1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #ifdef CONFIG_PPC 92 #include <asm/reg.h> 93 #include <asm/mpc85xx.h> 94 #endif 95 #include <asm/irq.h> 96 #include <asm/uaccess.h> 97 #include <linux/module.h> 98 #include <linux/dma-mapping.h> 99 #include <linux/crc32.h> 100 #include <linux/mii.h> 101 #include <linux/phy.h> 102 #include <linux/phy_fixed.h> 103 #include <linux/of.h> 104 #include <linux/of_net.h> 105 #include <linux/of_address.h> 106 #include <linux/of_irq.h> 107 108 #include "gianfar.h" 109 110 #define TX_TIMEOUT (5*HZ) 111 112 const char gfar_driver_version[] = "2.0"; 113 114 static int gfar_enet_open(struct net_device *dev); 115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 116 static void gfar_reset_task(struct work_struct *work); 117 static void gfar_timeout(struct net_device *dev); 118 static int gfar_close(struct net_device *dev); 119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 120 int alloc_cnt); 121 static int gfar_set_mac_address(struct net_device *dev); 122 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 123 static irqreturn_t gfar_error(int irq, void *dev_id); 124 static irqreturn_t gfar_transmit(int irq, void *dev_id); 125 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 126 static void adjust_link(struct net_device *dev); 127 static noinline void gfar_update_link_state(struct gfar_private *priv); 128 static int init_phy(struct net_device *dev); 129 static int gfar_probe(struct platform_device *ofdev); 130 static int gfar_remove(struct platform_device *ofdev); 131 static void free_skb_resources(struct gfar_private *priv); 132 static void gfar_set_multi(struct net_device *dev); 133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 134 static void gfar_configure_serdes(struct net_device *dev); 135 static int gfar_poll_rx(struct napi_struct *napi, int budget); 136 static int gfar_poll_tx(struct napi_struct *napi, int budget); 137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 139 #ifdef CONFIG_NET_POLL_CONTROLLER 140 static void gfar_netpoll(struct net_device *dev); 141 #endif 142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb); 145 static void gfar_halt_nodisable(struct gfar_private *priv); 146 static void gfar_clear_exact_match(struct net_device *dev); 147 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 148 const u8 *addr); 149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 150 151 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 152 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 153 MODULE_LICENSE("GPL"); 154 155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 156 dma_addr_t buf) 157 { 158 u32 lstatus; 159 160 bdp->bufPtr = cpu_to_be32(buf); 161 162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 164 lstatus |= BD_LFLAG(RXBD_WRAP); 165 166 gfar_wmb(); 167 168 bdp->lstatus = cpu_to_be32(lstatus); 169 } 170 171 static void gfar_init_bds(struct net_device *ndev) 172 { 173 struct gfar_private *priv = netdev_priv(ndev); 174 struct gfar __iomem *regs = priv->gfargrp[0].regs; 175 struct gfar_priv_tx_q *tx_queue = NULL; 176 struct gfar_priv_rx_q *rx_queue = NULL; 177 struct txbd8 *txbdp; 178 u32 __iomem *rfbptr; 179 int i, j; 180 181 for (i = 0; i < priv->num_tx_queues; i++) { 182 tx_queue = priv->tx_queue[i]; 183 /* Initialize some variables in our dev structure */ 184 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 185 tx_queue->dirty_tx = tx_queue->tx_bd_base; 186 tx_queue->cur_tx = tx_queue->tx_bd_base; 187 tx_queue->skb_curtx = 0; 188 tx_queue->skb_dirtytx = 0; 189 190 /* Initialize Transmit Descriptor Ring */ 191 txbdp = tx_queue->tx_bd_base; 192 for (j = 0; j < tx_queue->tx_ring_size; j++) { 193 txbdp->lstatus = 0; 194 txbdp->bufPtr = 0; 195 txbdp++; 196 } 197 198 /* Set the last descriptor in the ring to indicate wrap */ 199 txbdp--; 200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 201 TXBD_WRAP); 202 } 203 204 rfbptr = ®s->rfbptr0; 205 for (i = 0; i < priv->num_rx_queues; i++) { 206 rx_queue = priv->rx_queue[i]; 207 208 rx_queue->next_to_clean = 0; 209 rx_queue->next_to_use = 0; 210 rx_queue->next_to_alloc = 0; 211 212 /* make sure next_to_clean != next_to_use after this 213 * by leaving at least 1 unused descriptor 214 */ 215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 216 217 rx_queue->rfbptr = rfbptr; 218 rfbptr += 2; 219 } 220 } 221 222 static int gfar_alloc_skb_resources(struct net_device *ndev) 223 { 224 void *vaddr; 225 dma_addr_t addr; 226 int i, j; 227 struct gfar_private *priv = netdev_priv(ndev); 228 struct device *dev = priv->dev; 229 struct gfar_priv_tx_q *tx_queue = NULL; 230 struct gfar_priv_rx_q *rx_queue = NULL; 231 232 priv->total_tx_ring_size = 0; 233 for (i = 0; i < priv->num_tx_queues; i++) 234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 235 236 priv->total_rx_ring_size = 0; 237 for (i = 0; i < priv->num_rx_queues; i++) 238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 239 240 /* Allocate memory for the buffer descriptors */ 241 vaddr = dma_alloc_coherent(dev, 242 (priv->total_tx_ring_size * 243 sizeof(struct txbd8)) + 244 (priv->total_rx_ring_size * 245 sizeof(struct rxbd8)), 246 &addr, GFP_KERNEL); 247 if (!vaddr) 248 return -ENOMEM; 249 250 for (i = 0; i < priv->num_tx_queues; i++) { 251 tx_queue = priv->tx_queue[i]; 252 tx_queue->tx_bd_base = vaddr; 253 tx_queue->tx_bd_dma_base = addr; 254 tx_queue->dev = ndev; 255 /* enet DMA only understands physical addresses */ 256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 258 } 259 260 /* Start the rx descriptor ring where the tx ring leaves off */ 261 for (i = 0; i < priv->num_rx_queues; i++) { 262 rx_queue = priv->rx_queue[i]; 263 rx_queue->rx_bd_base = vaddr; 264 rx_queue->rx_bd_dma_base = addr; 265 rx_queue->ndev = ndev; 266 rx_queue->dev = dev; 267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 269 } 270 271 /* Setup the skbuff rings */ 272 for (i = 0; i < priv->num_tx_queues; i++) { 273 tx_queue = priv->tx_queue[i]; 274 tx_queue->tx_skbuff = 275 kmalloc_array(tx_queue->tx_ring_size, 276 sizeof(*tx_queue->tx_skbuff), 277 GFP_KERNEL); 278 if (!tx_queue->tx_skbuff) 279 goto cleanup; 280 281 for (j = 0; j < tx_queue->tx_ring_size; j++) 282 tx_queue->tx_skbuff[j] = NULL; 283 } 284 285 for (i = 0; i < priv->num_rx_queues; i++) { 286 rx_queue = priv->rx_queue[i]; 287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 288 sizeof(*rx_queue->rx_buff), 289 GFP_KERNEL); 290 if (!rx_queue->rx_buff) 291 goto cleanup; 292 } 293 294 gfar_init_bds(ndev); 295 296 return 0; 297 298 cleanup: 299 free_skb_resources(priv); 300 return -ENOMEM; 301 } 302 303 static void gfar_init_tx_rx_base(struct gfar_private *priv) 304 { 305 struct gfar __iomem *regs = priv->gfargrp[0].regs; 306 u32 __iomem *baddr; 307 int i; 308 309 baddr = ®s->tbase0; 310 for (i = 0; i < priv->num_tx_queues; i++) { 311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 312 baddr += 2; 313 } 314 315 baddr = ®s->rbase0; 316 for (i = 0; i < priv->num_rx_queues; i++) { 317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 318 baddr += 2; 319 } 320 } 321 322 static void gfar_init_rqprm(struct gfar_private *priv) 323 { 324 struct gfar __iomem *regs = priv->gfargrp[0].regs; 325 u32 __iomem *baddr; 326 int i; 327 328 baddr = ®s->rqprm0; 329 for (i = 0; i < priv->num_rx_queues; i++) { 330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 332 baddr++; 333 } 334 } 335 336 static void gfar_rx_offload_en(struct gfar_private *priv) 337 { 338 /* set this when rx hw offload (TOE) functions are being used */ 339 priv->uses_rxfcb = 0; 340 341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 342 priv->uses_rxfcb = 1; 343 344 if (priv->hwts_rx_en || priv->rx_filer_enable) 345 priv->uses_rxfcb = 1; 346 } 347 348 static void gfar_mac_rx_config(struct gfar_private *priv) 349 { 350 struct gfar __iomem *regs = priv->gfargrp[0].regs; 351 u32 rctrl = 0; 352 353 if (priv->rx_filer_enable) { 354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 355 /* Program the RIR0 reg with the required distribution */ 356 if (priv->poll_mode == GFAR_SQ_POLLING) 357 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 358 else /* GFAR_MQ_POLLING */ 359 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 360 } 361 362 /* Restore PROMISC mode */ 363 if (priv->ndev->flags & IFF_PROMISC) 364 rctrl |= RCTRL_PROM; 365 366 if (priv->ndev->features & NETIF_F_RXCSUM) 367 rctrl |= RCTRL_CHECKSUMMING; 368 369 if (priv->extended_hash) 370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 371 372 if (priv->padding) { 373 rctrl &= ~RCTRL_PAL_MASK; 374 rctrl |= RCTRL_PADDING(priv->padding); 375 } 376 377 /* Enable HW time stamping if requested from user space */ 378 if (priv->hwts_rx_en) 379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 380 381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 383 384 /* Clear the LFC bit */ 385 gfar_write(®s->rctrl, rctrl); 386 /* Init flow control threshold values */ 387 gfar_init_rqprm(priv); 388 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 389 rctrl |= RCTRL_LFC; 390 391 /* Init rctrl based on our settings */ 392 gfar_write(®s->rctrl, rctrl); 393 } 394 395 static void gfar_mac_tx_config(struct gfar_private *priv) 396 { 397 struct gfar __iomem *regs = priv->gfargrp[0].regs; 398 u32 tctrl = 0; 399 400 if (priv->ndev->features & NETIF_F_IP_CSUM) 401 tctrl |= TCTRL_INIT_CSUM; 402 403 if (priv->prio_sched_en) 404 tctrl |= TCTRL_TXSCHED_PRIO; 405 else { 406 tctrl |= TCTRL_TXSCHED_WRRS; 407 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 408 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 409 } 410 411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 412 tctrl |= TCTRL_VLINS; 413 414 gfar_write(®s->tctrl, tctrl); 415 } 416 417 static void gfar_configure_coalescing(struct gfar_private *priv, 418 unsigned long tx_mask, unsigned long rx_mask) 419 { 420 struct gfar __iomem *regs = priv->gfargrp[0].regs; 421 u32 __iomem *baddr; 422 423 if (priv->mode == MQ_MG_MODE) { 424 int i = 0; 425 426 baddr = ®s->txic0; 427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 428 gfar_write(baddr + i, 0); 429 if (likely(priv->tx_queue[i]->txcoalescing)) 430 gfar_write(baddr + i, priv->tx_queue[i]->txic); 431 } 432 433 baddr = ®s->rxic0; 434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 435 gfar_write(baddr + i, 0); 436 if (likely(priv->rx_queue[i]->rxcoalescing)) 437 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 438 } 439 } else { 440 /* Backward compatible