1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "1.3";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 				    dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 			       int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 				  const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155 
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 			    dma_addr_t buf)
158 {
159 	u32 lstatus;
160 
161 	bdp->bufPtr = buf;
162 
163 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 		lstatus |= BD_LFLAG(RXBD_WRAP);
166 
167 	gfar_wmb();
168 
169 	bdp->lstatus = lstatus;
170 }
171 
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 	struct gfar_private *priv = netdev_priv(ndev);
175 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 	struct gfar_priv_tx_q *tx_queue = NULL;
177 	struct gfar_priv_rx_q *rx_queue = NULL;
178 	struct txbd8 *txbdp;
179 	struct rxbd8 *rxbdp;
180 	u32 __iomem *rfbptr;
181 	int i, j;
182 	dma_addr_t bufaddr;
183 
184 	for (i = 0; i < priv->num_tx_queues; i++) {
185 		tx_queue = priv->tx_queue[i];
186 		/* Initialize some variables in our dev structure */
187 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 		tx_queue->cur_tx = tx_queue->tx_bd_base;
190 		tx_queue->skb_curtx = 0;
191 		tx_queue->skb_dirtytx = 0;
192 
193 		/* Initialize Transmit Descriptor Ring */
194 		txbdp = tx_queue->tx_bd_base;
195 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 			txbdp->lstatus = 0;
197 			txbdp->bufPtr = 0;
198 			txbdp++;
199 		}
200 
201 		/* Set the last descriptor in the ring to indicate wrap */
202 		txbdp--;
203 		txbdp->status |= TXBD_WRAP;
204 	}
205 
206 	rfbptr = &regs->rfbptr0;
207 	for (i = 0; i < priv->num_rx_queues; i++) {
208 		rx_queue = priv->rx_queue[i];
209 		rx_queue->cur_rx = rx_queue->rx_bd_base;
210 		rx_queue->skb_currx = 0;
211 		rxbdp = rx_queue->rx_bd_base;
212 
213 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
214 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
215 
216 			if (skb) {
217 				bufaddr = rxbdp->bufPtr;
218 			} else {
219 				skb = gfar_new_skb(ndev, &bufaddr);
220 				if (!skb) {
221 					netdev_err(ndev, "Can't allocate RX buffers\n");
222 					return -ENOMEM;
223 				}
224 				rx_queue->rx_skbuff[j] = skb;
225 			}
226 
227 			gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
228 			rxbdp++;
229 		}
230 
231 		rx_queue->rfbptr = rfbptr;
232 		rfbptr += 2;
233 	}
234 
235 	return 0;
236 }
237 
238 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 {
240 	void *vaddr;
241 	dma_addr_t addr;
242 	int i, j, k;
243 	struct gfar_private *priv = netdev_priv(ndev);
244 	struct device *dev = priv->dev;
245 	struct gfar_priv_tx_q *tx_queue = NULL;
246 	struct gfar_priv_rx_q *rx_queue = NULL;
247 
248 	priv->total_tx_ring_size = 0;
249 	for (i = 0; i < priv->num_tx_queues; i++)
250 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251 
252 	priv->total_rx_ring_size = 0;
253 	for (i = 0; i < priv->num_rx_queues; i++)
254 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255 
256 	/* Allocate memory for the buffer descriptors */
257 	vaddr = dma_alloc_coherent(dev,
258 				   (priv->total_tx_ring_size *
259 				    sizeof(struct txbd8)) +
260 				   (priv->total_rx_ring_size *
261 				    sizeof(struct rxbd8)),
262 				   &addr, GFP_KERNEL);
263 	if (!vaddr)
264 		return -ENOMEM;
265 
266 	for (i = 0; i < priv->num_tx_queues; i++) {
267 		tx_queue = priv->tx_queue[i];
268 		tx_queue->tx_bd_base = vaddr;
269 		tx_queue->tx_bd_dma_base = addr;
270 		tx_queue->dev = ndev;
271 		/* enet DMA only understands physical addresses */
272 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
273 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 	}
275 
276 	/* Start the rx descriptor ring where the tx ring leaves off */
277 	for (i = 0; i < priv->num_rx_queues; i++) {
278 		rx_queue = priv->rx_queue[i];
279 		rx_queue->rx_bd_base = vaddr;
280 		rx_queue->rx_bd_dma_base = addr;
281 		rx_queue->dev = ndev;
282 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
283 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 	}
285 
286 	/* Setup the skbuff rings */
287 	for (i = 0; i < priv->num_tx_queues; i++) {
288 		tx_queue = priv->tx_queue[i];
289 		tx_queue->tx_skbuff =
290 			kmalloc_array(tx_queue->tx_ring_size,
291 				      sizeof(*tx_queue->tx_skbuff),
292 				      GFP_KERNEL);
293 		if (!tx_queue->tx_skbuff)
294 			goto cleanup;
295 
296 		for (k = 0; k < tx_queue->tx_ring_size; k++)
297 			tx_queue->tx_skbuff[k] = NULL;
298 	}
299 
300 	for (i = 0; i < priv->num_rx_queues; i++) {
301 		rx_queue = priv->rx_queue[i];
302 		rx_queue->rx_skbuff =
303 			kmalloc_array(rx_queue->rx_ring_size,
304 				      sizeof(*rx_queue->rx_skbuff),
305 				      GFP_KERNEL);
306 		if (!rx_queue->rx_skbuff)
307 			goto cleanup;
308 
309 		for (j = 0; j < rx_queue->rx_ring_size; j++)
310 			rx_queue->rx_skbuff[j] = NULL;
311 	}
312 
313 	if (gfar_init_bds(ndev))
314 		goto cleanup;
315 
316 	return 0;
317 
318 cleanup:
319 	free_skb_resources(priv);
320 	return -ENOMEM;
321 }
322 
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 	u32 __iomem *baddr;
327 	int i;
328 
329 	baddr = &regs->tbase0;
330 	for (i = 0; i < priv->num_tx_queues; i++) {
331 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 		baddr += 2;
333 	}
334 
335 	baddr = &regs->rbase0;
336 	for (i = 0; i < priv->num_rx_queues; i++) {
337 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 		baddr += 2;
339 	}
340 }
341 
342 static void gfar_init_rqprm(struct gfar_private *priv)
343 {
344 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 	u32 __iomem *baddr;
346 	int i;
347 
348 	baddr = &regs->rqprm0;
349 	for (i = 0; i < priv->num_rx_queues; i++) {
350 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
351 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
352 		baddr++;
353 	}
354 }
355 
356 static void gfar_rx_buff_size_config(struct gfar_private *priv)
357 {
358 	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
359 
360 	/* set this when rx hw offload (TOE) functions are being used */
361 	priv->uses_rxfcb = 0;
362 
363 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
364 		priv->uses_rxfcb = 1;
365 
366 	if (priv->hwts_rx_en)
367 		priv->uses_rxfcb = 1;
368 
369 	if (priv->uses_rxfcb)
370 		frame_size += GMAC_FCB_LEN;
371 
372 	frame_size += priv->padding;
373 
374 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
375 		     INCREMENTAL_BUFFER_SIZE;
376 
377 	priv->rx_buffer_size = frame_size;
378 }
379 
380 static void gfar_mac_rx_config(struct gfar_private *priv)
381 {
382 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
383 	u32 rctrl = 0;
384 
385 	if (priv->rx_filer_enable) {
386 		rctrl |= RCTRL_FILREN;
387 		/* Program the RIR0 reg with the required distribution */
388 		if (priv->poll_mode == GFAR_SQ_POLLING)
389 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
390 		else /* GFAR_MQ_POLLING */
391 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
392 	}
393 
394 	/* Restore PROMISC mode */
395 	if (priv->ndev->flags & IFF_PROMISC)
396 		rctrl |= RCTRL_PROM;
397 
398 	if (priv->ndev->features & NETIF_F_RXCSUM)
399 		rctrl |= RCTRL_CHECKSUMMING;
400 
401 	if (priv->extended_hash)
402 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
403 
404 	if (priv->padding) {
405 		rctrl &= ~RCTRL_PAL_MASK;
406 		rctrl |= RCTRL_PADDING(priv->padding);
407 	}
408 
409 	/* Enable HW time stamping if requested from user space */
410 	if (priv->hwts_rx_en)
411 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
412 
413 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
415 
416 	/* Clear the LFC bit */
417 	gfar_write(&regs->rctrl, rctrl);
418 	/* Init flow control threshold values */
419 	gfar_init_rqprm(priv);
420 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
421 	rctrl |= RCTRL_LFC;
422 
423 	/* Init rctrl based on our settings */
424 	gfar_write(&regs->rctrl, rctrl);
425 }
426 
427 static void gfar_mac_tx_config(struct gfar_private *priv)
428 {
429 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
430 	u32 tctrl = 0;
431 
432 	if (priv->ndev->features & NETIF_F_IP_CSUM)
433 		tctrl |= TCTRL_INIT_CSUM;
434 
435 	if (priv->prio_sched_en)
436 		tctrl |= TCTRL_TXSCHED_PRIO;
437 	else {
438 		tctrl |= TCTRL_TXSCHED_WRRS;
439 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
440 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
441 	}
442 
443 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
444 		tctrl |= TCTRL_VLINS;
445 
446 	gfar_write(&regs->tctrl, tctrl);
447 }
448 
449 static void gfar_configure_coalescing(struct gfar_private *priv,
450 			       unsigned long tx_mask, unsigned long rx_mask)
451 {
452 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
453 	u32 __iomem *baddr;
454 
455 	if (priv->mode == MQ_MG_MODE) {
456 		int i = 0;
457 
458 		baddr = &regs->txic0;
459 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
460 			gfar_write(baddr + i, 0);
461 			if (likely(priv->tx_queue[i]->txcoalescing))
462 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
463 		}
464 
465 		baddr = &regs->rxic0;
466 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
467 			gfar_write(baddr + i, 0);
468 			if (likely(priv->rx_queue[i]->rxcoalescing))
469 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
470 		}
471 	} else {
472 		/* Backward compatible case -- even if we enable
473 		 * multiple queues, there's only single reg to program
474 		 */
475 		gfar_write(&regs->txic, 0);
476 		if (likely(priv->tx_queue[0]->txcoalescing))
477 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
478 
479 		gfar_write(&regs->rxic, 0);
480 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
481 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
482 	}
483 }
484 
485 void gfar_configure_coalescing_all(struct gfar_private *priv)
486 {
487 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
488 }
489 
490 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
491 {
492 	struct gfar_private *priv = netdev_priv(dev);
493 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
494 	unsigned long tx_packets = 0, tx_bytes = 0;
495 	int i;
496 
497 	for (i = 0; i < priv->num_rx_queues; i++) {
498 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
499 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
500 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
501 	}
502 
503 	dev->stats.rx_packets = rx_packets;
504 	dev->stats.rx_bytes   = rx_bytes;
505 	dev->stats.rx_dropped = rx_dropped;
506 
507 	for (i = 0; i < priv->num_tx_queues; i++) {
508 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
509 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
510 	}
511 
512 	dev->stats.tx_bytes   = tx_bytes;
513 	dev->stats.tx_packets = tx_packets;
514 
515 	return &dev->stats;
516 }
517 
518 static const struct net_device_ops gfar_netdev_ops = {
519 	.ndo_open = gfar_enet_open,
520 	.ndo_start_xmit = gfar_start_xmit,
521 	.ndo_stop = gfar_close,
522 	.ndo_change_mtu = gfar_change_mtu,
523 	.ndo_set_features = gfar_set_features,
524 	.ndo_set_rx_mode = gfar_set_multi,
525 	.ndo_tx_timeout = gfar_timeout,
526 	.ndo_do_ioctl = gfar_ioctl,
527 	.ndo_get_stats = gfar_get_stats,
528 	.ndo_set_mac_address = eth_mac_addr,
529 	.ndo_validate_addr = eth_validate_addr,
530 #ifdef CONFIG_NET_POLL_CONTROLLER
531 	.ndo_poll_controller = gfar_netpoll,
532 #endif
533 };
534 
535 static void gfar_ints_disable(struct gfar_private *priv)
536 {
537 	int i;
538 	for (i = 0; i < priv->num_grps; i++) {
539 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
540 		/* Clear IEVENT */
541 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
542 
543 		/* Initialize IMASK */
544 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
545 	}
546 }
547 
548 static void gfar_ints_enable(struct gfar_private *priv)
549 {
550 	int i;
551 	for (i = 0; i < priv->num_grps; i++) {
552 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
553 		/* Unmask the interrupts we look for */
554 		gfar_write(&regs->imask, IMASK_DEFAULT);
555 	}
556 }
557 
558 static void lock_tx_qs(struct gfar_private *priv)
559 {
560 	int i;
561 
562 	for (i = 0; i < priv->num_tx_queues; i++)
563 		spin_lock(&priv->tx_queue[i]->txlock);
564 }
565 
566 static void unlock_tx_qs(struct gfar_private *priv)
567 {
568 	int i;
569 
570 	for (i = 0; i < priv->num_tx_queues; i++)
571 		spin_unlock(&priv->tx_queue[i]->txlock);
572 }
573 
574 static int gfar_alloc_tx_queues(struct gfar_private *priv)
575 {
576 	int i;
577 
578 	for (i = 0; i < priv->num_tx_queues; i++) {
579 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
580 					    GFP_KERNEL);
581 		if (!priv->tx_queue[i])
582 			return -ENOMEM;
583 
584 		priv->tx_queue[i]->tx_skbuff = NULL;
585 		priv->tx_queue[i]->qindex = i;
586 		priv->tx_queue[i]->dev = priv->ndev;
587 		spin_lock_init(&(priv->tx_queue[i]->txlock));
588 	}
589 	return 0;
590 }
591 
592 static int gfar_alloc_rx_queues(struct gfar_private *priv)
593 {
594 	int i;
595 
596 	for (i = 0; i < priv->num_rx_queues; i++) {
597 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
598 					    GFP_KERNEL);
599 		if (!priv->rx_queue[i])
600 			return -ENOMEM;
601 
602 		priv->rx_queue[i]->rx_skbuff = NULL;
603 		priv->rx_queue[i]->qindex = i;
604 		priv->rx_queue[i]->dev = priv->ndev;
605 	}
606 	return 0;
607 }
608 
609 static void gfar_free_tx_queues(struct gfar_private *priv)
610 {
611 	int i;
612 
613 	for (i = 0; i < priv->num_tx_queues; i++)
614 		kfree(priv->tx_queue[i]);
615 }
616 
617 static void gfar_free_rx_queues(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_rx_queues; i++)
622 		kfree(priv->rx_queue[i]);
623 }
624 
625 static void unmap_group_regs(struct gfar_private *priv)
626 {
627 	int i;
628 
629 	for (i = 0; i < MAXGROUPS; i++)
630 		if (priv->gfargrp[i].regs)
631 			iounmap(priv->gfargrp[i].regs);
632 }
633 
634 static void free_gfar_dev(struct gfar_private *priv)
635 {
636 	int i, j;
637 
638 	for (i = 0; i < priv->num_grps; i++)
639 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
640 			kfree(priv->gfargrp[i].irqinfo[j]);
641 			priv->gfargrp[i].irqinfo[j] = NULL;
642 		}
643 
644 	free_netdev(priv->ndev);
645 }
646 
647 static void disable_napi(struct gfar_private *priv)
648 {
649 	int i;
650 
651 	for (i = 0; i < priv->num_grps; i++) {
652 		napi_disable(&priv->gfargrp[i].napi_rx);
653 		napi_disable(&priv->gfargrp[i].napi_tx);
654 	}
655 }
656 
657 static void enable_napi(struct gfar_private *priv)
658 {
659 	int i;
660 
661 	for (i = 0; i < priv->num_grps; i++) {
662 		napi_enable(&priv->gfargrp[i].napi_rx);
663 		napi_enable(&priv->gfargrp[i].napi_tx);
664 	}
665 }
666 
667 static int gfar_parse_group(struct device_node *np,
668 			    struct gfar_private *priv, const char *model)
669 {
670 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
671 	int i;
672 
673 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
674 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
675 					  GFP_KERNEL);
676 		if (!grp->irqinfo[i])
677 			return -ENOMEM;
678 	}
679 
680 	grp->regs = of_iomap(np, 0);
681 	if (!grp->regs)
682 		return -ENOMEM;
683 
684 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
685 
686 	/* If we aren't the FEC we have multiple interrupts */
687 	if (model && strcasecmp(model, "FEC")) {
688 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
689 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
690 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
691 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
692 		    gfar_irq(grp, ER)->irq == NO_IRQ)
693 			return -EINVAL;
694 	}
695 
696 	grp->priv = priv;
697 	spin_lock_init(&grp->grplock);
698 	if (priv->mode == MQ_MG_MODE) {
699 		u32 *rxq_mask, *txq_mask;
700 		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
701 		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
702 
703 		if (priv->poll_mode == GFAR_SQ_POLLING) {
704 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
705 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
706 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
707 		} else { /* GFAR_MQ_POLLING */
708 			grp->rx_bit_map = rxq_mask ?
