(struct work_struct *work) 2094 { 2095 struct gfar_private *priv = container_of(work, struct gfar_private, 2096 reset_task); 2097 reset_gfar(priv->ndev); 2098 } 2099 2100 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2101 { 2102 struct gfar_private *priv = netdev_priv(dev); 2103 2104 dev->stats.tx_errors++; 2105 schedule_work(&priv->reset_task); 2106 } 2107 2108 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2109 { 2110 struct hwtstamp_config config; 2111 struct gfar_private *priv = netdev_priv(netdev); 2112 2113 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2114 return -EFAULT; 2115 2116 /* reserved for future extensions */ 2117 if (config.flags) 2118 return -EINVAL; 2119 2120 switch (config.tx_type) { 2121 case HWTSTAMP_TX_OFF: 2122 priv->hwts_tx_en = 0; 2123 break; 2124 case HWTSTAMP_TX_ON: 2125 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2126 return -ERANGE; 2127 priv->hwts_tx_en = 1; 2128 break; 2129 default: 2130 return -ERANGE; 2131 } 2132 2133 switch (config.rx_filter) { 2134 case HWTSTAMP_FILTER_NONE: 2135 if (priv->hwts_rx_en) { 2136 priv->hwts_rx_en = 0; 2137 reset_gfar(netdev); 2138 } 2139 break; 2140 default: 2141 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2142 return -ERANGE; 2143 if (!priv->hwts_rx_en) { 2144 priv->hwts_rx_en = 1; 2145 reset_gfar(netdev); 2146 } 2147 config.rx_filter = HWTSTAMP_FILTER_ALL; 2148 break; 2149 } 2150 2151 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2152 -EFAULT : 0; 2153 } 2154 2155 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2156 { 2157 struct hwtstamp_config config; 2158 struct gfar_private *priv = netdev_priv(netdev); 2159 2160 config.flags = 0; 2161 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2162 config.rx_filter = (priv->hwts_rx_en ? 2163 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2164 2165 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2166 -EFAULT : 0; 2167 } 2168 2169 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2170 { 2171 struct phy_device *phydev = dev->phydev; 2172 2173 if (!netif_running(dev)) 2174 return -EINVAL; 2175 2176 if (cmd == SIOCSHWTSTAMP) 2177 return gfar_hwtstamp_set(dev, rq); 2178 if (cmd == SIOCGHWTSTAMP) 2179 return gfar_hwtstamp_get(dev, rq); 2180 2181 if (!phydev) 2182 return -ENODEV; 2183 2184 return phy_mii_ioctl(phydev, rq, cmd); 2185 } 2186 2187 /* Interrupt Handler for Transmit complete */ 2188 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2189 { 2190 struct net_device *dev = tx_queue->dev; 2191 struct netdev_queue *txq; 2192 struct gfar_private *priv = netdev_priv(dev); 2193 struct txbd8 *bdp, *next = NULL; 2194 struct txbd8 *lbdp = NULL; 2195 struct txbd8 *base = tx_queue->tx_bd_base; 2196 struct sk_buff *skb; 2197 int skb_dirtytx; 2198 int tx_ring_size = tx_queue->tx_ring_size; 2199 int frags = 0, nr_txbds = 0; 2200 int i; 2201 int howmany = 0; 2202 int tqi = tx_queue->qindex; 2203 unsigned int bytes_sent = 0; 2204 u32 lstatus; 2205 size_t buflen; 2206 2207 txq = netdev_get_tx_queue(dev, tqi); 2208 bdp = tx_queue->dirty_tx; 2209 skb_dirtytx = tx_queue->skb_dirtytx; 2210 2211 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2212 bool do_tstamp; 2213 2214 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2215 priv->hwts_tx_en; 2216 2217 frags = skb_shinfo(skb)->nr_frags; 2218 2219 /* When time stamping, one additional TxBD must be freed. 2220 * Also, we need to dma_unmap_single() the TxPAL. 2221 */ 2222 if (unlikely(do_tstamp)) 2223 nr_txbds = frags + 2; 2224 else 2225 nr_txbds = frags + 1; 2226 2227 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2228 2229 lstatus = be32_to_cpu(lbdp->lstatus); 2230 2231 /* Only clean completed frames */ 2232 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2233 (lstatus & BD_LENGTH_MASK)) 2234 break; 2235 2236 if (unlikely(do_tstamp)) { 2237 next = next_txbd(bdp, base, tx_ring_size); 2238 buflen = be16_to_cpu(next->length) + 2239 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2240 } else 2241 buflen = be16_to_cpu(bdp->length); 2242 2243 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2244 buflen, DMA_TO_DEVICE); 2245 2246 if (unlikely(do_tstamp)) { 2247 struct skb_shared_hwtstamps shhwtstamps; 2248 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2249 ~0x7UL); 2250 2251 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2252 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2253 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2254 skb_tstamp_tx(skb, &shhwtstamps); 2255 gfar_clear_txbd_status(bdp); 2256 bdp = next; 2257 } 2258 2259 gfar_clear_txbd_status(bdp); 2260 bdp = next_txbd(bdp, base, tx_ring_size); 2261 2262 for (i = 0; i < frags; i++) { 2263 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2264 be16_to_cpu(bdp->length), 2265 DMA_TO_DEVICE); 2266 gfar_clear_txbd_status(bdp); 2267 bdp = next_txbd(bdp, base, tx_ring_size); 2268 } 2269 2270 bytes_sent += GFAR_CB(skb)->bytes_sent; 2271 2272 dev_kfree_skb_any(skb); 2273 2274 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2275 2276 skb_dirtytx = (skb_dirtytx + 1) & 2277 TX_RING_MOD_MASK(tx_ring_size); 2278 2279 howmany++; 2280 spin_lock(&tx_queue->txlock); 2281 tx_queue->num_txbdfree += nr_txbds; 2282 spin_unlock(&tx_queue->txlock); 2283 } 2284 2285 /* If we freed a buffer, we can restart transmission, if necessary */ 2286 if (tx_queue->num_txbdfree && 2287 netif_tx_queue_stopped(txq) && 2288 !