case -- even if we enable 441 * multiple queues, there's only single reg to program 442 */ 443 gfar_write(®s->txic, 0); 444 if (likely(priv->tx_queue[0]->txcoalescing)) 445 gfar_write(®s->txic, priv->tx_queue[0]->txic); 446 447 gfar_write(®s->rxic, 0); 448 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 449 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 450 } 451 } 452 453 void gfar_configure_coalescing_all(struct gfar_private *priv) 454 { 455 gfar_configure_coalescing(priv, 0xFF, 0xFF); 456 } 457 458 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 459 { 460 struct gfar_private *priv = netdev_priv(dev); 461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 462 unsigned long tx_packets = 0, tx_bytes = 0; 463 int i; 464 465 for (i = 0; i < priv->num_rx_queues; i++) { 466 rx_packets += priv->rx_queue[i]->stats.rx_packets; 467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 469 } 470 471 dev->stats.rx_packets = rx_packets; 472 dev->stats.rx_bytes = rx_bytes; 473 dev->stats.rx_dropped = rx_dropped; 474 475 for (i = 0; i < priv->num_tx_queues; i++) { 476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 477 tx_packets += priv->tx_queue[i]->stats.tx_packets; 478 } 479 480 dev->stats.tx_bytes = tx_bytes; 481 dev->stats.tx_packets = tx_packets; 482 483 return &dev->stats; 484 } 485 486 static int gfar_set_mac_addr(struct net_device *dev, void *p) 487 { 488 eth_mac_addr(dev, p); 489 490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 491 492 return 0; 493 } 494 495 static const struct net_device_ops gfar_netdev_ops = { 496 .ndo_open = gfar_enet_open, 497 .ndo_start_xmit = gfar_start_xmit, 498 .ndo_stop = gfar_close, 499 .ndo_change_mtu = gfar_change_mtu, 500 .ndo_set_features = gfar_set_features, 501 .ndo_set_rx_mode = gfar_set_multi, 502 .ndo_tx_timeout = gfar_timeout, 503 .ndo_do_ioctl = gfar_ioctl, 504 .ndo_get_stats = gfar_get_stats, 505 .ndo_set_mac_address = gfar_set_mac_addr, 506 .ndo_validate_addr = eth_validate_addr, 507 #ifdef CONFIG_NET_POLL_CONTROLLER 508 .ndo_poll_controller = gfar_netpoll, 509 #endif 510 }; 511 512 static void gfar_ints_disable(struct gfar_private *priv) 513 { 514 int i; 515 for (i = 0; i < priv->num_grps; i++) { 516 struct gfar __iomem *regs = priv->gfargrp[i].regs; 517 /* Clear IEVENT */ 518 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 519 520 /* Initialize IMASK */ 521 gfar_write(®s->imask, IMASK_INIT_CLEAR); 522 } 523 } 524 525 static void gfar_ints_enable(struct gfar_private *priv) 526 { 527 int i; 528 for (i = 0; i < priv->num_grps; i++) { 529 struct gfar __iomem *regs = priv->gfargrp[i].regs; 530 /* Unmask the interrupts we look for */ 531 gfar_write(®s->imask, IMASK_DEFAULT); 532 } 533 } 534 535 static int gfar_alloc_tx_queues(struct gfar_private *priv) 536 { 537 int i; 538 539 for (i = 0; i < priv->num_tx_queues; i++) { 540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 541 GFP_KERNEL); 542 if (!priv->tx_queue[i]) 543 return -ENOMEM; 544 545 priv->tx_queue[i]->tx_skbuff = NULL; 546 priv->tx_queue[i]->qindex = i; 547 priv->tx_queue[i]->dev = priv->ndev; 548 spin_lock_init(&(priv->tx_queue[i]->txlock)); 549 } 550 return 0; 551 } 552 553 static int gfar_alloc_rx_queues(struct gfar_private *priv) 554 { 555 int i; 556 557 for (i = 0; i < priv->num_rx_queues; i++) { 558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 559 GFP_KERNEL); 560 if (!priv->rx_queue[i]) 561 return -ENOMEM; 562 563 priv->rx_queue[i]->qindex = i; 564 priv->rx_queue[i]->ndev = priv->ndev; 565 } 566 return 0; 567 } 568 569 static void gfar_free_tx_queues(struct gfar_private *priv) 570 { 571 int i; 572 573 for (i = 0; i < priv->num_tx_queues; i++) 574 kfree(priv->tx_queue[i]); 575 } 576 577 static void gfar_free_rx_queues(struct gfar_private *priv) 578 { 579 int i; 580 581 for (i = 0; i < priv->num_rx_queues; i++) 582 kfree(priv->rx_queue[i]); 583 } 584 585 static void unmap_group_regs(struct gfar_private *priv) 586 { 587 int i; 588 589 for (i = 0; i < MAXGROUPS; i++) 590 if (priv->gfargrp[i].regs) 591 iounmap(priv->gfargrp[i].regs); 592 } 593 594 static void free_gfar_dev(struct gfar_private *priv) 595 { 596 int i, j; 597 598 for (i = 0; i < priv->num_grps; i++) 599 for (j = 0; j < GFAR_NUM_IRQS; j++) { 600 kfree(priv->gfargrp[i].irqinfo[j]); 601 priv->gfargrp[i].irqinfo[j] = NULL; 602 } 603 604 free_netdev(priv->ndev); 605 } 606 607 static void disable_napi(struct gfar_private *priv) 608 { 609 int i; 610 611 for (i = 0; i < priv->num_grps; i++) { 612 napi_disable(&priv->gfargrp[i].napi_rx); 613 napi_disable(&priv->gfargrp[i].napi_tx); 614 } 615 } 616 617 static void enable_napi(struct gfar_private *priv) 618 { 619 int i; 620 621 for (i = 0; i < priv->num_grps; i++) { 622 napi_enable(&priv->gfargrp[i].napi_rx); 623 napi_enable(&priv->gfargrp[i].napi_tx); 624 } 625 } 626 627 static int gfar_parse_group(struct device_node *np, 628 struct gfar_private *priv, const char *model) 629 { 630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 631 int i; 632 633 for (i = 0; i < GFAR_NUM_IRQS; i++) { 634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 635 GFP_KERNEL); 636 if (!grp->irqinfo[i]) 637 return -ENOMEM; 638 } 639 640 grp->regs = of_iomap(np, 0); 641 if (!grp->regs) 642 return -ENOMEM; 643 644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 645 646 /* If we aren't the FEC we have multiple interrupts */ 647 if (model && strcasecmp(model, "FEC")) { 648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 650 if (gfar_irq(grp, TX)->irq == NO_IRQ || 651 gfar_irq(grp, RX)->irq == NO_IRQ || 652 gfar_irq(grp, ER)->irq == NO_IRQ) 653 return -EINVAL; 654 } 655 656 grp->priv = priv; 657 spin_lock_init(&grp->grplock); 658 if (priv->mode == MQ_MG_MODE) { 659 u32 rxq_mask, txq_mask; 660 int ret; 661 662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 664 665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 666 if (!ret) { 667 grp->rx_bit_map = rxq_mask ? 668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 669 } 670 671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 672 if (!ret) { 673 grp->tx_bit_map = txq_mask ? 674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 675 } 676 677 if (priv->poll_mode == GFAR_SQ_POLLING) { 678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 681 } 682 } else { 683 grp->rx_bit_map = 0xFF; 684 grp->tx_bit_map = 0xFF; 685 } 686 687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 688 * right to left, so we need to revert the 8 bits to get the q index 689 */ 690 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 691 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 692 693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 694 * also assign queues to groups 695 */ 696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 697 if (!grp->rx_queue) 698 grp->rx_queue = priv->rx_queue[i]; 699 grp->num_rx_queues++; 700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 702 priv->rx_queue[i]->grp = grp; 703 } 704 705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 706 if (!grp->tx_queue) 707 grp->tx_queue = priv->tx_queue[i]; 708 grp->num_tx_queues++; 709 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 710 priv->tqueue |= (TQUEUE_EN0 >> i); 711 priv->tx_queue[i]->grp = grp; 712 } 713 714 priv->num_grps++; 715 716 return 0; 717 } 718 719 static int gfar_of_group_count(struct device_node *np) 720 { 721 struct device_node *child; 722 int num = 0; 723 724 for_each_available_child_of_node(np, child) 725 if (!of_node_cmp(child->name, "queue-group")) 726 num++; 727 728 return num; 729 } 730 731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 732 { 733 const char *model; 734 const char *ctype; 735 const void *mac_addr; 736 int err = 0, i; 737 struct net_device *dev = NULL; 738 struct gfar_private *priv = NULL; 739 struct device_node *np = ofdev->dev.of_node; 740 struct device_node *child = NULL; 741 u32 stash_len = 0; 742 u32 stash_idx = 0; 743 unsigned int num_tx_qs, num_rx_qs; 744 unsigned short mode, poll_mode; 745 746 if (!np) 747 return -ENODEV; 748 749 if (of_device_is_compatible(np, "fsl,etsec2")) { 750 mode = MQ_MG_MODE; 751 poll_mode = GFAR_SQ_POLLING; 752 } else { 753 mode = SQ_SG_MODE; 754 poll_mode = GFAR_SQ_POLLING; 755 } 756 757 if (mode == SQ_SG_MODE) { 758 num_tx_qs = 1; 759 num_rx_qs = 1; 760 } else { /* MQ_MG_MODE */ 761 /* get the actual number of supported groups */ 762 unsigned int num_grps = gfar_of_group_count(np); 763 764 if (num_grps == 0 || num_grps > MAXGROUPS) { 765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 766 num_grps); 767 pr_err("Cannot do alloc_etherdev, aborting\n"); 768 return -EINVAL; 769 } 770 771 if (poll_mode == GFAR_SQ_POLLING) { 772 num_tx_qs = num_grps; /* one txq per int group */ 773 num_rx_qs = num_grps; /* one rxq per int group */ 774 } else { /* GFAR_MQ_POLLING */ 775 u32 tx_queues, rx_queues; 776 int ret; 777 778 /* parse the num of HW tx and rx queues */ 779 ret = of_property_read_u32(np, "fsl,num_tx_queues", 780 &tx_queues); 781 num_tx_qs = ret ? 1 : tx_queues; 782 783 ret = of_property_read_u32(np, "fsl,num_rx_queues", 784 &rx_queues); 785 num_rx_qs = ret ? 