709 			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710 			grp->tx_bit_map = txq_mask ?
711 			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
712 		}
713 	} else {
714 		grp->rx_bit_map = 0xFF;
715 		grp->tx_bit_map = 0xFF;
716 	}
717 
718 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
719 	 * right to left, so we need to revert the 8 bits to get the q index
720 	 */
721 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
722 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
723 
724 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
725 	 * also assign queues to groups
726 	 */
727 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
728 		if (!grp->rx_queue)
729 			grp->rx_queue = priv->rx_queue[i];
730 		grp->num_rx_queues++;
731 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
732 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
733 		priv->rx_queue[i]->grp = grp;
734 	}
735 
736 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
737 		if (!grp->tx_queue)
738 			grp->tx_queue = priv->tx_queue[i];
739 		grp->num_tx_queues++;
740 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
741 		priv->tqueue |= (TQUEUE_EN0 >> i);
742 		priv->tx_queue[i]->grp = grp;
743 	}
744 
745 	priv->num_grps++;
746 
747 	return 0;
748 }
749 
750 static int gfar_of_group_count(struct device_node *np)
751 {
752 	struct device_node *child;
753 	int num = 0;
754 
755 	for_each_available_child_of_node(np, child)
756 		if (!of_node_cmp(child->name, "queue-group"))
757 			num++;
758 
759 	return num;
760 }
761 
762 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
763 {
764 	const char *model;
765 	const char *ctype;
766 	const void *mac_addr;
767 	int err = 0, i;
768 	struct net_device *dev = NULL;
769 	struct gfar_private *priv = NULL;
770 	struct device_node *np = ofdev->dev.of_node;
771 	struct device_node *child = NULL;
772 	const u32 *stash;
773 	const u32 *stash_len;
774 	const u32 *stash_idx;
775 	unsigned int num_tx_qs, num_rx_qs;
776 	u32 *tx_queues, *rx_queues;
777 	unsigned short mode, poll_mode;
778 
779 	if (!np)
780 		return -ENODEV;
781 
782 	if (of_device_is_compatible(np, "fsl,etsec2")) {
783 		mode = MQ_MG_MODE;
784 		poll_mode = GFAR_SQ_POLLING;
785 	} else {
786 		mode = SQ_SG_MODE;
787 		poll_mode = GFAR_SQ_POLLING;
788 	}
789 
790 	/* parse the num of HW tx and rx queues */
791 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
792 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
793 
794 	if (mode == SQ_SG_MODE) {
795 		num_tx_qs = 1;
796 		num_rx_qs = 1;
797 	} else { /* MQ_MG_MODE */
798 		/* get the actual number of supported groups */
799 		unsigned int num_grps = gfar_of_group_count(np);
800 
801 		if (num_grps == 0 || num_grps > MAXGROUPS) {
802 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
803 				num_grps);
804 			pr_err("Cannot do alloc_etherdev, aborting\n");
805 			return -EINVAL;
806 		}
807 
808 		if (poll_mode == GFAR_SQ_POLLING) {
809 			num_tx_qs = num_grps; /* one txq per int group */
810 			num_rx_qs = num_grps; /* one rxq per int group */
811 		} else { /* GFAR_MQ_POLLING */
812 			num_tx_qs = tx_queues ? *tx_queues : 1;
813 			num_rx_qs = rx_queues ? *rx_queues : 1;
814 		}
815 	}
816 
817 	if (num_tx_qs > MAX_TX_QS) {
818 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
819 		       num_tx_qs, MAX_TX_QS);
820 		pr_err("Cannot do alloc_etherdev, aborting\n");
821 		return -EINVAL;
822 	}
823 
824 	if (num_rx_qs > MAX_RX_QS) {
825 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
826 		       num_rx_qs, MAX_RX_QS);
827 		pr_err("Cannot do alloc_etherdev, aborting\n");
828 		return -EINVAL;
829 	}
830 
831 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
832 	dev = *pdev;
833 	if (NULL == dev)
834 		return -ENOMEM;
835 
836 	priv = netdev_priv(dev);
837 	priv->ndev = dev;
838 
839 	priv->mode = mode;
840 	priv->poll_mode = poll_mode;
841 
842 	priv->num_tx_queues = num_tx_qs;
843 	netif_set_real_num_rx_queues(dev, num_rx_qs);
844 	priv->num_rx_queues = num_rx_qs;
845 
846 	err = gfar_alloc_tx_queues(priv);
847 	if (err)
848 		goto tx_alloc_failed;
849 
850 	err = gfar_alloc_rx_queues(priv);
851 	if (err)
852 		goto rx_alloc_failed;
853 
854 	/* Init Rx queue filer rule set linked list */
855 	INIT_LIST_HEAD(&priv->rx_list.list);
856 	priv->rx_list.count = 0;
857 	mutex_init(&priv->rx_queue_access);
858 
859 	model = of_get_property(np, "model", NULL);
860 
861 	for (i = 0; i < MAXGROUPS; i++)
862 		priv->gfargrp[i].regs = NULL;
863 
864 	/* Parse and initialize group specific information */
865 	if (priv->mode == MQ_MG_MODE) {
866 		for_each_available_child_of_node(np, child) {
867 			if (of_node_cmp(child->name, "queue-group"))
868 				continue;
869 
870 			err = gfar_parse_group(child, priv, model);
871 			if (err)
872 				goto err_grp_init;
873 		}
874 	} else { /* SQ_SG_MODE */
875 		err = gfar_parse_group(np, priv, model);
876 		if (err)
877 			goto err_grp_init;
878 	}
879 
880 	stash = of_get_property(np, "bd-stash", NULL);
881 
882 	if (stash) {
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
884 		priv->bd_stash_en = 1;
885 	}
886 
887 	stash_len = of_get_property(np, "rx-stash-len", NULL);
888 
889 	if (stash_len)
890 		priv->rx_stash_size = *stash_len;
891 
892 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
893 
894 	if (stash_idx)
895 		priv->rx_stash_index = *stash_idx;
896 
897 	if (stash_len || stash_idx)
898 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
899 
900 	mac_addr = of_get_mac_address(np);
901 
902 	if (mac_addr)
903 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
904 
905 	if (model && !strcasecmp(model, "TSEC"))
906 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
907 				     FSL_GIANFAR_DEV_HAS_COALESCE |
908 				     FSL_GIANFAR_DEV_HAS_RMON |
909 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
910 
911 	if (model && !strcasecmp(model, "eTSEC"))
912 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
913 				     FSL_GIANFAR_DEV_HAS_COALESCE |
914 				     FSL_GIANFAR_DEV_HAS_RMON |
915 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
916 				     FSL_GIANFAR_DEV_HAS_CSUM |
917 				     FSL_GIANFAR_DEV_HAS_VLAN |
918 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
919 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
920 				     FSL_GIANFAR_DEV_HAS_TIMER;
921 
922 	ctype = of_get_property(np, "phy-connection-type", NULL);
923 
924 	/* We only care about rgmii-id.  The rest are autodetected */
925 	if (ctype && !strcmp(ctype, "rgmii-id"))
926 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
927 	else
928 		priv->interface = PHY_INTERFACE_MODE_MII;
929 
930 	if (of_get_property(np, "fsl,magic-packet", NULL))
931 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
932 
933 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
934 
935 	/* In the case of a fixed PHY, the DT node associated
936 	 * to the PHY is the Ethernet MAC DT node.
937 	 */
938 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
939 		err = of_phy_register_fixed_link(np);
940 		if (err)
941 			goto err_grp_init;
942 
943 		priv->phy_node = of_node_get(np);
944 	}
945 
946 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
947 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
948 
949 	return 0;
950 
951 err_grp_init:
952 	unmap_group_regs(priv);
953 rx_alloc_failed:
954 	gfar_free_rx_queues(priv);
955 tx_alloc_failed:
956 	gfar_free_tx_queues(priv);
957 	free_gfar_dev(priv);
958 	return err;
959 }
960 
961 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
962 {
963 	struct hwtstamp_config config;
964 	struct gfar_private *priv = netdev_priv(netdev);
965 
966 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
967 		return -EFAULT;
968 
969 	/* reserved for future extensions */
970 	if (config.flags)
971 		return -EINVAL;
972 
973 	switch (config.tx_type) {
974 	case HWTSTAMP_TX_OFF:
975 		priv->hwts_tx_en = 0;
976 		break;
977 	case HWTSTAMP_TX_ON:
978 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
979 			return -ERANGE;
980 		priv->hwts_tx_en = 1;
981 		break;
982 	default:
983 		return -ERANGE;
984 	}
985 
986 	switch (config.rx_filter) {
987 	case HWTSTAMP_FILTER_NONE:
988 		if (priv->hwts_rx_en) {
989 			priv->hwts_rx_en = 0;
990 			reset_gfar(netdev);
991 		}
992 		break;
993 	default:
994 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
995 			return -ERANGE;
996 		if (!priv->hwts_rx_en) {
997 			priv->hwts_rx_en = 1;
998 			reset_gfar(netdev);
999 		}
1000 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1001 		break;
1002 	}
1003 
1004 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1005 		-EFAULT : 0;
1006 }
1007 
1008 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1009 {
1010 	struct hwtstamp_config config;
1011 	struct gfar_private *priv = netdev_priv(netdev);
1012 
1013 	config.flags = 0;
1014 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1015 	config.rx_filter = (priv->hwts_rx_en ?