(test_bit(GFAR_DOWN, &priv->state))) 2289 netif_wake_subqueue(priv->ndev, tqi); 2290 2291 /* Update dirty indicators */ 2292 tx_queue->skb_dirtytx = skb_dirtytx; 2293 tx_queue->dirty_tx = bdp; 2294 2295 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2296 } 2297 2298 static void count_errors(u32 lstatus, struct net_device *ndev) 2299 { 2300 struct gfar_private *priv = netdev_priv(ndev); 2301 struct net_device_stats *stats = &ndev->stats; 2302 struct gfar_extra_stats *estats = &priv->extra_stats; 2303 2304 /* If the packet was truncated, none of the other errors matter */ 2305 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2306 stats->rx_length_errors++; 2307 2308 atomic64_inc(&estats->rx_trunc); 2309 2310 return; 2311 } 2312 /* Count the errors, if there were any */ 2313 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2314 stats->rx_length_errors++; 2315 2316 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2317 atomic64_inc(&estats->rx_large); 2318 else 2319 atomic64_inc(&estats->rx_short); 2320 } 2321 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2322 stats->rx_frame_errors++; 2323 atomic64_inc(&estats->rx_nonoctet); 2324 } 2325 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2326 atomic64_inc(&estats->rx_crcerr); 2327 stats->rx_crc_errors++; 2328 } 2329 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2330 atomic64_inc(&estats->rx_overrun); 2331 stats->rx_over_errors++; 2332 } 2333 } 2334 2335 static irqreturn_t gfar_receive(int irq, void *grp_id) 2336 { 2337 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2338 unsigned long flags; 2339 u32 imask, ievent; 2340 2341 ievent = gfar_read(&grp->regs->ievent); 2342 2343 if (unlikely(ievent & IEVENT_FGPI)) { 2344 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2345 return IRQ_HANDLED; 2346 } 2347 2348 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2349 spin_lock_irqsave(&grp->grplock, flags); 2350 imask = gfar_read(&grp->regs->imask); 2351 imask &= IMASK_RX_DISABLED; 2352 gfar_write(&grp->regs->imask, imask); 2353 spin_unlock_irqrestore(&grp->grplock, flags); 2354 __napi_schedule(&grp->napi_rx); 2355 } else { 2356 /* Clear IEVENT, so interrupts aren't called again 2357 * because of the packets that have already arrived. 2358 */ 2359 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2360 } 2361 2362 return IRQ_HANDLED; 2363 } 2364 2365 /* Interrupt Handler for Transmit complete */ 2366 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2367 { 2368 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2369 unsigned long flags; 2370 u32 imask; 2371 2372 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2373 spin_lock_irqsave(&grp->grplock, flags); 2374 imask = gfar_read(&grp->regs->imask); 2375 imask &= IMASK_TX_DISABLED; 2376 gfar_write(&grp->regs->imask, imask); 2377 spin_unlock_irqrestore(&grp->grplock, flags); 2378 __napi_schedule(&grp->napi_tx); 2379 } else { 2380 /* Clear IEVENT, so interrupts aren't called again 2381 * because of the packets that have already arrived. 2382 */ 2383 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2384 } 2385 2386 return IRQ_HANDLED; 2387 } 2388 2389 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2390 struct sk_buff *skb, bool first) 2391 { 2392 int size = lstatus & BD_LENGTH_MASK; 2393 struct page *page = rxb->page; 2394 2395 if (likely(first)) { 2396 skb_put(skb, size); 2397 } else { 2398 /* the last fragments' length contains the full frame length */ 2399 if (lstatus & BD_LFLAG(RXBD_LAST)) 2400 size -= skb->len; 2401 2402 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2403 rxb->page_offset + RXBUF_ALIGNMENT, 2404 size, GFAR_RXB_TRUESIZE); 2405 } 2406 2407 /* try reuse page */ 2408 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2409 return false; 2410 2411 /* change offset to the other half */ 2412 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2413 2414 page_ref_inc(page); 2415 2416 return true; 2417 } 2418 2419 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2420 struct gfar_rx_buff *old_rxb) 2421 { 2422 struct gfar_rx_buff *new_rxb; 2423 u16 nta = rxq->next_to_alloc; 2424 2425 new_rxb = &rxq->rx_buff[nta]; 2426 2427 /* find next buf that can reuse a page */ 2428 nta++; 2429 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2430 2431 /* copy page reference */ 2432 *new_rxb = *old_rxb; 2433 2434 /* sync for use by the device */ 2435 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2436 old_rxb->page_offset, 2437 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2438 } 2439 2440 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2441 u32 lstatus, struct sk_buff *skb) 2442 { 2443 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2444 struct page *page = rxb->page; 2445 bool first = false; 2446 2447 if (likely(!skb)) { 2448 void *buff_addr = page_address(page) + rxb->page_offset; 2449 2450 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2451 if (unlikely(!skb)) { 2452 gfar_rx_alloc_err(rx_queue); 2453 return NULL; 2454 } 2455 skb_reserve(skb, RXBUF_ALIGNMENT); 2456 first = true; 2457 } 2458 2459 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2460 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2461 2462 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2463 /* reuse the free half of the page */ 2464 gfar_reuse_rx_page(rx_queue, rxb); 2465 } else { 2466 /* page cannot be reused, unmap it */ 2467 dma_unmap_page(rx_queue->dev, rxb->dma, 2468 PAGE_SIZE, DMA_FROM_DEVICE); 2469 } 2470 2471 /* clear rxb content */ 2472 rxb->page = NULL; 2473 2474 return skb; 2475 } 2476 2477 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2478 { 2479 /* If valid headers were found, and valid sums 2480 * were verified, then we tell the kernel that no 2481 * checksumming is necessary. Otherwise, it is [FIXME] 2482 */ 2483 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2484 (RXFCB_CIP | RXFCB_CTU)) 2485 skb->ip_summed = CHECKSUM_UNNECESSARY; 2486 else 2487 skb_checksum_none_assert(skb); 2488 } 2489 2490 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2491 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2492 { 2493 struct gfar_private *priv = netdev_priv(ndev); 2494 struct rxfcb *fcb = NULL; 2495 2496 /* fcb is at the beginning if exists */ 2497 fcb = (struct rxfcb *)skb->data; 2498 2499 /* Remove the FCB from the skb 2500 * Remove the padded bytes, if there are any 2501 */ 2502 if (priv->uses_rxfcb) 2503 skb_pull(skb, GMAC_FCB_LEN); 2504 2505 /* Get receive timestamp from the skb */ 2506 if (priv->hwts_rx_en) { 2507 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2508 u64 *ns = (u64 *) skb->data; 2509 2510 