1 : rx_queues; 786 } 787 } 788 789 if (num_tx_qs > MAX_TX_QS) { 790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 791 num_tx_qs, MAX_TX_QS); 792 pr_err("Cannot do alloc_etherdev, aborting\n"); 793 return -EINVAL; 794 } 795 796 if (num_rx_qs > MAX_RX_QS) { 797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 798 num_rx_qs, MAX_RX_QS); 799 pr_err("Cannot do alloc_etherdev, aborting\n"); 800 return -EINVAL; 801 } 802 803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 804 dev = *pdev; 805 if (NULL == dev) 806 return -ENOMEM; 807 808 priv = netdev_priv(dev); 809 priv->ndev = dev; 810 811 priv->mode = mode; 812 priv->poll_mode = poll_mode; 813 814 priv->num_tx_queues = num_tx_qs; 815 netif_set_real_num_rx_queues(dev, num_rx_qs); 816 priv->num_rx_queues = num_rx_qs; 817 818 err = gfar_alloc_tx_queues(priv); 819 if (err) 820 goto tx_alloc_failed; 821 822 err = gfar_alloc_rx_queues(priv); 823 if (err) 824 goto rx_alloc_failed; 825 826 err = of_property_read_string(np, "model", &model); 827 if (err) { 828 pr_err("Device model property missing, aborting\n"); 829 goto rx_alloc_failed; 830 } 831 832 /* Init Rx queue filer rule set linked list */ 833 INIT_LIST_HEAD(&priv->rx_list.list); 834 priv->rx_list.count = 0; 835 mutex_init(&priv->rx_queue_access); 836 837 for (i = 0; i < MAXGROUPS; i++) 838 priv->gfargrp[i].regs = NULL; 839 840 /* Parse and initialize group specific information */ 841 if (priv->mode == MQ_MG_MODE) { 842 for_each_available_child_of_node(np, child) { 843 if (of_node_cmp(child->name, "queue-group")) 844 continue; 845 846 err = gfar_parse_group(child, priv, model); 847 if (err) 848 goto err_grp_init; 849 } 850 } else { /* SQ_SG_MODE */ 851 err = gfar_parse_group(np, priv, model); 852 if (err) 853 goto err_grp_init; 854 } 855 856 if (of_property_read_bool(np, "bd-stash")) { 857 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 858 priv->bd_stash_en = 1; 859 } 860 861 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 862 863 if (err == 0) 864 priv->rx_stash_size = stash_len; 865 866 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 867 868 if (err == 0) 869 priv->rx_stash_index = stash_idx; 870 871 if (stash_len || stash_idx) 872 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 873 874 mac_addr = of_get_mac_address(np); 875 876 if (mac_addr) 877 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 878 879 if (model && !strcasecmp(model, "TSEC")) 880 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 881 FSL_GIANFAR_DEV_HAS_COALESCE | 882 FSL_GIANFAR_DEV_HAS_RMON | 883 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 884 885 if (model && !strcasecmp(model, "eTSEC")) 886 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 887 FSL_GIANFAR_DEV_HAS_COALESCE | 888 FSL_GIANFAR_DEV_HAS_RMON | 889 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 890 FSL_GIANFAR_DEV_HAS_CSUM | 891 FSL_GIANFAR_DEV_HAS_VLAN | 892 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 893 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 894 FSL_GIANFAR_DEV_HAS_TIMER; 895 896 err = of_property_read_string(np, "phy-connection-type", &ctype); 897 898 /* We only care about rgmii-id. The rest are autodetected */ 899 if (err == 0 && !strcmp(ctype, "rgmii-id")) 900 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 901 else 902 priv->interface = PHY_INTERFACE_MODE_MII; 903 904 if (of_find_property(np, "fsl,magic-packet", NULL)) 905 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 906 907 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 908 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 909 910 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 911 912 /* In the case of a fixed PHY, the DT node associated 913 * to the PHY is the Ethernet MAC DT node. 914 */ 915 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 916 err = of_phy_register_fixed_link(np); 917 if (err) 918 goto err_grp_init; 919 920 priv->phy_node = of_node_get(np); 921 } 922 923 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 924 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 925 926 return 0; 927 928 err_grp_init: 929 unmap_group_regs(priv); 930 rx_alloc_failed: 931 gfar_free_rx_queues(priv); 932 tx_alloc_failed: 933 gfar_free_tx_queues(priv); 934 free_gfar_dev(priv); 935 return err; 936 } 937 938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 939 { 940 struct hwtstamp_config config; 941 struct gfar_private *priv = netdev_priv(netdev); 942 943 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 944 return -EFAULT; 945 946 /* reserved for future extensions */ 947 if (config.flags) 948 return -EINVAL; 949 950 switch (config.tx_type) { 951 case HWTSTAMP_TX_OFF: 952 priv->hwts_tx_en = 0; 953 break; 954 case HWTSTAMP_TX_ON: 955 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 956 return -ERANGE; 957 priv->hwts_tx_en = 1; 958 break; 959 default: 960 return -ERANGE; 961 } 962 963 switch (config.rx_filter) { 964 case HWTSTAMP_FILTER_NONE: 965 if (priv->hwts_rx_en) { 966 priv->hwts_rx_en = 0; 967 reset_gfar(netdev); 968 } 969 break; 970 default: 971 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 972 return -ERANGE; 973 if (!priv->hwts_rx_en) { 974 priv->hwts_rx_en = 1; 975 reset_gfar(netdev); 976 } 977 config.rx_filter = HWTSTAMP_FILTER_ALL; 978 break; 979 } 980 981 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 982 -EFAULT : 0; 983 } 984 985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 986 { 987 struct hwtstamp_config config; 988 struct gfar_private *priv = netdev_priv(netdev); 989 990 config.flags = 0; 991 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 992 config.rx_filter = (priv->hwts_rx_en ? 993 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 994 995 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 996 -EFAULT : 0; 997 } 998 999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1000 { 1001 struct gfar_private *priv = netdev_priv(dev); 1002 1003 if (!netif_running(dev)) 1004 return -EINVAL; 1005 1006 if (cmd == SIOCSHWTSTAMP) 1007 return gfar_hwtstamp_set(dev, rq); 1008 if (cmd == SIOCGHWTSTAMP) 1009 return gfar_hwtstamp_get(dev, rq); 1010 1011 if (!priv->phydev) 1012 return -ENODEV; 1013 1014 return phy_mii_ioctl(priv->phydev, rq, cmd); 1015 } 1016 1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 1018 u32 class) 1019 { 1020 u32 rqfpr = FPR_FILER_MASK; 1021 u32 rqfcr = 0x0; 1022 1023 rqfar--; 1024 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 1025 priv->ftp_rqfpr[rqfar] = rqfpr; 1026 priv->ftp_rqfcr[rqfar] = rqfcr; 1027 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1028 1029 rqfar--; 1030 rqfcr = RQFCR_CMP_NOMATCH; 1031 priv->ftp_rqfpr[rqfar] = rqfpr; 1032 priv->ftp_rqfcr[rqfar] = rqfcr; 1033 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1034 1035 rqfar--; 1036 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 1037 rqfpr = class; 1038 priv->ftp_rqfcr[rqfar] = rqfcr; 1039 priv->ftp_rqfpr[rqfar] = rqfpr; 1040 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1041 1042 rqfar--; 1043 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 1044 rqfpr = class; 1045 priv->ftp_rqfcr[rqfar] = rqfcr; 1046 priv->ftp_rqfpr[rqfar] = rqfpr; 1047 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1048 1049 return rqfar; 1050 } 1051 1052 static void gfar_init_filer_table(struct gfar_private *priv) 1053 { 1054 int i = 0x0; 1055 u32 rqfar = MAX_FILER_IDX; 1056 u32 rqfcr = 0x0; 1057 u32 rqfpr = FPR_FILER_MASK; 1058 1059 /* Default rule */ 1060 rqfcr = RQFCR_CMP_MATCH; 1061 priv->ftp_rqfcr[rqfar] = rqfcr; 1062 priv->ftp_rqfpr[rqfar] = rqfpr; 1063 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1064 1065 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1066 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1067 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1071 1072 /* cur_filer_idx indicated the first non-masked rule */ 1073 priv->cur_filer_idx = rqfar; 1074 1075 /* Rest are masked rules */ 1076 rqfcr = RQFCR_CMP_NOMATCH; 1077 for (i = 0; i < rqfar; i++) { 1078 priv->ftp_rqfcr[i] = rqfcr; 1079 priv->ftp_rqfpr[i] = rqfpr; 1080 gfar_write_filer(priv, i, rqfcr, rqfpr); 1081 } 1082 } 1083 1084 #ifdef CONFIG_PPC 1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1086 { 1087 unsigned int pvr = mfspr(SPRN_PVR); 1088 unsigned int svr = mfspr(SPRN_SVR); 1089 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1090 unsigned int rev = svr & 0xffff; 1091 1092 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1093 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1094 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1095 priv->errata |= GFAR_ERRATA_74; 1096 1097 /* MPC8313 and MPC837x all rev */ 1098 if ((pvr == 0x80850010 && mod == 0x80b0) || 1099 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1100 priv->errata |= GFAR_ERRATA_76; 1101 1102 /* MPC8313 Rev < 2.0 */ 1103 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1104 priv->errata |= GFAR_ERRATA_12; 1105 } 1106 1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1108 { 1109 unsigned int svr = mfspr(SPRN_SVR); 1110 1111 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1112 priv->errata |= GFAR_ERRATA_12; 1113 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1114 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1115 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1116 } 1117 #endif 1118 1119 static void gfar_detect_errata(struct gfar_private *priv) 1120 { 1121 struct device *dev = &priv->ofdev->dev; 1122 1123 /* no plans to fix */ 1124 priv->errata |= GFAR_ERRATA_A002; 1125 1126 #ifdef CONFIG_PPC 1127 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1128 __gfar_detect_errata_85xx(priv); 1129 else /* non-mpc85xx parts, i.e. e300 core based */ 1130 __gfar_detect_errata_83xx(priv); 1131 #endif 1132 1133 if (priv->errata) 1134 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1135 priv->errata); 1136 } 1137 1138 void gfar_mac_reset(struct gfar_private *priv) 1139 { 1140 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1141 u32 tempval; 1142 1143 /* Reset MAC layer */ 1144 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1145 1146 /* We need to delay at least 3 TX clocks */ 1147 udelay(3); 1148 1149 /* the soft reset bit is not self-resetting, so we need to 1150 * clear it before resuming normal operation 1151 */ 1152 gfar_write(®s->maccfg1, 0); 1153 1154 udelay(3); 1155 1156 gfar_rx_offload_en(priv); 1157 1158 /* Initialize the max receive frame/buffer lengths */ 1159 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 1160 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 1161 1162 /* Initialize the Minimum Frame Length Register */ 1163 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1164 1165 /* Initialize MACCFG2. */ 1166 tempval = MACCFG2_INIT_SETTINGS; 1167 1168 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 1169 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 1170 * and by checking RxBD[LG] and discarding larger than MAXFRM. 1171 */ 1172 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 1173 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1174 1175 gfar_write(®s->maccfg2, tempval); 1176 1177 /* Clear mac addr hash registers */ 1178 gfar_write(®s->igaddr0, 0); 1179 gfar_write(®s->igaddr1, 0); 1180 gfar_write(®s->igaddr2, 0); 1181 gfar_write(®s->igaddr3, 0); 1182 gfar_write(®s->igaddr4, 0); 1183 gfar_write(®s->igaddr5, 0); 1184 gfar_write(®s->igaddr6, 0); 1185 gfar_write(®s->igaddr7, 0); 1186 1187 gfar_write(®s->gaddr0, 0); 1188 gfar_write(®s->gaddr1, 0); 1189 gfar_write(®s->gaddr2, 0); 1190 gfar_write(®s->gaddr3, 0); 1191 gfar_write(®s->gaddr4, 0); 1192 gfar_write(®s->gaddr5, 0); 1193 gfar_write(®s->gaddr6, 0); 1194 gfar_write(®s->gaddr7, 0); 1195 1196 if (priv->extended_hash) 1197 gfar_clear_exact_match(priv->ndev); 1198 1199 gfar_mac_rx_config(priv); 1200 1201 gfar_mac_tx_config(priv); 1202 1203 gfar_set_mac_address(priv->ndev); 1204 1205 gfar_set_multi(priv->ndev); 1206 1207 /* clear ievent and imask before configuring coalescing */ 1208 gfar_ints_disable(priv); 1209 1210 /* Configure the coalescing support */ 1211 gfar_configure_coalescing_all(priv); 1212 } 1213 1214 static void gfar_hw_init(struct gfar_private *priv) 1215 { 1216 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1217 u32 attrs; 1218 1219 /* Stop the DMA engine now, in case it was running before 1220 * (The firmware could have used it, and left it running). 