xref: /openbmc/linux/drivers/net/ethernet/freescale/gianfar.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
651 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
652 		    gfar_irq(grp, ER)->irq == NO_IRQ)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	u32 stash_len = 0;
742 	u32 stash_idx = 0;
743 	unsigned int num_tx_qs, num_rx_qs;
744 	unsigned short mode, poll_mode;
745 
746 	if (!np)
747 		return -ENODEV;
748 
749 	if (of_device_is_compatible(np, "fsl,etsec2")) {
750 		mode = MQ_MG_MODE;
751 		poll_mode = GFAR_SQ_POLLING;
752 	} else {
753 		mode = SQ_SG_MODE;
754 		poll_mode = GFAR_SQ_POLLING;
755 	}
756 
757 	if (mode == SQ_SG_MODE) {
758 		num_tx_qs = 1;
759 		num_rx_qs = 1;
760 	} else { /* MQ_MG_MODE */
761 		/* get the actual number of supported groups */
762 		unsigned int num_grps = gfar_of_group_count(np);
763 
764 		if (num_grps == 0 || num_grps > MAXGROUPS) {
765 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 				num_grps);
767 			pr_err("Cannot do alloc_etherdev, aborting\n");
768 			return -EINVAL;
769 		}
770 
771 		if (poll_mode == GFAR_SQ_POLLING) {
772 			num_tx_qs = num_grps; /* one txq per int group */
773 			num_rx_qs = num_grps; /* one rxq per int group */
774 		} else { /* GFAR_MQ_POLLING */
775 			u32 tx_queues, rx_queues;
776 			int ret;
777 
778 			/* parse the num of HW tx and rx queues */
779 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 						   &tx_queues);
781 			num_tx_qs = ret ? 1 : tx_queues;
782 
783 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 						   &rx_queues);
785 			num_rx_qs = ret ? 1 : rx_queues;
786 		}
787 	}
788 
789 	if (num_tx_qs > MAX_TX_QS) {
790 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 		       num_tx_qs, MAX_TX_QS);
792 		pr_err("Cannot do alloc_etherdev, aborting\n");
793 		return -EINVAL;
794 	}
795 
796 	if (num_rx_qs > MAX_RX_QS) {
797 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 		       num_rx_qs, MAX_RX_QS);
799 		pr_err("Cannot do alloc_etherdev, aborting\n");
800 		return -EINVAL;
801 	}
802 
803 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 	dev = *pdev;
805 	if (NULL == dev)
806 		return -ENOMEM;
807 
808 	priv = netdev_priv(dev);
809 	priv->ndev = dev;
810 
811 	priv->mode = mode;
812 	priv->poll_mode = poll_mode;
813 
814 	priv->num_tx_queues = num_tx_qs;
815 	netif_set_real_num_rx_queues(dev, num_rx_qs);
816 	priv->num_rx_queues = num_rx_qs;
817 
818 	err = gfar_alloc_tx_queues(priv);
819 	if (err)
820 		goto tx_alloc_failed;
821 
822 	err = gfar_alloc_rx_queues(priv);
823 	if (err)
824 		goto rx_alloc_failed;
825 
826 	err = of_property_read_string(np, "model", &model);
827 	if (err) {
828 		pr_err("Device model property missing, aborting\n");
829 		goto rx_alloc_failed;
830 	}
831 
832 	/* Init Rx queue filer rule set linked list */
833 	INIT_LIST_HEAD(&priv->rx_list.list);
834 	priv->rx_list.count = 0;
835 	mutex_init(&priv->rx_queue_access);
836 
837 	for (i = 0; i < MAXGROUPS; i++)
838 		priv->gfargrp[i].regs = NULL;
839 
840 	/* Parse and initialize group specific information */
841 	if (priv->mode == MQ_MG_MODE) {
842 		for_each_available_child_of_node(np, child) {
843 			if (of_node_cmp(child->name, "queue-group"))
844 				continue;
845 
846 			err = gfar_parse_group(child, priv, model);
847 			if (err)
848 				goto err_grp_init;
849 		}
850 	} else { /* SQ_SG_MODE */
851 		err = gfar_parse_group(np, priv, model);
852 		if (err)
853 			goto err_grp_init;
854 	}
855 
856 	if (of_property_read_bool(np, "bd-stash")) {
857 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858 		priv->bd_stash_en = 1;
859 	}
860 
861 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862 
863 	if (err == 0)
864 		priv->rx_stash_size = stash_len;
865 
866 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867 
868 	if (err == 0)
869 		priv->rx_stash_index = stash_idx;
870 
871 	if (stash_len || stash_idx)
872 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873 
874 	mac_addr = of_get_mac_address(np);
875 
876 	if (mac_addr)
877 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878 
879 	if (model && !strcasecmp(model, "TSEC"))
880 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881 				     FSL_GIANFAR_DEV_HAS_COALESCE |
882 				     FSL_GIANFAR_DEV_HAS_RMON |
883 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884 
885 	if (model && !strcasecmp(model, "eTSEC"))
886 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887 				     FSL_GIANFAR_DEV_HAS_COALESCE |
888 				     FSL_GIANFAR_DEV_HAS_RMON |
889 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890 				     FSL_GIANFAR_DEV_HAS_CSUM |
891 				     FSL_GIANFAR_DEV_HAS_VLAN |
892 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894 				     FSL_GIANFAR_DEV_HAS_TIMER;
895 
896 	err = of_property_read_string(np, "phy-connection-type", &ctype);
897 
898 	/* We only care about rgmii-id.  The rest are autodetected */
899 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
900 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
901 	else
902 		priv->interface = PHY_INTERFACE_MODE_MII;
903 
904 	if (of_find_property(np, "fsl,magic-packet", NULL))
905 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
906 
907 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
909 
910 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911 
912 	/* In the case of a fixed PHY, the DT node associated
913 	 * to the PHY is the Ethernet MAC DT node.
914 	 */
915 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916 		err = of_phy_register_fixed_link(np);
917 		if (err)
918 			goto err_grp_init;
919 
920 		priv->phy_node = of_node_get(np);
921 	}
922 
923 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
924 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925 
926 	return 0;
927 
928 err_grp_init:
929 	unmap_group_regs(priv);
930 rx_alloc_failed:
931 	gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933 	gfar_free_tx_queues(priv);
934 	free_gfar_dev(priv);
935 	return err;
936 }
937 
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940 	struct hwtstamp_config config;
941 	struct gfar_private *priv = netdev_priv(netdev);
942 
943 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944 		return -EFAULT;
945 
946 	/* reserved for future extensions */
947 	if (config.flags)
948 		return -EINVAL;
949 
950 	switch (config.tx_type) {
951 	case HWTSTAMP_TX_OFF:
952 		priv->hwts_tx_en = 0;
953 		break;
954 	case HWTSTAMP_TX_ON:
955 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956 			return -ERANGE;
957 		priv->hwts_tx_en = 1;
958 		break;
959 	default:
960 		return -ERANGE;
961 	}
962 
963 	switch (config.rx_filter) {
964 	case HWTSTAMP_FILTER_NONE:
965 		if (priv->hwts_rx_en) {
966 			priv->hwts_rx_en = 0;
967 			reset_gfar(netdev);
968 		}
969 		break;
970 	default:
971 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972 			return -ERANGE;
973 		if (!priv->hwts_rx_en) {
974 			priv->hwts_rx_en = 1;
975 			reset_gfar(netdev);
976 		}
977 		config.rx_filter = HWTSTAMP_FILTER_ALL;
978 		break;
979 	}
980 
981 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982 		-EFAULT : 0;
983 }
984 
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987 	struct hwtstamp_config config;
988 	struct gfar_private *priv = netdev_priv(netdev);
989 
990 	config.flags = 0;
991 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992 	config.rx_filter = (priv->hwts_rx_en ?
993 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994 
995 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996 		-EFAULT : 0;
997 }
998 
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001 	struct gfar_private *priv = netdev_priv(dev);
1002 
1003 	if (!netif_running(dev))
1004 		return -EINVAL;
1005 
1006 	if (cmd == SIOCSHWTSTAMP)
1007 		return gfar_hwtstamp_set(dev, rq);
1008 	if (cmd == SIOCGHWTSTAMP)
1009 		return gfar_hwtstamp_get(dev, rq);
1010 
1011 	if (!priv->phydev)
1012 		return -ENODEV;
1013 
1014 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1015 }
1016 
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018 				   u32 class)
1019 {
1020 	u32 rqfpr = FPR_FILER_MASK;
1021 	u32 rqfcr = 0x0;
1022 
1023 	rqfar--;
1024 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025 	priv->ftp_rqfpr[rqfar] = rqfpr;
1026 	priv->ftp_rqfcr[rqfar] = rqfcr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	rqfar--;
1030 	rqfcr = RQFCR_CMP_NOMATCH;
1031 	priv->ftp_rqfpr[rqfar] = rqfpr;
1032 	priv->ftp_rqfcr[rqfar] = rqfcr;
1033 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034 
1035 	rqfar--;
1036 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037 	rqfpr = class;
1038 	priv->ftp_rqfcr[rqfar] = rqfcr;
1039 	priv->ftp_rqfpr[rqfar] = rqfpr;
1040 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041 
1042 	rqfar--;
1043 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044 	rqfpr = class;
1045 	priv->ftp_rqfcr[rqfar] = rqfcr;
1046 	priv->ftp_rqfpr[rqfar] = rqfpr;
1047 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048 
1049 	return rqfar;
1050 }
1051 
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054 	int i = 0x0;
1055 	u32 rqfar = MAX_FILER_IDX;
1056 	u32 rqfcr = 0x0;
1057 	u32 rqfpr = FPR_FILER_MASK;
1058 
1059 	/* Default rule */
1060 	rqfcr = RQFCR_CMP_MATCH;
1061 	priv->ftp_rqfcr[rqfar] = rqfcr;
1062 	priv->ftp_rqfpr[rqfar] = rqfpr;
1063 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064 
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071 
1072 	/* cur_filer_idx indicated the first non-masked rule */
1073 	priv->cur_filer_idx = rqfar;
1074 
1075 	/* Rest are masked rules */
1076 	rqfcr = RQFCR_CMP_NOMATCH;
1077 	for (i = 0; i < rqfar; i++) {
1078 		priv->ftp_rqfcr[i] = rqfcr;
1079 		priv->ftp_rqfpr[i] = rqfpr;
1080 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1081 	}
1082 }
1083 
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087 	unsigned int pvr = mfspr(SPRN_PVR);
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090 	unsigned int rev = svr & 0xffff;
1091 
1092 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1093 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095 		priv->errata |= GFAR_ERRATA_74;
1096 
1097 	/* MPC8313 and MPC837x all rev */
1098 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100 		priv->errata |= GFAR_ERRATA_76;
1101 
1102 	/* MPC8313 Rev < 2.0 */
1103 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104 		priv->errata |= GFAR_ERRATA_12;
1105 }
1106 
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109 	unsigned int svr = mfspr(SPRN_SVR);
1110 
1111 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112 		priv->errata |= GFAR_ERRATA_12;
1113 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1115 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1116 }
1117 #endif
1118 
1119 static void gfar_detect_errata(struct gfar_private *priv)
1120 {
1121 	struct device *dev = &priv->ofdev->dev;
1122 
1123 	/* no plans to fix */
1124 	priv->errata |= GFAR_ERRATA_A002;
1125 
1126 #ifdef CONFIG_PPC
1127 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1128 		__gfar_detect_errata_85xx(priv);
1129 	else /* non-mpc85xx parts, i.e. e300 core based */
1130 		__gfar_detect_errata_83xx(priv);
1131 #endif
1132 
1133 	if (priv->errata)
1134 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1135 			 priv->errata);
1136 }
1137 
1138 void gfar_mac_reset(struct gfar_private *priv)
1139 {
1140 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1141 	u32 tempval;
1142 
1143 	/* Reset MAC layer */
1144 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1145 
1146 	/* We need to delay at least 3 TX clocks */
1147 	udelay(3);
1148 
1149 	/* the soft reset bit is not self-resetting, so we need to
1150 	 * clear it before resuming normal operation
1151 	 */
1152 	gfar_write(&regs->maccfg1, 0);
1153 
1154 	udelay(3);
1155 
1156 	gfar_rx_offload_en(priv);
1157 
1158 	/* Initialize the max receive frame/buffer lengths */
1159 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1160 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1161 
1162 	/* Initialize the Minimum Frame Length Register */
1163 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1164 
1165 	/* Initialize MACCFG2. */
1166 	tempval = MACCFG2_INIT_SETTINGS;
1167 
1168 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1169 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1170 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1171 	 */
1172 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1173 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1174 
1175 	gfar_write(&regs->maccfg2, tempval);
1176 
1177 	/* Clear mac addr hash registers */
1178 	gfar_write(&regs->igaddr0, 0);
1179 	gfar_write(&regs->igaddr1, 0);
1180 	gfar_write(&regs->igaddr2, 0);
1181 	gfar_write(&regs->igaddr3, 0);
1182 	gfar_write(&regs->igaddr4, 0);
1183 	gfar_write(&regs->igaddr5, 0);
1184 	gfar_write(&regs->igaddr6, 0);
1185 	gfar_write(&regs->igaddr7, 0);
1186 
1187 	gfar_write(&regs->gaddr0, 0);
1188 	gfar_write(&regs->gaddr1, 0);
1189 	gfar_write(&regs->gaddr2, 0);
1190 	gfar_write(&regs->gaddr3, 0);
1191 	gfar_write(&regs->gaddr4, 0);
1192 	gfar_write(&regs->gaddr5, 0);
1193 	gfar_write(&regs->gaddr6, 0);
1194 	gfar_write(&regs->gaddr7, 0);
1195 
1196 	if (priv->extended_hash)
1197 		gfar_clear_exact_match(priv->ndev);
1198 
1199 	gfar_mac_rx_config(priv);
1200 
1201 	gfar_mac_tx_config(priv);
1202 
1203 	gfar_set_mac_address(priv->ndev);
1204 
1205 	gfar_set_multi(priv->ndev);
1206 
1207 	/* clear ievent and imask before configuring coalescing */
1208 	gfar_ints_disable(priv);
1209 
1210 	/* Configure the coalescing support */
1211 	gfar_configure_coalescing_all(priv);
1212 }
1213 
1214 static void gfar_hw_init(struct gfar_private *priv)
1215 {
1216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1217 	u32 attrs;
1218 
1219 	/* Stop the DMA engine now, in case it was running before
1220 	 * (The firmware could have used it, and left it running).