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2511 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2512 } 2513 2514 if (priv->padding) 2515 skb_pull(skb, priv->padding); 2516 2517 /* Trim off the FCS */ 2518 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2519 2520 if (ndev->features & NETIF_F_RXCSUM) 2521 gfar_rx_checksum(skb, fcb); 2522 2523 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2524 * Even if vlan rx accel is disabled, on some chips 2525 * RXFCB_VLN is pseudo randomly set. 2526 */ 2527 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2528 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2529 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2530 be16_to_cpu(fcb->vlctl)); 2531 } 2532 2533 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2534 * until the budget/quota has been reached. Returns the number 2535 * of frames handled 2536 */ 2537 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2538 int rx_work_limit) 2539 { 2540 struct net_device *ndev = rx_queue->ndev; 2541 struct gfar_private *priv = netdev_priv(ndev); 2542 struct rxbd8 *bdp; 2543 int i, howmany = 0; 2544 struct sk_buff *skb = rx_queue->skb; 2545 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2546 unsigned int total_bytes = 0, total_pkts = 0; 2547 2548 /* Get the first full descriptor */ 2549 i = rx_queue->next_to_clean; 2550 2551 while (rx_work_limit--) { 2552 u32 lstatus; 2553 2554 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2555 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2556 cleaned_cnt = 0; 2557 } 2558 2559 bdp = &rx_queue->rx_bd_base[i]; 2560 lstatus = be32_to_cpu(bdp->lstatus); 2561 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2562 break; 2563 2564 /* order rx buffer descriptor reads */ 2565 rmb(); 2566 2567 /* fetch next to clean buffer from the ring */ 2568 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2569 if (unlikely(!skb)) 2570 break; 2571 2572 cleaned_cnt++; 2573 howmany++; 2574 2575 if (unlikely(++i == rx_queue->rx_ring_size)) 2576 i = 0; 2577 2578 rx_queue->next_to_clean = i; 2579 2580 /* fetch next buffer if not the last in frame */ 2581 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2582 continue; 2583 2584 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2585 count_errors(lstatus, ndev); 2586 2587 /* discard faulty buffer */ 2588 dev_kfree_skb(skb); 2589 skb = NULL; 2590 rx_queue->stats.rx_dropped++; 2591 continue; 2592 } 2593 2594 gfar_process_frame(ndev, skb); 2595 2596 /* Increment the number of packets */ 2597 total_pkts++; 2598 total_bytes += skb->len; 2599 2600 skb_record_rx_queue(skb, rx_queue->qindex); 2601 2602 skb->protocol = eth_type_trans(skb, ndev); 2603 2604 /* Send the packet up the stack */ 2605 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2606 2607 skb = NULL; 2608 } 2609 2610 /* Store incomplete frames for completion */ 2611 rx_queue->skb = skb; 2612 2613 rx_queue->stats.rx_packets += total_pkts; 2614 rx_queue->stats.rx_bytes += total_bytes; 2615 2616 if (cleaned_cnt) 2617 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2618 2619 /* Update Last Free RxBD pointer for LFC */ 2620 if (unlikely(priv->tx_actual_en)) { 2621 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2622 2623 gfar_write(rx_queue->rfbptr, bdp_dma); 2624 } 2625 2626 return howmany; 2627 } 2628 2629 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2630 { 2631 struct gfar_priv_grp *gfargrp = 2632 container_of(napi, struct gfar_priv_grp, napi_rx); 2633 struct gfar __iomem *regs = gfargrp->regs; 2634 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2635 int work_done = 0; 2636 2637 /* Clear IEVENT, so interrupts aren't called again 2638 * because of the packets that have already arrived 2639 */ 2640 gfar_write(®s->ievent, IEVENT_RX_MASK); 2641 2642 work_done = gfar_clean_rx_ring(rx_queue, budget); 2643 2644 if (work_done < budget) { 2645 u32 imask; 2646 napi_complete_done(napi, work_done); 2647 /* Clear the halt bit in RSTAT */ 2648 gfar_write(®s->rstat, gfargrp->rstat); 2649 2650 spin_lock_irq(&gfargrp->grplock); 2651 imask = gfar_read(®s->imask); 2652 imask |= IMASK_RX_DEFAULT; 2653 gfar_write(®s->imask, imask); 2654 spin_unlock_irq(&gfargrp->grplock); 2655 } 2656 2657 return work_done; 2658 } 2659 2660 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2661 { 2662 struct gfar_priv_grp *gfargrp = 2663 container_of(napi, struct gfar_priv_grp, napi_tx); 2664 struct gfar __iomem *regs = gfargrp->regs; 2665 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2666 u32 imask; 2667 2668 /* Clear IEVENT, so interrupts aren't called again 2669 * because of the packets that have already arrived 2670 */ 2671 gfar_write(®s->ievent, IEVENT_TX_MASK); 2672 2673 /* run Tx cleanup to completion */ 2674 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2675 gfar_clean_tx_ring(tx_queue); 2676 2677 napi_complete(napi); 2678 2679 spin_lock_irq(&gfargrp->grplock); 2680 imask = gfar_read(®s->imask); 2681 imask |= IMASK_TX_DEFAULT; 2682 gfar_write(®s->imask, imask); 2683 spin_unlock_irq(&gfargrp->grplock); 2684 2685 return 0; 2686 } 2687 2688 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2689 { 2690 struct gfar_priv_grp *gfargrp = 2691 container_of(napi, struct gfar_priv_grp, napi_rx); 2692 struct gfar_private *priv = gfargrp->priv; 2693 struct gfar __iomem *regs = gfargrp->regs; 2694 struct gfar_priv_rx_q *rx_queue = NULL; 2695 int work_done = 0, work_done_per_q = 0; 2696 int i, budget_per_q = 0; 2697 unsigned long rstat_rxf; 2698 int num_act_queues; 2699 2700 /* Clear IEVENT, so interrupts aren't called again 2701 * because of the packets that have already arrived 2702 */ 2703 gfar_write(®s->ievent, IEVENT_RX_MASK); 2704 2705 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2706 2707 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2708 if (num_act_queues) 2709 budget_per_q = budget/num_act_queues; 2710 2711 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2712 /* skip queue if not active */ 2713 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2714 