1221 */ 1222 gfar_halt(priv); 1223 1224 gfar_mac_reset(priv); 1225 1226 /* Zero out the rmon mib registers if it has them */ 1227 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1228 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1229 1230 /* Mask off the CAM interrupts */ 1231 gfar_write(®s->rmon.cam1, 0xffffffff); 1232 gfar_write(®s->rmon.cam2, 0xffffffff); 1233 } 1234 1235 /* Initialize ECNTRL */ 1236 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1237 1238 /* Set the extraction length and index */ 1239 attrs = ATTRELI_EL(priv->rx_stash_size) | 1240 ATTRELI_EI(priv->rx_stash_index); 1241 1242 gfar_write(®s->attreli, attrs); 1243 1244 /* Start with defaults, and add stashing 1245 * depending on driver parameters 1246 */ 1247 attrs = ATTR_INIT_SETTINGS; 1248 1249 if (priv->bd_stash_en) 1250 attrs |= ATTR_BDSTASH; 1251 1252 if (priv->rx_stash_size != 0) 1253 attrs |= ATTR_BUFSTASH; 1254 1255 gfar_write(®s->attr, attrs); 1256 1257 /* FIFO configs */ 1258 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1259 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1260 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1261 1262 /* Program the interrupt steering regs, only for MG devices */ 1263 if (priv->num_grps > 1) 1264 gfar_write_isrg(priv); 1265 } 1266 1267 static void gfar_init_addr_hash_table(struct gfar_private *priv) 1268 { 1269 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1270 1271 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1272 priv->extended_hash = 1; 1273 priv->hash_width = 9; 1274 1275 priv->hash_regs[0] = ®s->igaddr0; 1276 priv->hash_regs[1] = ®s->igaddr1; 1277 priv->hash_regs[2] = ®s->igaddr2; 1278 priv->hash_regs[3] = ®s->igaddr3; 1279 priv->hash_regs[4] = ®s->igaddr4; 1280 priv->hash_regs[5] = ®s->igaddr5; 1281 priv->hash_regs[6] = ®s->igaddr6; 1282 priv->hash_regs[7] = ®s->igaddr7; 1283 priv->hash_regs[8] = ®s->gaddr0; 1284 priv->hash_regs[9] = ®s->gaddr1; 1285 priv->hash_regs[10] = ®s->gaddr2; 1286 priv->hash_regs[11] = ®s->gaddr3; 1287 priv->hash_regs[12] = ®s->gaddr4; 1288 priv->hash_regs[13] = ®s->gaddr5; 1289 priv->hash_regs[14] = ®s->gaddr6; 1290 priv->hash_regs[15] = ®s->gaddr7; 1291 1292 } else { 1293 priv->extended_hash = 0; 1294 priv->hash_width = 8; 1295 1296 priv->hash_regs[0] = ®s->gaddr0; 1297 priv->hash_regs[1] = ®s->gaddr1; 1298 priv->hash_regs[2] = ®s->gaddr2; 1299 priv->hash_regs[3] = ®s->gaddr3; 1300 priv->hash_regs[4] = ®s->gaddr4; 1301 priv->hash_regs[5] = ®s->gaddr5; 1302 priv->hash_regs[6] = ®s->gaddr6; 1303 priv->hash_regs[7] = ®s->gaddr7; 1304 } 1305 } 1306 1307 /* Set up the ethernet device structure, private data, 1308 * and anything else we need before we start 1309 */ 1310 static int gfar_probe(struct platform_device *ofdev) 1311 { 1312 struct net_device *dev = NULL; 1313 struct gfar_private *priv = NULL; 1314 int err = 0, i; 1315 1316 err = gfar_of_init(ofdev, &dev); 1317 1318 if (err) 1319 return err; 1320 1321 priv = netdev_priv(dev); 1322 priv->ndev = dev; 1323 priv->ofdev = ofdev; 1324 priv->dev = &ofdev->dev; 1325 SET_NETDEV_DEV(dev, &ofdev->dev); 1326 1327 INIT_WORK(&priv->reset_task, gfar_reset_task); 1328 1329 platform_set_drvdata(ofdev, priv); 1330 1331 gfar_detect_errata(priv); 1332 1333 /* Set the dev->base_addr to the gfar reg region */ 1334 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1335 1336 /* Fill in the dev structure */ 1337 dev->watchdog_timeo = TX_TIMEOUT; 1338 dev->mtu = 1500; 1339 dev->netdev_ops = &gfar_netdev_ops; 1340 dev->ethtool_ops = &gfar_ethtool_ops; 1341 1342 /* Register for napi ...We are registering NAPI for each grp */ 1343 for (i = 0; i < priv->num_grps; i++) { 1344 if (priv->poll_mode == GFAR_SQ_POLLING) { 1345 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1346 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1347 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 1348 gfar_poll_tx_sq, 2); 1349 } else { 1350 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1351 gfar_poll_rx, GFAR_DEV_WEIGHT); 1352 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 1353 gfar_poll_tx, 2); 1354 } 1355 } 1356 1357 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1358 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1359 NETIF_F_RXCSUM; 1360 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1361 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1362 } 1363 1364 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1365 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1366 NETIF_F_HW_VLAN_CTAG_RX; 1367 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1368 } 1369 1370 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1371 1372 gfar_init_addr_hash_table(priv); 1373 1374 /* Insert receive time stamps into padding alignment bytes */ 1375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1376 priv->padding = 8; 1377 1378 if (dev->features & NETIF_F_IP_CSUM || 1379 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1380 dev->needed_headroom = GMAC_FCB_LEN; 1381 1382 /* Initializing some of the rx/tx queue level parameters */ 1383 for (i = 0; i < priv->num_tx_queues; i++) { 1384 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1385 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1386 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1387 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1388 } 1389 1390 for (i = 0; i < priv->num_rx_queues; i++) { 1391 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1392 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1393 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1394 } 1395 1396 /* always enable rx filer */ 1397 priv->rx_filer_enable = 1; 1398 /* Enable most messages by default */ 1399 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1400 /* use pritority h/w tx queue scheduling for single queue devices */ 1401 if (priv->num_tx_queues == 1) 1402 priv->prio_sched_en = 1; 1403 1404 set_bit(GFAR_DOWN, &priv->state); 1405 1406 gfar_hw_init(priv); 1407 1408 /* Carrier starts down, phylib will bring it up */ 1409 netif_carrier_off(dev); 1410 1411 err = register_netdev(dev); 1412 1413 if (err) { 1414 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1415 goto register_fail; 1416 } 1417 1418 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 1419 priv->wol_supported |= GFAR_WOL_MAGIC; 1420 1421 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 1422 priv->rx_filer_enable) 1423 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 1424 1425 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 1426 1427 /* fill out IRQ number and name fields */ 1428 for (i = 0; i < priv->num_grps; i++) { 1429 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1430 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1431 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1432 dev->name, "_g", '0' + i, "_tx"); 1433 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1434 dev->name, "_g", '0' + i, "_rx"); 1435 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1436 dev->name, "_g", '0' + i, "_er"); 1437 } else 1438 strcpy(gfar_irq(grp, TX)->name, dev->name); 1439 } 1440 1441 /* Initialize the filer table */ 1442 gfar_init_filer_table(priv); 1443 1444 /* Print out the device info */ 1445 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1446 1447 /* Even more device info helps when determining which kernel 1448 * provided which set of benchmarks. 1449 */ 1450 netdev_info(dev, "Running with NAPI enabled\n"); 1451 for (i = 0; i < priv->num_rx_queues; i++) 1452 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1453 i, priv->rx_queue[i]->rx_ring_size); 1454 for (i = 0; i < priv->num_tx_queues; i++) 1455 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1456 i, priv->tx_queue[i]->tx_ring_size); 1457 1458 return 0; 1459 1460 register_fail: 1461 unmap_group_regs(priv); 1462 gfar_free_rx_queues(priv); 1463 gfar_free_tx_queues(priv); 1464 of_node_put(priv->phy_node); 1465 of_node_put(priv->tbi_node); 1466 free_gfar_dev(priv); 1467 return err; 1468 } 1469 1470 static int gfar_remove(struct platform_device *ofdev) 1471 { 1472 struct gfar_private *priv = platform_get_drvdata(ofdev); 1473 1474 of_node_put(priv->phy_node); 1475 of_node_put(priv->tbi_node); 1476 1477 unregister_netdev(priv->ndev); 1478 unmap_group_regs(priv); 1479 gfar_free_rx_queues(priv); 1480 gfar_free_tx_queues(priv); 1481 free_gfar_dev(priv); 1482 1483 return 0; 1484 } 1485 1486 #ifdef CONFIG_PM 1487 1488 static void __gfar_filer_disable(struct gfar_private *priv) 1489 { 1490 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1491 u32 temp; 1492 1493 temp = gfar_read(®s->rctrl); 1494 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 1495 gfar_write(®s->rctrl, temp); 1496 } 1497 1498 static void __gfar_filer_enable(struct gfar_private *priv) 1499 { 1500 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1501 u32 temp; 1502 1503 temp = gfar_read(®s->rctrl); 1504 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 1505 gfar_write(®s->rctrl, temp); 1506 } 1507 1508 /* Filer rules implementing wol capabilities */ 1509 static void gfar_filer_config_wol(struct gfar_private *priv) 1510 { 1511 unsigned int i; 1512 u32 rqfcr; 1513 1514 __gfar_filer_disable(priv); 1515 1516 /* clear the filer table, reject any packet by default */ 1517 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 1518 for (i = 0; i <= MAX_FILER_IDX; i++) 1519 gfar_write_filer(priv, i, rqfcr, 0); 1520 1521 i = 0; 1522 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 1523 /* unicast packet, accept it */ 1524 struct net_device *ndev = priv->ndev; 1525 /* get the default rx queue index */ 1526 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 1527 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 1528 (ndev->dev_addr[1] << 8) | 1529 ndev->dev_addr[2]; 1530 1531 rqfcr = (qindex << 10) | RQFCR_AND | 1532 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 