1221 	 */
1222 	gfar_halt(priv);
1223 
1224 	gfar_mac_reset(priv);
1225 
1226 	/* Zero out the rmon mib registers if it has them */
1227 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1228 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1229 
1230 		/* Mask off the CAM interrupts */
1231 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1232 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1233 	}
1234 
1235 	/* Initialize ECNTRL */
1236 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1237 
1238 	/* Set the extraction length and index */
1239 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1240 		ATTRELI_EI(priv->rx_stash_index);
1241 
1242 	gfar_write(&regs->attreli, attrs);
1243 
1244 	/* Start with defaults, and add stashing
1245 	 * depending on driver parameters
1246 	 */
1247 	attrs = ATTR_INIT_SETTINGS;
1248 
1249 	if (priv->bd_stash_en)
1250 		attrs |= ATTR_BDSTASH;
1251 
1252 	if (priv->rx_stash_size != 0)
1253 		attrs |= ATTR_BUFSTASH;
1254 
1255 	gfar_write(&regs->attr, attrs);
1256 
1257 	/* FIFO configs */
1258 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1259 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1260 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1261 
1262 	/* Program the interrupt steering regs, only for MG devices */
1263 	if (priv->num_grps > 1)
1264 		gfar_write_isrg(priv);
1265 }
1266 
1267 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1268 {
1269 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270 
1271 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1272 		priv->extended_hash = 1;
1273 		priv->hash_width = 9;
1274 
1275 		priv->hash_regs[0] = &regs->igaddr0;
1276 		priv->hash_regs[1] = &regs->igaddr1;
1277 		priv->hash_regs[2] = &regs->igaddr2;
1278 		priv->hash_regs[3] = &regs->igaddr3;
1279 		priv->hash_regs[4] = &regs->igaddr4;
1280 		priv->hash_regs[5] = &regs->igaddr5;
1281 		priv->hash_regs[6] = &regs->igaddr6;
1282 		priv->hash_regs[7] = &regs->igaddr7;
1283 		priv->hash_regs[8] = &regs->gaddr0;
1284 		priv->hash_regs[9] = &regs->gaddr1;
1285 		priv->hash_regs[10] = &regs->gaddr2;
1286 		priv->hash_regs[11] = &regs->gaddr3;
1287 		priv->hash_regs[12] = &regs->gaddr4;
1288 		priv->hash_regs[13] = &regs->gaddr5;
1289 		priv->hash_regs[14] = &regs->gaddr6;
1290 		priv->hash_regs[15] = &regs->gaddr7;
1291 
1292 	} else {
1293 		priv->extended_hash = 0;
1294 		priv->hash_width = 8;
1295 
1296 		priv->hash_regs[0] = &regs->gaddr0;
1297 		priv->hash_regs[1] = &regs->gaddr1;
1298 		priv->hash_regs[2] = &regs->gaddr2;
1299 		priv->hash_regs[3] = &regs->gaddr3;
1300 		priv->hash_regs[4] = &regs->gaddr4;
1301 		priv->hash_regs[5] = &regs->gaddr5;
1302 		priv->hash_regs[6] = &regs->gaddr6;
1303 		priv->hash_regs[7] = &regs->gaddr7;
1304 	}
1305 }
1306 
1307 /* Set up the ethernet device structure, private data,
1308  * and anything else we need before we start
1309  */
1310 static int gfar_probe(struct platform_device *ofdev)
1311 {
1312 	struct net_device *dev = NULL;
1313 	struct gfar_private *priv = NULL;
1314 	int err = 0, i;
1315 
1316 	err = gfar_of_init(ofdev, &dev);
1317 
1318 	if (err)
1319 		return err;
1320 
1321 	priv = netdev_priv(dev);
1322 	priv->ndev = dev;
1323 	priv->ofdev = ofdev;
1324 	priv->dev = &ofdev->dev;
1325 	SET_NETDEV_DEV(dev, &ofdev->dev);
1326 
1327 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1328 
1329 	platform_set_drvdata(ofdev, priv);
1330 
1331 	gfar_detect_errata(priv);
1332 
1333 	/* Set the dev->base_addr to the gfar reg region */
1334 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1335 
1336 	/* Fill in the dev structure */
1337 	dev->watchdog_timeo = TX_TIMEOUT;
1338 	dev->mtu = 1500;
1339 	dev->netdev_ops = &gfar_netdev_ops;
1340 	dev->ethtool_ops = &gfar_ethtool_ops;
1341 
1342 	/* Register for napi ...We are registering NAPI for each grp */
1343 	for (i = 0; i < priv->num_grps; i++) {
1344 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1345 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1346 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1347 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1348 				       gfar_poll_tx_sq, 2);
1349 		} else {
1350 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1352 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353 				       gfar_poll_tx, 2);
1354 		}
1355 	}
1356 
1357 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1358 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1359 				   NETIF_F_RXCSUM;
1360 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1361 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1362 	}
1363 
1364 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1365 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1366 				    NETIF_F_HW_VLAN_CTAG_RX;
1367 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1368 	}
1369 
1370 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1371 
1372 	gfar_init_addr_hash_table(priv);
1373 
1374 	/* Insert receive time stamps into padding alignment bytes */
1375 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1376 		priv->padding = 8;
1377 
1378 	if (dev->features & NETIF_F_IP_CSUM ||
1379 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 		dev->needed_headroom = GMAC_FCB_LEN;
1381 
1382 	/* Initializing some of the rx/tx queue level parameters */
1383 	for (i = 0; i < priv->num_tx_queues; i++) {
1384 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1385 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1386 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1387 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1388 	}
1389 
1390 	for (i = 0; i < priv->num_rx_queues; i++) {
1391 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1392 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1393 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1394 	}
1395 
1396 	/* always enable rx filer */
1397 	priv->rx_filer_enable = 1;
1398 	/* Enable most messages by default */
1399 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1400 	/* use pritority h/w tx queue scheduling for single queue devices */
1401 	if (priv->num_tx_queues == 1)
1402 		priv->prio_sched_en = 1;
1403 
1404 	set_bit(GFAR_DOWN, &priv->state);
1405 
1406 	gfar_hw_init(priv);
1407 
1408 	/* Carrier starts down, phylib will bring it up */
1409 	netif_carrier_off(dev);
1410 
1411 	err = register_netdev(dev);
1412 
1413 	if (err) {
1414 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1415 		goto register_fail;
1416 	}
1417 
1418 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1419 		priv->wol_supported |= GFAR_WOL_MAGIC;
1420 
1421 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1422 	    priv->rx_filer_enable)
1423 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1424 
1425 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1426 
1427 	/* fill out IRQ number and name fields */
1428 	for (i = 0; i < priv->num_grps; i++) {
1429 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1430 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1431 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1432 				dev->name, "_g", '0' + i, "_tx");
1433 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1434 				dev->name, "_g", '0' + i, "_rx");
1435 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1436 				dev->name, "_g", '0' + i, "_er");
1437 		} else
1438 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1439 	}
1440 
1441 	/* Initialize the filer table */
1442 	gfar_init_filer_table(priv);
1443 
1444 	/* Print out the device info */
1445 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1446 
1447 	/* Even more device info helps when determining which kernel
1448 	 * provided which set of benchmarks.