continue; 2715 2716 rx_queue = priv->rx_queue[i]; 2717 work_done_per_q = 2718 gfar_clean_rx_ring(rx_queue, budget_per_q); 2719 work_done += work_done_per_q; 2720 2721 /* finished processing this queue */ 2722 if (work_done_per_q < budget_per_q) { 2723 /* clear active queue hw indication */ 2724 gfar_write(®s->rstat, 2725 RSTAT_CLEAR_RXF0 >> i); 2726 num_act_queues--; 2727 2728 if (!num_act_queues) 2729 break; 2730 } 2731 } 2732 2733 if (!num_act_queues) { 2734 u32 imask; 2735 napi_complete_done(napi, work_done); 2736 2737 /* Clear the halt bit in RSTAT */ 2738 gfar_write(®s->rstat, gfargrp->rstat); 2739 2740 spin_lock_irq(&gfargrp->grplock); 2741 imask = gfar_read(®s->imask); 2742 imask |= IMASK_RX_DEFAULT; 2743 gfar_write(®s->imask, imask); 2744 spin_unlock_irq(&gfargrp->grplock); 2745 } 2746 2747 return work_done; 2748 } 2749 2750 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2751 { 2752 struct gfar_priv_grp *gfargrp = 2753 container_of(napi, struct gfar_priv_grp, napi_tx); 2754 struct gfar_private *priv = gfargrp->priv; 2755 struct gfar __iomem *regs = gfargrp->regs; 2756 struct gfar_priv_tx_q *tx_queue = NULL; 2757 int has_tx_work = 0; 2758 int i; 2759 2760 /* Clear IEVENT, so interrupts aren't called again 2761 * because of the packets that have already arrived 2762 */ 2763 gfar_write(®s->ievent, IEVENT_TX_MASK); 2764 2765 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2766 tx_queue = priv->tx_queue[i]; 2767 /* run Tx cleanup to completion */ 2768 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2769 gfar_clean_tx_ring(tx_queue); 2770 has_tx_work = 1; 2771 } 2772 } 2773 2774 if (!has_tx_work) { 2775 u32 imask; 2776 napi_complete(napi); 2777 2778 spin_lock_irq(&gfargrp->grplock); 2779 imask = gfar_read(®s->imask); 2780 imask |= IMASK_TX_DEFAULT; 2781 gfar_write(®s->imask, imask); 2782 spin_unlock_irq(&gfargrp->grplock); 2783 } 2784 2785 return 0; 2786 } 2787 2788 /* GFAR error interrupt handler */ 2789 static irqreturn_t gfar_error(int irq, void *grp_id) 2790 { 2791 struct gfar_priv_grp *gfargrp = grp_id; 2792 struct gfar __iomem *regs = gfargrp->regs; 2793 struct gfar_private *priv= gfargrp->priv; 2794 struct net_device *dev = priv->ndev; 2795 2796 /* Save ievent for future reference */ 2797 u32 events = gfar_read(®s->ievent); 2798 2799 /* Clear IEVENT */ 2800 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2801 2802 /* Magic Packet is not an error. */ 2803 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2804 (events & IEVENT_MAG)) 2805 events &= ~IEVENT_MAG; 2806 2807 /* Hmm... */ 2808 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2809 netdev_dbg(dev, 2810 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2811 events, gfar_read(®s->imask)); 2812 2813 /* Update the error counters */ 2814 if (events & IEVENT_TXE) { 2815 dev->stats.tx_errors++; 2816 2817 if (events & IEVENT_LC) 2818 dev->stats.tx_window_errors++; 2819 if (events & IEVENT_CRL) 2820 dev->stats.tx_aborted_errors++; 2821 if (events & IEVENT_XFUN) { 2822 netif_dbg(priv, tx_err, dev, 2823 "TX FIFO underrun, packet dropped\n"); 2824 dev->stats.tx_dropped++; 2825 atomic64_inc(&priv->extra_stats.tx_underrun); 2826 2827 schedule_work(&priv->reset_task); 2828 } 2829 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2830 } 2831 if (events & IEVENT_BSY) { 2832 dev->stats.rx_over_errors++; 2833 atomic64_inc(&priv->extra_stats.rx_bsy); 2834 2835 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2836 gfar_read(®s->rstat)); 2837 } 2838 if (events & IEVENT_BABR) { 2839 dev->stats.rx_errors++; 2840 atomic64_inc(&priv->extra_stats.rx_babr); 2841 2842 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2843 } 2844 if (events & IEVENT_EBERR) { 2845 atomic64_inc(&priv->extra_stats.eberr); 2846 netif_dbg(priv, rx_err, dev, "bus error\n"); 2847 } 2848 if (events & IEVENT_RXC) 2849 netif_dbg(priv, rx_status, dev, "control frame\n"); 2850 2851 if (events & IEVENT_BABT) { 2852 atomic64_inc(&priv->extra_stats.tx_babt); 2853 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2854 } 2855 return IRQ_HANDLED; 2856 } 2857 2858 /* The interrupt handler for devices with one interrupt */ 2859 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2860 { 2861 struct gfar_priv_grp *gfargrp = grp_id; 2862 2863 /* Save ievent for future reference */ 2864 u32 events = gfar_read(&gfargrp->regs->ievent); 2865 2866 /* Check for reception */ 2867 if (events & IEVENT_RX_MASK) 2868 gfar_receive(irq, grp_id); 2869 2870 /* Check for transmit completion */ 2871 if (events & IEVENT_TX_MASK) 2872 gfar_transmit(irq, grp_id); 2873 2874 /* Check for errors */ 2875 if (events & IEVENT_ERR_MASK) 2876 gfar_error(irq, grp_id); 2877 2878 return IRQ_HANDLED; 2879 } 2880 2881 #ifdef CONFIG_NET_POLL_CONTROLLER 2882 /* Polling 'interrupt' - used by things like netconsole to send skbs 2883 * without having to re-enable interrupts. It's not called while 2884 * the interrupt routine is executing. 2885 */ 2886 static void gfar_netpoll(struct net_device *dev) 2887 { 2888 struct gfar_private *priv = netdev_priv(dev); 2889 int i; 2890 2891 /* If the device has multiple interrupts, run tx/rx */ 2892 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2893 for (i = 0; i < priv->num_grps; i++) { 2894 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2895 2896 disable_irq(gfar_irq(grp, TX)->irq); 2897 disable_irq(gfar_irq(grp, RX)->irq); 2898 disable_irq(gfar_irq(grp, ER)->irq); 2899 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2900 enable_irq(gfar_irq(grp, ER)->irq); 2901 enable_irq(gfar_irq(grp, RX)->irq); 2902 enable_irq(gfar_irq(grp, TX)->irq); 2903 } 2904 } else { 2905 for (i = 0; i < priv->num_grps; i++) { 2906 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2907 2908 disable_irq(gfar_irq(grp, TX)->irq); 2909 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2910 enable_irq(gfar_irq(grp, TX)->irq); 2911 } 2912 } 2913 } 2914 #endif 2915 2916 static void free_grp_irqs(struct gfar_priv_grp *grp) 2917 { 2918 free_irq(gfar_irq(grp, TX)->irq, grp); 2919 