1016 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1017 
1018 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1019 		-EFAULT : 0;
1020 }
1021 
1022 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1023 {
1024 	struct gfar_private *priv = netdev_priv(dev);
1025 
1026 	if (!netif_running(dev))
1027 		return -EINVAL;
1028 
1029 	if (cmd == SIOCSHWTSTAMP)
1030 		return gfar_hwtstamp_set(dev, rq);
1031 	if (cmd == SIOCGHWTSTAMP)
1032 		return gfar_hwtstamp_get(dev, rq);
1033 
1034 	if (!priv->phydev)
1035 		return -ENODEV;
1036 
1037 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1038 }
1039 
1040 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1041 				   u32 class)
1042 {
1043 	u32 rqfpr = FPR_FILER_MASK;
1044 	u32 rqfcr = 0x0;
1045 
1046 	rqfar--;
1047 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1048 	priv->ftp_rqfpr[rqfar] = rqfpr;
1049 	priv->ftp_rqfcr[rqfar] = rqfcr;
1050 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051 
1052 	rqfar--;
1053 	rqfcr = RQFCR_CMP_NOMATCH;
1054 	priv->ftp_rqfpr[rqfar] = rqfpr;
1055 	priv->ftp_rqfcr[rqfar] = rqfcr;
1056 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1057 
1058 	rqfar--;
1059 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1060 	rqfpr = class;
1061 	priv->ftp_rqfcr[rqfar] = rqfcr;
1062 	priv->ftp_rqfpr[rqfar] = rqfpr;
1063 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064 
1065 	rqfar--;
1066 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1067 	rqfpr = class;
1068 	priv->ftp_rqfcr[rqfar] = rqfcr;
1069 	priv->ftp_rqfpr[rqfar] = rqfpr;
1070 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1071 
1072 	return rqfar;
1073 }
1074 
1075 static void gfar_init_filer_table(struct gfar_private *priv)
1076 {
1077 	int i = 0x0;
1078 	u32 rqfar = MAX_FILER_IDX;
1079 	u32 rqfcr = 0x0;
1080 	u32 rqfpr = FPR_FILER_MASK;
1081 
1082 	/* Default rule */
1083 	rqfcr = RQFCR_CMP_MATCH;
1084 	priv->ftp_rqfcr[rqfar] = rqfcr;
1085 	priv->ftp_rqfpr[rqfar] = rqfpr;
1086 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1087 
1088 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1089 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1090 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1091 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1092 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1093 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1094 
1095 	/* cur_filer_idx indicated the first non-masked rule */
1096 	priv->cur_filer_idx = rqfar;
1097 
1098 	/* Rest are masked rules */
1099 	rqfcr = RQFCR_CMP_NOMATCH;
1100 	for (i = 0; i < rqfar; i++) {
1101 		priv->ftp_rqfcr[i] = rqfcr;
1102 		priv->ftp_rqfpr[i] = rqfpr;
1103 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1104 	}
1105 }
1106 
1107 #ifdef CONFIG_PPC
1108 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1109 {
1110 	unsigned int pvr = mfspr(SPRN_PVR);
1111 	unsigned int svr = mfspr(SPRN_SVR);
1112 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1113 	unsigned int rev = svr & 0xffff;
1114 
1115 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1116 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1117 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1118 		priv->errata |= GFAR_ERRATA_74;
1119 
1120 	/* MPC8313 and MPC837x all rev */
1121 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1122 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1123 		priv->errata |= GFAR_ERRATA_76;
1124 
1125 	/* MPC8313 Rev < 2.0 */
1126 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1127 		priv->errata |= GFAR_ERRATA_12;
1128 }
1129 
1130 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1131 {
1132 	unsigned int svr = mfspr(SPRN_SVR);
1133 
1134 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1135 		priv->errata |= GFAR_ERRATA_12;
1136 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1137 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1138 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1139 }
1140 #endif
1141 
1142 static void gfar_detect_errata(struct gfar_private *priv)
1143 {
1144 	struct device *dev = &priv->ofdev->dev;
1145 
1146 	/* no plans to fix */
1147 	priv->errata |= GFAR_ERRATA_A002;
1148 
1149 #ifdef CONFIG_PPC
1150 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1151 		__gfar_detect_errata_85xx(priv);
1152 	else /* non-mpc85xx parts, i.e. e300 core based */
1153 		__gfar_detect_errata_83xx(priv);
1154 #endif
1155 
1156 	if (priv->errata)
1157 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1158 			 priv->errata);
1159 }
1160 
1161 void gfar_mac_reset(struct gfar_private *priv)
1162 {
1163 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1164 	u32 tempval;
1165 
1166 	/* Reset MAC layer */
1167 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1168 
1169 	/* We need to delay at least 3 TX clocks */
1170 	udelay(3);
1171 
1172 	/* the soft reset bit is not self-resetting, so we need to
1173 	 * clear it before resuming normal operation
1174 	 */
1175 	gfar_write(&regs->maccfg1, 0);
1176 
1177 	udelay(3);
1178 
1179 	/* Compute rx_buff_size based on config flags */
1180 	gfar_rx_buff_size_config(priv);
1181 
1182 	/* Initialize the max receive frame/buffer lengths */
1183 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1184 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1185 
1186 	/* Initialize the Minimum Frame Length Register */
1187 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1188 
1189 	/* Initialize MACCFG2. */
1190 	tempval = MACCFG2_INIT_SETTINGS;
1191 
1192 	/* If the mtu is larger than the max size for standard
1193 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1194 	 * to allow huge frames, and to check the length
1195 	 */
1196 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1197 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1198 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1199 
1200 	gfar_write(&regs->maccfg2, tempval);
1201 
1202 	/* Clear mac addr hash registers */
1203 	gfar_write(&regs->igaddr0, 0);
1204 	gfar_write(&regs->igaddr1, 0);
1205 	gfar_write(&regs->igaddr2, 0);
1206 	gfar_write(&regs->igaddr3, 0);
1207 	gfar_write(&regs->igaddr4, 0);
1208 	gfar_write(&regs->igaddr5, 0);
1209 	gfar_write(&regs->igaddr6, 0);
1210 	gfar_write(&regs->igaddr7, 0);
1211 
1212 	gfar_write(&regs->gaddr0, 0);
1213 	gfar_write(&regs->gaddr1, 0);
1214 	gfar_write(&regs->gaddr2, 0);
1215 	gfar_write(&regs->gaddr3, 0);
1216 	gfar_write(&regs->gaddr4, 0);
1217 	gfar_write(&regs->gaddr5, 0);
1218 	gfar_write(&regs->gaddr6, 0);
1219 	gfar_write(&regs->gaddr7, 0);
1220 
1221 	if (priv->extended_hash)
1222 		gfar_clear_exact_match(priv->ndev);
1223 
1224 	gfar_mac_rx_config(priv);
1225 
1226 	gfar_mac_tx_config(priv);
1227 
1228 	gfar_set_mac_address(priv->ndev);
1229 
1230 	gfar_set_multi(priv->ndev);
1231 
1232 	/* clear ievent and imask before configuring coalescing */
1233 	gfar_ints_disable(priv);
1234 
1235 	/* Configure the coalescing support */
1236 	gfar_configure_coalescing_all(priv);
1237 }
1238 
1239 static void gfar_hw_init(struct gfar_private *priv)
1240 {
1241 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1242 	u32 attrs;
1243 
1244 	/* Stop the DMA engine now, in case it was running before
1245 	 * (The firmware could have used it, and left it running).
1246 	 */
1247 	gfar_halt(priv);
1248 
1249 	gfar_mac_reset(priv);
1250 
1251 	/* Zero out the rmon mib registers if it has them */
1252 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1253 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1254 
1255 		/* Mask off the CAM interrupts */
1256 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1257 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1258 	}
1259 
1260 	/* Initialize ECNTRL */
1261 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1262 
1263 	/* Set the extraction length and index */
1264 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1265 		ATTRELI_EI(priv->rx_stash_index);
1266 
1267 	gfar_write(&regs->attreli, attrs);
1268 
1269 	/* Start with defaults, and add stashing
1270 	 * depending on driver parameters
1271 	 */
1272 	attrs = ATTR_INIT_SETTINGS;
1273 
1274 	if (priv->bd_stash_en)
1275 		attrs |= ATTR_BDSTASH;
1276 
1277 	if (priv->rx_stash_size != 0)
1278 		attrs |= ATTR_BUFSTASH;
1279 
1280 	gfar_write(&regs->attr, attrs);
1281 
1282 	/* FIFO configs */
1283 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1284 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1285 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1286 
1287 	/* Program the interrupt steering regs, only for MG devices */
1288 	if (priv->num_grps > 1)
1289 		gfar_write_isrg(priv);
1290 }
1291 
1292 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1293 {
1294 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1295 
1296 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1297 		priv->extended_hash = 1;
1298 		priv->hash_width = 9;
1299 
1300 		priv->hash_regs[0] = &regs->igaddr0;
1301 		priv->hash_regs[1] = &regs->igaddr1;
1302 		priv->hash_regs[2] = &regs->igaddr2;
1303 		priv->hash_regs[3] = &regs->igaddr3;
1304 		priv->hash_regs[4] = &regs->igaddr4;
1305 		priv->hash_regs[5] = &regs->igaddr5;
1306 		priv->hash_regs[6] = &regs->igaddr6;
1307 		priv->hash_regs[7] = &regs->igaddr7;
1308 		priv->hash_regs[8] = &regs->gaddr0;
1309 		priv->hash_regs[9] = &regs->gaddr1;
1310 		priv->hash_regs[10] = &regs->gaddr2;
1311 		priv->hash_regs[11] = &regs->gaddr3;
1312 		priv->hash_regs[12] = &regs->gaddr4;
1313 		priv->hash_regs[13] = &regs->gaddr5;
1314 		priv->hash_regs[14] = &regs->gaddr6;
1315 		priv->hash_regs[15] = &regs->gaddr7;
1316 
1317 	} else {
1318 		priv->extended_hash = 0;
1319 		priv->hash_width = 8;
1320 
1321 		priv->hash_regs[0] = &regs->gaddr0;
1322 		priv->hash_regs[1] = &regs->gaddr1;
1323 		priv->hash_regs[2] = &regs->gaddr2;
1324 		priv->hash_regs[3] = &regs->gaddr3;
1325 		priv->hash_regs[4] = &regs->gaddr4;
1326 		priv->hash_regs[5] = &regs->gaddr5;
1327 		priv->hash_regs[6] = &regs->gaddr6;
1328 		priv->hash_regs[7] = &regs->gaddr7;
1329 	}
1330 }
1331 
1332 /* Set up the ethernet device structure, private data,
1333  * and anything else we need before we start
1334  */
1335 static int gfar_probe(struct platform_device *ofdev)
1336 {
1337 	struct net_device *dev = NULL;
1338 	struct gfar_private *priv = NULL;
1339 	int err = 0, i;
1340 
1341 	err = gfar_of_init(ofdev, &dev);
1342 
1343 	if (err)
1344 		return err;
1345 
1346 	priv = netdev_priv(dev);
1347 	priv->ndev = dev;
1348 	priv->ofdev = ofdev;
1349 	priv->dev = &ofdev->dev;
1350 	SET_NETDEV_DEV(dev, &ofdev->dev);
1351 
1352 	spin_lock_init(&priv->bflock);
1353 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1354 
1355 	platform_set_drvdata(ofdev, priv);
1356 
1357 	gfar_detect_errata(priv);
1358 
1359 	/* Set the dev->base_addr to the gfar reg region */
1360 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1361 
1362 	/* Fill in the dev structure */
1363 	dev->watchdog_timeo = TX_TIMEOUT;
1364 	dev->mtu = 1500;
1365 	dev->netdev_ops = &gfar_netdev_ops;
1366 	dev->ethtool_ops = &gfar_ethtool_ops;
1367 
1368 	/* Register for napi ...We are registering NAPI for each grp */
1369 	for (i = 0; i < priv->num_grps; i++) {
1370 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1371 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1372 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1373 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1374 				       gfar_poll_tx_sq, 2);
1375 		} else {
1376 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1377 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1378 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1379 				       gfar_poll_tx, 2);
1380 		}
1381 	}
1382 
1383 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1384 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1385 				   NETIF_F_RXCSUM;
1386 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1387 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1388 	}
1389 
1390 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1391 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1392 				    NETIF_F_HW_VLAN_CTAG_RX;
1393 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1394 	}
1395 
1396 	gfar_init_addr_hash_table(priv);
1397 
1398 	/* Insert receive time stamps into padding alignment bytes */
1399 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1400 		priv->padding = 8;
1401 
1402 	if (dev->features & NETIF_F_IP_CSUM ||
1403 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1404 		dev->needed_headroom = GMAC_FCB_LEN;
1405 
1406 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1407 
1408 	/* Initializing some of the rx/tx queue level parameters */
1409 	for (i = 0; i < priv->num_tx_queues; i++) {
1410 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1411 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1412 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1413 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1414 	}
1415 
1416 	for (i = 0; i < priv->num_rx_queues; i++) {
1417 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1418 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1419 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1420 	}
1421 
1422 	/* always enable rx filer */
1423 	priv->rx_filer_enable = 1;
1424 	/* Enable most messages by default */
1425 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1426 	/* use pritority h/w tx queue scheduling for single queue devices */
1427 	if (priv->num_tx_queues == 1)
1428 		priv->prio_sched_en = 1;
1429 
1430 	set_bit(GFAR_DOWN, &priv->state);
1431 
1432 	gfar_hw_init(priv);
1433 
1434 	/* Carrier starts down, phylib will bring it up */
1435 	netif_carrier_off(dev);
1436 
1437 	err = register_netdev(dev);
1438 
1439 	if (err) {
1440 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1441 		goto register_fail;
1442 	}
1443 
1444 	device_init_wakeup(&dev->dev,
1445 			   priv->device_flags &
1446 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1447 
1448 	/* fill out IRQ number and name fields */
1449 	for (i = 0; i < priv->num_grps; i++) {
1450 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1451 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1452 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1453 				dev->name, "_g", '0' + i, "_tx");
1454 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1455 				dev->name, "_g", '0' + i, "_rx");
1456 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1457 				dev->name, "_g", '0' + i, "_er");
1458 		} else
1459 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1460 	}
1461 
1462 	/* Initialize the filer table */
1463 	gfar_init_filer_table(priv);
1464 
1465 	/* Print out the device info */
1466 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1467 
1468 	/* Even more device info helps when determining which kernel
1469 	 * provided which set of benchmarks.