1449 	 */
1450 	netdev_info(dev, "Running with NAPI enabled\n");
1451 	for (i = 0; i < priv->num_rx_queues; i++)
1452 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1453 			    i, priv->rx_queue[i]->rx_ring_size);
1454 	for (i = 0; i < priv->num_tx_queues; i++)
1455 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1456 			    i, priv->tx_queue[i]->tx_ring_size);
1457 
1458 	return 0;
1459 
1460 register_fail:
1461 	unmap_group_regs(priv);
1462 	gfar_free_rx_queues(priv);
1463 	gfar_free_tx_queues(priv);
1464 	of_node_put(priv->phy_node);
1465 	of_node_put(priv->tbi_node);
1466 	free_gfar_dev(priv);
1467 	return err;
1468 }
1469 
1470 static int gfar_remove(struct platform_device *ofdev)
1471 {
1472 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1473 
1474 	of_node_put(priv->phy_node);
1475 	of_node_put(priv->tbi_node);
1476 
1477 	unregister_netdev(priv->ndev);
1478 	unmap_group_regs(priv);
1479 	gfar_free_rx_queues(priv);
1480 	gfar_free_tx_queues(priv);
1481 	free_gfar_dev(priv);
1482 
1483 	return 0;
1484 }
1485 
1486 #ifdef CONFIG_PM
1487 
1488 static void __gfar_filer_disable(struct gfar_private *priv)
1489 {
1490 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1491 	u32 temp;
1492 
1493 	temp = gfar_read(&regs->rctrl);
1494 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1495 	gfar_write(&regs->rctrl, temp);
1496 }
1497 
1498 static void __gfar_filer_enable(struct gfar_private *priv)
1499 {
1500 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1501 	u32 temp;
1502 
1503 	temp = gfar_read(&regs->rctrl);
1504 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1505 	gfar_write(&regs->rctrl, temp);
1506 }
1507 
1508 /* Filer rules implementing wol capabilities */
1509 static void gfar_filer_config_wol(struct gfar_private *priv)
1510 {
1511 	unsigned int i;
1512 	u32 rqfcr;
1513 
1514 	__gfar_filer_disable(priv);
1515 
1516 	/* clear the filer table, reject any packet by default */
1517 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1518 	for (i = 0; i <= MAX_FILER_IDX; i++)
1519 		gfar_write_filer(priv, i, rqfcr, 0);
1520 
1521 	i = 0;
1522 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1523 		/* unicast packet, accept it */
1524 		struct net_device *ndev = priv->ndev;
1525 		/* get the default rx queue index */
1526 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1527 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1528 				    (ndev->dev_addr[1] << 8) |
1529 				     ndev->dev_addr[2];
1530 
1531 		rqfcr = (qindex << 10) | RQFCR_AND |
1532 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1533 
1534 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1535 
1536 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1537 				(ndev->dev_addr[4] << 8) |
1538 				 ndev->dev_addr[5];
1539 		rqfcr = (qindex << 10) | RQFCR_GPI |
1540 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1541 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1542 	}
1543 
1544 	__gfar_filer_enable(priv);
1545 }
1546 
1547 static void gfar_filer_restore_table(struct gfar_private *priv)
1548 {
1549 	u32 rqfcr, rqfpr;
1550 	unsigned int i;
1551 
1552 	__gfar_filer_disable(priv);
1553 
1554 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1555 		rqfcr = priv->ftp_rqfcr[i];
1556 		rqfpr = priv->ftp_rqfpr[i];
1557 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1558 	}
1559 
1560 	__gfar_filer_enable(priv);
1561 }
1562 
1563 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1564 static void gfar_start_wol_filer(struct gfar_private *priv)
1565 {
1566 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1567 	u32 tempval;
1568 	int i = 0;
1569 
1570 	/* Enable Rx hw queues */
1571 	gfar_write(&regs->rqueue, priv->rqueue);
1572 
1573 	/* Initialize DMACTRL to have WWR and WOP */
1574 	tempval = gfar_read(&regs->dmactrl);
1575 	tempval |= DMACTRL_INIT_SETTINGS;
1576 	gfar_write(&regs->dmactrl, tempval);
1577 
1578 	/* Make sure we aren't stopped */
1579 	tempval = gfar_read(&regs->dmactrl);
1580 	tempval &= ~DMACTRL_GRS;
1581 	gfar_write(&regs->dmactrl, tempval);
1582 
1583 	for (i = 0; i < priv->num_grps; i++) {
1584 		regs = priv->gfargrp[i].regs;
1585 		/* Clear RHLT, so that the DMA starts polling now */
1586 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1587 		/* enable the Filer General Purpose Interrupt */
1588 		gfar_write(&regs->imask, IMASK_FGPI);
1589 	}
1590 
1591 	/* Enable Rx DMA */
1592 	tempval = gfar_read(&regs->maccfg1);
1593 	tempval |= MACCFG1_RX_EN;
1594 	gfar_write(&regs->maccfg1, tempval);
1595 }
1596 
1597 static int gfar_suspend(struct device *dev)
1598 {
1599 	struct gfar_private *priv = dev_get_drvdata(dev);
1600 	struct net_device *ndev = priv->ndev;
1601 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1602 	u32 tempval;
1603 	u16 wol = priv->wol_opts;
1604 
1605 	if (!netif_running(ndev))
1606 		return 0;
1607 
1608 	disable_napi(priv);
1609 	netif_tx_lock(ndev);
1610 	netif_device_detach(ndev);
1611 	netif_tx_unlock(ndev);
1612 
1613 	gfar_halt(priv);
1614 
1615 	if (wol & GFAR_WOL_MAGIC) {
1616 		/* Enable interrupt on Magic Packet */
1617 		gfar_write(&regs->imask, IMASK_MAG);
1618 
1619 		/* Enable Magic Packet mode */
1620 		tempval = gfar_read(&regs->maccfg2);
1621 		tempval |= MACCFG2_MPEN;
1622 		gfar_write(&regs->maccfg2, tempval);
1623 
1624 		/* re-enable the Rx block */
1625 		tempval = gfar_read(&regs->maccfg1);
1626 		tempval |= MACCFG1_RX_EN;
1627 		gfar_write(&regs->maccfg1, tempval);
1628 
1629 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1630 		gfar_filer_config_wol(priv);
1631 		gfar_start_wol_filer(priv);
1632 
1633 	} else {
1634 		phy_stop(priv->phydev);
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static int gfar_resume(struct device *dev)
1641 {
1642 	struct gfar_private *priv = dev_get_drvdata(dev);
1643 	struct net_device *ndev = priv->ndev;
1644 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1645 	u32 tempval;
1646 	u16 wol = priv->wol_opts;
1647 
1648 	if (!netif_running(ndev))
1649 		return 0;
1650 
1651 	if (wol & GFAR_WOL_MAGIC) {
1652 		/* Disable Magic Packet mode */
1653 		tempval = gfar_read(&regs->maccfg2);
1654 		tempval &= ~MACCFG2_MPEN;
1655 		gfar_write(&regs->maccfg2, tempval);
1656 
1657 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1658 		/* need to stop rx only, tx is already down */
1659 		gfar_halt(priv);
1660 		gfar_filer_restore_table(priv);
1661 
1662 	} else {
1663 		phy_start(priv->phydev);
1664 	}
1665 
1666 	gfar_start(priv);
1667 
1668 	netif_device_attach(ndev);
1669 	enable_napi(priv);
1670 
1671 	return 0;
1672 }
1673 
1674 static int gfar_restore(struct device *dev)
1675 {
1676 	struct gfar_private *priv = dev_get_drvdata(dev);
1677 	struct net_device *ndev = priv->ndev;
1678 
1679 	if (!netif_running(ndev)) {
1680 		netif_device_attach(ndev);
1681 
1682 		return 0;
1683 	}
1684 
1685 	gfar_init_bds(ndev);
1686 
1687 	gfar_mac_reset(priv);
1688 
1689 	gfar_init_tx_rx_base(priv);
1690 
1691 	gfar_start(priv);
1692 
1693 	priv->oldlink = 0;
1694 	priv->oldspeed = 0;
1695 	priv->oldduplex = -1;
1696 
1697 	if (priv->phydev)
1698 		phy_start(priv->phydev);
1699 
1700 	netif_device_attach(ndev);
1701 	enable_napi(priv);
1702 
1703 	return 0;
1704 }
1705 
1706 static struct dev_pm_ops gfar_pm_ops = {
1707 	.suspend = gfar_suspend,
1708 	.resume = gfar_resume,
1709 	.freeze = gfar_suspend,
1710 	.thaw = gfar_resume,
1711 	.restore = gfar_restore,
1712 };
1713 
1714 #define GFAR_PM_OPS (&gfar_pm_ops)
1715 
1716 #else
1717 
1718 #define GFAR_PM_OPS NULL
1719 
1720 #endif
1721 
1722 /* Reads the controller's registers to determine what interface
1723  * connects it to the PHY.
1724  */
1725 static phy_interface_t gfar_get_interface(struct net_device *dev)
1726 {
1727 	struct gfar_private *priv = netdev_priv(dev);
1728 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1729 	u32 ecntrl;
1730 
1731 	ecntrl = gfar_read(&regs->ecntrl);
1732 
1733 	if (ecntrl & ECNTRL_SGMII_MODE)
1734 		return PHY_INTERFACE_MODE_SGMII;
1735 
1736 	if (ecntrl & ECNTRL_TBI_MODE) {
1737 		if (ecntrl & ECNTRL_REDUCED_MODE)
1738 			return PHY_INTERFACE_MODE_RTBI;
1739 		else
1740 			return PHY_INTERFACE_MODE_TBI;
1741 	}
1742 
1743 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1744 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1745 			return PHY_INTERFACE_MODE_RMII;
1746 		}
1747 		else {
1748 			phy_interface_t interface = priv->interface;
1749 
1750 			/* This isn't autodetected right now, so it must
1751 			 * be set by the device tree or platform code.
1752 			 */
1753 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1754 				return PHY_INTERFACE_MODE_RGMII_ID;
1755 
1756 			return PHY_INTERFACE_MODE_RGMII;
1757 		}
1758 	}
1759 
1760 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1761 		return PHY_INTERFACE_MODE_GMII;
1762 
1763 	return PHY_INTERFACE_MODE_MII;
1764 }
1765 
1766 
1767 /* Initializes driver's PHY state, and attaches to the PHY.
1768  * Returns 0 on success.
1769  */
1770 static int init_phy(struct net_device *dev)
1771 {
1772 	struct gfar_private *priv = netdev_priv(dev);
1773 	uint gigabit_support =
1774 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1775 		GFAR_SUPPORTED_GBIT : 0;
1776 	phy_interface_t interface;
1777 
1778 	priv->oldlink = 0;
1779 	priv->oldspeed = 0;
1780 	priv->oldduplex = -1;
1781 
1782 	interface = gfar_get_interface(dev);
1783 
1784 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1785 				      interface);
1786 	if (!priv->phydev) {
1787 		dev_err(&dev->dev, "could not attach to PHY\n");
1788 		return -ENODEV;
1789 	}
1790 
1791 	if (interface == PHY_INTERFACE_MODE_SGMII)
1792 		gfar_configure_serdes(dev);
1793 
1794 	/* Remove any features not supported by the controller */
1795 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1796 	priv->phydev->advertising = priv->phydev->supported;
1797 
1798 	/* Add support for flow control, but don't advertise it by default */
1799 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1800 
1801 	return 0;
1802 }
1803 
1804 /* Initialize TBI PHY interface for communicating with the
1805  * SERDES lynx PHY on the chip.  We communicate with this PHY
1806  * through the MDIO bus on each controller, treating it as a
1807  * "normal" PHY at the address found in the TBIPA register.  We assume
1808  * that the TBIPA register is valid.  Either the MDIO bus code will set
1809  * it to a value that doesn't conflict with other PHYs on the bus, or the
1810  * value doesn't matter, as there are no other PHYs on the bus.
1811  */
1812 static void gfar_configure_serdes(struct net_device *dev)
1813 {
1814 	struct gfar_private *priv = netdev_priv(dev);
1815 	struct phy_device *tbiphy;
1816 
1817 	if (!priv->tbi_node) {
1818 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1819 				    "device tree specify a tbi-handle\n");
1820 		return;
1821 	}
1822 
1823 	tbiphy = of_phy_find_device(priv->tbi_node);
1824 	if (!tbiphy) {
1825 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1826 		return;
1827 	}
1828 
1829 	/* If the link is already up, we must already be ok, and don't need to
1830 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1831 	 * everything for us?  Resetting it takes the link down and requires
1832 	 * several seconds for it to come back.
1833 	 */
1834 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1835 		put_device(&tbiphy->dev);
1836 		return;
1837 	}
1838 
1839 	/* Single clk mode, mii mode off(for serdes communication) */
1840 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1841 
1842 	phy_write(tbiphy, MII_ADVERTISE,
1843 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1844 		  ADVERTISE_1000XPSE_ASYM);
1845 
1846 	phy_write(tbiphy, MII_BMCR,
1847 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1848 		  BMCR_SPEED1000);
1849 
1850 	put_device(&tbiphy->dev);
1851 }
1852 
1853 static int __gfar_is_rx_idle(struct gfar_private *priv)
1854 {
1855 	u32 res;
1856 
1857 	/* Normaly TSEC should not hang on GRS commands, so we should
1858 	 * actually wait for IEVENT_GRSC flag.
1859 	 */
1860 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1861 		return 0;
1862 
1863 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1864 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1865 	 * and the Rx can be safely reset.