free_irq(gfar_irq(grp, RX)->irq, grp); 2920 free_irq(gfar_irq(grp, ER)->irq, grp); 2921 } 2922 2923 static int register_grp_irqs(struct gfar_priv_grp *grp) 2924 { 2925 struct gfar_private *priv = grp->priv; 2926 struct net_device *dev = priv->ndev; 2927 int err; 2928 2929 /* If the device has multiple interrupts, register for 2930 * them. Otherwise, only register for the one 2931 */ 2932 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2933 /* Install our interrupt handlers for Error, 2934 * Transmit, and Receive 2935 */ 2936 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2937 gfar_irq(grp, ER)->name, grp); 2938 if (err < 0) { 2939 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2940 gfar_irq(grp, ER)->irq); 2941 2942 goto err_irq_fail; 2943 } 2944 enable_irq_wake(gfar_irq(grp, ER)->irq); 2945 2946 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2947 gfar_irq(grp, TX)->name, grp); 2948 if (err < 0) { 2949 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2950 gfar_irq(grp, TX)->irq); 2951 goto tx_irq_fail; 2952 } 2953 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2954 gfar_irq(grp, RX)->name, grp); 2955 if (err < 0) { 2956 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2957 gfar_irq(grp, RX)->irq); 2958 goto rx_irq_fail; 2959 } 2960 enable_irq_wake(gfar_irq(grp, RX)->irq); 2961 2962 } else { 2963 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2964 gfar_irq(grp, TX)->name, grp); 2965 if (err < 0) { 2966 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2967 gfar_irq(grp, TX)->irq); 2968 goto err_irq_fail; 2969 } 2970 enable_irq_wake(gfar_irq(grp, TX)->irq); 2971 } 2972 2973 return 0; 2974 2975 rx_irq_fail: 2976 free_irq(gfar_irq(grp, TX)->irq, grp); 2977 tx_irq_fail: 2978 free_irq(gfar_irq(grp, ER)->irq, grp); 2979 err_irq_fail: 2980 return err; 2981 2982 } 2983 2984 static void gfar_free_irq(struct gfar_private *priv) 2985 { 2986 int i; 2987 2988 /* Free the IRQs */ 2989 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2990 for (i = 0; i < priv->num_grps; i++) 2991 free_grp_irqs(&priv->gfargrp[i]); 2992 } else { 2993 for (i = 0; i < priv->num_grps; i++) 2994 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2995 &priv->gfargrp[i]); 2996 } 2997 } 2998 2999 static int gfar_request_irq(struct gfar_private *priv) 3000 { 3001 int err, i, j; 3002 3003 for (i = 0; i < priv->num_grps; i++) { 3004 err = register_grp_irqs(&priv->gfargrp[i]); 3005 if (err) { 3006 for (j = 0; j < i; j++) 3007 free_grp_irqs(&priv->gfargrp[j]); 3008 return err; 3009 } 3010 } 3011 3012 return 0; 3013 } 3014 3015 /* Called when something needs to use the ethernet device 3016 * Returns 0 for success. 3017 */ 3018 static int gfar_enet_open(struct net_device *dev) 3019 { 3020 struct gfar_private *priv = netdev_priv(dev); 3021 int err; 3022 3023 err = init_phy(dev); 3024 if (err) 3025 return err; 3026 3027 err = gfar_request_irq(priv); 3028 if (err) 3029 return err; 3030 3031 err = startup_gfar(dev); 3032 if (err) 3033 return err; 3034 3035 return err; 3036 } 3037 3038 /* Stops the kernel queue, and halts the controller */ 3039 static int gfar_close(struct net_device *dev) 3040 { 3041 struct gfar_private *priv = netdev_priv(dev); 3042 3043 cancel_work_sync(&priv->reset_task); 3044 stop_gfar(dev); 3045 3046 /* Disconnect from the PHY */ 3047 phy_disconnect(dev->phydev); 3048 3049 gfar_free_irq(priv); 3050 3051 return 0; 3052 } 3053 3054 /* Clears each of the exact match registers to zero, so they 3055 * don't interfere with normal reception 3056 */ 3057 static void gfar_clear_exact_match(struct net_device *dev) 3058 { 3059 int idx; 3060 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3061 3062 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3063 gfar_set_mac_for_addr(dev, idx, zero_arr); 3064 } 3065 3066 /* Update the hash table based on the current list of multicast 3067 * addresses we subscribe to. Also, change the promiscuity of 3068 * the device based on the flags (this function is called 3069 * whenever dev->flags is changed 3070 */ 3071 static void gfar_set_multi(struct net_device *dev) 3072 { 3073 struct netdev_hw_addr *ha; 3074 struct gfar_private *priv = netdev_priv(dev); 3075 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3076 u32 tempval; 3077 3078 if (dev->flags & IFF_PROMISC) { 3079 /* Set RCTRL to PROM */ 3080 tempval = gfar_read(®s->rctrl); 3081 tempval |= RCTRL_PROM; 3082 gfar_write(®s->rctrl, tempval); 3083 } else { 3084 /* Set RCTRL to not PROM */ 3085 tempval = gfar_read(®s->rctrl); 3086 tempval &= ~(RCTRL_PROM); 3087 gfar_write(®s->rctrl, tempval); 3088 } 3089 3090 if (dev->flags & IFF_ALLMULTI) { 3091 /* Set the hash to rx all multicast frames */ 3092 gfar_write(®s->igaddr0, 0xffffffff); 3093 gfar_write(®s->igaddr1, 0xffffffff); 3094 gfar_write(®s->igaddr2, 0xffffffff); 3095 gfar_write(®s->igaddr3, 0xffffffff); 3096 gfar_write(®s->igaddr4, 0xffffffff); 3097 gfar_write(®s->igaddr5, 0xffffffff); 3098 gfar_write(®s->igaddr6, 0xffffffff); 3099 gfar_write(®s->igaddr7, 0xffffffff); 3100 gfar_write(®s->gaddr0, 0xffffffff); 3101 gfar_write(®s->gaddr1, 0xffffffff); 3102 gfar_write(®s->gaddr2, 0xffffffff); 3103 gfar_write(®s->gaddr3, 0xffffffff); 3104 gfar_write(®s->gaddr4, 0xffffffff); 3105 gfar_write(®s->gaddr5, 0xffffffff); 3106 gfar_write(®s->gaddr6, 0xffffffff); 3107 gfar_write(®s->gaddr7, 0xffffffff); 3108 } else { 3109 int em_num; 3110 int idx; 3111 3112 /* zero out the hash */ 3113 gfar_write(®s->igaddr0, 0x0); 3114 gfar_write(®s->igaddr1, 0x0); 3115 gfar_write(®s->igaddr2, 0x0); 3116 gfar_write(®s->igaddr3, 0x0); 3117 gfar_write(®s->igaddr4, 0x0); 3118 gfar_write(®s->igaddr5, 0x0); 3119 gfar_write(®s->igaddr6, 0x0); 3120 gfar_write(®s->igaddr7, 0x0); 3121 gfar_write(®s->gaddr0, 0x0); 3122 gfar_write(®s->gaddr1, 0x0); 3123 gfar_write(®s->gaddr2, 0x0); 3124 gfar_write(®s->gaddr3, 0x0); 3125 gfar_write(®s->gaddr4, 0x0); 3126 gfar_write(®s->gaddr5, 0x0); 3127 gfar_write(®s->gaddr6, 0x0); 3128 gfar_write(®s->gaddr7, 0x0); 3129 3130 /* If we have extended hash tables, we need