1470 	 */
1471 	netdev_info(dev, "Running with NAPI enabled\n");
1472 	for (i = 0; i < priv->num_rx_queues; i++)
1473 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1474 			    i, priv->rx_queue[i]->rx_ring_size);
1475 	for (i = 0; i < priv->num_tx_queues; i++)
1476 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1477 			    i, priv->tx_queue[i]->tx_ring_size);
1478 
1479 	return 0;
1480 
1481 register_fail:
1482 	unmap_group_regs(priv);
1483 	gfar_free_rx_queues(priv);
1484 	gfar_free_tx_queues(priv);
1485 	of_node_put(priv->phy_node);
1486 	of_node_put(priv->tbi_node);
1487 	free_gfar_dev(priv);
1488 	return err;
1489 }
1490 
1491 static int gfar_remove(struct platform_device *ofdev)
1492 {
1493 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1494 
1495 	of_node_put(priv->phy_node);
1496 	of_node_put(priv->tbi_node);
1497 
1498 	unregister_netdev(priv->ndev);
1499 	unmap_group_regs(priv);
1500 	gfar_free_rx_queues(priv);
1501 	gfar_free_tx_queues(priv);
1502 	free_gfar_dev(priv);
1503 
1504 	return 0;
1505 }
1506 
1507 #ifdef CONFIG_PM
1508 
1509 static int gfar_suspend(struct device *dev)
1510 {
1511 	struct gfar_private *priv = dev_get_drvdata(dev);
1512 	struct net_device *ndev = priv->ndev;
1513 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1514 	unsigned long flags;
1515 	u32 tempval;
1516 
1517 	int magic_packet = priv->wol_en &&
1518 			   (priv->device_flags &
1519 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1520 
1521 	netif_device_detach(ndev);
1522 
1523 	if (netif_running(ndev)) {
1524 
1525 		local_irq_save(flags);
1526 		lock_tx_qs(priv);
1527 
1528 		gfar_halt_nodisable(priv);
1529 
1530 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1531 		tempval = gfar_read(&regs->maccfg1);
1532 
1533 		tempval &= ~MACCFG1_TX_EN;
1534 
1535 		if (!magic_packet)
1536 			tempval &= ~MACCFG1_RX_EN;
1537 
1538 		gfar_write(&regs->maccfg1, tempval);
1539 
1540 		unlock_tx_qs(priv);
1541 		local_irq_restore(flags);
1542 
1543 		disable_napi(priv);
1544 
1545 		if (magic_packet) {
1546 			/* Enable interrupt on Magic Packet */
1547 			gfar_write(&regs->imask, IMASK_MAG);
1548 
1549 			/* Enable Magic Packet mode */
1550 			tempval = gfar_read(&regs->maccfg2);
1551 			tempval |= MACCFG2_MPEN;
1552 			gfar_write(&regs->maccfg2, tempval);
1553 		} else {
1554 			phy_stop(priv->phydev);
1555 		}
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static int gfar_resume(struct device *dev)
1562 {
1563 	struct gfar_private *priv = dev_get_drvdata(dev);
1564 	struct net_device *ndev = priv->ndev;
1565 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1566 	unsigned long flags;
1567 	u32 tempval;
1568 	int magic_packet = priv->wol_en &&
1569 			   (priv->device_flags &
1570 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1571 
1572 	if (!netif_running(ndev)) {
1573 		netif_device_attach(ndev);
1574 		return 0;
1575 	}
1576 
1577 	if (!magic_packet && priv->phydev)
1578 		phy_start(priv->phydev);
1579 
1580 	/* Disable Magic Packet mode, in case something
1581 	 * else woke us up.
1582 	 */
1583 	local_irq_save(flags);
1584 	lock_tx_qs(priv);
1585 
1586 	tempval = gfar_read(&regs->maccfg2);
1587 	tempval &= ~MACCFG2_MPEN;
1588 	gfar_write(&regs->maccfg2, tempval);
1589 
1590 	gfar_start(priv);
1591 
1592 	unlock_tx_qs(priv);
1593 	local_irq_restore(flags);
1594 
1595 	netif_device_attach(ndev);
1596 
1597 	enable_napi(priv);
1598 
1599 	return 0;
1600 }
1601 
1602 static int gfar_restore(struct device *dev)
1603 {
1604 	struct gfar_private *priv = dev_get_drvdata(dev);
1605 	struct net_device *ndev = priv->ndev;
1606 
1607 	if (!netif_running(ndev)) {
1608 		netif_device_attach(ndev);
1609 
1610 		return 0;
1611 	}
1612 
1613 	if (gfar_init_bds(ndev)) {
1614 		free_skb_resources(priv);
1615 		return -ENOMEM;
1616 	}
1617 
1618 	gfar_mac_reset(priv);
1619 
1620 	gfar_init_tx_rx_base(priv);
1621 
1622 	gfar_start(priv);
1623 
1624 	priv->oldlink = 0;
1625 	priv->oldspeed = 0;
1626 	priv->oldduplex = -1;
1627 
1628 	if (priv->phydev)
1629 		phy_start(priv->phydev);
1630 
1631 	netif_device_attach(ndev);
1632 	enable_napi(priv);
1633 
1634 	return 0;
1635 }
1636 
1637 static struct dev_pm_ops gfar_pm_ops = {
1638 	.suspend = gfar_suspend,
1639 	.resume = gfar_resume,
1640 	.freeze = gfar_suspend,
1641 	.thaw = gfar_resume,
1642 	.restore = gfar_restore,
1643 };
1644 
1645 #define GFAR_PM_OPS (&gfar_pm_ops)
1646 
1647 #else
1648 
1649 #define GFAR_PM_OPS NULL
1650 
1651 #endif
1652 
1653 /* Reads the controller's registers to determine what interface
1654  * connects it to the PHY.
1655  */
1656 static phy_interface_t gfar_get_interface(struct net_device *dev)
1657 {
1658 	struct gfar_private *priv = netdev_priv(dev);
1659 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1660 	u32 ecntrl;
1661 
1662 	ecntrl = gfar_read(&regs->ecntrl);
1663 
1664 	if (ecntrl & ECNTRL_SGMII_MODE)
1665 		return PHY_INTERFACE_MODE_SGMII;
1666 
1667 	if (ecntrl & ECNTRL_TBI_MODE) {
1668 		if (ecntrl & ECNTRL_REDUCED_MODE)
1669 			return PHY_INTERFACE_MODE_RTBI;
1670 		else
1671 			return PHY_INTERFACE_MODE_TBI;
1672 	}
1673 
1674 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1675 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1676 			return PHY_INTERFACE_MODE_RMII;
1677 		}
1678 		else {
1679 			phy_interface_t interface = priv->interface;
1680 
1681 			/* This isn't autodetected right now, so it must
1682 			 * be set by the device tree or platform code.
1683 			 */
1684 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1685 				return PHY_INTERFACE_MODE_RGMII_ID;
1686 
1687 			return PHY_INTERFACE_MODE_RGMII;
1688 		}
1689 	}
1690 
1691 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1692 		return PHY_INTERFACE_MODE_GMII;
1693 
1694 	return PHY_INTERFACE_MODE_MII;
1695 }
1696 
1697 
1698 /* Initializes driver's PHY state, and attaches to the PHY.
1699  * Returns 0 on success.
1700  */
1701 static int init_phy(struct net_device *dev)
1702 {
1703 	struct gfar_private *priv = netdev_priv(dev);
1704 	uint gigabit_support =
1705 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1706 		GFAR_SUPPORTED_GBIT : 0;
1707 	phy_interface_t interface;
1708 
1709 	priv->oldlink = 0;
1710 	priv->oldspeed = 0;
1711 	priv->oldduplex = -1;
1712 
1713 	interface = gfar_get_interface(dev);
1714 
1715 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1716 				      interface);
1717 	if (!priv->phydev) {
1718 		dev_err(&dev->dev, "could not attach to PHY\n");
1719 		return -ENODEV;
1720 	}
1721 
1722 	if (interface == PHY_INTERFACE_MODE_SGMII)
1723 		gfar_configure_serdes(dev);
1724 
1725 	/* Remove any features not supported by the controller */
1726 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1727 	priv->phydev->advertising = priv->phydev->supported;
1728 
1729 	/* Add support for flow control, but don't advertise it by default */
1730 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1731 
1732 	return 0;
1733 }
1734 
1735 /* Initialize TBI PHY interface for communicating with the
1736  * SERDES lynx PHY on the chip.  We communicate with this PHY
1737  * through the MDIO bus on each controller, treating it as a
1738  * "normal" PHY at the address found in the TBIPA register.  We assume
1739  * that the TBIPA register is valid.  Either the MDIO bus code will set
1740  * it to a value that doesn't conflict with other PHYs on the bus, or the
1741  * value doesn't matter, as there are no other PHYs on the bus.
1742  */
1743 static void gfar_configure_serdes(struct net_device *dev)
1744 {
1745 	struct gfar_private *priv = netdev_priv(dev);
1746 	struct phy_device *tbiphy;
1747 
1748 	if (!priv->tbi_node) {
1749 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1750 				    "device tree specify a tbi-handle\n");
1751 		return;
1752 	}
1753 
1754 	tbiphy = of_phy_find_device(priv->tbi_node);
1755 	if (!tbiphy) {
1756 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1757 		return;
1758 	}
1759 
1760 	/* If the link is already up, we must already be ok, and don't need to
1761 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1762 	 * everything for us?  Resetting it takes the link down and requires
1763 	 * several seconds for it to come back.
1764 	 */
1765 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1766 		return;
1767 
1768 	/* Single clk mode, mii mode off(for serdes communication) */
1769 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1770 
1771 	phy_write(tbiphy, MII_ADVERTISE,
1772 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1773 		  ADVERTISE_1000XPSE_ASYM);
1774 
1775 	phy_write(tbiphy, MII_BMCR,
1776 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1777 		  BMCR_SPEED1000);
1778 }
1779 
1780 static int __gfar_is_rx_idle(struct gfar_private *priv)
1781 {
1782 	u32 res;
1783 
1784 	/* Normaly TSEC should not hang on GRS commands, so we should
1785 	 * actually wait for IEVENT_GRSC flag.
1786 	 */
1787 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1788 		return 0;
1789 
1790 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1791 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1792 	 * and the Rx can be safely reset.
1793 	 */
1794 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1795 	res &= 0x7f807f80;
1796 	if ((res & 0xffff) == (res >> 16))
1797 		return 1;
1798 
1799 	return 0;
1800 }
1801 
1802 /* Halt the receive and transmit queues */
1803 static void gfar_halt_nodisable(struct gfar_private *priv)
1804 {
1805 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1806 	u32 tempval;
1807 	unsigned int timeout;
1808 	int stopped;
1809 
1810 	gfar_ints_disable(priv);
1811 
1812 	if (gfar_is_dma_stopped(priv))
1813 		return;
1814 
1815 	/* Stop the DMA, and wait for it to stop */
1816 	tempval = gfar_read(&regs->dmactrl);
1817 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1818 	gfar_write(&regs->dmactrl, tempval);
1819 
1820 retry:
1821 	timeout = 1000;
1822 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1823 		cpu_relax();
1824 		timeout--;
1825 	}
1826 
1827 	if (!timeout)
1828 		stopped = gfar_is_dma_stopped(priv);
1829 
1830 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1831 	    !__gfar_is_rx_idle(priv))
1832 		goto retry;
1833 }
1834 
1835 /* Halt the receive and transmit queues */
1836 void gfar_halt(struct gfar_private *priv)
1837 {
1838 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1839 	u32 tempval;
1840 
1841 	/* Dissable the Rx/Tx hw queues */
1842 	gfar_write(&regs->rqueue, 0);
1843 	gfar_write(&regs->tqueue, 0);
1844 
1845 	mdelay(10);
1846 
1847 	gfar_halt_nodisable(priv);
1848 
1849 	/* Disable Rx/Tx DMA */
1850 	tempval = gfar_read(&regs->maccfg1);
1851 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1852 	gfar_write(&regs->maccfg1, tempval);
1853 }
1854 
1855 void stop_gfar(struct net_device *dev)
1856 {
1857 	struct gfar_private *priv = netdev_priv(dev);
1858 
1859 	netif_tx_stop_all_queues(dev);
1860 
1861 	smp_mb__before_atomic();
1862 	set_bit(GFAR_DOWN, &priv->state);
1863 	smp_mb__after_atomic();
1864 
1865 	disable_napi(priv);
1866 
1867 	/* disable ints and gracefully shut down Rx/Tx DMA */
1868 	gfar_halt(priv);
1869 
1870 	phy_stop(priv->phydev);
1871 
1872 	free_skb_resources(priv);
1873 }
1874 
1875 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1876 {
1877 	struct txbd8 *txbdp;
1878 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1879 	int i, j;
1880 
1881 	txbdp = tx_queue->tx_bd_base;
1882 
1883 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1884 		if (!tx_queue->tx_skbuff[i])
1885 			continue;
1886 
1887 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1888 				 txbdp->length, DMA_TO_DEVICE);
1889 		txbdp->lstatus = 0;
1890 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1891 		     j++) {
1892 			txbdp++;
1893 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1894 				       txbdp->length, DMA_TO_DEVICE);
1895 		}
1896 		txbdp++;
1897 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1898 		tx_queue->tx_skbuff[i] = NULL;
1899 	}
1900 	kfree(tx_queue->tx_skbuff);
1901 	tx_queue->tx_skbuff = NULL;
1902 }
1903 
1904 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1905 {
1906 	struct rxbd8 *rxbdp;
1907 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1908 	int i;
1909 
1910 	rxbdp = rx_queue->rx_bd_base;
1911 
1912 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1913 		if (rx_queue->rx_skbuff[i]) {
1914 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1915 					 priv->rx_buffer_size,
1916 					 DMA_FROM_DEVICE);
1917 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1918 			rx_queue->rx_skbuff[i] = NULL;
1919 		}
1920 		rxbdp->lstatus = 0;
1921 		rxbdp->bufPtr = 0;
1922 		rxbdp++;
1923 	}
1924 	kfree(rx_queue->rx_skbuff);
1925 	rx_queue->rx_skbuff = NULL;
1926 }
1927 
1928 /* If there are any tx skbs or rx skbs still around, free them.