1866 	 */
1867 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1868 	res &= 0x7f807f80;
1869 	if ((res & 0xffff) == (res >> 16))
1870 		return 1;
1871 
1872 	return 0;
1873 }
1874 
1875 /* Halt the receive and transmit queues */
1876 static void gfar_halt_nodisable(struct gfar_private *priv)
1877 {
1878 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1879 	u32 tempval;
1880 	unsigned int timeout;
1881 	int stopped;
1882 
1883 	gfar_ints_disable(priv);
1884 
1885 	if (gfar_is_dma_stopped(priv))
1886 		return;
1887 
1888 	/* Stop the DMA, and wait for it to stop */
1889 	tempval = gfar_read(&regs->dmactrl);
1890 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1891 	gfar_write(&regs->dmactrl, tempval);
1892 
1893 retry:
1894 	timeout = 1000;
1895 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1896 		cpu_relax();
1897 		timeout--;
1898 	}
1899 
1900 	if (!timeout)
1901 		stopped = gfar_is_dma_stopped(priv);
1902 
1903 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1904 	    !__gfar_is_rx_idle(priv))
1905 		goto retry;
1906 }
1907 
1908 /* Halt the receive and transmit queues */
1909 void gfar_halt(struct gfar_private *priv)
1910 {
1911 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1912 	u32 tempval;
1913 
1914 	/* Dissable the Rx/Tx hw queues */
1915 	gfar_write(&regs->rqueue, 0);
1916 	gfar_write(&regs->tqueue, 0);
1917 
1918 	mdelay(10);
1919 
1920 	gfar_halt_nodisable(priv);
1921 
1922 	/* Disable Rx/Tx DMA */
1923 	tempval = gfar_read(&regs->maccfg1);
1924 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1925 	gfar_write(&regs->maccfg1, tempval);
1926 }
1927 
1928 void stop_gfar(struct net_device *dev)
1929 {
1930 	struct gfar_private *priv = netdev_priv(dev);
1931 
1932 	netif_tx_stop_all_queues(dev);
1933 
1934 	smp_mb__before_atomic();
1935 	set_bit(GFAR_DOWN, &priv->state);
1936 	smp_mb__after_atomic();
1937 
1938 	disable_napi(priv);
1939 
1940 	/* disable ints and gracefully shut down Rx/Tx DMA */
1941 	gfar_halt(priv);
1942 
1943 	phy_stop(priv->phydev);
1944 
1945 	free_skb_resources(priv);
1946 }
1947 
1948 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1949 {
1950 	struct txbd8 *txbdp;
1951 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1952 	int i, j;
1953 
1954 	txbdp = tx_queue->tx_bd_base;
1955 
1956 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1957 		if (!tx_queue->tx_skbuff[i])
1958 			continue;
1959 
1960 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1961 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1962 		txbdp->lstatus = 0;
1963 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1964 		     j++) {
1965 			txbdp++;
1966 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1967 				       be16_to_cpu(txbdp->length),
1968 				       DMA_TO_DEVICE);
1969 		}
1970 		txbdp++;
1971 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1972 		tx_queue->tx_skbuff[i] = NULL;
1973 	}
1974 	kfree(tx_queue->tx_skbuff);
1975 	tx_queue->tx_skbuff = NULL;
1976 }
1977 
1978 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1979 {
1980 	int i;
1981 
1982 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1983 
1984 	if (rx_queue->skb)
1985 		dev_kfree_skb(rx_queue->skb);
1986 
1987 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1988 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1989 
1990 		rxbdp->lstatus = 0;
1991 		rxbdp->bufPtr = 0;
1992 		rxbdp++;
1993 
1994 		if (!rxb->page)
1995 			continue;
1996 
1997 		dma_unmap_single(rx_queue->dev, rxb->dma,
1998 				 PAGE_SIZE, DMA_FROM_DEVICE);
1999 		__free_page(rxb->page);
2000 
2001 		rxb->page = NULL;
2002 	}
2003 
2004 	kfree(rx_queue->rx_buff);
2005 	rx_queue->rx_buff = NULL;
2006 }
2007 
2008 /* If there are any tx skbs or rx skbs still around, free them.
2009  * Then free tx_skbuff and rx_skbuff
2010  */
2011 static void free_skb_resources(struct gfar_private *priv)
2012 {
2013 	struct gfar_priv_tx_q *tx_queue = NULL;
2014 	struct gfar_priv_rx_q *rx_queue = NULL;
2015 	int i;
2016 
2017 	/* Go through all the buffer descriptors and free their data buffers */
2018 	for (i = 0; i < priv->num_tx_queues; i++) {
2019 		struct netdev_queue *txq;
2020 
2021 		tx_queue = priv->tx_queue[i];
2022 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2023 		if (tx_queue->tx_skbuff)
2024 			free_skb_tx_queue(tx_queue);
2025 		netdev_tx_reset_queue(txq);
2026 	}
2027 
2028 	for (i = 0; i < priv->num_rx_queues; i++) {
2029 		rx_queue = priv->rx_queue[i];
2030 		if (rx_queue->rx_buff)
2031 			free_skb_rx_queue(rx_queue);
2032 	}
2033 
2034 	dma_free_coherent(priv->dev,
2035 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2036 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2037 			  priv->tx_queue[0]->tx_bd_base,
2038 			  priv->tx_queue[0]->tx_bd_dma_base);
2039 }
2040 
2041 void gfar_start(struct gfar_private *priv)
2042 {
2043 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2044 	u32 tempval;
2045 	int i = 0;
2046 
2047 	/* Enable Rx/Tx hw queues */
2048 	gfar_write(&regs->rqueue, priv->rqueue);
2049 	gfar_write(&regs->tqueue, priv->tqueue);
2050 
2051 	/* Initialize DMACTRL to have WWR and WOP */
2052 	tempval = gfar_read(&regs->dmactrl);
2053 	tempval |= DMACTRL_INIT_SETTINGS;
2054 	gfar_write(&regs->dmactrl, tempval);
2055 
2056 	/* Make sure we aren't stopped */
2057 	tempval = gfar_read(&regs->dmactrl);
2058 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2059 	gfar_write(&regs->dmactrl, tempval);
2060 
2061 	for (i = 0; i < priv->num_grps; i++) {
2062 		regs = priv->gfargrp[i].regs;
2063 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2064 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2065 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2066 	}
2067 
2068 	/* Enable Rx/Tx DMA */
2069 	tempval = gfar_read(&regs->maccfg1);
2070 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2071 	gfar_write(&regs->maccfg1, tempval);
2072 
2073 	gfar_ints_enable(priv);
2074 
2075 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2076 }
2077 
2078 static void free_grp_irqs(struct gfar_priv_grp *grp)
2079 {
2080 	free_irq(gfar_irq(grp, TX)->irq, grp);
2081 	free_irq(gfar_irq(grp, RX)->irq, grp);
2082 	free_irq(gfar_irq(grp, ER)->irq, grp);
2083 }
2084 
2085 static int register_grp_irqs(struct gfar_priv_grp *grp)
2086 {
2087 	struct gfar_private *priv = grp->priv;
2088 	struct net_device *dev = priv->ndev;
2089 	int err;
2090 
2091 	/* If the device has multiple interrupts, register for
2092 	 * them.  Otherwise, only register for the one
2093 	 */
2094 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2095 		/* Install our interrupt handlers for Error,
2096 		 * Transmit, and Receive
2097 		 */
2098 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2099 				  gfar_irq(grp, ER)->name, grp);
2100 		if (err < 0) {
2101 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2102 				  gfar_irq(grp, ER)->irq);
2103 
2104 			goto err_irq_fail;
2105 		}
2106 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2107 
2108 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2109 				  gfar_irq(grp, TX)->name, grp);
2110 		if (err < 0) {
2111 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2112 				  gfar_irq(grp, TX)->irq);
2113 			goto tx_irq_fail;
2114 		}
2115 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2116 				  gfar_irq(grp, RX)->name, grp);
2117 		if (err < 0) {
2118 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2119 				  gfar_irq(grp, RX)->irq);
2120 			goto rx_irq_fail;
2121 		}
2122 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2123 
2124 	} else {
2125 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2126 				  gfar_irq(grp, TX)->name, grp);
2127 		if (err < 0) {
2128 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2129 				  gfar_irq(grp, TX)->irq);
2130 			goto err_irq_fail;
2131 		}
2132 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2133 	}
2134 
2135 	return 0;
2136 
2137 rx_irq_fail:
2138 	free_irq(gfar_irq(grp, TX)->irq, grp);
2139 tx_irq_fail:
2140 	free_irq(gfar_irq(grp, ER)->irq, grp);
2141 err_irq_fail:
2142 	return err;
2143 
2144 }
2145 
2146 static void gfar_free_irq(struct gfar_private *priv)
2147 {
2148 	int i;
2149 
2150 	/* Free the IRQs */
2151 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2152 		for (i = 0; i < priv->num_grps; i++)
2153 			free_grp_irqs(&priv->gfargrp[i]);
2154 	} else {
2155 		for (i = 0; i < priv->num_grps; i++)
2156 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2157 				 &priv->gfargrp[i]);
2158 	}
2159 }
2160 
2161 static int gfar_request_irq(struct gfar_private *priv)
2162 {
2163 	int err, i, j;
2164 
2165 	for (i = 0; i < priv->num_grps; i++) {
2166 		err = register_grp_irqs(&priv->gfargrp[i]);
2167 		if (err) {
2168 			for (j = 0; j < i; j++)
2169 				free_grp_irqs(&priv->gfargrp[j]);
2170 			return err;
2171 		}
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 /* Bring the controller up and running */
2178 int startup_gfar(struct net_device *ndev)
2179 {
2180 	struct gfar_private *priv = netdev_priv(ndev);
2181 	int err;
2182 
2183 	gfar_mac_reset(priv);
2184 
2185 	err = gfar_alloc_skb_resources(ndev);
2186 	if (err)
2187 		return err;
2188 
2189 	gfar_init_tx_rx_base(priv);
2190 
2191 	smp_mb__before_atomic();
2192 	clear_bit(GFAR_DOWN, &priv->state);
2193 	smp_mb__after_atomic();
2194 
2195 	/* Start Rx/Tx DMA and enable the interrupts */
2196 	gfar_start(priv);
2197 
2198 	/* force link state update after mac reset */
2199 	priv->oldlink = 0;
2200 	priv->oldspeed = 0;
2201 	priv->oldduplex = -1;
2202 
2203 	phy_start(priv->phydev);
2204 
2205 	enable_napi(priv);
2206 
2207 	netif_tx_wake_all_queues(ndev);
2208 
2209 	return 0;
2210 }
2211 
2212 /* Called when something needs to use the ethernet device
2213  * Returns 0 for success.
2214  */
2215 static int gfar_enet_open(struct net_device *dev)
2216 {
2217 	struct gfar_private *priv = netdev_priv(dev);
2218 	int err;
2219 
2220 	err = init_phy(dev);
2221 	if (err)
2222 		return err;
2223 
2224 	err = gfar_request_irq(priv);
2225 	if (err)
2226 		return err;
2227 
2228 	err = startup_gfar(dev);
2229 	if (err)
2230 		return err;
2231 
2232 	return err;
2233 }
2234 
2235 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2236 {
2237 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2238 
2239 	memset(fcb, 0, GMAC_FCB_LEN);
2240 
2241 	return fcb;
2242 }
2243 
2244 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2245 				    int fcb_length)
2246 {
2247 	/* If we're here, it's a IP packet with a TCP or UDP
2248 	 * payload.  We set it to checksum, using a pseudo-header
2249 	 * we provide
2250 	 */
2251 	u8 flags = TXFCB_DEFAULT;
2252 
2253 	/* Tell the controller what the protocol is
2254 	 * And provide the already calculated phcs
2255 	 */
2256 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2257 		flags |= TXFCB_UDP;
2258 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2259 	} else
2260 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2261 
2262 	/* l3os is the distance between the start of the
2263 	 * frame (skb->data) and the start of the IP hdr.
2264 	 * l4os is the distance between the start of the
2265 	 * l3 hdr and the l4 hdr
2266 	 */
2267 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2268 	fcb->l4os = skb_network_header_len(skb);
2269 
2270 	fcb->flags = flags;
2271 }
2272 
2273 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2274 {
2275 	fcb->flags |= TXFCB_VLN;
2276 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2277 }
2278 
2279 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2280 				      struct txbd8 *base, int ring_size)
2281 {
2282 	struct txbd8 *new_bd = bdp + stride;
2283 
2284 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2285 }
2286 
2287 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2288 				      int ring_size)
2289 {
2290 	return skip_txbd(bdp, 1, base, ring_size);
2291 }
2292 
2293 /* eTSEC12: csum generation not supported for some fcb offsets */
2294 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2295 				       unsigned long fcb_addr)
2296 {
2297 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2298 	       (fcb_addr % 0x20) > 0x18);
2299 }
2300 
2301 /* eTSEC76: csum generation for frames larger than 2500 may
2302  * cause excess delays before start of transmission
2303  */
2304 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2305 				       unsigned int len)
2306 {
2307 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2308 	       (len > 2500));
2309 }
2310 
2311 /* This is called by the kernel when a frame is ready for transmission.