1533 1534 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 1535 1536 dest_mac_addr = (ndev->dev_addr[3] << 16) | 1537 (ndev->dev_addr[4] << 8) | 1538 ndev->dev_addr[5]; 1539 rqfcr = (qindex << 10) | RQFCR_GPI | 1540 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 1541 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 1542 } 1543 1544 __gfar_filer_enable(priv); 1545 } 1546 1547 static void gfar_filer_restore_table(struct gfar_private *priv) 1548 { 1549 u32 rqfcr, rqfpr; 1550 unsigned int i; 1551 1552 __gfar_filer_disable(priv); 1553 1554 for (i = 0; i <= MAX_FILER_IDX; i++) { 1555 rqfcr = priv->ftp_rqfcr[i]; 1556 rqfpr = priv->ftp_rqfpr[i]; 1557 gfar_write_filer(priv, i, rqfcr, rqfpr); 1558 } 1559 1560 __gfar_filer_enable(priv); 1561 } 1562 1563 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 1564 static void gfar_start_wol_filer(struct gfar_private *priv) 1565 { 1566 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1567 u32 tempval; 1568 int i = 0; 1569 1570 /* Enable Rx hw queues */ 1571 gfar_write(®s->rqueue, priv->rqueue); 1572 1573 /* Initialize DMACTRL to have WWR and WOP */ 1574 tempval = gfar_read(®s->dmactrl); 1575 tempval |= DMACTRL_INIT_SETTINGS; 1576 gfar_write(®s->dmactrl, tempval); 1577 1578 /* Make sure we aren't stopped */ 1579 tempval = gfar_read(®s->dmactrl); 1580 tempval &= ~DMACTRL_GRS; 1581 gfar_write(®s->dmactrl, tempval); 1582 1583 for (i = 0; i < priv->num_grps; i++) { 1584 regs = priv->gfargrp[i].regs; 1585 /* Clear RHLT, so that the DMA starts polling now */ 1586 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1587 /* enable the Filer General Purpose Interrupt */ 1588 gfar_write(®s->imask, IMASK_FGPI); 1589 } 1590 1591 /* Enable Rx DMA */ 1592 tempval = gfar_read(®s->maccfg1); 1593 tempval |= MACCFG1_RX_EN; 1594 gfar_write(®s->maccfg1, tempval); 1595 } 1596 1597 static int gfar_suspend(struct device *dev) 1598 { 1599 struct gfar_private *priv = dev_get_drvdata(dev); 1600 struct net_device *ndev = priv->ndev; 1601 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1602 u32 tempval; 1603 u16 wol = priv->wol_opts; 1604 1605 if (!netif_running(ndev)) 1606 return 0; 1607 1608 disable_napi(priv); 1609 netif_tx_lock(ndev); 1610 netif_device_detach(ndev); 1611 netif_tx_unlock(ndev); 1612 1613 gfar_halt(priv); 1614 1615 if (wol & GFAR_WOL_MAGIC) { 1616 /* Enable interrupt on Magic Packet */ 1617 gfar_write(®s->imask, IMASK_MAG); 1618 1619 /* Enable Magic Packet mode */ 1620 tempval = gfar_read(®s->maccfg2); 1621 tempval |= MACCFG2_MPEN; 1622 gfar_write(®s->maccfg2, tempval); 1623 1624 /* re-enable the Rx block */ 1625 tempval = gfar_read(®s->maccfg1); 1626 tempval |= MACCFG1_RX_EN; 1627 gfar_write(®s->maccfg1, tempval); 1628 1629 } else if (wol & GFAR_WOL_FILER_UCAST) { 1630 gfar_filer_config_wol(priv); 1631 gfar_start_wol_filer(priv); 1632 1633 } else { 1634 phy_stop(priv->phydev); 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int gfar_resume(struct device *dev) 1641 { 1642 struct gfar_private *priv = dev_get_drvdata(dev); 1643 struct net_device *ndev = priv->ndev; 1644 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1645 u32 tempval; 1646 u16 wol = priv->wol_opts; 1647 1648 if (!netif_running(ndev)) 1649 return 0; 1650 1651 if (wol & GFAR_WOL_MAGIC) { 1652 /* Disable Magic Packet mode */ 1653 tempval = gfar_read(®s->maccfg2); 1654 tempval &= ~MACCFG2_MPEN; 1655 gfar_write(®s->maccfg2, tempval); 1656 1657 } else if (wol & GFAR_WOL_FILER_UCAST) { 1658 /* need to stop rx only, tx is already down */ 1659 gfar_halt(priv); 1660 gfar_filer_restore_table(priv); 1661 1662 } else { 1663 phy_start(priv->phydev); 1664 } 1665 1666 gfar_start(priv); 1667 1668 netif_device_attach(ndev); 1669 enable_napi(priv); 1670 1671 return 0; 1672 } 1673 1674 static int gfar_restore(struct device *dev) 1675 { 1676 struct gfar_private *priv = dev_get_drvdata(dev); 1677 struct net_device *ndev = priv->ndev; 1678 1679 if (!netif_running(ndev)) { 1680 netif_device_attach(ndev); 1681 1682 return 0; 1683 } 1684 1685 gfar_init_bds(ndev); 1686 1687 gfar_mac_reset(priv); 1688 1689 gfar_init_tx_rx_base(priv); 1690 1691 gfar_start(priv); 1692 1693 priv->oldlink = 0; 1694 priv->oldspeed = 0; 1695 priv->oldduplex = -1; 1696 1697 if (priv->phydev) 1698 phy_start(priv->phydev); 1699 1700 netif_device_attach(ndev); 1701 enable_napi(priv); 1702 1703 return 0; 1704 } 1705 1706 static struct dev_pm_ops gfar_pm_ops = { 1707 .suspend = gfar_suspend, 1708 .resume = gfar_resume, 1709 .freeze = gfar_suspend, 1710 .thaw = gfar_resume, 1711 .restore = gfar_restore, 1712 }; 1713 1714 #define GFAR_PM_OPS (&gfar_pm_ops) 1715 1716 #else 1717 1718 #define GFAR_PM_OPS NULL 1719 1720 #endif 1721 1722 /* Reads the controller's registers to determine what interface 1723 * connects it to the PHY. 1724 */ 1725 static phy_interface_t gfar_get_interface(struct net_device *dev) 1726 { 1727 struct gfar_private *priv = netdev_priv(dev); 1728 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1729 u32 ecntrl; 1730 1731 ecntrl = gfar_read(®s->ecntrl); 1732 1733 if (ecntrl & ECNTRL_SGMII_MODE) 1734 return PHY_INTERFACE_MODE_SGMII; 1735 1736 if (ecntrl & ECNTRL_TBI_MODE) { 1737 if (ecntrl & ECNTRL_REDUCED_MODE) 1738 return PHY_INTERFACE_MODE_RTBI; 1739 else 1740 return PHY_INTERFACE_MODE_TBI; 1741 } 1742 1743 if (ecntrl & ECNTRL_REDUCED_MODE) { 1744 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1745 return PHY_INTERFACE_MODE_RMII; 1746 } 1747 else { 1748 phy_interface_t interface = priv->interface; 1749 1750 /* This isn't autodetected right now, so it must 1751 * be set by the device tree or platform code. 1752 */ 1753 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1754 return PHY_INTERFACE_MODE_RGMII_ID; 1755 1756 return PHY_INTERFACE_MODE_RGMII; 1757 } 1758 } 1759 1760 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1761 return PHY_INTERFACE_MODE_GMII; 1762 1763 return PHY_INTERFACE_MODE_MII; 1764 } 1765 1766 1767 /* Initializes driver's PHY state, and attaches to the PHY. 1768 * Returns 0 on success. 1769 */ 1770 static int init_phy(struct net_device *dev) 1771 { 1772 struct gfar_private *priv = netdev_priv(dev); 1773 uint gigabit_support = 1774 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1775 GFAR_SUPPORTED_GBIT : 0; 1776 phy_interface_t interface; 1777 1778 priv->oldlink = 0; 1779 priv->oldspeed = 0; 1780 priv->oldduplex = -1; 1781 1782 interface = gfar_get_interface(dev); 1783 1784 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1785 interface); 1786 if (!priv->phydev) { 1787 dev_err(&dev->dev, "could not attach to PHY\n"); 1788 return -ENODEV; 1789 } 1790 1791 if (interface == PHY_INTERFACE_MODE_SGMII) 1792 gfar_configure_serdes(dev); 1793 1794 /* Remove any features not supported by the controller */ 1795 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1796 priv->phydev->advertising = priv->phydev->supported; 1797 1798 /* Add support for flow control, but don't advertise it by default */ 1799 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); 1800 1801 return 0; 1802 } 1803 1804 /* Initialize TBI PHY interface for communicating with the 1805 * SERDES lynx PHY on the chip. We communicate with this PHY 1806 * through the MDIO bus on each controller, treating it as a 1807 * "normal" PHY at the address found in the TBIPA register. We assume 1808 * that the TBIPA register is valid. Either the MDIO bus code will set 1809 * it to a value that doesn't conflict with other PHYs on the bus, or the 1810 * value doesn't matter, as there are no other PHYs on the bus. 1811 */ 1812 static void gfar_configure_serdes(struct net_device *dev) 1813 { 1814 struct gfar_private *priv = netdev_priv(dev); 1815 struct phy_device *tbiphy; 1816 1817 if (!priv->tbi_node) { 1818 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1819 "device tree specify a tbi-handle\n"); 1820 return; 1821 } 1822 1823 tbiphy = of_phy_find_device(priv->tbi_node); 1824 if (!tbiphy) { 1825 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1826 return; 1827 } 1828 1829 /* If the link is already up, we must already be ok, and don't need to 1830 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1831 * everything for us? Resetting it takes the link down and requires 1832 * several seconds for it to come back. 1833 */ 1834 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1835 put_device(&tbiphy->dev); 1836 return; 1837 } 1838 1839 /* Single clk mode, mii mode off(for serdes communication) */ 1840 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1841 1842 phy_write(tbiphy, MII_ADVERTISE, 1843 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1844 ADVERTISE_1000XPSE_ASYM); 1845 1846 phy_write(tbiphy, MII_BMCR, 1847 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1848 BMCR_SPEED1000); 1849 1850 put_device(&tbiphy->dev); 1851 } 1852 1853 static int __gfar_is_rx_idle(struct gfar_private *priv) 1854 { 1855 u32 res; 1856 1857 /* Normaly TSEC should not hang on GRS commands, so we should 1858 * actually wait for IEVENT_GRSC flag. 1859 */ 1860 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1861 return 0; 1862 1863 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1864 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1865 * and the Rx can be safely reset. 1866 */ 1867 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1868 res &= 0x7f807f80; 1869 if ((res & 0xffff) == (res >> 16)) 1870 return 1; 1871 1872 return 0; 1873 } 1874 1875 /* Halt the receive and transmit queues */ 1876 static void gfar_halt_nodisable(struct gfar_private *priv) 1877 { 1878 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1879 u32 tempval; 1880 unsigned int timeout; 1881 int stopped; 1882 1883 gfar_ints_disable(priv); 1884 1885 if (gfar_is_dma_stopped(priv)) 1886 return; 1887 1888 /* Stop the DMA, and wait for it to stop */ 1889 tempval = gfar_read(®s->dmactrl); 1890 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1891 gfar_write(®s->dmactrl, tempval); 1892 1893 retry: 1894 timeout = 1000; 1895 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1896 cpu_relax(); 1897 timeout--; 1898 } 1899 1900 if (!timeout) 1901 stopped = gfar_is_dma_stopped(priv); 1902 1903 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1904 !