to 3131 * clear the exact match registers to prepare for 3132 * setting them 3133 */ 3134 if (priv->extended_hash) { 3135 em_num = GFAR_EM_NUM + 1; 3136 gfar_clear_exact_match(dev); 3137 idx = 1; 3138 } else { 3139 idx = 0; 3140 em_num = 0; 3141 } 3142 3143 if (netdev_mc_empty(dev)) 3144 return; 3145 3146 /* Parse the list, and set the appropriate bits */ 3147 netdev_for_each_mc_addr(ha, dev) { 3148 if (idx < em_num) { 3149 gfar_set_mac_for_addr(dev, idx, ha->addr); 3150 idx++; 3151 } else 3152 gfar_set_hash_for_addr(dev, ha->addr); 3153 } 3154 } 3155 } 3156 3157 void gfar_mac_reset(struct gfar_private *priv) 3158 { 3159 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3160 u32 tempval; 3161 3162 /* Reset MAC layer */ 3163 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3164 3165 /* We need to delay at least 3 TX clocks */ 3166 udelay(3); 3167 3168 /* the soft reset bit is not self-resetting, so we need to 3169 * clear it before resuming normal operation 3170 */ 3171 gfar_write(®s->maccfg1, 0); 3172 3173 udelay(3); 3174 3175 gfar_rx_offload_en(priv); 3176 3177 /* Initialize the max receive frame/buffer lengths */ 3178 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3179 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3180 3181 /* Initialize the Minimum Frame Length Register */ 3182 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3183 3184 /* Initialize MACCFG2. */ 3185 tempval = MACCFG2_INIT_SETTINGS; 3186 3187 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3188 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3189 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3190 */ 3191 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3192 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3193 3194 gfar_write(®s->maccfg2, tempval); 3195 3196 /* Clear mac addr hash registers */ 3197 gfar_write(®s->igaddr0, 0); 3198 gfar_write(®s->igaddr1, 0); 3199 gfar_write(®s->igaddr2, 0); 3200 gfar_write(®s->igaddr3, 0); 3201 gfar_write(®s->igaddr4, 0); 3202 gfar_write(®s->igaddr5, 0); 3203 gfar_write(®s->igaddr6, 0); 3204 gfar_write(®s->igaddr7, 0); 3205 3206 gfar_write(®s->gaddr0, 0); 3207 gfar_write(®s->gaddr1, 0); 3208 gfar_write(®s->gaddr2, 0); 3209 gfar_write(®s->gaddr3, 0); 3210 gfar_write(®s->gaddr4, 0); 3211 gfar_write(®s->gaddr5, 0); 3212 gfar_write(®s->gaddr6, 0); 3213 gfar_write(®s->gaddr7, 0); 3214 3215 if (priv->extended_hash) 3216 gfar_clear_exact_match(priv->ndev); 3217 3218 gfar_mac_rx_config(priv); 3219 3220 gfar_mac_tx_config(priv); 3221 3222 gfar_set_mac_address(priv->ndev); 3223 3224 gfar_set_multi(priv->ndev); 3225 3226 /* clear ievent and imask before configuring coalescing */ 3227 gfar_ints_disable(priv); 3228 3229 /* Configure the coalescing support */ 3230 gfar_configure_coalescing_all(priv); 3231 } 3232 3233 static void gfar_hw_init(struct gfar_private *priv) 3234 { 3235 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3236 u32 attrs; 3237 3238 /* Stop the DMA engine now, in case it was running before 3239 * (The firmware could have used it, and left it running). 3240 */ 3241 gfar_halt(priv); 3242 3243 gfar_mac_reset(priv); 3244 3245 /* Zero out the rmon mib registers if it has them */ 3246 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3247 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3248 3249 /* Mask off the CAM interrupts */ 3250 gfar_write(®s->rmon.cam1, 0xffffffff); 3251 gfar_write(®s->rmon.cam2, 0xffffffff); 3252 } 3253 3254 /* Initialize ECNTRL */ 3255 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3256 3257 /* Set the extraction length and index */ 3258 attrs = ATTRELI_EL(priv->rx_stash_size) | 3259 ATTRELI_EI(priv->rx_stash_index); 3260 3261 gfar_write(®s->attreli, attrs); 3262 3263 /* Start with defaults, and add stashing 3264 * depending on driver parameters 3265 */ 3266 attrs = ATTR_INIT_SETTINGS; 3267 3268 if (priv->bd_stash_en) 3269 attrs |= ATTR_BDSTASH; 3270 3271 if (priv->rx_stash_size != 0) 3272 attrs |= ATTR_BUFSTASH; 3273 3274 gfar_write(®s->attr, attrs); 3275 3276 /* FIFO configs */ 3277 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3278 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3279 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3280 3281 /* Program the interrupt steering regs, only for MG devices */ 3282 if (priv->num_grps > 1) 3283 gfar_write_isrg(priv); 3284 } 3285 3286 static const struct net_device_ops gfar_netdev_ops = { 3287 .ndo_open = gfar_enet_open, 3288 .ndo_start_xmit = gfar_start_xmit, 3289 .ndo_stop = gfar_close, 3290 .ndo_change_mtu = gfar_change_mtu, 3291 .ndo_set_features = gfar_set_features, 3292 .ndo_set_rx_mode = gfar_set_multi, 3293 .ndo_tx_timeout = gfar_timeout, 3294 .ndo_do_ioctl = gfar_ioctl, 3295 .ndo_get_stats = gfar_get_stats, 3296 .ndo_change_carrier = fixed_phy_change_carrier, 3297 .ndo_set_mac_address = gfar_set_mac_addr, 3298 .ndo_validate_addr = eth_validate_addr, 3299 #ifdef CONFIG_NET_POLL_CONTROLLER 3300 .ndo_poll_controller = gfar_netpoll, 3301 #endif 3302 }; 3303 3304 /* Set up the ethernet device structure, private data, 3305 * and anything else we need before we start 3306 */ 3307 static int gfar_probe(struct platform_device *ofdev) 3308 { 3309 struct device_node *np = ofdev->dev.of_node; 3310 struct net_device *dev = NULL; 3311 struct gfar_private *priv = NULL; 3312 int err = 0, i; 3313 3314 err = gfar_of_init(ofdev, &dev); 3315 3316 if (err) 3317 return err; 3318 3319 priv = netdev_priv(dev); 3320 priv->ndev = dev; 3321 priv->ofdev = ofdev; 3322 priv->dev = &ofdev->dev; 3323 SET_NETDEV_DEV(dev, &ofdev->dev); 3324 3325 INIT_WORK(&priv->reset_task, gfar_reset_task); 3326 3327 platform_set_drvdata(ofdev, priv); 3328 3329 gfar_detect_errata(priv); 3330 3331 /* Set the dev->base_addr to the gfar reg region */ 3332 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3333 3334 /* Fill in the dev structure */ 3335 dev->watchdog_timeo = TX_TIMEOUT; 3336 /* MTU range: 50 - 9586 */ 3337 dev->mtu = 1500; 3338 dev->min_mtu = 50; 3339 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3340 