2312  * It is pointed to by the dev->hard_start_xmit function pointer
2313  */
2314 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2315 {
2316 	struct gfar_private *priv = netdev_priv(dev);
2317 	struct gfar_priv_tx_q *tx_queue = NULL;
2318 	struct netdev_queue *txq;
2319 	struct gfar __iomem *regs = NULL;
2320 	struct txfcb *fcb = NULL;
2321 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2322 	u32 lstatus;
2323 	int i, rq = 0;
2324 	int do_tstamp, do_csum, do_vlan;
2325 	u32 bufaddr;
2326 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2327 
2328 	rq = skb->queue_mapping;
2329 	tx_queue = priv->tx_queue[rq];
2330 	txq = netdev_get_tx_queue(dev, rq);
2331 	base = tx_queue->tx_bd_base;
2332 	regs = tx_queue->grp->regs;
2333 
2334 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2335 	do_vlan = skb_vlan_tag_present(skb);
2336 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2337 		    priv->hwts_tx_en;
2338 
2339 	if (do_csum || do_vlan)
2340 		fcb_len = GMAC_FCB_LEN;
2341 
2342 	/* check if time stamp should be generated */
2343 	if (unlikely(do_tstamp))
2344 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2345 
2346 	/* make space for additional header when fcb is needed */
2347 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2348 		struct sk_buff *skb_new;
2349 
2350 		skb_new = skb_realloc_headroom(skb, fcb_len);
2351 		if (!skb_new) {
2352 			dev->stats.tx_errors++;
2353 			dev_kfree_skb_any(skb);
2354 			return NETDEV_TX_OK;
2355 		}
2356 
2357 		if (skb->sk)
2358 			skb_set_owner_w(skb_new, skb->sk);
2359 		dev_consume_skb_any(skb);
2360 		skb = skb_new;
2361 	}
2362 
2363 	/* total number of fragments in the SKB */
2364 	nr_frags = skb_shinfo(skb)->nr_frags;
2365 
2366 	/* calculate the required number of TxBDs for this skb */
2367 	if (unlikely(do_tstamp))
2368 		nr_txbds = nr_frags + 2;
2369 	else
2370 		nr_txbds = nr_frags + 1;
2371 
2372 	/* check if there is space to queue this packet */
2373 	if (nr_txbds > tx_queue->num_txbdfree) {
2374 		/* no space, stop the queue */
2375 		netif_tx_stop_queue(txq);
2376 		dev->stats.tx_fifo_errors++;
2377 		return NETDEV_TX_BUSY;
2378 	}
2379 
2380 	/* Update transmit stats */
2381 	bytes_sent = skb->len;
2382 	tx_queue->stats.tx_bytes += bytes_sent;
2383 	/* keep Tx bytes on wire for BQL accounting */
2384 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2385 	tx_queue->stats.tx_packets++;
2386 
2387 	txbdp = txbdp_start = tx_queue->cur_tx;
2388 	lstatus = be32_to_cpu(txbdp->lstatus);
2389 
2390 	/* Time stamp insertion requires one additional TxBD */
2391 	if (unlikely(do_tstamp))
2392 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2393 						 tx_queue->tx_ring_size);
2394 
2395 	if (nr_frags == 0) {
2396 		if (unlikely(do_tstamp)) {
2397 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2398 
2399 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2400 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2401 		} else {
2402 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2403 		}
2404 	} else {
2405 		/* Place the fragment addresses and lengths into the TxBDs */
2406 		for (i = 0; i < nr_frags; i++) {
2407 			unsigned int frag_len;
2408 			/* Point at the next BD, wrapping as needed */
2409 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2410 
2411 			frag_len = skb_shinfo(skb)->frags[i].size;
2412 
2413 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2414 				  BD_LFLAG(TXBD_READY);
2415 
2416 			/* Handle the last BD specially */
2417 			if (i == nr_frags - 1)
2418 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2419 
2420 			bufaddr = skb_frag_dma_map(priv->dev,
2421 						   &skb_shinfo(skb)->frags[i],
2422 						   0,
2423 						   frag_len,
2424 						   DMA_TO_DEVICE);
2425 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2426 				goto dma_map_err;
2427 
2428 			/* set the TxBD length and buffer pointer */
2429 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2430 			txbdp->lstatus = cpu_to_be32(lstatus);
2431 		}
2432 
2433 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2434 	}
2435 
2436 	/* Add TxPAL between FCB and frame if required */
2437 	if (unlikely(do_tstamp)) {
2438 		skb_push(skb, GMAC_TXPAL_LEN);
2439 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2440 	}
2441 
2442 	/* Add TxFCB if required */
2443 	if (fcb_len) {
2444 		fcb = gfar_add_fcb(skb);
2445 		lstatus |= BD_LFLAG(TXBD_TOE);
2446 	}
2447 
2448 	/* Set up checksumming */
2449 	if (do_csum) {
2450 		gfar_tx_checksum(skb, fcb, fcb_len);
2451 
2452 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2453 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2454 			__skb_pull(skb, GMAC_FCB_LEN);
2455 			skb_checksum_help(skb);
2456 			if (do_vlan || do_tstamp) {
2457 				/* put back a new fcb for vlan/tstamp TOE */
2458 				fcb = gfar_add_fcb(skb);
2459 			} else {
2460 				/* Tx TOE not used */
2461 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2462 				fcb = NULL;
2463 			}
2464 		}
2465 	}
2466 
2467 	if (do_vlan)
2468 		gfar_tx_vlan(skb, fcb);
2469 
2470 	/* Setup tx hardware time stamping if requested */
2471 	if (unlikely(do_tstamp)) {
2472 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2473 		fcb->ptp = 1;
2474 	}
2475 
2476 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2477 				 DMA_TO_DEVICE);
2478 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2479 		goto dma_map_err;
2480 
2481 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2482 
2483 	/* If time stamping is requested one additional TxBD must be set up. The
2484 	 * first TxBD points to the FCB and must have a data length of
2485 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2486 	 * the full frame length.
2487 	 */
2488 	if (unlikely(do_tstamp)) {
2489 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2490 
2491 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2492 		bufaddr += fcb_len;
2493 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2494 			      (skb_headlen(skb) - fcb_len);
2495 
2496 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2497 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2498 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2499 	} else {
2500 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2501 	}
2502 
2503 	netdev_tx_sent_queue(txq, bytes_sent);
2504 
2505 	gfar_wmb();
2506 
2507 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2508 
2509 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2510 
2511 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2512 
2513 	/* Update the current skb pointer to the next entry we will use
2514 	 * (wrapping if necessary)
2515 	 */
2516 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2517 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2518 
2519 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2520 
2521 	/* We can work in parallel with gfar_clean_tx_ring(), except
2522 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2523 	 * when we were reading the num_txbdfree and checking for available
2524 	 * space, that's because outside of this function it can only grow.
2525 	 */
2526 	spin_lock_bh(&tx_queue->txlock);
2527 	/* reduce TxBD free count */
2528 	tx_queue->num_txbdfree -= (nr_txbds);
2529 	spin_unlock_bh(&tx_queue->txlock);
2530 
2531 	/* If the next BD still needs to be cleaned up, then the bds
2532 	 * are full.  We need to tell the kernel to stop sending us stuff.
2533 	 */
2534 	if (!tx_queue->num_txbdfree) {
2535 		netif_tx_stop_queue(txq);
2536 
2537 		dev->stats.tx_fifo_errors++;
2538 	}
2539 
2540 	/* Tell the DMA to go go go */
2541 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2542 
2543 	return NETDEV_TX_OK;
2544 
2545 dma_map_err:
2546 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2547 	if (do_tstamp)
2548 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2549 	for (i = 0; i < nr_frags; i++) {
2550 		lstatus = be32_to_cpu(txbdp->lstatus);
2551 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2552 			break;
2553 
2554 		lstatus &= ~BD_LFLAG(TXBD_READY);
2555 		txbdp->lstatus = cpu_to_be32(lstatus);
2556 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2557 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2558 			       DMA_TO_DEVICE);
2559 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2560 	}
2561 	gfar_wmb();
2562 	dev_kfree_skb_any(skb);
2563 	return NETDEV_TX_OK;
2564 }
2565 
2566 /* Stops the kernel queue, and halts the controller */
2567 static int gfar_close(struct net_device *dev)
2568 {
2569 	struct gfar_private *priv = netdev_priv(dev);
2570 
2571 	cancel_work_sync(&priv->reset_task);
2572 	stop_gfar(dev);
2573 
2574 	/* Disconnect from the PHY */
2575 	phy_disconnect(priv->phydev);
2576 	priv->phydev = NULL;
2577 
2578 	gfar_free_irq(priv);
2579 
2580 	return 0;
2581 }
2582 
2583 /* Changes the mac address if the controller is not running. */
2584 static int gfar_set_mac_address(struct net_device *dev)
2585 {
2586 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2587 
2588 	return 0;
2589 }
2590 
2591 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2592 {
2593 	struct gfar_private *priv = netdev_priv(dev);
2594 	int frame_size = new_mtu + ETH_HLEN;
2595 
2596 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2597 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2598 		return -EINVAL;
2599 	}
2600 
2601 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2602 		cpu_relax();
2603 
2604 	if (dev->flags & IFF_UP)
2605 		stop_gfar(dev);
2606 
2607 	dev->mtu = new_mtu;
2608 
2609 	if (dev->flags & IFF_UP)
2610 		startup_gfar(dev);
2611 
2612 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2613 
2614 	return 0;
2615 }
2616 
2617 void reset_gfar(struct net_device *ndev)
2618 {
2619 	struct gfar_private *priv = netdev_priv(ndev);
2620 
2621 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2622 		cpu_relax();
2623 
2624 	stop_gfar(ndev);
2625 	startup_gfar(ndev);
2626 
2627 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628 }
2629 
2630 /* gfar_reset_task gets scheduled when a packet has not been
2631  * transmitted after a set amount of time.
2632  * For now, assume that clearing out all the structures, and
2633  * starting over will fix the problem.
2634  */
2635 static void gfar_reset_task(struct work_struct *work)
2636 {
2637 	struct gfar_private *priv = container_of(work, struct gfar_private,
2638 						 reset_task);
2639 	reset_gfar(priv->ndev);
2640 }
2641 
2642 static void gfar_timeout(struct net_device *dev)
2643 {
2644 	struct gfar_private *priv = netdev_priv(dev);
2645 
2646 	dev->stats.tx_errors++;
2647 	schedule_work(&priv->reset_task);
2648 }
2649 
2650 /* Interrupt Handler for Transmit complete */
2651 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2652 {
2653 	struct net_device *dev = tx_queue->dev;
2654 	struct netdev_queue *txq;
2655 	struct gfar_private *priv = netdev_priv(dev);
2656 	struct txbd8 *bdp, *next = NULL;
2657 	struct txbd8 *lbdp = NULL;
2658 	struct txbd8 *base = tx_queue->tx_bd_base;
2659 	struct sk_buff *skb;
2660 	int skb_dirtytx;
2661 	int tx_ring_size = tx_queue->tx_ring_size;
2662 	int frags = 0, nr_txbds = 0;
2663 	int i;
2664 	int howmany = 0;
2665 	int tqi = tx_queue->qindex;
2666 	unsigned int bytes_sent = 0;
2667 	u32 lstatus;
2668 	size_t buflen;
2669 
2670 	txq = netdev_get_tx_queue(dev, tqi);
2671 	bdp = tx_queue->dirty_tx;
2672 	skb_dirtytx = tx_queue->skb_dirtytx;
2673 
2674 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2675 
2676 		frags = skb_shinfo(skb)->nr_frags;
2677 
2678 		/* When time stamping, one additional TxBD must be freed.
2679 		 * Also, we need to dma_unmap_single() the TxPAL.