1929  * Then free tx_skbuff and rx_skbuff
1930  */
1931 static void free_skb_resources(struct gfar_private *priv)
1932 {
1933 	struct gfar_priv_tx_q *tx_queue = NULL;
1934 	struct gfar_priv_rx_q *rx_queue = NULL;
1935 	int i;
1936 
1937 	/* Go through all the buffer descriptors and free their data buffers */
1938 	for (i = 0; i < priv->num_tx_queues; i++) {
1939 		struct netdev_queue *txq;
1940 
1941 		tx_queue = priv->tx_queue[i];
1942 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1943 		if (tx_queue->tx_skbuff)
1944 			free_skb_tx_queue(tx_queue);
1945 		netdev_tx_reset_queue(txq);
1946 	}
1947 
1948 	for (i = 0; i < priv->num_rx_queues; i++) {
1949 		rx_queue = priv->rx_queue[i];
1950 		if (rx_queue->rx_skbuff)
1951 			free_skb_rx_queue(rx_queue);
1952 	}
1953 
1954 	dma_free_coherent(priv->dev,
1955 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1956 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1957 			  priv->tx_queue[0]->tx_bd_base,
1958 			  priv->tx_queue[0]->tx_bd_dma_base);
1959 }
1960 
1961 void gfar_start(struct gfar_private *priv)
1962 {
1963 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1964 	u32 tempval;
1965 	int i = 0;
1966 
1967 	/* Enable Rx/Tx hw queues */
1968 	gfar_write(&regs->rqueue, priv->rqueue);
1969 	gfar_write(&regs->tqueue, priv->tqueue);
1970 
1971 	/* Initialize DMACTRL to have WWR and WOP */
1972 	tempval = gfar_read(&regs->dmactrl);
1973 	tempval |= DMACTRL_INIT_SETTINGS;
1974 	gfar_write(&regs->dmactrl, tempval);
1975 
1976 	/* Make sure we aren't stopped */
1977 	tempval = gfar_read(&regs->dmactrl);
1978 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1979 	gfar_write(&regs->dmactrl, tempval);
1980 
1981 	for (i = 0; i < priv->num_grps; i++) {
1982 		regs = priv->gfargrp[i].regs;
1983 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1984 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1985 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1986 	}
1987 
1988 	/* Enable Rx/Tx DMA */
1989 	tempval = gfar_read(&regs->maccfg1);
1990 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1991 	gfar_write(&regs->maccfg1, tempval);
1992 
1993 	gfar_ints_enable(priv);
1994 
1995 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1996 }
1997 
1998 static void free_grp_irqs(struct gfar_priv_grp *grp)
1999 {
2000 	free_irq(gfar_irq(grp, TX)->irq, grp);
2001 	free_irq(gfar_irq(grp, RX)->irq, grp);
2002 	free_irq(gfar_irq(grp, ER)->irq, grp);
2003 }
2004 
2005 static int register_grp_irqs(struct gfar_priv_grp *grp)
2006 {
2007 	struct gfar_private *priv = grp->priv;
2008 	struct net_device *dev = priv->ndev;
2009 	int err;
2010 
2011 	/* If the device has multiple interrupts, register for
2012 	 * them.  Otherwise, only register for the one
2013 	 */
2014 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2015 		/* Install our interrupt handlers for Error,
2016 		 * Transmit, and Receive
2017 		 */
2018 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2019 				  gfar_irq(grp, ER)->name, grp);
2020 		if (err < 0) {
2021 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2022 				  gfar_irq(grp, ER)->irq);
2023 
2024 			goto err_irq_fail;
2025 		}
2026 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2027 				  gfar_irq(grp, TX)->name, grp);
2028 		if (err < 0) {
2029 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2030 				  gfar_irq(grp, TX)->irq);
2031 			goto tx_irq_fail;
2032 		}
2033 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2034 				  gfar_irq(grp, RX)->name, grp);
2035 		if (err < 0) {
2036 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2037 				  gfar_irq(grp, RX)->irq);
2038 			goto rx_irq_fail;
2039 		}
2040 	} else {
2041 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2042 				  gfar_irq(grp, TX)->name, grp);
2043 		if (err < 0) {
2044 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2045 				  gfar_irq(grp, TX)->irq);
2046 			goto err_irq_fail;
2047 		}
2048 	}
2049 
2050 	return 0;
2051 
2052 rx_irq_fail:
2053 	free_irq(gfar_irq(grp, TX)->irq, grp);
2054 tx_irq_fail:
2055 	free_irq(gfar_irq(grp, ER)->irq, grp);
2056 err_irq_fail:
2057 	return err;
2058 
2059 }
2060 
2061 static void gfar_free_irq(struct gfar_private *priv)
2062 {
2063 	int i;
2064 
2065 	/* Free the IRQs */
2066 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2067 		for (i = 0; i < priv->num_grps; i++)
2068 			free_grp_irqs(&priv->gfargrp[i]);
2069 	} else {
2070 		for (i = 0; i < priv->num_grps; i++)
2071 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2072 				 &priv->gfargrp[i]);
2073 	}
2074 }
2075 
2076 static int gfar_request_irq(struct gfar_private *priv)
2077 {
2078 	int err, i, j;
2079 
2080 	for (i = 0; i < priv->num_grps; i++) {
2081 		err = register_grp_irqs(&priv->gfargrp[i]);
2082 		if (err) {
2083 			for (j = 0; j < i; j++)
2084 				free_grp_irqs(&priv->gfargrp[j]);
2085 			return err;
2086 		}
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 /* Bring the controller up and running */
2093 int startup_gfar(struct net_device *ndev)
2094 {
2095 	struct gfar_private *priv = netdev_priv(ndev);
2096 	int err;
2097 
2098 	gfar_mac_reset(priv);
2099 
2100 	err = gfar_alloc_skb_resources(ndev);
2101 	if (err)
2102 		return err;
2103 
2104 	gfar_init_tx_rx_base(priv);
2105 
2106 	smp_mb__before_atomic();
2107 	clear_bit(GFAR_DOWN, &priv->state);
2108 	smp_mb__after_atomic();
2109 
2110 	/* Start Rx/Tx DMA and enable the interrupts */
2111 	gfar_start(priv);
2112 
2113 	phy_start(priv->phydev);
2114 
2115 	enable_napi(priv);
2116 
2117 	netif_tx_wake_all_queues(ndev);
2118 
2119 	return 0;
2120 }
2121 
2122 /* Called when something needs to use the ethernet device
2123  * Returns 0 for success.
2124  */
2125 static int gfar_enet_open(struct net_device *dev)
2126 {
2127 	struct gfar_private *priv = netdev_priv(dev);
2128 	int err;
2129 
2130 	err = init_phy(dev);
2131 	if (err)
2132 		return err;
2133 
2134 	err = gfar_request_irq(priv);
2135 	if (err)
2136 		return err;
2137 
2138 	err = startup_gfar(dev);
2139 	if (err)
2140 		return err;
2141 
2142 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2143 
2144 	return err;
2145 }
2146 
2147 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2148 {
2149 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2150 
2151 	memset(fcb, 0, GMAC_FCB_LEN);
2152 
2153 	return fcb;
2154 }
2155 
2156 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2157 				    int fcb_length)
2158 {
2159 	/* If we're here, it's a IP packet with a TCP or UDP
2160 	 * payload.  We set it to checksum, using a pseudo-header
2161 	 * we provide
2162 	 */
2163 	u8 flags = TXFCB_DEFAULT;
2164 
2165 	/* Tell the controller what the protocol is
2166 	 * And provide the already calculated phcs
2167 	 */
2168 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2169 		flags |= TXFCB_UDP;
2170 		fcb->phcs = udp_hdr(skb)->check;
2171 	} else
2172 		fcb->phcs = tcp_hdr(skb)->check;
2173 
2174 	/* l3os is the distance between the start of the
2175 	 * frame (skb->data) and the start of the IP hdr.
2176 	 * l4os is the distance between the start of the
2177 	 * l3 hdr and the l4 hdr
2178 	 */
2179 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2180 	fcb->l4os = skb_network_header_len(skb);
2181 
2182 	fcb->flags = flags;
2183 }
2184 
2185 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2186 {
2187 	fcb->flags |= TXFCB_VLN;
2188 	fcb->vlctl = skb_vlan_tag_get(skb);
2189 }
2190 
2191 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2192 				      struct txbd8 *base, int ring_size)
2193 {
2194 	struct txbd8 *new_bd = bdp + stride;
2195 
2196 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2197 }
2198 
2199 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2200 				      int ring_size)
2201 {
2202 	return skip_txbd(bdp, 1, base, ring_size);
2203 }
2204 
2205 /* eTSEC12: csum generation not supported for some fcb offsets */
2206 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2207 				       unsigned long fcb_addr)
2208 {
2209 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2210 	       (fcb_addr % 0x20) > 0x18);
2211 }
2212 
2213 /* eTSEC76: csum generation for frames larger than 2500 may
2214  * cause excess delays before start of transmission
2215  */
2216 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2217 				       unsigned int len)
2218 {
2219 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2220 	       (len > 2500));
2221 }
2222 
2223 /* This is called by the kernel when a frame is ready for transmission.
2224  * It is pointed to by the dev->hard_start_xmit function pointer
2225  */
2226 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2227 {
2228 	struct gfar_private *priv = netdev_priv(dev);
2229 	struct gfar_priv_tx_q *tx_queue = NULL;
2230 	struct netdev_queue *txq;
2231 	struct gfar __iomem *regs = NULL;
2232 	struct txfcb *fcb = NULL;
2233 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2234 	u32 lstatus;
2235 	int i, rq = 0;
2236 	int do_tstamp, do_csum, do_vlan;
2237 	u32 bufaddr;
2238 	unsigned long flags;
2239 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2240 
2241 	rq = skb->queue_mapping;
2242 	tx_queue = priv->tx_queue[rq];
2243 	txq = netdev_get_tx_queue(dev, rq);
2244 	base = tx_queue->tx_bd_base;
2245 	regs = tx_queue->grp->regs;
2246 
2247 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2248 	do_vlan = skb_vlan_tag_present(skb);
2249 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2250 		    priv->hwts_tx_en;
2251 
2252 	if (do_csum || do_vlan)
2253 		fcb_len = GMAC_FCB_LEN;
2254 
2255 	/* check if time stamp should be generated */
2256 	if (unlikely(do_tstamp))
2257 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2258 
2259 	/* make space for additional header when fcb is needed */
2260 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2261 		struct sk_buff *skb_new;
2262 
2263 		skb_new = skb_realloc_headroom(skb, fcb_len);
2264 		if (!skb_new) {
2265 			dev->stats.tx_errors++;
2266 			dev_kfree_skb_any(skb);
2267 			return NETDEV_TX_OK;
2268 		}
2269 
2270 		if (skb->sk)
2271 			skb_set_owner_w(skb_new, skb->sk);
2272 		dev_consume_skb_any(skb);
2273 		skb = skb_new;
2274 	}
2275 
2276 	/* total number of fragments in the SKB */
2277 	nr_frags = skb_shinfo(skb)->nr_frags;
2278 
2279 	/* calculate the required number of TxBDs for this skb */
2280 	if (unlikely(do_tstamp))
2281 		nr_txbds = nr_frags + 2;
2282 	else
2283 		nr_txbds = nr_frags + 1;
2284 
2285 	/* check if there is space to queue this packet */
2286 	if (nr_txbds > tx_queue->num_txbdfree) {
2287 		/* no space, stop the queue */
2288 		netif_tx_stop_queue(txq);
2289 		dev->stats.tx_fifo_errors++;
2290 		return NETDEV_TX_BUSY;
2291 	}
2292 
2293 	/* Update transmit stats */
2294 	bytes_sent = skb->len;
2295 	tx_queue->stats.tx_bytes += bytes_sent;
2296 	/* keep Tx bytes on wire for BQL accounting */
2297 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2298 	tx_queue->stats.tx_packets++;
2299 
2300 	txbdp = txbdp_start = tx_queue->cur_tx;
2301 	lstatus = txbdp->lstatus;
2302 
2303 	/* Time stamp insertion requires one additional TxBD */
2304 	if (unlikely(do_tstamp))
2305 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2306 						 tx_queue->tx_ring_size);
2307 
2308 	if (nr_frags == 0) {
2309 		if (unlikely(do_tstamp))
2310 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2311 							  TXBD_INTERRUPT);
2312 		else
2313 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2314 	} else {
2315 		/* Place the fragment addresses and lengths into the TxBDs */
2316 		for (i = 0; i < nr_frags; i++) {
2317 			unsigned int frag_len;
2318 			/* Point at the next BD, wrapping as needed */
2319 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2320 
2321 			frag_len = skb_shinfo(skb)->frags[i].size;
2322 
2323 			lstatus = txbdp->lstatus | frag_len |
2324 				  BD_LFLAG(TXBD_READY);
2325 
2326 			/* Handle the last BD specially */
2327 			if (i == nr_frags - 1)
2328 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2329 
2330 			bufaddr = skb_frag_dma_map(priv->dev,
2331 						   &skb_shinfo(skb)->frags[i],
2332 						   0,
2333 						   frag_len,
2334 						   DMA_TO_DEVICE);
2335 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2336 				goto dma_map_err;
2337 
2338 			/* set the TxBD length and buffer pointer */
2339 			txbdp->bufPtr = bufaddr;
2340 			txbdp->lstatus = lstatus;
2341 		}
2342 
2343 		lstatus = txbdp_start->lstatus;
2344 	}
2345 
2346 	/* Add TxPAL between FCB and frame if required */
2347 	if (unlikely(do_tstamp)) {
2348 		skb_push(skb, GMAC_TXPAL_LEN);
2349 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2350 	}
2351 
2352 	/* Add TxFCB if required */
2353 	if (fcb_len) {
2354 		fcb = gfar_add_fcb(skb);
2355 		lstatus |= BD_LFLAG(TXBD_TOE);
2356 	}
2357 
2358 	/* Set up checksumming */
2359 	if (do_csum) {
2360 		gfar_tx_checksum(skb, fcb, fcb_len);
2361 
2362 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2363 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2364 			__skb_pull(skb, GMAC_FCB_LEN);
2365 			skb_checksum_help(skb);
2366 			if (do_vlan || do_tstamp) {
2367 				/* put back a new fcb for vlan/tstamp TOE */
2368 				fcb = gfar_add_fcb(skb);
2369 			} else {
2370 				/* Tx TOE not used */
2371 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2372 				fcb = NULL;
2373 			}
2374 		}
2375 	}
2376 
2377 	if (do_vlan)
2378 		gfar_tx_vlan(skb, fcb);
2379 
2380 	/* Setup tx hardware time stamping if requested */
2381 	if (unlikely(do_tstamp)) {
2382 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2383 		fcb->ptp = 1;
2384 	}
2385 
2386 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2387 				 DMA_TO_DEVICE);
2388 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2389 		goto dma_map_err;
2390 
2391 	txbdp_start->bufPtr = bufaddr;
2392 
2393 	/* If time stamping is requested one additional TxBD must be set up. The
2394 	 * first TxBD points to the FCB and must have a data length of
2395 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2396 	 * the full frame length.