__gfar_is_rx_idle(priv)) 1905 goto retry; 1906 } 1907 1908 /* Halt the receive and transmit queues */ 1909 void gfar_halt(struct gfar_private *priv) 1910 { 1911 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1912 u32 tempval; 1913 1914 /* Dissable the Rx/Tx hw queues */ 1915 gfar_write(®s->rqueue, 0); 1916 gfar_write(®s->tqueue, 0); 1917 1918 mdelay(10); 1919 1920 gfar_halt_nodisable(priv); 1921 1922 /* Disable Rx/Tx DMA */ 1923 tempval = gfar_read(®s->maccfg1); 1924 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1925 gfar_write(®s->maccfg1, tempval); 1926 } 1927 1928 void stop_gfar(struct net_device *dev) 1929 { 1930 struct gfar_private *priv = netdev_priv(dev); 1931 1932 netif_tx_stop_all_queues(dev); 1933 1934 smp_mb__before_atomic(); 1935 set_bit(GFAR_DOWN, &priv->state); 1936 smp_mb__after_atomic(); 1937 1938 disable_napi(priv); 1939 1940 /* disable ints and gracefully shut down Rx/Tx DMA */ 1941 gfar_halt(priv); 1942 1943 phy_stop(priv->phydev); 1944 1945 free_skb_resources(priv); 1946 } 1947 1948 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1949 { 1950 struct txbd8 *txbdp; 1951 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1952 int i, j; 1953 1954 txbdp = tx_queue->tx_bd_base; 1955 1956 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1957 if (!tx_queue->tx_skbuff[i]) 1958 continue; 1959 1960 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1961 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1962 txbdp->lstatus = 0; 1963 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1964 j++) { 1965 txbdp++; 1966 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1967 be16_to_cpu(txbdp->length), 1968 DMA_TO_DEVICE); 1969 } 1970 txbdp++; 1971 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1972 tx_queue->tx_skbuff[i] = NULL; 1973 } 1974 kfree(tx_queue->tx_skbuff); 1975 tx_queue->tx_skbuff = NULL; 1976 } 1977 1978 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1979 { 1980 int i; 1981 1982 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1983 1984 if (rx_queue->skb) 1985 dev_kfree_skb(rx_queue->skb); 1986 1987 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1988 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1989 1990 rxbdp->lstatus = 0; 1991 rxbdp->bufPtr = 0; 1992 rxbdp++; 1993 1994 if (!rxb->page) 1995 continue; 1996 1997 dma_unmap_single(rx_queue->dev, rxb->dma, 1998 PAGE_SIZE, DMA_FROM_DEVICE); 1999 __free_page(rxb->page); 2000 2001 rxb->page = NULL; 2002 } 2003 2004 kfree(rx_queue->rx_buff); 2005 rx_queue->rx_buff = NULL; 2006 } 2007 2008 /* If there are any tx skbs or rx skbs still around, free them. 2009 * Then free tx_skbuff and rx_skbuff 2010 */ 2011 static void free_skb_resources(struct gfar_private *priv) 2012 { 2013 struct gfar_priv_tx_q *tx_queue = NULL; 2014 struct gfar_priv_rx_q *rx_queue = NULL; 2015 int i; 2016 2017 /* Go through all the buffer descriptors and free their data buffers */ 2018 for (i = 0; i < priv->num_tx_queues; i++) { 2019 struct netdev_queue *txq; 2020 2021 tx_queue = priv->tx_queue[i]; 2022 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 2023 if (tx_queue->tx_skbuff) 2024 free_skb_tx_queue(tx_queue); 2025 netdev_tx_reset_queue(txq); 2026 } 2027 2028 for (i = 0; i < priv->num_rx_queues; i++) { 2029 rx_queue = priv->rx_queue[i]; 2030 if (rx_queue->rx_buff) 2031 free_skb_rx_queue(rx_queue); 2032 } 2033 2034 dma_free_coherent(priv->dev, 2035 sizeof(struct txbd8) * priv->total_tx_ring_size + 2036 sizeof(struct rxbd8) * priv->total_rx_ring_size, 2037 priv->tx_queue[0]->tx_bd_base, 2038 priv->tx_queue[0]->tx_bd_dma_base); 2039 } 2040 2041 void gfar_start(struct gfar_private *priv) 2042 { 2043 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2044 u32 tempval; 2045 int i = 0; 2046 2047 /* Enable Rx/Tx hw queues */ 2048 gfar_write(®s->rqueue, priv->rqueue); 2049 gfar_write(®s->tqueue, priv->tqueue); 2050 2051 /* Initialize DMACTRL to have WWR and WOP */ 2052 tempval = gfar_read(®s->dmactrl); 2053 tempval |= DMACTRL_INIT_SETTINGS; 2054 gfar_write(®s->dmactrl, tempval); 2055 2056 /* Make sure we aren't stopped */ 2057 tempval = gfar_read(®s->dmactrl); 2058 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 2059 gfar_write(®s->dmactrl, tempval); 2060 2061 for (i = 0; i < priv->num_grps; i++) { 2062 regs = priv->gfargrp[i].regs; 2063 /* Clear THLT/RHLT, so that the DMA starts polling now */ 2064 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 2065 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 2066 } 2067 2068 /* Enable Rx/Tx DMA */ 2069 tempval = gfar_read(®s->maccfg1); 2070 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 2071 gfar_write(®s->maccfg1, tempval); 2072 2073 gfar_ints_enable(priv); 2074 2075 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 2076 } 2077 2078 static void free_grp_irqs(struct gfar_priv_grp *grp) 2079 { 2080 free_irq(gfar_irq(grp, TX)->irq, grp); 2081 free_irq(gfar_irq(grp, RX)->irq, grp); 2082 free_irq(gfar_irq(grp, ER)->irq, grp); 2083 } 2084 2085 static int register_grp_irqs(struct gfar_priv_grp *grp) 2086 { 2087 struct gfar_private *priv = grp->priv; 2088 struct net_device *dev = priv->ndev; 2089 int err; 2090 2091 /* If the device has multiple interrupts, register for 2092 * them. Otherwise, only register for the one 2093 */ 2094 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2095 /* Install our interrupt handlers for Error, 2096 * Transmit, and Receive 2097 */ 2098 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2099 gfar_irq(grp, ER)->name, grp); 2100 if (err < 0) { 2101 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2102 gfar_irq(grp, ER)->irq); 2103 2104 goto err_irq_fail; 2105 } 2106 enable_irq_wake(gfar_irq(grp, ER)->irq); 2107 2108 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2109 gfar_irq(grp, TX)->name, grp); 2110 if (err < 0) { 2111 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2112 gfar_irq(grp, TX)->irq); 2113 goto tx_irq_fail; 2114 } 2115 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2116 gfar_irq(grp, RX)->name, grp); 2117 if (err < 0) { 2118 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2119 gfar_irq(grp, RX)->irq); 2120 goto rx_irq_fail; 2121 } 2122 enable_irq_wake(gfar_irq(grp, RX)->irq); 2123 2124 } else { 2125 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2126 gfar_irq(grp, TX)->name, grp); 2127 if (err < 0) { 2128 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2129 gfar_irq(grp, TX)->irq); 2130 goto err_irq_fail; 2131 } 2132 enable_irq_wake(gfar_irq(grp, TX)->irq); 2133 } 2134 2135 return 0; 2136 2137 rx_irq_fail: 2138 free_irq(gfar_irq(grp, TX)->irq, grp); 2139 tx_irq_fail: 2140 free_irq(gfar_irq(grp, ER)->irq, grp); 2141 err_irq_fail: 2142 return err; 2143 2144 } 2145 2146 static void gfar_free_irq(struct gfar_private *priv) 2147 { 2148 int i; 2149 2150 /* Free the IRQs */ 2151 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2152 for (i = 0; i < priv->num_grps; i++) 2153 free_grp_irqs(&priv->gfargrp[i]); 2154 } else { 2155 for (i = 0; i < priv->num_grps; i++) 2156 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2157 &priv->gfargrp[i]); 2158 } 2159 } 2160 2161 static int gfar_request_irq(struct gfar_private *priv) 2162 { 2163 int err, i, j; 2164 2165 for (i = 0; i < priv->num_grps; i++) { 2166 err = register_grp_irqs(&priv->gfargrp[i]); 2167 if (err) { 2168 for (j = 0; j < i; j++) 2169 free_grp_irqs(&priv->gfargrp[j]); 2170 return err; 2171 } 2172 } 2173 2174 return 0; 2175 } 2176 2177 /* Bring the controller up and running */ 2178 int startup_gfar(struct net_device *ndev) 2179 { 2180 struct gfar_private *priv = netdev_priv(ndev); 2181 int err; 2182 2183 gfar_mac_reset(priv); 2184 2185 err = gfar_alloc_skb_resources(ndev); 2186 if (err) 2187 return err; 2188 2189 gfar_init_tx_rx_base(priv); 2190 2191 smp_mb__before_atomic(); 2192 clear_bit(GFAR_DOWN, &priv->state); 2193 smp_mb__after_atomic(); 2194 2195 /* Start Rx/Tx DMA and enable the interrupts */ 2196 gfar_start(priv); 2197 2198 /* force link state update after mac reset */ 2199 priv->oldlink = 0; 2200 priv->oldspeed = 0; 2201 priv->oldduplex = -1; 2202 2203 phy_start(priv->phydev); 2204 2205 enable_napi(priv); 2206 2207 netif_tx_wake_all_queues(ndev); 2208 2209 return 0; 2210 } 2211 2212 /* Called when something needs to use the ethernet device 2213 * Returns 0 for success. 2214 */ 2215 static int gfar_enet_open(struct net_device *dev) 2216 { 2217 struct gfar_private *priv = netdev_priv(dev); 2218 int err; 2219 2220 err = init_phy(dev); 2221 if (err) 2222 return err; 2223 2224 err = gfar_request_irq(priv); 2225 if (err) 2226 return err; 2227 2228 err = startup_gfar(dev); 2229 if (err) 2230 return err; 2231 2232 return err; 2233 } 2234 2235 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2236 { 2237 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2238 2239 memset(fcb, 0, GMAC_FCB_LEN); 2240 2241 return fcb; 2242 } 2243 2244 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2245 int fcb_length) 2246 { 2247 /* If we're here, it's a IP packet with a TCP or UDP 2248 * payload. We set it to checksum, using a pseudo-header 2249 * we provide 2250 */ 2251 u8 flags = TXFCB_DEFAULT; 2252 2253 /* Tell the controller what the protocol is 2254 * And provide the already calculated phcs 2255 */ 2256 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2257 flags |= TXFCB_UDP; 2258 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 2259 } else 2260 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 2261 2262 /* l3os is the distance between the start of the 2263 * frame (skb->data) and the start of the IP hdr. 2264 * l4os is the distance between the start of the 2265 * l3 hdr and the l4 hdr 2266 */ 2267 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 2268 fcb->l4os = skb_network_header_len(skb); 2269 2270 fcb->flags = flags; 2271 } 2272 2273 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2274 { 2275 fcb->flags |= TXFCB_VLN; 2276 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 2277 } 2278 2279 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2280 struct txbd8 *base, int ring_size) 2281 { 2282 struct txbd8 *new_bd = bdp + stride; 2283 2284 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2285 } 2286 2287 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2288 int ring_size) 2289 { 2290 return skip_txbd(bdp, 1, base, ring_size); 2291 } 2292 2293 /* eTSEC12: csum generation not supported for some fcb offsets */ 2294 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2295 unsigned long fcb_addr) 2296 { 2297 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2298 (fcb_addr % 0x20) > 0x18); 2299 } 2300 2301 /* eTSEC76: csum generation for frames larger than 2500 may 2302 * cause excess delays before start of transmission 2303 */ 2304 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2305 unsigned int len) 2306 { 2307 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2308 (len > 2500)); 2309 } 2310 2311 /* This is called by the kernel when a frame is ready for transmission. 