dev->netdev_ops = &gfar_netdev_ops; 3341 dev->ethtool_ops = &gfar_ethtool_ops; 3342 3343 /* Register for napi ...We are registering NAPI for each grp */ 3344 for (i = 0; i < priv->num_grps; i++) { 3345 if (priv->poll_mode == GFAR_SQ_POLLING) { 3346 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3347 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3348 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3349 gfar_poll_tx_sq, 2); 3350 } else { 3351 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3352 gfar_poll_rx, GFAR_DEV_WEIGHT); 3353 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3354 gfar_poll_tx, 2); 3355 } 3356 } 3357 3358 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3359 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3360 NETIF_F_RXCSUM; 3361 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3362 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3363 } 3364 3365 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3366 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3367 NETIF_F_HW_VLAN_CTAG_RX; 3368 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3369 } 3370 3371 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3372 3373 gfar_init_addr_hash_table(priv); 3374 3375 /* Insert receive time stamps into padding alignment bytes, and 3376 * plus 2 bytes padding to ensure the cpu alignment. 3377 */ 3378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3379 priv->padding = 8 + DEFAULT_PADDING; 3380 3381 if (dev->features & NETIF_F_IP_CSUM || 3382 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3383 dev->needed_headroom = GMAC_FCB_LEN; 3384 3385 /* Initializing some of the rx/tx queue level parameters */ 3386 for (i = 0; i < priv->num_tx_queues; i++) { 3387 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3388 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3389 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3390 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3391 } 3392 3393 for (i = 0; i < priv->num_rx_queues; i++) { 3394 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3395 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3396 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3397 } 3398 3399 /* Always enable rx filer if available */ 3400 priv->rx_filer_enable = 3401 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3402 /* Enable most messages by default */ 3403 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3404 /* use pritority h/w tx queue scheduling for single queue devices */ 3405 if (priv->num_tx_queues == 1) 3406 priv->prio_sched_en = 1; 3407 3408 set_bit(GFAR_DOWN, &priv->state); 3409 3410 gfar_hw_init(priv); 3411 3412 /* Carrier starts down, phylib will bring it up */ 3413 netif_carrier_off(dev); 3414 3415 err = register_netdev(dev); 3416 3417 if (err) { 3418 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3419 goto register_fail; 3420 } 3421 3422 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3423 priv->wol_supported |= GFAR_WOL_MAGIC; 3424 3425 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3426 priv->rx_filer_enable) 3427 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3428 3429 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3430 3431 /* fill out IRQ number and name fields */ 3432 for (i = 0; i < priv->num_grps; i++) { 3433 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3434 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3435 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3436 dev->name, "_g", '0' + i, "_tx"); 3437 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3438 dev->name, "_g", '0' + i, "_rx"); 3439 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3440 dev->name, "_g", '0' + i, "_er"); 3441 } else 3442 strcpy(gfar_irq(grp, TX)->name, dev->name); 3443 } 3444 3445 /* Initialize the filer table */ 3446 gfar_init_filer_table(priv); 3447 3448 /* Print out the device info */ 3449 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3450 3451 /* Even more device info helps when determining which kernel 3452 * provided which set of benchmarks. 3453 */ 3454 netdev_info(dev, "Running with NAPI enabled\n"); 3455 for (i = 0; i < priv->num_rx_queues; i++) 3456 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3457 i, priv->rx_queue[i]->rx_ring_size); 3458 for (i = 0; i < priv->num_tx_queues; i++) 3459 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3460 i, priv->tx_queue[i]->tx_ring_size); 3461 3462 return 0; 3463 3464 register_fail: 3465 if (of_phy_is_fixed_link(np)) 3466 of_phy_deregister_fixed_link(np); 3467 unmap_group_regs(priv); 3468 gfar_free_rx_queues(priv); 3469 gfar_free_tx_queues(priv); 3470 of_node_put(priv->phy_node); 3471 of_node_put(priv->tbi_node); 3472 free_gfar_dev(priv); 3473 return err; 3474 } 3475 3476 static int gfar_remove(struct platform_device *ofdev) 3477 { 3478 struct gfar_private *priv = platform_get_drvdata(ofdev); 3479 struct device_node *np = ofdev->dev.of_node; 3480 3481 of_node_put(priv->phy_node); 3482 of_node_put(priv->tbi_node); 3483 3484 unregister_netdev(priv->ndev); 3485 3486 if (of_phy_is_fixed_link(np)) 3487 of_phy_deregister_fixed_link(np); 3488 3489 unmap_group_regs(priv); 3490 gfar_free_rx_queues(priv); 3491 gfar_free_tx_queues(priv); 3492 free_gfar_dev(priv); 3493 3494 return 0; 3495 } 3496 3497 #ifdef CONFIG_PM 3498 3499 static void __gfar_filer_disable(struct gfar_private *priv) 3500 { 3501 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3502 u32 temp; 3503 3504 temp = gfar_read(®s->rctrl); 3505 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3506 gfar_write(®s->rctrl, temp); 3507 } 3508 3509 static void __gfar_filer_enable(struct gfar_private *priv) 3510 { 3511 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3512 u32 temp; 3513 3514 temp = gfar_read(®s->rctrl); 3515 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3516 gfar_write(®s->rctrl, temp); 3517 } 3518 3519 /* Filer rules implementing wol capabilities */ 3520 static void gfar_filer_config_wol(struct