2397 	 */
2398 	if (unlikely(do_tstamp)) {
2399 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2400 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2401 					 (skb_headlen(skb) - fcb_len);
2402 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2403 	} else {
2404 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2405 	}
2406 
2407 	netdev_tx_sent_queue(txq, bytes_sent);
2408 
2409 	/* We can work in parallel with gfar_clean_tx_ring(), except
2410 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2411 	 * when we were reading the num_txbdfree and checking for available
2412 	 * space, that's because outside of this function it can only grow,
2413 	 * and once we've got needed space, it cannot suddenly disappear.
2414 	 *
2415 	 * The lock also protects us from gfar_error(), which can modify
2416 	 * regs->tstat and thus retrigger the transfers, which is why we
2417 	 * also must grab the lock before setting ready bit for the first
2418 	 * to be transmitted BD.
2419 	 */
2420 	spin_lock_irqsave(&tx_queue->txlock, flags);
2421 
2422 	gfar_wmb();
2423 
2424 	txbdp_start->lstatus = lstatus;
2425 
2426 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2427 
2428 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2429 
2430 	/* Update the current skb pointer to the next entry we will use
2431 	 * (wrapping if necessary)
2432 	 */
2433 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2434 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2435 
2436 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2437 
2438 	/* reduce TxBD free count */
2439 	tx_queue->num_txbdfree -= (nr_txbds);
2440 
2441 	/* If the next BD still needs to be cleaned up, then the bds
2442 	 * are full.  We need to tell the kernel to stop sending us stuff.
2443 	 */
2444 	if (!tx_queue->num_txbdfree) {
2445 		netif_tx_stop_queue(txq);
2446 
2447 		dev->stats.tx_fifo_errors++;
2448 	}
2449 
2450 	/* Tell the DMA to go go go */
2451 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2452 
2453 	/* Unlock priv */
2454 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2455 
2456 	return NETDEV_TX_OK;
2457 
2458 dma_map_err:
2459 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2460 	if (do_tstamp)
2461 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2462 	for (i = 0; i < nr_frags; i++) {
2463 		lstatus = txbdp->lstatus;
2464 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2465 			break;
2466 
2467 		txbdp->lstatus = lstatus & ~BD_LFLAG(TXBD_READY);
2468 		bufaddr = txbdp->bufPtr;
2469 		dma_unmap_page(priv->dev, bufaddr, txbdp->length,
2470 			       DMA_TO_DEVICE);
2471 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2472 	}
2473 	gfar_wmb();
2474 	dev_kfree_skb_any(skb);
2475 	return NETDEV_TX_OK;
2476 }
2477 
2478 /* Stops the kernel queue, and halts the controller */
2479 static int gfar_close(struct net_device *dev)
2480 {
2481 	struct gfar_private *priv = netdev_priv(dev);
2482 
2483 	cancel_work_sync(&priv->reset_task);
2484 	stop_gfar(dev);
2485 
2486 	/* Disconnect from the PHY */
2487 	phy_disconnect(priv->phydev);
2488 	priv->phydev = NULL;
2489 
2490 	gfar_free_irq(priv);
2491 
2492 	return 0;
2493 }
2494 
2495 /* Changes the mac address if the controller is not running. */
2496 static int gfar_set_mac_address(struct net_device *dev)
2497 {
2498 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2499 
2500 	return 0;
2501 }
2502 
2503 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2504 {
2505 	struct gfar_private *priv = netdev_priv(dev);
2506 	int frame_size = new_mtu + ETH_HLEN;
2507 
2508 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2509 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2510 		return -EINVAL;
2511 	}
2512 
2513 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2514 		cpu_relax();
2515 
2516 	if (dev->flags & IFF_UP)
2517 		stop_gfar(dev);
2518 
2519 	dev->mtu = new_mtu;
2520 
2521 	if (dev->flags & IFF_UP)
2522 		startup_gfar(dev);
2523 
2524 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2525 
2526 	return 0;
2527 }
2528 
2529 void reset_gfar(struct net_device *ndev)
2530 {
2531 	struct gfar_private *priv = netdev_priv(ndev);
2532 
2533 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2534 		cpu_relax();
2535 
2536 	stop_gfar(ndev);
2537 	startup_gfar(ndev);
2538 
2539 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2540 }
2541 
2542 /* gfar_reset_task gets scheduled when a packet has not been
2543  * transmitted after a set amount of time.
2544  * For now, assume that clearing out all the structures, and
2545  * starting over will fix the problem.
2546  */
2547 static void gfar_reset_task(struct work_struct *work)
2548 {
2549 	struct gfar_private *priv = container_of(work, struct gfar_private,
2550 						 reset_task);
2551 	reset_gfar(priv->ndev);
2552 }
2553 
2554 static void gfar_timeout(struct net_device *dev)
2555 {
2556 	struct gfar_private *priv = netdev_priv(dev);
2557 
2558 	dev->stats.tx_errors++;
2559 	schedule_work(&priv->reset_task);
2560 }
2561 
2562 static void gfar_align_skb(struct sk_buff *skb)
2563 {
2564 	/* We need the data buffer to be aligned properly.  We will reserve
2565 	 * as many bytes as needed to align the data properly
2566 	 */
2567 	skb_reserve(skb, RXBUF_ALIGNMENT -
2568 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2569 }
2570 
2571 /* Interrupt Handler for Transmit complete */
2572 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2573 {
2574 	struct net_device *dev = tx_queue->dev;
2575 	struct netdev_queue *txq;
2576 	struct gfar_private *priv = netdev_priv(dev);
2577 	struct txbd8 *bdp, *next = NULL;
2578 	struct txbd8 *lbdp = NULL;
2579 	struct txbd8 *base = tx_queue->tx_bd_base;
2580 	struct sk_buff *skb;
2581 	int skb_dirtytx;
2582 	int tx_ring_size = tx_queue->tx_ring_size;
2583 	int frags = 0, nr_txbds = 0;
2584 	int i;
2585 	int howmany = 0;
2586 	int tqi = tx_queue->qindex;
2587 	unsigned int bytes_sent = 0;
2588 	u32 lstatus;
2589 	size_t buflen;
2590 
2591 	txq = netdev_get_tx_queue(dev, tqi);
2592 	bdp = tx_queue->dirty_tx;
2593 	skb_dirtytx = tx_queue->skb_dirtytx;
2594 
2595 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2596 		unsigned long flags;
2597 
2598 		frags = skb_shinfo(skb)->nr_frags;
2599 
2600 		/* When time stamping, one additional TxBD must be freed.
2601 		 * Also, we need to dma_unmap_single() the TxPAL.
2602 		 */
2603 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2604 			nr_txbds = frags + 2;
2605 		else
2606 			nr_txbds = frags + 1;
2607 
2608 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2609 
2610 		lstatus = lbdp->lstatus;
2611 
2612 		/* Only clean completed frames */
2613 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2614 		    (lstatus & BD_LENGTH_MASK))
2615 			break;
2616 
2617 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2618 			next = next_txbd(bdp, base, tx_ring_size);
2619 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2620 		} else
2621 			buflen = bdp->length;
2622 
2623 		dma_unmap_single(priv->dev, bdp->bufPtr,
2624 				 buflen, DMA_TO_DEVICE);
2625 
2626 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2627 			struct skb_shared_hwtstamps shhwtstamps;
2628 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2629 
2630 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2631 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2632 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2633 			skb_tstamp_tx(skb, &shhwtstamps);
2634 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2635 			bdp = next;
2636 		}
2637 
2638 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2639 		bdp = next_txbd(bdp, base, tx_ring_size);
2640 
2641 		for (i = 0; i < frags; i++) {
2642 			dma_unmap_page(priv->dev, bdp->bufPtr,
2643 				       bdp->length, DMA_TO_DEVICE);
2644 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2645 			bdp = next_txbd(bdp, base, tx_ring_size);
2646 		}
2647 
2648 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2649 
2650 		dev_kfree_skb_any(skb);
2651 
2652 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2653 
2654 		skb_dirtytx = (skb_dirtytx + 1) &
2655 			      TX_RING_MOD_MASK(tx_ring_size);
2656 
2657 		howmany++;
2658 		spin_lock_irqsave(&tx_queue->txlock, flags);
2659 		tx_queue->num_txbdfree += nr_txbds;
2660 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2661 	}
2662 
2663 	/* If we freed a buffer, we can restart transmission, if necessary */
2664 	if (tx_queue->num_txbdfree &&
2665 	    netif_tx_queue_stopped(txq) &&
2666 	    !(test_bit(GFAR_DOWN, &priv->state)))
2667 		netif_wake_subqueue(priv->ndev, tqi);
2668 
2669 	/* Update dirty indicators */
2670 	tx_queue->skb_dirtytx = skb_dirtytx;
2671 	tx_queue->dirty_tx = bdp;
2672 
2673 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2674 }
2675 
2676 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2677 {
2678 	struct gfar_private *priv = netdev_priv(dev);
2679 	struct sk_buff *skb;
2680 
2681 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2682 	if (!skb)
2683 		return NULL;
2684 
2685 	gfar_align_skb(skb);
2686 
2687 	return skb;
2688 }
2689 
2690 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2691 {
2692 	struct gfar_private *priv = netdev_priv(dev);
2693 	struct sk_buff *skb;
2694 	dma_addr_t addr;
2695 
2696 	skb = gfar_alloc_skb(dev);
2697 	if (!skb)
2698 		return NULL;
2699 
2700 	addr = dma_map_single(priv->dev, skb->data,
2701 			      priv->rx_buffer_size, DMA_FROM_DEVICE);
2702 	if (unlikely(dma_mapping_error(priv->dev, addr))) {
2703 		dev_kfree_skb_any(skb);
2704 		return NULL;
2705 	}
2706 
2707 	*bufaddr = addr;
2708 	return skb;
2709 }
2710 
2711 static inline void count_errors(unsigned short status, struct net_device *dev)
2712 {
2713 	struct gfar_private *priv = netdev_priv(dev);
2714 	struct net_device_stats *stats = &dev->stats;
2715 	struct gfar_extra_stats *estats = &priv->extra_stats;
2716 
2717 	/* If the packet was truncated, none of the other errors matter */
2718 	if (status & RXBD_TRUNCATED) {
2719 		stats->rx_length_errors++;
2720 
2721 		atomic64_inc(&estats->rx_trunc);
2722 
2723 		return;
2724 	}
2725 	/* Count the errors, if there were any */
2726 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2727 		stats->rx_length_errors++;
2728 
2729 		if (status & RXBD_LARGE)
2730 			atomic64_inc(&estats->rx_large);
2731 		else
2732 			atomic64_inc(&estats->rx_short);
2733 	}
2734 	if (status & RXBD_NONOCTET) {
2735 		stats->rx_frame_errors++;
2736 		atomic64_inc(&estats->rx_nonoctet);
2737 	}
2738 	if (status & RXBD_CRCERR) {
2739 		atomic64_inc(&estats->rx_crcerr);
2740 		stats->rx_crc_errors++;
2741 	}
2742 	if (status & RXBD_OVERRUN) {
2743 		atomic64_inc(&estats->rx_overrun);
2744 		stats->rx_crc_errors++;
2745 	}
2746 }
2747 
2748 irqreturn_t gfar_receive(int irq, void *grp_id)
2749 {
2750 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2751 	unsigned long flags;
2752 	u32 imask;
2753 
2754 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2755 		spin_lock_irqsave(&grp->grplock, flags);
2756 		imask = gfar_read(&grp->regs->imask);
2757 		imask &= IMASK_RX_DISABLED;
2758 		gfar_write(&grp->regs->imask, imask);
2759 		spin_unlock_irqrestore(&grp->grplock, flags);
2760 		__napi_schedule(&grp->napi_rx);
2761 	} else {
2762 		/* Clear IEVENT, so interrupts aren't called again
2763 		 * because of the packets that have already arrived.
2764 		 */
2765 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2766 	}
2767 
2768 	return IRQ_HANDLED;
2769 }
2770 
2771 /* Interrupt Handler for Transmit complete */
2772 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2773 {
2774 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2775 	unsigned long flags;
2776 	u32 imask;
2777 
2778 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2779 		spin_lock_irqsave(&grp->grplock, flags);
2780 		imask = gfar_read(&grp->regs->imask);
2781 		imask &= IMASK_TX_DISABLED;
2782 		gfar_write(&grp->regs->imask, imask);
2783 		spin_unlock_irqrestore(&grp->grplock, flags);
2784 		__napi_schedule(&grp->napi_tx);
2785 	} else {
2786 		/* Clear IEVENT, so interrupts aren't called again
2787 		 * because of the packets that have already arrived.