2312 * It is pointed to by the dev->hard_start_xmit function pointer 2313 */ 2314 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2315 { 2316 struct gfar_private *priv = netdev_priv(dev); 2317 struct gfar_priv_tx_q *tx_queue = NULL; 2318 struct netdev_queue *txq; 2319 struct gfar __iomem *regs = NULL; 2320 struct txfcb *fcb = NULL; 2321 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2322 u32 lstatus; 2323 int i, rq = 0; 2324 int do_tstamp, do_csum, do_vlan; 2325 u32 bufaddr; 2326 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2327 2328 rq = skb->queue_mapping; 2329 tx_queue = priv->tx_queue[rq]; 2330 txq = netdev_get_tx_queue(dev, rq); 2331 base = tx_queue->tx_bd_base; 2332 regs = tx_queue->grp->regs; 2333 2334 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2335 do_vlan = skb_vlan_tag_present(skb); 2336 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2337 priv->hwts_tx_en; 2338 2339 if (do_csum || do_vlan) 2340 fcb_len = GMAC_FCB_LEN; 2341 2342 /* check if time stamp should be generated */ 2343 if (unlikely(do_tstamp)) 2344 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2345 2346 /* make space for additional header when fcb is needed */ 2347 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2348 struct sk_buff *skb_new; 2349 2350 skb_new = skb_realloc_headroom(skb, fcb_len); 2351 if (!skb_new) { 2352 dev->stats.tx_errors++; 2353 dev_kfree_skb_any(skb); 2354 return NETDEV_TX_OK; 2355 } 2356 2357 if (skb->sk) 2358 skb_set_owner_w(skb_new, skb->sk); 2359 dev_consume_skb_any(skb); 2360 skb = skb_new; 2361 } 2362 2363 /* total number of fragments in the SKB */ 2364 nr_frags = skb_shinfo(skb)->nr_frags; 2365 2366 /* calculate the required number of TxBDs for this skb */ 2367 if (unlikely(do_tstamp)) 2368 nr_txbds = nr_frags + 2; 2369 else 2370 nr_txbds = nr_frags + 1; 2371 2372 /* check if there is space to queue this packet */ 2373 if (nr_txbds > tx_queue->num_txbdfree) { 2374 /* no space, stop the queue */ 2375 netif_tx_stop_queue(txq); 2376 dev->stats.tx_fifo_errors++; 2377 return NETDEV_TX_BUSY; 2378 } 2379 2380 /* Update transmit stats */ 2381 bytes_sent = skb->len; 2382 tx_queue->stats.tx_bytes += bytes_sent; 2383 /* keep Tx bytes on wire for BQL accounting */ 2384 GFAR_CB(skb)->bytes_sent = bytes_sent; 2385 tx_queue->stats.tx_packets++; 2386 2387 txbdp = txbdp_start = tx_queue->cur_tx; 2388 lstatus = be32_to_cpu(txbdp->lstatus); 2389 2390 /* Time stamp insertion requires one additional TxBD */ 2391 if (unlikely(do_tstamp)) 2392 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2393 tx_queue->tx_ring_size); 2394 2395 if (nr_frags == 0) { 2396 if (unlikely(do_tstamp)) { 2397 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 2398 2399 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2400 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 2401 } else { 2402 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2403 } 2404 } else { 2405 /* Place the fragment addresses and lengths into the TxBDs */ 2406 for (i = 0; i < nr_frags; i++) { 2407 unsigned int frag_len; 2408 /* Point at the next BD, wrapping as needed */ 2409 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2410 2411 frag_len = skb_shinfo(skb)->frags[i].size; 2412 2413 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len | 2414 BD_LFLAG(TXBD_READY); 2415 2416 /* Handle the last BD specially */ 2417 if (i == nr_frags - 1) 2418 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2419 2420 bufaddr = skb_frag_dma_map(priv->dev, 2421 &skb_shinfo(skb)->frags[i], 2422 0, 2423 frag_len, 2424 DMA_TO_DEVICE); 2425 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2426 goto dma_map_err; 2427 2428 /* set the TxBD length and buffer pointer */ 2429 txbdp->bufPtr = cpu_to_be32(bufaddr); 2430 txbdp->lstatus = cpu_to_be32(lstatus); 2431 } 2432 2433 lstatus = be32_to_cpu(txbdp_start->lstatus); 2434 } 2435 2436 /* Add TxPAL between FCB and frame if required */ 2437 if (unlikely(do_tstamp)) { 2438 skb_push(skb, GMAC_TXPAL_LEN); 2439 memset(skb->data, 0, GMAC_TXPAL_LEN); 2440 } 2441 2442 /* Add TxFCB if required */ 2443 if (fcb_len) { 2444 fcb = gfar_add_fcb(skb); 2445 lstatus |= BD_LFLAG(TXBD_TOE); 2446 } 2447 2448 /* Set up checksumming */ 2449 if (do_csum) { 2450 gfar_tx_checksum(skb, fcb, fcb_len); 2451 2452 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2453 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2454 __skb_pull(skb, GMAC_FCB_LEN); 2455 skb_checksum_help(skb); 2456 if (do_vlan || do_tstamp) { 2457 /* put back a new fcb for vlan/tstamp TOE */ 2458 fcb = gfar_add_fcb(skb); 2459 } else { 2460 /* Tx TOE not used */ 2461 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2462 fcb = NULL; 2463 } 2464 } 2465 } 2466 2467 if (do_vlan) 2468 gfar_tx_vlan(skb, fcb); 2469 2470 /* Setup tx hardware time stamping if requested */ 2471 if (unlikely(do_tstamp)) { 2472 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2473 fcb->ptp = 1; 2474 } 2475 2476 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 2477 DMA_TO_DEVICE); 2478 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 2479 goto dma_map_err; 2480 2481 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 2482 2483 /* If time stamping is requested one additional TxBD must be set up. The 2484 * first TxBD points to the FCB and must have a data length of 2485 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2486 * the full frame length. 2487 */ 2488 if (unlikely(do_tstamp)) { 2489 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 2490 2491 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 2492 bufaddr += fcb_len; 2493 lstatus_ts |= BD_LFLAG(TXBD_READY) | 2494 (skb_headlen(skb) - fcb_len); 2495 2496 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 2497 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 2498 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2499 } else { 2500 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2501 } 2502 2503 netdev_tx_sent_queue(txq, bytes_sent); 2504 2505 gfar_wmb(); 2506 2507 txbdp_start->lstatus = cpu_to_be32(lstatus); 2508 2509 gfar_wmb(); /* force lstatus write before tx_skbuff */ 2510 2511 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2512 2513 /* Update the current skb pointer to the next entry we will use 2514 * (wrapping if necessary) 2515 */ 2516 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2517 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2518 2519 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2520 2521 /* We can work in parallel with gfar_clean_tx_ring(), except 2522 * when modifying num_txbdfree. Note that we didn't grab the lock 2523 * when we were reading the num_txbdfree and checking for available 2524 * space, that's because outside of this function it can only grow. 2525 */ 2526 spin_lock_bh(&tx_queue->txlock); 2527 /* reduce TxBD free count */ 2528 tx_queue->num_txbdfree -= (nr_txbds); 2529 spin_unlock_bh(&tx_queue->txlock); 2530 2531 /* If the next BD still needs to be cleaned up, then the bds 2532 * are full. We need to tell the kernel to stop sending us stuff. 2533 */ 2534 if (!tx_queue->num_txbdfree) { 2535 netif_tx_stop_queue(txq); 2536 2537 dev->stats.tx_fifo_errors++; 2538 } 2539 2540 /* Tell the DMA to go go go */ 2541 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2542 2543 return NETDEV_TX_OK; 2544 2545 dma_map_err: 2546 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2547 if (do_tstamp) 2548 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2549 for (i = 0; i < nr_frags; i++) { 2550 lstatus = be32_to_cpu(txbdp->lstatus); 2551 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2552 break; 2553 2554 lstatus &= ~BD_LFLAG(TXBD_READY); 2555 txbdp->lstatus = cpu_to_be32(lstatus); 2556 bufaddr = be32_to_cpu(txbdp->bufPtr); 2557 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2558 DMA_TO_DEVICE); 2559 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2560 } 2561 gfar_wmb(); 2562 dev_kfree_skb_any(skb); 2563 return NETDEV_TX_OK; 2564 } 2565 2566 /* Stops the kernel queue, and halts the controller */ 2567 static int gfar_close(struct net_device *dev) 2568 { 2569 struct gfar_private *priv = netdev_priv(dev); 2570 2571 cancel_work_sync(&priv->reset_task); 2572 stop_gfar(dev); 2573 2574 /* Disconnect from the PHY */ 2575 phy_disconnect(priv->phydev); 2576 priv->phydev = NULL; 2577 2578 gfar_free_irq(priv); 2579 2580 return 0; 2581 } 2582 2583 /* Changes the mac address if the controller is not running. */ 2584 static int gfar_set_mac_address(struct net_device *dev) 2585 { 2586 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2587 2588 return 0; 2589 } 2590 2591 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2592 { 2593 struct gfar_private *priv = netdev_priv(dev); 2594 int frame_size = new_mtu + ETH_HLEN; 2595 2596 if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) { 2597 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2598 return -EINVAL; 2599 } 2600 2601 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2602 cpu_relax(); 2603 2604 if (dev->flags & IFF_UP) 2605 stop_gfar(dev); 2606 2607 dev->mtu = new_mtu; 2608 2609 if (dev->flags & IFF_UP) 2610 startup_gfar(dev); 2611 2612 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2613 2614 return 0; 2615 } 2616 2617 void reset_gfar(struct net_device *ndev) 2618 { 2619 struct gfar_private *priv = netdev_priv(ndev); 2620 2621 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2622 cpu_relax(); 2623 2624 stop_gfar(ndev); 2625 startup_gfar(ndev); 2626 2627 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2628 } 2629 2630 /* gfar_reset_task gets scheduled when a packet has not been 2631 * transmitted after a set amount of time. 2632 * For now, assume that clearing out all the structures, and 2633 * starting over will fix the problem. 