gfar_private *priv) 3521 { 3522 unsigned int i; 3523 u32 rqfcr; 3524 3525 __gfar_filer_disable(priv); 3526 3527 /* clear the filer table, reject any packet by default */ 3528 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3529 for (i = 0; i <= MAX_FILER_IDX; i++) 3530 gfar_write_filer(priv, i, rqfcr, 0); 3531 3532 i = 0; 3533 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3534 /* unicast packet, accept it */ 3535 struct net_device *ndev = priv->ndev; 3536 /* get the default rx queue index */ 3537 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3538 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3539 (ndev->dev_addr[1] << 8) | 3540 ndev->dev_addr[2]; 3541 3542 rqfcr = (qindex << 10) | RQFCR_AND | 3543 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3544 3545 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3546 3547 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3548 (ndev->dev_addr[4] << 8) | 3549 ndev->dev_addr[5]; 3550 rqfcr = (qindex << 10) | RQFCR_GPI | 3551 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3552 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3553 } 3554 3555 __gfar_filer_enable(priv); 3556 } 3557 3558 static void gfar_filer_restore_table(struct gfar_private *priv) 3559 { 3560 u32 rqfcr, rqfpr; 3561 unsigned int i; 3562 3563 __gfar_filer_disable(priv); 3564 3565 for (i = 0; i <= MAX_FILER_IDX; i++) { 3566 rqfcr = priv->ftp_rqfcr[i]; 3567 rqfpr = priv->ftp_rqfpr[i]; 3568 gfar_write_filer(priv, i, rqfcr, rqfpr); 3569 } 3570 3571 __gfar_filer_enable(priv); 3572 } 3573 3574 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3575 static void gfar_start_wol_filer(struct gfar_private *priv) 3576 { 3577 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3578 u32 tempval; 3579 int i = 0; 3580 3581 /* Enable Rx hw queues */ 3582 gfar_write(®s->rqueue, priv->rqueue); 3583 3584 /* Initialize DMACTRL to have WWR and WOP */ 3585 tempval = gfar_read(®s->dmactrl); 3586 tempval |= DMACTRL_INIT_SETTINGS; 3587 gfar_write(®s->dmactrl, tempval); 3588 3589 /* Make sure we aren't stopped */ 3590 tempval = gfar_read(®s->dmactrl); 3591 tempval &= ~DMACTRL_GRS; 3592 gfar_write(®s->dmactrl, tempval); 3593 3594 for (i = 0; i < priv->num_grps; i++) { 3595 regs = priv->gfargrp[i].regs; 3596 /* Clear RHLT, so that the DMA starts polling now */ 3597 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3598 /* enable the Filer General Purpose Interrupt */ 3599 gfar_write(®s->imask, IMASK_FGPI); 3600 } 3601 3602 /* Enable Rx DMA */ 3603 tempval = gfar_read(®s->maccfg1); 3604 tempval |= MACCFG1_RX_EN; 3605 gfar_write(®s->maccfg1, tempval); 3606 } 3607 3608 static int gfar_suspend(struct device *dev) 3609 { 3610 struct gfar_private *priv = dev_get_drvdata(dev); 3611 struct net_device *ndev = priv->ndev; 3612 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3613 u32 tempval; 3614 u16 wol = priv->wol_opts; 3615 3616 if (!netif_running(ndev)) 3617 return 0; 3618 3619 disable_napi(priv); 3620 netif_tx_lock(ndev); 3621 netif_device_detach(ndev); 3622 netif_tx_unlock(ndev); 3623 3624 gfar_halt(priv); 3625 3626 if (wol & GFAR_WOL_MAGIC) { 3627 /* Enable interrupt on Magic Packet */ 3628 gfar_write(®s->imask, IMASK_MAG); 3629 3630 /* Enable Magic Packet mode */ 3631 tempval = gfar_read(®s->maccfg2); 3632 tempval |= MACCFG2_MPEN; 3633 gfar_write(®s->maccfg2, tempval); 3634 3635 /* re-enable the Rx block */ 3636 tempval = gfar_read(®s->maccfg1); 3637 tempval |= MACCFG1_RX_EN; 3638 gfar_write(®s->maccfg1, tempval); 3639 3640 } else if (wol & GFAR_WOL_FILER_UCAST) { 3641 gfar_filer_config_wol(priv); 3642 gfar_start_wol_filer(priv); 3643 3644 } else { 3645 phy_stop(ndev->phydev); 3646 } 3647 3648 return 0; 3649 } 3650 3651 static int gfar_resume(struct device *dev) 3652 { 3653 struct gfar_private *priv = dev_get_drvdata(dev); 3654 struct net_device *ndev = priv->ndev; 3655 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3656 u32 tempval; 3657 u16 wol = priv->wol_opts; 3658 3659 if (!netif_running(ndev)) 3660 return 0; 3661 3662 if (wol & GFAR_WOL_MAGIC) { 3663 /* Disable Magic Packet mode */ 3664 tempval = gfar_read(®s->maccfg2); 3665 tempval &= ~MACCFG2_MPEN; 3666 gfar_write(®s->maccfg2, tempval); 3667 3668 } else if (wol & GFAR_WOL_FILER_UCAST) { 3669 /* need to stop rx only, tx is already down */ 3670 gfar_halt(priv); 3671 gfar_filer_restore_table(priv); 3672 3673 } else { 3674 phy_start(ndev->phydev); 3675 } 3676 3677 gfar_start(priv); 3678 3679 netif_device_attach(ndev); 3680 enable_napi(priv); 3681 3682 return 0; 3683 } 3684 3685 static int gfar_restore(struct device *dev) 3686 { 3687 struct gfar_private *priv = dev_get_drvdata(dev); 3688 struct net_device *ndev = priv->ndev; 3689 3690 if (!netif_running(ndev)) { 3691 netif_device_attach(ndev); 3692 3693 return 0; 3694 } 3695 3696 gfar_init_bds(ndev); 3697 3698 gfar_mac_reset(priv); 3699 3700 gfar_init_tx_rx_base(priv); 3701 3702 gfar_start(priv); 3703 3704 priv->oldlink = 0; 3705 priv->oldspeed = 0; 3706 priv->oldduplex = -1; 3707 3708 if (ndev->phydev) 3709 phy_start(ndev->phydev); 3710 3711 netif_device_attach(ndev); 3712 enable_napi(priv); 3713 3714 return 0; 3715 } 3716 3717 static const struct dev_pm_ops gfar_pm_ops = { 3718 .suspend = gfar_suspend, 3719 .resume = gfar_resume, 3720 .freeze = gfar_suspend, 3721 .thaw = gfar_resume, 3722 .restore = gfar_restore, 3723 }; 3724 3725 #define GFAR_PM_OPS (&gfar_pm_ops) 3726 3727 #else 3728 3729 #define GFAR_PM_OPS NULL 3730 3731 #endif 3732 3733 static const struct of_device_id gfar_match[] = 3734 { 3735 { 3736 .type = "network", 3737 .compatible = "gianfar", 3738 }, 3739 { 3740 .compatible = "fsl,etsec2", 3741 }, 3742 {}, 3743 }; 3744 MODULE_DEVICE_TABLE(of, gfar_match); 3745 3746 /* Structure for a device driver */ 3747 static struct platform_driver gfar_driver = { 3748 .driver = { 3749 .name = "fsl-gianfar", 3750 .pm = GFAR_PM_OPS, 3751 .of_match_table = gfar_match, 3752 }, 3753 .probe = gfar_probe, 3754 .remove = gfar_remove, 3755 }; 3756 3757 module_platform_driver(gfar_driver); 3758