2788 		 */
2789 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2790 	}
2791 
2792 	return IRQ_HANDLED;
2793 }
2794 
2795 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2796 {
2797 	/* If valid headers were found, and valid sums
2798 	 * were verified, then we tell the kernel that no
2799 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2800 	 */
2801 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2802 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2803 	else
2804 		skb_checksum_none_assert(skb);
2805 }
2806 
2807 
2808 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2809 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2810 			       int amount_pull, struct napi_struct *napi)
2811 {
2812 	struct gfar_private *priv = netdev_priv(dev);
2813 	struct rxfcb *fcb = NULL;
2814 
2815 	/* fcb is at the beginning if exists */
2816 	fcb = (struct rxfcb *)skb->data;
2817 
2818 	/* Remove the FCB from the skb
2819 	 * Remove the padded bytes, if there are any
2820 	 */
2821 	if (amount_pull) {
2822 		skb_record_rx_queue(skb, fcb->rq);
2823 		skb_pull(skb, amount_pull);
2824 	}
2825 
2826 	/* Get receive timestamp from the skb */
2827 	if (priv->hwts_rx_en) {
2828 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2829 		u64 *ns = (u64 *) skb->data;
2830 
2831 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2832 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2833 	}
2834 
2835 	if (priv->padding)
2836 		skb_pull(skb, priv->padding);
2837 
2838 	if (dev->features & NETIF_F_RXCSUM)
2839 		gfar_rx_checksum(skb, fcb);
2840 
2841 	/* Tell the skb what kind of packet this is */
2842 	skb->protocol = eth_type_trans(skb, dev);
2843 
2844 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2845 	 * Even if vlan rx accel is disabled, on some chips
2846 	 * RXFCB_VLN is pseudo randomly set.
2847 	 */
2848 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2849 	    fcb->flags & RXFCB_VLN)
2850 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2851 
2852 	/* Send the packet up the stack */
2853 	napi_gro_receive(napi, skb);
2854 
2855 }
2856 
2857 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2858  * until the budget/quota has been reached. Returns the number
2859  * of frames handled
2860  */
2861 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2862 {
2863 	struct net_device *dev = rx_queue->dev;
2864 	struct rxbd8 *bdp, *base;
2865 	struct sk_buff *skb;
2866 	int pkt_len;
2867 	int amount_pull;
2868 	int howmany = 0;
2869 	struct gfar_private *priv = netdev_priv(dev);
2870 
2871 	/* Get the first full descriptor */
2872 	bdp = rx_queue->cur_rx;
2873 	base = rx_queue->rx_bd_base;
2874 
2875 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2876 
2877 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2878 		struct sk_buff *newskb;
2879 		dma_addr_t bufaddr;
2880 
2881 		rmb();
2882 
2883 		/* Add another skb for the future */
2884 		newskb = gfar_new_skb(dev, &bufaddr);
2885 
2886 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2887 
2888 		dma_unmap_single(priv->dev, bdp->bufPtr,
2889 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2890 
2891 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2892 			     bdp->length > priv->rx_buffer_size))
2893 			bdp->status = RXBD_LARGE;
2894 
2895 		/* We drop the frame if we failed to allocate a new buffer */
2896 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2897 			     bdp->status & RXBD_ERR)) {
2898 			count_errors(bdp->status, dev);
2899 
2900 			if (unlikely(!newskb)) {
2901 				newskb = skb;
2902 				bufaddr = bdp->bufPtr;
2903 			} else if (skb)
2904 				dev_kfree_skb(skb);
2905 		} else {
2906 			/* Increment the number of packets */
2907 			rx_queue->stats.rx_packets++;
2908 			howmany++;
2909 
2910 			if (likely(skb)) {
2911 				pkt_len = bdp->length - ETH_FCS_LEN;
2912 				/* Remove the FCS from the packet length */
2913 				skb_put(skb, pkt_len);
2914 				rx_queue->stats.rx_bytes += pkt_len;
2915 				skb_record_rx_queue(skb, rx_queue->qindex);
2916 				gfar_process_frame(dev, skb, amount_pull,
2917 						   &rx_queue->grp->napi_rx);
2918 
2919 			} else {
2920 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2921 				rx_queue->stats.rx_dropped++;
2922 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2923 			}
2924 
2925 		}
2926 
2927 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2928 
2929 		/* Setup the new bdp */
2930 		gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2931 
2932 		/* Update Last Free RxBD pointer for LFC */
2933 		if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2934 			gfar_write(rx_queue->rfbptr, (u32)bdp);
2935 
2936 		/* Update to the next pointer */
2937 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2938 
2939 		/* update to point at the next skb */
2940 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2941 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2942 	}
2943 
2944 	/* Update the current rxbd pointer to be the next one */
2945 	rx_queue->cur_rx = bdp;
2946 
2947 	return howmany;
2948 }
2949 
2950 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2951 {
2952 	struct gfar_priv_grp *gfargrp =
2953 		container_of(napi, struct gfar_priv_grp, napi_rx);
2954 	struct gfar __iomem *regs = gfargrp->regs;
2955 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2956 	int work_done = 0;
2957 
2958 	/* Clear IEVENT, so interrupts aren't called again
2959 	 * because of the packets that have already arrived
2960 	 */
2961 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2962 
2963 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2964 
2965 	if (work_done < budget) {
2966 		u32 imask;
2967 		napi_complete(napi);
2968 		/* Clear the halt bit in RSTAT */
2969 		gfar_write(&regs->rstat, gfargrp->rstat);
2970 
2971 		spin_lock_irq(&gfargrp->grplock);
2972 		imask = gfar_read(&regs->imask);
2973 		imask |= IMASK_RX_DEFAULT;
2974 		gfar_write(&regs->imask, imask);
2975 		spin_unlock_irq(&gfargrp->grplock);
2976 	}
2977 
2978 	return work_done;
2979 }
2980 
2981 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2982 {
2983 	struct gfar_priv_grp *gfargrp =
2984 		container_of(napi, struct gfar_priv_grp, napi_tx);
2985 	struct gfar __iomem *regs = gfargrp->regs;
2986 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2987 	u32 imask;
2988 
2989 	/* Clear IEVENT, so interrupts aren't called again
2990 	 * because of the packets that have already arrived
2991 	 */
2992 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2993 
2994 	/* run Tx cleanup to completion */
2995 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2996 		gfar_clean_tx_ring(tx_queue);
2997 
2998 	napi_complete(napi);
2999 
3000 	spin_lock_irq(&gfargrp->grplock);
3001 	imask = gfar_read(&regs->imask);
3002 	imask |= IMASK_TX_DEFAULT;
3003 	gfar_write(&regs->imask, imask);
3004 	spin_unlock_irq(&gfargrp->grplock);
3005 
3006 	return 0;
3007 }
3008 
3009 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3010 {
3011 	struct gfar_priv_grp *gfargrp =
3012 		container_of(napi, struct gfar_priv_grp, napi_rx);
3013 	struct gfar_private *priv = gfargrp->priv;
3014 	struct gfar __iomem *regs = gfargrp->regs;
3015 	struct gfar_priv_rx_q *rx_queue = NULL;
3016 	int work_done = 0, work_done_per_q = 0;
3017 	int i, budget_per_q = 0;
3018 	unsigned long rstat_rxf;
3019 	int num_act_queues;
3020 
3021 	/* Clear IEVENT, so interrupts aren't called again
3022 	 * because of the packets that have already arrived
3023 	 */
3024 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3025 
3026 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3027 
3028 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3029 	if (num_act_queues)
3030 		budget_per_q = budget/num_act_queues;
3031 
3032 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3033 		/* skip queue if not active */
3034 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3035 			continue;
3036 
3037 		rx_queue = priv->rx_queue[i];
3038 		work_done_per_q =
3039 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3040 		work_done += work_done_per_q;
3041 
3042 		/* finished processing this queue */
3043 		if (work_done_per_q < budget_per_q) {
3044 			/* clear active queue hw indication */
3045 			gfar_write(&regs->rstat,
3046 				   RSTAT_CLEAR_RXF0 >> i);
3047 			num_act_queues--;
3048 
3049 			if (!num_act_queues)
3050 				break;
3051 		}
3052 	}
3053 
3054 	if (!num_act_queues) {
3055 		u32 imask;
3056 		napi_complete(napi);
3057 
3058 		/* Clear the halt bit in RSTAT */
3059 		gfar_write(&regs->rstat, gfargrp->rstat);
3060 
3061 		spin_lock_irq(&gfargrp->grplock);
3062 		imask = gfar_read(&regs->imask);
3063 		imask |= IMASK_RX_DEFAULT;
3064 		gfar_write(&regs->imask, imask);
3065 		spin_unlock_irq(&gfargrp->grplock);
3066 	}
3067 
3068 	return work_done;
3069 }
3070 
3071 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3072 {
3073 	struct gfar_priv_grp *gfargrp =
3074 		container_of(napi, struct gfar_priv_grp, napi_tx);
3075 	struct gfar_private *priv = gfargrp->priv;
3076 	struct gfar __iomem *regs = gfargrp->regs;
3077 	struct gfar_priv_tx_q *tx_queue = NULL;
3078 	int has_tx_work = 0;
3079 	int i;
3080 
3081 	/* Clear IEVENT, so interrupts aren't called again
3082 	 * because of the packets that have already arrived
3083 	 */
3084 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3085 
3086 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3087 		tx_queue = priv->tx_queue[i];
3088 		/* run Tx cleanup to completion */
3089 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3090 			gfar_clean_tx_ring(tx_queue);
3091 			has_tx_work = 1;
3092 		}
3093 	}
3094 
3095 	if (!has_tx_work) {
3096 		u32 imask;
3097 		napi_complete(napi);
3098 
3099 		spin_lock_irq(&gfargrp->grplock);
3100 		imask = gfar_read(&regs->imask);
3101 		imask |= IMASK_TX_DEFAULT;
3102 		gfar_write(&regs->imask, imask);
3103 		spin_unlock_irq(&gfargrp->grplock);
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 
3110 #ifdef CONFIG_NET_POLL_CONTROLLER
3111 /* Polling 'interrupt' - used by things like netconsole to send skbs
3112  * without having to re-enable interrupts. It's not called while
3113  * the interrupt routine is executing.
3114  */
3115 static void gfar_netpoll(struct net_device *dev)
3116 {
3117 	struct gfar_private *priv = netdev_priv(dev);
3118 	int i;
3119 
3120 	/* If the device has multiple interrupts, run tx/rx */
3121 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3122 		for (i = 0; i < priv->num_grps; i++) {
3123 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3124 
3125 			disable_irq(gfar_irq(grp, TX)->irq);
3126 			disable_irq(gfar_irq(grp, RX)->irq);
3127 			disable_irq(gfar_irq(grp, ER)->irq);
3128 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3129 			enable_irq(gfar_irq(grp, ER)->irq);
3130 			enable_irq(gfar_irq(grp, RX)->irq);
3131 			enable_irq(gfar_irq(grp, TX)->irq);
3132 		}
3133 	} else {
3134 		for (i = 0; i < priv->num_grps; i++) {
3135 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3136 
3137 			disable_irq(gfar_irq(grp, TX)->irq);
3138 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3139 			enable_irq(gfar_irq(grp, TX)->irq);
3140 		}
3141 	}
3142 }
3143 #endif
3144 
3145 /* The interrupt handler for devices with one interrupt */
3146 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3147 {
3148 	struct gfar_priv_grp *gfargrp = grp_id;
3149 
3150 	/* Save ievent for future reference */
3151 	u32 events = gfar_read(&gfargrp->regs->ievent);
3152 
3153 	/* Check for reception */
3154 	if (events & IEVENT_RX_MASK)
3155 		gfar_receive(irq, grp_id);
3156 
3157 	/* Check for transmit completion */
3158 	if (events & IEVENT_TX_MASK)
3159 		gfar_transmit(irq, grp_id);
3160 
3161 	/* Check for errors */
3162 	if (events & IEVENT_ERR_MASK)
3163 		gfar_error(irq, grp_id);
3164 
3165 	return IRQ_HANDLED;
3166 }
3167 
3168 /* Called every time the controller might need to be made
3169  * aware of new link state.  The PHY code conveys this
3170  * information through variables in the phydev structure, and this
3171  * function converts those variables into the appropriate
3172  * register values, and can bring down the device if needed.