2680 		 */
2681 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2682 			nr_txbds = frags + 2;
2683 		else
2684 			nr_txbds = frags + 1;
2685 
2686 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2687 
2688 		lstatus = be32_to_cpu(lbdp->lstatus);
2689 
2690 		/* Only clean completed frames */
2691 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2692 		    (lstatus & BD_LENGTH_MASK))
2693 			break;
2694 
2695 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2696 			next = next_txbd(bdp, base, tx_ring_size);
2697 			buflen = be16_to_cpu(next->length) +
2698 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2699 		} else
2700 			buflen = be16_to_cpu(bdp->length);
2701 
2702 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2703 				 buflen, DMA_TO_DEVICE);
2704 
2705 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2706 			struct skb_shared_hwtstamps shhwtstamps;
2707 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2708 					  ~0x7UL);
2709 
2710 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2712 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2713 			skb_tstamp_tx(skb, &shhwtstamps);
2714 			gfar_clear_txbd_status(bdp);
2715 			bdp = next;
2716 		}
2717 
2718 		gfar_clear_txbd_status(bdp);
2719 		bdp = next_txbd(bdp, base, tx_ring_size);
2720 
2721 		for (i = 0; i < frags; i++) {
2722 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2723 				       be16_to_cpu(bdp->length),
2724 				       DMA_TO_DEVICE);
2725 			gfar_clear_txbd_status(bdp);
2726 			bdp = next_txbd(bdp, base, tx_ring_size);
2727 		}
2728 
2729 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2730 
2731 		dev_kfree_skb_any(skb);
2732 
2733 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2734 
2735 		skb_dirtytx = (skb_dirtytx + 1) &
2736 			      TX_RING_MOD_MASK(tx_ring_size);
2737 
2738 		howmany++;
2739 		spin_lock(&tx_queue->txlock);
2740 		tx_queue->num_txbdfree += nr_txbds;
2741 		spin_unlock(&tx_queue->txlock);
2742 	}
2743 
2744 	/* If we freed a buffer, we can restart transmission, if necessary */
2745 	if (tx_queue->num_txbdfree &&
2746 	    netif_tx_queue_stopped(txq) &&
2747 	    !(test_bit(GFAR_DOWN, &priv->state)))
2748 		netif_wake_subqueue(priv->ndev, tqi);
2749 
2750 	/* Update dirty indicators */
2751 	tx_queue->skb_dirtytx = skb_dirtytx;
2752 	tx_queue->dirty_tx = bdp;
2753 
2754 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2755 }
2756 
2757 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2758 {
2759 	struct page *page;
2760 	dma_addr_t addr;
2761 
2762 	page = dev_alloc_page();
2763 	if (unlikely(!page))
2764 		return false;
2765 
2766 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2767 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2768 		__free_page(page);
2769 
2770 		return false;
2771 	}
2772 
2773 	rxb->dma = addr;
2774 	rxb->page = page;
2775 	rxb->page_offset = 0;
2776 
2777 	return true;
2778 }
2779 
2780 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2781 {
2782 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2783 	struct gfar_extra_stats *estats = &priv->extra_stats;
2784 
2785 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2786 	atomic64_inc(&estats->rx_alloc_err);
2787 }
2788 
2789 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2790 				int alloc_cnt)
2791 {
2792 	struct rxbd8 *bdp;
2793 	struct gfar_rx_buff *rxb;
2794 	int i;
2795 
2796 	i = rx_queue->next_to_use;
2797 	bdp = &rx_queue->rx_bd_base[i];
2798 	rxb = &rx_queue->rx_buff[i];
2799 
2800 	while (alloc_cnt--) {
2801 		/* try reuse page */
2802 		if (unlikely(!rxb->page)) {
2803 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2804 				gfar_rx_alloc_err(rx_queue);
2805 				break;
2806 			}
2807 		}
2808 
2809 		/* Setup the new RxBD */
2810 		gfar_init_rxbdp(rx_queue, bdp,
2811 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2812 
2813 		/* Update to the next pointer */
2814 		bdp++;
2815 		rxb++;
2816 
2817 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2818 			i = 0;
2819 			bdp = rx_queue->rx_bd_base;
2820 			rxb = rx_queue->rx_buff;
2821 		}
2822 	}
2823 
2824 	rx_queue->next_to_use = i;
2825 	rx_queue->next_to_alloc = i;
2826 }
2827 
2828 static void count_errors(u32 lstatus, struct net_device *ndev)
2829 {
2830 	struct gfar_private *priv = netdev_priv(ndev);
2831 	struct net_device_stats *stats = &ndev->stats;
2832 	struct gfar_extra_stats *estats = &priv->extra_stats;
2833 
2834 	/* If the packet was truncated, none of the other errors matter */
2835 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2836 		stats->rx_length_errors++;
2837 
2838 		atomic64_inc(&estats->rx_trunc);
2839 
2840 		return;
2841 	}
2842 	/* Count the errors, if there were any */
2843 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2844 		stats->rx_length_errors++;
2845 
2846 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2847 			atomic64_inc(&estats->rx_large);
2848 		else
2849 			atomic64_inc(&estats->rx_short);
2850 	}
2851 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2852 		stats->rx_frame_errors++;
2853 		atomic64_inc(&estats->rx_nonoctet);
2854 	}
2855 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2856 		atomic64_inc(&estats->rx_crcerr);
2857 		stats->rx_crc_errors++;
2858 	}
2859 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2860 		atomic64_inc(&estats->rx_overrun);
2861 		stats->rx_over_errors++;
2862 	}
2863 }
2864 
2865 irqreturn_t gfar_receive(int irq, void *grp_id)
2866 {
2867 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2868 	unsigned long flags;
2869 	u32 imask, ievent;
2870 
2871 	ievent = gfar_read(&grp->regs->ievent);
2872 
2873 	if (unlikely(ievent & IEVENT_FGPI)) {
2874 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2875 		return IRQ_HANDLED;
2876 	}
2877 
2878 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2879 		spin_lock_irqsave(&grp->grplock, flags);
2880 		imask = gfar_read(&grp->regs->imask);
2881 		imask &= IMASK_RX_DISABLED;
2882 		gfar_write(&grp->regs->imask, imask);
2883 		spin_unlock_irqrestore(&grp->grplock, flags);
2884 		__napi_schedule(&grp->napi_rx);
2885 	} else {
2886 		/* Clear IEVENT, so interrupts aren't called again
2887 		 * because of the packets that have already arrived.
2888 		 */
2889 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2890 	}
2891 
2892 	return IRQ_HANDLED;
2893 }
2894 
2895 /* Interrupt Handler for Transmit complete */
2896 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2897 {
2898 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2899 	unsigned long flags;
2900 	u32 imask;
2901 
2902 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2903 		spin_lock_irqsave(&grp->grplock, flags);
2904 		imask = gfar_read(&grp->regs->imask);
2905 		imask &= IMASK_TX_DISABLED;
2906 		gfar_write(&grp->regs->imask, imask);
2907 		spin_unlock_irqrestore(&grp->grplock, flags);
2908 		__napi_schedule(&grp->napi_tx);
2909 	} else {
2910 		/* Clear IEVENT, so interrupts aren't called again
2911 		 * because of the packets that have already arrived.
2912 		 */
2913 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2914 	}
2915 
2916 	return IRQ_HANDLED;
2917 }
2918 
2919 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2920 			     struct sk_buff *skb, bool first)
2921 {
2922 	unsigned int size = lstatus & BD_LENGTH_MASK;
2923 	struct page *page = rxb->page;
2924 
2925 	/* Remove the FCS from the packet length */
2926 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2927 		size -= ETH_FCS_LEN;
2928 
2929 	if (likely(first))
2930 		skb_put(skb, size);
2931 	else
2932 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2933 				rxb->page_offset + RXBUF_ALIGNMENT,
2934 				size, GFAR_RXB_TRUESIZE);
2935 
2936 	/* try reuse page */
2937 	if (unlikely(page_count(page) != 1))
2938 		return false;
2939 
2940 	/* change offset to the other half */
2941 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2942 
2943 	atomic_inc(&page->_count);
2944 
2945 	return true;
2946 }
2947 
2948 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2949 			       struct gfar_rx_buff *old_rxb)
2950 {
2951 	struct gfar_rx_buff *new_rxb;
2952 	u16 nta = rxq->next_to_alloc;
2953 
2954 	new_rxb = &rxq->rx_buff[nta];
2955 
2956 	/* find next buf that can reuse a page */
2957 	nta++;
2958 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2959 
2960 	/* copy page reference */
2961 	*new_rxb = *old_rxb;
2962 
2963 	/* sync for use by the device */
2964 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2965 					 old_rxb->page_offset,
2966 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2967 }
2968 
2969 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2970 					    u32 lstatus, struct sk_buff *skb)
2971 {
2972 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2973 	struct page *page = rxb->page;
2974 	bool first = false;
2975 
2976 	if (likely(!skb)) {
2977 		void *buff_addr = page_address(page) + rxb->page_offset;
2978 
2979 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2980 		if (unlikely(!skb)) {
2981 			gfar_rx_alloc_err(rx_queue);
2982 			return NULL;
2983 		}
2984 		skb_reserve(skb, RXBUF_ALIGNMENT);
2985 		first = true;
2986 	}
2987 
2988 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2989 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2990 
2991 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2992 		/* reuse the free half of the page */
2993 		gfar_reuse_rx_page(rx_queue, rxb);
2994 	} else {
2995 		/* page cannot be reused, unmap it */
2996 		dma_unmap_page(rx_queue->dev, rxb->dma,
2997 			       PAGE_SIZE, DMA_FROM_DEVICE);
2998 	}
2999 
3000 	/* clear rxb content */
3001 	rxb->page = NULL;
3002 
3003 	return skb;
3004 }
3005 
3006 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3007 {
3008 	/* If valid headers were found, and valid sums
3009 	 * were verified, then we tell the kernel that no
3010 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3011 	 */
3012 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3013 	    (RXFCB_CIP | RXFCB_CTU))
3014 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3015 	else
3016 		skb_checksum_none_assert(skb);
3017 }
3018 
3019 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3020 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3021 {
3022 	struct gfar_private *priv = netdev_priv(ndev);
3023 	struct rxfcb *fcb = NULL;
3024 
3025 	/* fcb is at the beginning if exists */
3026 	fcb = (struct rxfcb *)skb->data;
3027 
3028 	/* Remove the FCB from the skb
3029 	 * Remove the padded bytes, if there are any
3030 	 */
3031 	if (priv->uses_rxfcb)
3032 		skb_pull(skb, GMAC_FCB_LEN);
3033 
3034 	/* Get receive timestamp from the skb */
3035 	if (priv->hwts_rx_en) {
3036 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3037 		u64 *ns = (u64 *) skb->data;
3038 
3039 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3040 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3041 	}
3042 
3043 	if (priv->padding)
3044 		skb_pull(skb, priv->padding);
3045 
3046 	if (ndev->features & NETIF_F_RXCSUM)
3047 		gfar_rx_checksum(skb, fcb);
3048 
3049 	/* Tell the skb what kind of packet this is */
3050 	skb->protocol = eth_type_trans(skb, ndev);
3051 
3052 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3053 	 * Even if vlan rx accel is disabled, on some chips
3054 	 * RXFCB_VLN is pseudo randomly set.
3055 	 */
3056 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3057 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3058 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3059 				       be16_to_cpu(fcb->vlctl));
3060 }
3061 
3062 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3063  * until the budget/quota has been reached. Returns the number
3064  * of frames handled
3065  */
3066 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3067 {
3068 	struct net_device *ndev = rx_queue->ndev;
3069 	struct gfar_private *priv = netdev_priv(ndev);
3070 	struct rxbd8 *bdp;
3071 	int i, howmany = 0;
3072 	struct sk_buff *skb = rx_queue->skb;
3073 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3074 	unsigned int total_bytes = 0, total_pkts = 0;
3075 
3076 	/* Get the first full descriptor */
3077 	i = rx_queue->next_to_clean;
3078 
3079 	while (rx_work_limit--) {
3080 		u32 lstatus;
3081 
3082 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3083 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3084 			cleaned_cnt = 0;
3085 		}
3086 
3087 		bdp = &rx_queue->rx_bd_base[i];
3088 		lstatus = be32_to_cpu(bdp->lstatus);
3089 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3090 			break;
3091 
3092 		/* order rx buffer descriptor reads */
3093 		rmb();
3094 
3095 		/* fetch next to clean buffer from the ring */
3096 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3097 		if (unlikely(!skb))
3098 			break;
3099 
3100 		cleaned_cnt++;
3101 		howmany++;
3102 
3103 		if (unlikely(++i == rx_queue->rx_ring_size))
3104 			i = 0;
3105 
3106 		rx_queue->next_to_clean = i;
3107 
3108 		/* fetch next buffer if not the last in frame */
3109 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3110 			continue;
3111 
3112 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3113 			count_errors(lstatus, ndev);
3114 
3115 			/* discard faulty buffer */
3116 			dev_kfree_skb(skb);
3117 			skb = NULL;
3118 			rx_queue->stats.rx_dropped++;
3119 			continue;
3120 		}
3121 
3122 		/* Increment the number of packets */
3123 		total_pkts++;
3124 		total_bytes += skb->len;
3125 
3126 		skb_record_rx_queue(skb, rx_queue->qindex);
3127 
3128 		gfar_process_frame(ndev, skb);
3129 
3130 		/* Send the packet up the stack */
3131 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3132 
3133 		skb = NULL;
3134 	}
3135 
3136 	/* Store incomplete frames for completion */
3137 	rx_queue->skb = skb;
3138 
3139 	rx_queue->stats.rx_packets += total_pkts;
3140 	rx_queue->stats.rx_bytes += total_bytes;
3141 
3142 	if (cleaned_cnt)
3143 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3144 
3145 	/* Update Last Free RxBD pointer for LFC */
3146 	if (unlikely(priv->tx_actual_en)) {
3147 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3148 
3149 		gfar_write(rx_queue->rfbptr, bdp_dma);
3150 	}
3151 
3152 	return howmany;
3153 }
3154 
3155 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3156 {
3157 	struct gfar_priv_grp *gfargrp =
3158 		container_of(napi, struct gfar_priv_grp, napi_rx);
3159 	struct gfar __iomem *regs = gfargrp->regs;
3160 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3161 	int work_done = 0;
3162 
3163 	/* Clear IEVENT, so interrupts aren't called again
3164 	 * because of the packets that have already arrived
3165 	 */
3166 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3167 
3168 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3169 
3170 	if (work_done < budget) {
3171 		u32 imask;
3172 		napi_complete(napi);
3173 		/* Clear the halt bit in RSTAT */
3174 		gfar_write(&regs->rstat, gfargrp->rstat);
3175 
3176 		spin_lock_irq(&gfargrp->grplock);
3177 		imask = gfar_read(&regs->imask);
3178 		imask |= IMASK_RX_DEFAULT;
3179 		gfar_write(&regs->imask, imask);
3180 		spin_unlock_irq(&gfargrp->grplock);
3181 	}
3182 
3183 	return work_done;
3184 }
3185 
3186 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3187 {
3188 	struct gfar_priv_grp *gfargrp =
3189 		container_of(napi, struct gfar_priv_grp, napi_tx);
3190 	struct gfar __iomem *regs = gfargrp->regs;
3191 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3192 	u32 imask;
3193 
3194 	/* Clear IEVENT, so interrupts aren't called again
3195 	 * because of the packets that have already arrived
3196 	 */
3197 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3198 
3199 	/* run Tx cleanup to completion */
3200 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3201 		gfar_clean_tx_ring(tx_queue);
3202 
3203 	napi_complete(napi);
3204 
3205 	spin_lock_irq(&gfargrp->grplock);
3206 	imask = gfar_read(&regs->imask);
3207 	imask |= IMASK_TX_DEFAULT;
3208 	gfar_write(&regs->imask, imask);
3209 	spin_unlock_irq(&gfargrp->grplock);
3210 
3211 	return 0;
3212 }
3213 
3214 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3215 {
3216 	struct gfar_priv_grp *gfargrp =
3217 		container_of(napi, struct gfar_priv_grp, napi_rx);
3218 	struct gfar_private *priv = gfargrp->priv;
3219 	struct gfar __iomem *regs = gfargrp->regs;
3220 	struct gfar_priv_rx_q *rx_queue = NULL;
3221 	int work_done = 0, work_done_per_q = 0;
3222 	int i, budget_per_q = 0;
3223 	unsigned long rstat_rxf;
3224 	int num_act_queues;
3225 
3226 	/* Clear IEVENT, so interrupts aren't called again
3227 	 * because of the packets that have already arrived
3228 	 */
3229 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3230 
3231 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3232 
3233 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3234 	if (num_act_queues)
3235 		budget_per_q = budget/num_act_queues;
3236 
3237 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3238 		/* skip queue if not active */
3239 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3240 			continue;
3241 
3242 		rx_queue = priv->rx_queue[i];
3243 		work_done_per_q =
3244 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3245 		work_done += work_done_per_q;
3246 
3247 		/* finished processing this queue */
3248 		if (work_done_per_q < budget_per_q) {
3249 			/* clear active queue hw indication */
3250 			gfar_write(&regs->rstat,
3251 				   RSTAT_CLEAR_RXF0 >> i);
3252 			num_act_queues--;
3253 
3254 			if (!num_act_queues)
3255 				break;
3256 		}
3257 	}
3258 
3259 	if (!num_act_queues) {
3260 		u32 imask;
3261 		napi_complete(napi);
3262 
3263 		/* Clear the halt bit in RSTAT */
3264 		gfar_write(&regs->rstat, gfargrp->rstat);
3265 
3266 		spin_lock_irq(&gfargrp->grplock);
3267 		imask = gfar_read(&regs->imask);
3268 		imask |= IMASK_RX_DEFAULT;
3269 		gfar_write(&regs->imask, imask);
3270 		spin_unlock_irq(&gfargrp->grplock);
3271 	}
3272 
3273 	return work_done;
3274 }
3275 
3276 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3277 {
3278 	struct gfar_priv_grp *gfargrp =
3279 		container_of(napi, struct gfar_priv_grp, napi_tx);
3280 	struct gfar_private *priv = gfargrp->priv;
3281 	struct gfar __iomem *regs = gfargrp->regs;
3282 	struct gfar_priv_tx_q *tx_queue = NULL;
3283 	int has_tx_work = 0;
3284 	int i;
3285 
3286 	/* Clear IEVENT, so interrupts aren't called again
3287 	 * because of the packets that have already arrived
3288 	 */
3289 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3290 
3291 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3292 		tx_queue = priv->tx_queue[i];
3293 		/* run Tx cleanup to completion */
3294 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3295 			gfar_clean_tx_ring(tx_queue);
3296 			has_tx_work = 1;
3297 		}
3298 	}
3299 
3300 	if (!has_tx_work) {
3301 		u32 imask;
3302 		napi_complete(napi);
3303 
3304 		spin_lock_irq(&gfargrp->grplock);
3305 		imask = gfar_read(&regs->imask);
3306 		imask |= IMASK_TX_DEFAULT;
3307 		gfar_write(&regs->imask, imask);
3308 		spin_unlock_irq(&gfargrp->grplock);
3309 	}
3310 
3311 	return 0;
3312 }
3313 
3314 
3315 #ifdef CONFIG_NET_POLL_CONTROLLER
3316 /* Polling 'interrupt' - used by things like netconsole to send skbs
3317  * without having to re-enable interrupts. It's not called while
3318  * the interrupt routine is executing.
3319  */
3320 static void gfar_netpoll(struct net_device *dev)
3321 {
3322 	struct gfar_private *priv = netdev_priv(dev);
3323 	int i;
3324 
3325 	/* If the device has multiple interrupts, run tx/rx */
3326 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3327 		for (i = 0; i < priv->num_grps; i++) {
3328 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3329 
3330 			disable_irq(gfar_irq(grp, TX)->irq);
3331 			disable_irq(gfar_irq(grp, RX)->irq);
3332 			disable_irq(gfar_irq(grp, ER)->irq);
3333 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3334 			enable_irq(gfar_irq(grp, ER)->irq);
3335 			enable_irq(gfar_irq(grp, RX)->irq);
3336 			enable_irq(gfar_irq(grp, TX)->irq);
3337 		}
3338 	} else {
3339 		for (i = 0; i < priv->num_grps; i++) {
3340 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3341 
3342 			disable_irq(gfar_irq(grp, TX)->irq);
3343 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3344 			enable_irq(gfar_irq(grp, TX)->irq);
3345 		}
3346 	}
3347 }
3348 #endif
3349 
3350 /* The interrupt handler for devices with one interrupt */
3351 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3352 {
3353 	struct gfar_priv_grp *gfargrp = grp_id;
3354 
3355 	/* Save ievent for future reference */
3356 	u32 events = gfar_read(&gfargrp->regs->ievent);
3357 
3358 	/* Check for reception */
3359 	if (events & IEVENT_RX_MASK)
3360 		gfar_receive(irq, grp_id);
3361 
3362 	/* Check for transmit completion */
3363 	if (events & IEVENT_TX_MASK)
3364 		gfar_transmit(irq, grp_id);
3365 
3366 	/* Check for errors */
3367 	if (events & IEVENT_ERR_MASK)
3368 		gfar_error(irq, grp_id);
3369 
3370 	return IRQ_HANDLED;
3371 }
3372 
3373 /* Called every time the controller might need to be made
3374  * aware of new link state.  The PHY code conveys this
3375  * information through variables in the phydev structure, and this
3376  * function converts those variables into the appropriate
3377  * register values, and can bring down the device if needed.