3173  */
3174 static void adjust_link(struct net_device *dev)
3175 {
3176 	struct gfar_private *priv = netdev_priv(dev);
3177 	struct phy_device *phydev = priv->phydev;
3178 
3179 	if (unlikely(phydev->link != priv->oldlink ||
3180 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3181 				       phydev->speed != priv->oldspeed))))
3182 		gfar_update_link_state(priv);
3183 }
3184 
3185 /* Update the hash table based on the current list of multicast
3186  * addresses we subscribe to.  Also, change the promiscuity of
3187  * the device based on the flags (this function is called
3188  * whenever dev->flags is changed
3189  */
3190 static void gfar_set_multi(struct net_device *dev)
3191 {
3192 	struct netdev_hw_addr *ha;
3193 	struct gfar_private *priv = netdev_priv(dev);
3194 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3195 	u32 tempval;
3196 
3197 	if (dev->flags & IFF_PROMISC) {
3198 		/* Set RCTRL to PROM */
3199 		tempval = gfar_read(&regs->rctrl);
3200 		tempval |= RCTRL_PROM;
3201 		gfar_write(&regs->rctrl, tempval);
3202 	} else {
3203 		/* Set RCTRL to not PROM */
3204 		tempval = gfar_read(&regs->rctrl);
3205 		tempval &= ~(RCTRL_PROM);
3206 		gfar_write(&regs->rctrl, tempval);
3207 	}
3208 
3209 	if (dev->flags & IFF_ALLMULTI) {
3210 		/* Set the hash to rx all multicast frames */
3211 		gfar_write(&regs->igaddr0, 0xffffffff);
3212 		gfar_write(&regs->igaddr1, 0xffffffff);
3213 		gfar_write(&regs->igaddr2, 0xffffffff);
3214 		gfar_write(&regs->igaddr3, 0xffffffff);
3215 		gfar_write(&regs->igaddr4, 0xffffffff);
3216 		gfar_write(&regs->igaddr5, 0xffffffff);
3217 		gfar_write(&regs->igaddr6, 0xffffffff);
3218 		gfar_write(&regs->igaddr7, 0xffffffff);
3219 		gfar_write(&regs->gaddr0, 0xffffffff);
3220 		gfar_write(&regs->gaddr1, 0xffffffff);
3221 		gfar_write(&regs->gaddr2, 0xffffffff);
3222 		gfar_write(&regs->gaddr3, 0xffffffff);
3223 		gfar_write(&regs->gaddr4, 0xffffffff);
3224 		gfar_write(&regs->gaddr5, 0xffffffff);
3225 		gfar_write(&regs->gaddr6, 0xffffffff);
3226 		gfar_write(&regs->gaddr7, 0xffffffff);
3227 	} else {
3228 		int em_num;
3229 		int idx;
3230 
3231 		/* zero out the hash */
3232 		gfar_write(&regs->igaddr0, 0x0);
3233 		gfar_write(&regs->igaddr1, 0x0);
3234 		gfar_write(&regs->igaddr2, 0x0);
3235 		gfar_write(&regs->igaddr3, 0x0);
3236 		gfar_write(&regs->igaddr4, 0x0);
3237 		gfar_write(&regs->igaddr5, 0x0);
3238 		gfar_write(&regs->igaddr6, 0x0);
3239 		gfar_write(&regs->igaddr7, 0x0);
3240 		gfar_write(&regs->gaddr0, 0x0);
3241 		gfar_write(&regs->gaddr1, 0x0);
3242 		gfar_write(&regs->gaddr2, 0x0);
3243 		gfar_write(&regs->gaddr3, 0x0);
3244 		gfar_write(&regs->gaddr4, 0x0);
3245 		gfar_write(&regs->gaddr5, 0x0);
3246 		gfar_write(&regs->gaddr6, 0x0);
3247 		gfar_write(&regs->gaddr7, 0x0);
3248 
3249 		/* If we have extended hash tables, we need to
3250 		 * clear the exact match registers to prepare for
3251 		 * setting them
3252 		 */
3253 		if (priv->extended_hash) {
3254 			em_num = GFAR_EM_NUM + 1;
3255 			gfar_clear_exact_match(dev);
3256 			idx = 1;
3257 		} else {
3258 			idx = 0;
3259 			em_num = 0;
3260 		}
3261 
3262 		if (netdev_mc_empty(dev))
3263 			return;
3264 
3265 		/* Parse the list, and set the appropriate bits */
3266 		netdev_for_each_mc_addr(ha, dev) {
3267 			if (idx < em_num) {
3268 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3269 				idx++;
3270 			} else
3271 				gfar_set_hash_for_addr(dev, ha->addr);
3272 		}
3273 	}
3274 }
3275 
3276 
3277 /* Clears each of the exact match registers to zero, so they
3278  * don't interfere with normal reception
3279  */
3280 static void gfar_clear_exact_match(struct net_device *dev)
3281 {
3282 	int idx;
3283 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3284 
3285 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3286 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3287 }
3288 
3289 /* Set the appropriate hash bit for the given addr */
3290 /* The algorithm works like so:
3291  * 1) Take the Destination Address (ie the multicast address), and
3292  * do a CRC on it (little endian), and reverse the bits of the
3293  * result.
3294  * 2) Use the 8 most significant bits as a hash into a 256-entry
3295  * table.  The table is controlled through 8 32-bit registers:
3296  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3297  * gaddr7.  This means that the 3 most significant bits in the
3298  * hash index which gaddr register to use, and the 5 other bits
3299  * indicate which bit (assuming an IBM numbering scheme, which
3300  * for PowerPC (tm) is usually the case) in the register holds
3301  * the entry.
3302  */
3303 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3304 {
3305 	u32 tempval;
3306 	struct gfar_private *priv = netdev_priv(dev);
3307 	u32 result = ether_crc(ETH_ALEN, addr);
3308 	int width = priv->hash_width;
3309 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3310 	u8 whichreg = result >> (32 - width + 5);
3311 	u32 value = (1 << (31-whichbit));
3312 
3313 	tempval = gfar_read(priv->hash_regs[whichreg]);
3314 	tempval |= value;
3315 	gfar_write(priv->hash_regs[whichreg], tempval);
3316 }
3317 
3318 
3319 /* There are multiple MAC Address register pairs on some controllers
3320  * This function sets the numth pair to a given address
3321  */
3322 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3323 				  const u8 *addr)
3324 {
3325 	struct gfar_private *priv = netdev_priv(dev);
3326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3327 	u32 tempval;
3328 	u32 __iomem *macptr = &regs->macstnaddr1;
3329 
3330 	macptr += num*2;
3331 
3332 	/* For a station address of 0x12345678ABCD in transmission
3333 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3334 	 * MACnADDR2 is set to 0x34120000.
3335 	 */
3336 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3337 		  (addr[3] << 8)  |  addr[2];
3338 
3339 	gfar_write(macptr, tempval);
3340 
3341 	tempval = (addr[1] << 24) | (addr[0] << 16);
3342 
3343 	gfar_write(macptr+1, tempval);
3344 }
3345 
3346 /* GFAR error interrupt handler */
3347 static irqreturn_t gfar_error(int irq, void *grp_id)
3348 {
3349 	struct gfar_priv_grp *gfargrp = grp_id;
3350 	struct gfar __iomem *regs = gfargrp->regs;
3351 	struct gfar_private *priv= gfargrp->priv;
3352 	struct net_device *dev = priv->ndev;
3353 
3354 	/* Save ievent for future reference */
3355 	u32 events = gfar_read(&regs->ievent);
3356 
3357 	/* Clear IEVENT */
3358 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3359 
3360 	/* Magic Packet is not an error. */
3361 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3362 	    (events & IEVENT_MAG))
3363 		events &= ~IEVENT_MAG;
3364 
3365 	/* Hmm... */
3366 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3367 		netdev_dbg(dev,
3368 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3369 			   events, gfar_read(&regs->imask));
3370 
3371 	/* Update the error counters */
3372 	if (events & IEVENT_TXE) {
3373 		dev->stats.tx_errors++;
3374 
3375 		if (events & IEVENT_LC)
3376 			dev->stats.tx_window_errors++;
3377 		if (events & IEVENT_CRL)
3378 			dev->stats.tx_aborted_errors++;
3379 		if (events & IEVENT_XFUN) {
3380 			unsigned long flags;
3381 
3382 			netif_dbg(priv, tx_err, dev,
3383 				  "TX FIFO underrun, packet dropped\n");
3384 			dev->stats.tx_dropped++;
3385 			atomic64_inc(&priv->extra_stats.tx_underrun);
3386 
3387 			local_irq_save(flags);
3388 			lock_tx_qs(priv);
3389 
3390 			/* Reactivate the Tx Queues */
3391 			gfar_write(&regs->tstat, gfargrp->tstat);
3392 
3393 			unlock_tx_qs(priv);
3394 			local_irq_restore(flags);
3395 		}
3396 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3397 	}
3398 	if (events & IEVENT_BSY) {
3399 		dev->stats.rx_errors++;
3400 		atomic64_inc(&priv->extra_stats.rx_bsy);
3401 
3402 		gfar_receive(irq, grp_id);
3403 
3404 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3405 			  gfar_read(&regs->rstat));
3406 	}
3407 	if (events & IEVENT_BABR) {
3408 		dev->stats.rx_errors++;
3409 		atomic64_inc(&priv->extra_stats.rx_babr);
3410 
3411 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3412 	}
3413 	if (events & IEVENT_EBERR) {
3414 		atomic64_inc(&priv->extra_stats.eberr);
3415 		netif_dbg(priv, rx_err, dev, "bus error\n");
3416 	}
3417 	if (events & IEVENT_RXC)
3418 		netif_dbg(priv, rx_status, dev, "control frame\n");
3419 
3420 	if (events & IEVENT_BABT) {
3421 		atomic64_inc(&priv->extra_stats.tx_babt);
3422 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3423 	}
3424 	return IRQ_HANDLED;
3425 }
3426 
3427 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3428 {
3429 	struct phy_device *phydev = priv->phydev;
3430 	u32 val = 0;
3431 
3432 	if (!phydev->duplex)
3433 		return val;
3434 
3435 	if (!priv->pause_aneg_en) {
3436 		if (priv->tx_pause_en)
3437 			val |= MACCFG1_TX_FLOW;
3438 		if (priv->rx_pause_en)
3439 			val |= MACCFG1_RX_FLOW;
3440 	} else {
3441 		u16 lcl_adv, rmt_adv;
3442 		u8 flowctrl;
3443 		/* get link partner capabilities */
3444 		rmt_adv = 0;
3445 		if (phydev->pause)
3446 			rmt_adv = LPA_PAUSE_CAP;
3447 		if (phydev->asym_pause)
3448 			rmt_adv |= LPA_PAUSE_ASYM;
3449 
3450 		lcl_adv = 0;
3451 		if (phydev->advertising & ADVERTISED_Pause)
3452 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3453 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3454 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3455 
3456 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3457 		if (flowctrl & FLOW_CTRL_TX)
3458 			val |= MACCFG1_TX_FLOW;
3459 		if (flowctrl & FLOW_CTRL_RX)
3460 			val |= MACCFG1_RX_FLOW;
3461 	}
3462 
3463 	return val;
3464 }
3465 
3466 static noinline void gfar_update_link_state(struct gfar_private *priv)
3467 {
3468 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3469 	struct phy_device *phydev = priv->phydev;
3470 	struct gfar_priv_rx_q *rx_queue = NULL;
3471 	int i;
3472 	struct rxbd8 *bdp;
3473 
3474 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3475 		return;
3476 
3477 	if (phydev->link) {
3478 		u32 tempval1 = gfar_read(&regs->maccfg1);
3479 		u32 tempval = gfar_read(&regs->maccfg2);
3480 		u32 ecntrl = gfar_read(&regs->ecntrl);
3481 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3482 
3483 		if (phydev->duplex != priv->oldduplex) {
3484 			if (!(phydev->duplex))
3485 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3486 			else
3487 				tempval |= MACCFG2_FULL_DUPLEX;
3488 
3489 			priv->oldduplex = phydev->duplex;
3490 		}
3491 
3492 		if (phydev->speed != priv->oldspeed) {
3493 			switch (phydev->speed) {
3494 			case 1000:
3495 				tempval =
3496 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3497 
3498 				ecntrl &= ~(ECNTRL_R100);
3499 				break;
3500 			case 100:
3501 			case 10:
3502 				tempval =
3503 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3504 
3505 				/* Reduced mode distinguishes
3506 				 * between 10 and 100
3507 				 */
3508 				if (phydev->speed == SPEED_100)
3509 					ecntrl |= ECNTRL_R100;
3510 				else
3511 					ecntrl &= ~(ECNTRL_R100);
3512 				break;
3513 			default:
3514 				netif_warn(priv, link, priv->ndev,
3515 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3516 					   phydev->speed);
3517 				break;
3518 			}
3519 
3520 			priv->oldspeed = phydev->speed;
3521 		}
3522 
3523 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3524 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3525 
3526 		/* Turn last free buffer recording on */
3527 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3528 			for (i = 0; i < priv->num_rx_queues; i++) {
3529 				rx_queue = priv->rx_queue[i];
3530 				bdp = rx_queue->cur_rx;
3531 				/* skip to previous bd */
3532 				bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3533 					      rx_queue->rx_bd_base,
3534 					      rx_queue->rx_ring_size);
3535 
3536 				if (rx_queue->rfbptr)
3537 					gfar_write(rx_queue->rfbptr, (u32)bdp);
3538 			}
3539 
3540 			priv->tx_actual_en = 1;
3541 		}
3542 
3543 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3544 			priv->tx_actual_en = 0;
3545 
3546 		gfar_write(&regs->maccfg1, tempval1);
3547 		gfar_write(&regs->maccfg2, tempval);
3548 		gfar_write(&regs->ecntrl, ecntrl);
3549 
3550 		if (!priv->oldlink)
3551 			priv->oldlink = 1;
3552 
3553 	} else if (priv->oldlink) {
3554 		priv->oldlink = 0;
3555 		priv->oldspeed = 0;
3556 		priv->oldduplex = -1;
3557 	}
3558 
3559 	if (netif_msg_link(priv))
3560 		phy_print_status(phydev);
3561 }
3562 
3563 static struct of_device_id gfar_match[] =
3564 {
3565 	{
3566 		.type = "network",
3567 		.compatible = "gianfar",
3568 	},
3569 	{
3570 		.compatible = "fsl,etsec2",
3571 	},
3572 	{},
3573 };
3574 MODULE_DEVICE_TABLE(of, gfar_match);
3575 
3576 /* Structure for a device driver */
3577 static struct platform_driver gfar_driver = {
3578 	.driver = {
3579 		.name = "fsl-gianfar",
3580 		.pm = GFAR_PM_OPS,
3581 		.of_match_table = gfar_match,
3582 	},
3583 	.probe = gfar_probe,
3584 	.remove = gfar_remove,
3585 };
3586 
3587 module_platform_driver(gfar_driver);
3588