3378  */
3379 static void adjust_link(struct net_device *dev)
3380 {
3381 	struct gfar_private *priv = netdev_priv(dev);
3382 	struct phy_device *phydev = priv->phydev;
3383 
3384 	if (unlikely(phydev->link != priv->oldlink ||
3385 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3386 				       phydev->speed != priv->oldspeed))))
3387 		gfar_update_link_state(priv);
3388 }
3389 
3390 /* Update the hash table based on the current list of multicast
3391  * addresses we subscribe to.  Also, change the promiscuity of
3392  * the device based on the flags (this function is called
3393  * whenever dev->flags is changed
3394  */
3395 static void gfar_set_multi(struct net_device *dev)
3396 {
3397 	struct netdev_hw_addr *ha;
3398 	struct gfar_private *priv = netdev_priv(dev);
3399 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3400 	u32 tempval;
3401 
3402 	if (dev->flags & IFF_PROMISC) {
3403 		/* Set RCTRL to PROM */
3404 		tempval = gfar_read(&regs->rctrl);
3405 		tempval |= RCTRL_PROM;
3406 		gfar_write(&regs->rctrl, tempval);
3407 	} else {
3408 		/* Set RCTRL to not PROM */
3409 		tempval = gfar_read(&regs->rctrl);
3410 		tempval &= ~(RCTRL_PROM);
3411 		gfar_write(&regs->rctrl, tempval);
3412 	}
3413 
3414 	if (dev->flags & IFF_ALLMULTI) {
3415 		/* Set the hash to rx all multicast frames */
3416 		gfar_write(&regs->igaddr0, 0xffffffff);
3417 		gfar_write(&regs->igaddr1, 0xffffffff);
3418 		gfar_write(&regs->igaddr2, 0xffffffff);
3419 		gfar_write(&regs->igaddr3, 0xffffffff);
3420 		gfar_write(&regs->igaddr4, 0xffffffff);
3421 		gfar_write(&regs->igaddr5, 0xffffffff);
3422 		gfar_write(&regs->igaddr6, 0xffffffff);
3423 		gfar_write(&regs->igaddr7, 0xffffffff);
3424 		gfar_write(&regs->gaddr0, 0xffffffff);
3425 		gfar_write(&regs->gaddr1, 0xffffffff);
3426 		gfar_write(&regs->gaddr2, 0xffffffff);
3427 		gfar_write(&regs->gaddr3, 0xffffffff);
3428 		gfar_write(&regs->gaddr4, 0xffffffff);
3429 		gfar_write(&regs->gaddr5, 0xffffffff);
3430 		gfar_write(&regs->gaddr6, 0xffffffff);
3431 		gfar_write(&regs->gaddr7, 0xffffffff);
3432 	} else {
3433 		int em_num;
3434 		int idx;
3435 
3436 		/* zero out the hash */
3437 		gfar_write(&regs->igaddr0, 0x0);
3438 		gfar_write(&regs->igaddr1, 0x0);
3439 		gfar_write(&regs->igaddr2, 0x0);
3440 		gfar_write(&regs->igaddr3, 0x0);
3441 		gfar_write(&regs->igaddr4, 0x0);
3442 		gfar_write(&regs->igaddr5, 0x0);
3443 		gfar_write(&regs->igaddr6, 0x0);
3444 		gfar_write(&regs->igaddr7, 0x0);
3445 		gfar_write(&regs->gaddr0, 0x0);
3446 		gfar_write(&regs->gaddr1, 0x0);
3447 		gfar_write(&regs->gaddr2, 0x0);
3448 		gfar_write(&regs->gaddr3, 0x0);
3449 		gfar_write(&regs->gaddr4, 0x0);
3450 		gfar_write(&regs->gaddr5, 0x0);
3451 		gfar_write(&regs->gaddr6, 0x0);
3452 		gfar_write(&regs->gaddr7, 0x0);
3453 
3454 		/* If we have extended hash tables, we need to
3455 		 * clear the exact match registers to prepare for
3456 		 * setting them
3457 		 */
3458 		if (priv->extended_hash) {
3459 			em_num = GFAR_EM_NUM + 1;
3460 			gfar_clear_exact_match(dev);
3461 			idx = 1;
3462 		} else {
3463 			idx = 0;
3464 			em_num = 0;
3465 		}
3466 
3467 		if (netdev_mc_empty(dev))
3468 			return;
3469 
3470 		/* Parse the list, and set the appropriate bits */
3471 		netdev_for_each_mc_addr(ha, dev) {
3472 			if (idx < em_num) {
3473 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3474 				idx++;
3475 			} else
3476 				gfar_set_hash_for_addr(dev, ha->addr);
3477 		}
3478 	}
3479 }
3480 
3481 
3482 /* Clears each of the exact match registers to zero, so they
3483  * don't interfere with normal reception
3484  */
3485 static void gfar_clear_exact_match(struct net_device *dev)
3486 {
3487 	int idx;
3488 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3489 
3490 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3491 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3492 }
3493 
3494 /* Set the appropriate hash bit for the given addr */
3495 /* The algorithm works like so:
3496  * 1) Take the Destination Address (ie the multicast address), and
3497  * do a CRC on it (little endian), and reverse the bits of the
3498  * result.
3499  * 2) Use the 8 most significant bits as a hash into a 256-entry
3500  * table.  The table is controlled through 8 32-bit registers:
3501  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3502  * gaddr7.  This means that the 3 most significant bits in the
3503  * hash index which gaddr register to use, and the 5 other bits
3504  * indicate which bit (assuming an IBM numbering scheme, which
3505  * for PowerPC (tm) is usually the case) in the register holds
3506  * the entry.
3507  */
3508 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3509 {
3510 	u32 tempval;
3511 	struct gfar_private *priv = netdev_priv(dev);
3512 	u32 result = ether_crc(ETH_ALEN, addr);
3513 	int width = priv->hash_width;
3514 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3515 	u8 whichreg = result >> (32 - width + 5);
3516 	u32 value = (1 << (31-whichbit));
3517 
3518 	tempval = gfar_read(priv->hash_regs[whichreg]);
3519 	tempval |= value;
3520 	gfar_write(priv->hash_regs[whichreg], tempval);
3521 }
3522 
3523 
3524 /* There are multiple MAC Address register pairs on some controllers
3525  * This function sets the numth pair to a given address
3526  */
3527 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3528 				  const u8 *addr)
3529 {
3530 	struct gfar_private *priv = netdev_priv(dev);
3531 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3532 	u32 tempval;
3533 	u32 __iomem *macptr = &regs->macstnaddr1;
3534 
3535 	macptr += num*2;
3536 
3537 	/* For a station address of 0x12345678ABCD in transmission
3538 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3539 	 * MACnADDR2 is set to 0x34120000.
3540 	 */
3541 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3542 		  (addr[3] << 8)  |  addr[2];
3543 
3544 	gfar_write(macptr, tempval);
3545 
3546 	tempval = (addr[1] << 24) | (addr[0] << 16);
3547 
3548 	gfar_write(macptr+1, tempval);
3549 }
3550 
3551 /* GFAR error interrupt handler */
3552 static irqreturn_t gfar_error(int irq, void *grp_id)
3553 {
3554 	struct gfar_priv_grp *gfargrp = grp_id;
3555 	struct gfar __iomem *regs = gfargrp->regs;
3556 	struct gfar_private *priv= gfargrp->priv;
3557 	struct net_device *dev = priv->ndev;
3558 
3559 	/* Save ievent for future reference */
3560 	u32 events = gfar_read(&regs->ievent);
3561 
3562 	/* Clear IEVENT */
3563 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3564 
3565 	/* Magic Packet is not an error. */
3566 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3567 	    (events & IEVENT_MAG))
3568 		events &= ~IEVENT_MAG;
3569 
3570 	/* Hmm... */
3571 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3572 		netdev_dbg(dev,
3573 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3574 			   events, gfar_read(&regs->imask));
3575 
3576 	/* Update the error counters */
3577 	if (events & IEVENT_TXE) {
3578 		dev->stats.tx_errors++;
3579 
3580 		if (events & IEVENT_LC)
3581 			dev->stats.tx_window_errors++;
3582 		if (events & IEVENT_CRL)
3583 			dev->stats.tx_aborted_errors++;
3584 		if (events & IEVENT_XFUN) {
3585 			netif_dbg(priv, tx_err, dev,
3586 				  "TX FIFO underrun, packet dropped\n");
3587 			dev->stats.tx_dropped++;
3588 			atomic64_inc(&priv->extra_stats.tx_underrun);
3589 
3590 			schedule_work(&priv->reset_task);
3591 		}
3592 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3593 	}
3594 	if (events & IEVENT_BSY) {
3595 		dev->stats.rx_over_errors++;
3596 		atomic64_inc(&priv->extra_stats.rx_bsy);
3597 
3598 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3599 			  gfar_read(&regs->rstat));
3600 	}
3601 	if (events & IEVENT_BABR) {
3602 		dev->stats.rx_errors++;
3603 		atomic64_inc(&priv->extra_stats.rx_babr);
3604 
3605 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3606 	}
3607 	if (events & IEVENT_EBERR) {
3608 		atomic64_inc(&priv->extra_stats.eberr);
3609 		netif_dbg(priv, rx_err, dev, "bus error\n");
3610 	}
3611 	if (events & IEVENT_RXC)
3612 		netif_dbg(priv, rx_status, dev, "control frame\n");
3613 
3614 	if (events & IEVENT_BABT) {
3615 		atomic64_inc(&priv->extra_stats.tx_babt);
3616 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3617 	}
3618 	return IRQ_HANDLED;
3619 }
3620 
3621 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3622 {
3623 	struct phy_device *phydev = priv->phydev;
3624 	u32 val = 0;
3625 
3626 	if (!phydev->duplex)
3627 		return val;
3628 
3629 	if (!priv->pause_aneg_en) {
3630 		if (priv->tx_pause_en)
3631 			val |= MACCFG1_TX_FLOW;
3632 		if (priv->rx_pause_en)
3633 			val |= MACCFG1_RX_FLOW;
3634 	} else {
3635 		u16 lcl_adv, rmt_adv;
3636 		u8 flowctrl;
3637 		/* get link partner capabilities */
3638 		rmt_adv = 0;
3639 		if (phydev->pause)
3640 			rmt_adv = LPA_PAUSE_CAP;
3641 		if (phydev->asym_pause)
3642 			rmt_adv |= LPA_PAUSE_ASYM;
3643 
3644 		lcl_adv = 0;
3645 		if (phydev->advertising & ADVERTISED_Pause)
3646 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3647 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3648 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3649 
3650 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3651 		if (flowctrl & FLOW_CTRL_TX)
3652 			val |= MACCFG1_TX_FLOW;
3653 		if (flowctrl & FLOW_CTRL_RX)
3654 			val |= MACCFG1_RX_FLOW;
3655 	}
3656 
3657 	return val;
3658 }
3659 
3660 static noinline void gfar_update_link_state(struct gfar_private *priv)
3661 {
3662 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3663 	struct phy_device *phydev = priv->phydev;
3664 	struct gfar_priv_rx_q *rx_queue = NULL;
3665 	int i;
3666 
3667 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3668 		return;
3669 
3670 	if (phydev->link) {
3671 		u32 tempval1 = gfar_read(&regs->maccfg1);
3672 		u32 tempval = gfar_read(&regs->maccfg2);
3673 		u32 ecntrl = gfar_read(&regs->ecntrl);
3674 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3675 
3676 		if (phydev->duplex != priv->oldduplex) {
3677 			if (!(phydev->duplex))
3678 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3679 			else
3680 				tempval |= MACCFG2_FULL_DUPLEX;
3681 
3682 			priv->oldduplex = phydev->duplex;
3683 		}
3684 
3685 		if (phydev->speed != priv->oldspeed) {
3686 			switch (phydev->speed) {
3687 			case 1000:
3688 				tempval =
3689 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3690 
3691 				ecntrl &= ~(ECNTRL_R100);
3692 				break;
3693 			case 100:
3694 			case 10:
3695 				tempval =
3696 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3697 
3698 				/* Reduced mode distinguishes
3699 				 * between 10 and 100
3700 				 */
3701 				if (phydev->speed == SPEED_100)
3702 					ecntrl |= ECNTRL_R100;
3703 				else
3704 					ecntrl &= ~(ECNTRL_R100);
3705 				break;
3706 			default:
3707 				netif_warn(priv, link, priv->ndev,
3708 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3709 					   phydev->speed);
3710 				break;
3711 			}
3712 
3713 			priv->oldspeed = phydev->speed;
3714 		}
3715 
3716 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3717 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3718 
3719 		/* Turn last free buffer recording on */
3720 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3721 			for (i = 0; i < priv->num_rx_queues; i++) {
3722 				u32 bdp_dma;
3723 
3724 				rx_queue = priv->rx_queue[i];
3725 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3726 				gfar_write(rx_queue->rfbptr, bdp_dma);
3727 			}
3728 
3729 			priv->tx_actual_en = 1;
3730 		}
3731 
3732 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3733 			priv->tx_actual_en = 0;
3734 
3735 		gfar_write(&regs->maccfg1, tempval1);
3736 		gfar_write(&regs->maccfg2, tempval);
3737 		gfar_write(&regs->ecntrl, ecntrl);
3738 
3739 		if (!priv->oldlink)
3740 			priv->oldlink = 1;
3741 
3742 	} else if (priv->oldlink) {
3743 		priv->oldlink = 0;
3744 		priv->oldspeed = 0;
3745 		priv->oldduplex = -1;
3746 	}
3747 
3748 	if (netif_msg_link(priv))
3749 		phy_print_status(phydev);
3750 }
3751 
3752 static const struct of_device_id gfar_match[] =
3753 {
3754 	{
3755 		.type = "network",
3756 		.compatible = "gianfar",
3757 	},
3758 	{
3759 		.compatible = "fsl,etsec2",
3760 	},
3761 	{},
3762 };
3763 MODULE_DEVICE_TABLE(of, gfar_match);
3764 
3765 /* Structure for a device driver */
3766 static struct platform_driver gfar_driver = {
3767 	.driver = {
3768 		.name = "fsl-gianfar",
3769 		.pm = GFAR_PM_OPS,
3770 		.of_match_table = gfar_match,
3771 	},
3772 	.probe = gfar_probe,
3773 	.remove = gfar_remove,
3774 };
3775 
3776 module_platform_driver(gfar_driver);
3777