2634 */ 2635 static void gfar_reset_task(struct work_struct *work) 2636 { 2637 struct gfar_private *priv = container_of(work, struct gfar_private, 2638 reset_task); 2639 reset_gfar(priv->ndev); 2640 } 2641 2642 static void gfar_timeout(struct net_device *dev) 2643 { 2644 struct gfar_private *priv = netdev_priv(dev); 2645 2646 dev->stats.tx_errors++; 2647 schedule_work(&priv->reset_task); 2648 } 2649 2650 /* Interrupt Handler for Transmit complete */ 2651 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2652 { 2653 struct net_device *dev = tx_queue->dev; 2654 struct netdev_queue *txq; 2655 struct gfar_private *priv = netdev_priv(dev); 2656 struct txbd8 *bdp, *next = NULL; 2657 struct txbd8 *lbdp = NULL; 2658 struct txbd8 *base = tx_queue->tx_bd_base; 2659 struct sk_buff *skb; 2660 int skb_dirtytx; 2661 int tx_ring_size = tx_queue->tx_ring_size; 2662 int frags = 0, nr_txbds = 0; 2663 int i; 2664 int howmany = 0; 2665 int tqi = tx_queue->qindex; 2666 unsigned int bytes_sent = 0; 2667 u32 lstatus; 2668 size_t buflen; 2669 2670 txq = netdev_get_tx_queue(dev, tqi); 2671 bdp = tx_queue->dirty_tx; 2672 skb_dirtytx = tx_queue->skb_dirtytx; 2673 2674 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2675 2676 frags = skb_shinfo(skb)->nr_frags; 2677 2678 /* When time stamping, one additional TxBD must be freed. 2679 * Also, we need to dma_unmap_single() the TxPAL. 2680 */ 2681 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2682 nr_txbds = frags + 2; 2683 else 2684 nr_txbds = frags + 1; 2685 2686 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2687 2688 lstatus = be32_to_cpu(lbdp->lstatus); 2689 2690 /* Only clean completed frames */ 2691 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2692 (lstatus & BD_LENGTH_MASK)) 2693 break; 2694 2695 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2696 next = next_txbd(bdp, base, tx_ring_size); 2697 buflen = be16_to_cpu(next->length) + 2698 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2699 } else 2700 buflen = be16_to_cpu(bdp->length); 2701 2702 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2703 buflen, DMA_TO_DEVICE); 2704 2705 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2706 struct skb_shared_hwtstamps shhwtstamps; 2707 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2708 ~0x7UL); 2709 2710 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2711 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2712 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2713 skb_tstamp_tx(skb, &shhwtstamps); 2714 gfar_clear_txbd_status(bdp); 2715 bdp = next; 2716 } 2717 2718 gfar_clear_txbd_status(bdp); 2719 bdp = next_txbd(bdp, base, tx_ring_size); 2720 2721 for (i = 0; i < frags; i++) { 2722 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2723 be16_to_cpu(bdp->length), 2724 DMA_TO_DEVICE); 2725 gfar_clear_txbd_status(bdp); 2726 bdp = next_txbd(bdp, base, tx_ring_size); 2727 } 2728 2729 bytes_sent += GFAR_CB(skb)->bytes_sent; 2730 2731 dev_kfree_skb_any(skb); 2732 2733 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2734 2735 skb_dirtytx = (skb_dirtytx + 1) & 2736 TX_RING_MOD_MASK(tx_ring_size); 2737 2738 howmany++; 2739 spin_lock(&tx_queue->txlock); 2740 tx_queue->num_txbdfree += nr_txbds; 2741 spin_unlock(&tx_queue->txlock); 2742 } 2743 2744 /* If we freed a buffer, we can restart transmission, if necessary */ 2745 if (tx_queue->num_txbdfree && 2746 netif_tx_queue_stopped(txq) && 2747 !(test_bit(GFAR_DOWN, &priv->state))) 2748 netif_wake_subqueue(priv->ndev, tqi); 2749 2750 /* Update dirty indicators */ 2751 tx_queue->skb_dirtytx = skb_dirtytx; 2752 tx_queue->dirty_tx = bdp; 2753 2754 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2755 } 2756 2757 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 2758 { 2759 struct page *page; 2760 dma_addr_t addr; 2761 2762 page = dev_alloc_page(); 2763 if (unlikely(!page)) 2764 return false; 2765 2766 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 2767 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 2768 __free_page(page); 2769 2770 return false; 2771 } 2772 2773 rxb->dma = addr; 2774 rxb->page = page; 2775 rxb->page_offset = 0; 2776 2777 return true; 2778 } 2779 2780 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 2781 { 2782 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 2783 struct gfar_extra_stats *estats = &priv->extra_stats; 2784 2785 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 2786 atomic64_inc(&estats->rx_alloc_err); 2787 } 2788 2789 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 2790 int alloc_cnt) 2791 { 2792 struct rxbd8 *bdp; 2793 struct gfar_rx_buff *rxb; 2794 int i; 2795 2796 i = rx_queue->next_to_use; 2797 bdp = &rx_queue->rx_bd_base[i]; 2798 rxb = &rx_queue->rx_buff[i]; 2799 2800 while (alloc_cnt--) { 2801 /* try reuse page */ 2802 if (unlikely(!rxb->page)) { 2803 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 2804 gfar_rx_alloc_err(rx_queue); 2805 break; 2806 } 2807 } 2808 2809 /* Setup the new RxBD */ 2810 gfar_init_rxbdp(rx_queue, bdp, 2811 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 2812 2813 /* Update to the next pointer */ 2814 bdp++; 2815 rxb++; 2816 2817 if (unlikely(++i == rx_queue->rx_ring_size)) { 2818 i = 0; 2819 bdp = rx_queue->rx_bd_base; 2820 rxb = rx_queue->rx_buff; 2821 } 2822 } 2823 2824 rx_queue->next_to_use = i; 2825 rx_queue->next_to_alloc = i; 2826 } 2827 2828 static void count_errors(u32 lstatus, struct net_device *ndev) 2829 { 2830 struct gfar_private *priv = netdev_priv(ndev); 2831 struct net_device_stats *stats = &ndev->stats; 2832 struct gfar_extra_stats *estats = &priv->extra_stats; 2833 2834 /* If the packet was truncated, none of the other errors matter */ 2835 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2836 stats->rx_length_errors++; 2837 2838 atomic64_inc(&estats->rx_trunc); 2839 2840 return; 2841 } 2842 /* Count the errors, if there were any */ 2843 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2844 stats->rx_length_errors++; 2845 2846 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2847 atomic64_inc(&estats->rx_large); 2848 else 2849 atomic64_inc(&estats->rx_short); 2850 } 2851 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2852 stats->rx_frame_errors++; 2853 atomic64_inc(&estats->rx_nonoctet); 2854 } 2855 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2856 atomic64_inc(&estats->rx_crcerr); 2857 stats->rx_crc_errors++; 2858 } 2859 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2860 atomic64_inc(&estats->rx_overrun); 2861 stats->rx_over_errors++; 2862 } 2863 } 2864 2865 irqreturn_t gfar_receive(int irq, void *grp_id) 2866 { 2867 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2868 unsigned long flags; 2869 u32 imask, ievent; 2870 2871 ievent = gfar_read(&grp->regs->ievent); 2872 2873 if (unlikely(ievent & IEVENT_FGPI)) { 2874 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2875 return IRQ_HANDLED; 2876 } 2877 2878 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2879 spin_lock_irqsave(&grp->grplock, flags); 2880 imask = gfar_read(&grp->regs->imask); 2881 imask &= IMASK_RX_DISABLED; 2882 gfar_write(&grp->regs->imask, imask); 2883 spin_unlock_irqrestore(&grp->grplock, flags); 2884 __napi_schedule(&grp->napi_rx); 2885 } else { 2886 /* Clear IEVENT, so interrupts aren't called again 2887 * because of the packets that have already arrived. 2888 */ 2889 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2890 } 2891 2892 return IRQ_HANDLED; 2893 } 2894 2895 /* Interrupt Handler for Transmit complete */ 2896 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2897 { 2898 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2899 unsigned long flags; 2900 u32 imask; 2901 2902 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2903 spin_lock_irqsave(&grp->grplock, flags); 2904 imask = gfar_read(&grp->regs->imask); 2905 imask &= IMASK_TX_DISABLED; 2906 gfar_write(&grp->regs->imask, imask); 2907 spin_unlock_irqrestore(&grp->grplock, flags); 2908 __napi_schedule(&grp->napi_tx); 2909 } else { 2910 /* Clear IEVENT, so interrupts aren't called again 2911 * because of the packets that have already arrived. 2912 */ 2913 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2914 } 2915 2916 return IRQ_HANDLED; 2917 } 2918 2919 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2920 struct sk_buff *skb, bool first) 2921 { 2922 unsigned int size = lstatus & BD_LENGTH_MASK; 2923 struct page *page = rxb->page; 2924 2925 /* Remove the FCS from the packet length */ 2926 if (likely(lstatus & BD_LFLAG(RXBD_LAST))) 2927 size -= ETH_FCS_LEN; 2928 2929 if (likely(first)) 2930 skb_put(skb, size); 2931 else 2932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2933 rxb->page_offset + RXBUF_ALIGNMENT, 2934 size, GFAR_RXB_TRUESIZE); 2935 2936 /* try reuse page */ 2937 if (unlikely(page_count(page) != 1)) 2938 return false; 2939 2940 /* change offset to the other half */ 2941 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2942 2943 atomic_inc(&page->_count); 2944 2945 return true; 2946 } 2947 2948 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2949 struct gfar_rx_buff *old_rxb) 2950 { 2951 struct gfar_rx_buff *new_rxb; 2952 u16 nta = rxq->next_to_alloc; 2953 2954 new_rxb = &rxq->rx_buff[nta]; 2955 2956 /* find next buf that can reuse a page */ 2957 nta++; 2958 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2959 2960 /* copy page reference */ 2961 *new_rxb = *old_rxb; 2962 2963 /* sync for use by the device */ 2964 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2965 old_rxb->page_offset, 2966 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2967 } 2968 2969 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2970 u32 lstatus, struct sk_buff *skb) 2971 { 2972 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2973 struct page *page = rxb->page; 2974 bool first = false; 2975 2976 if (likely(!skb)) { 2977 void *buff_addr = page_address(page) + rxb->page_offset; 2978 2979 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2980 if (unlikely(!skb)) { 2981 gfar_rx_alloc_err(rx_queue); 2982 return NULL; 2983 } 2984 skb_reserve(skb, RXBUF_ALIGNMENT); 2985 first = true; 2986 } 2987 2988 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2989 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2990 2991 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2992 /* reuse the free half of the page */ 2993 gfar_reuse_rx_page(rx_queue, rxb); 2994 } else { 2995 /* page cannot be reused, unmap it */ 2996 dma_unmap_page(rx_queue->dev, rxb->dma, 2997 PAGE_SIZE, DMA_FROM_DEVICE); 2998 } 2999 3000 /* clear rxb content */ 3001 rxb->page = NULL; 3002 3003 return skb; 3004 } 3005 3006 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 3007 { 3008 /* If valid headers were found, and valid sums 3009 * were verified, then we tell the kernel that no 3010 * checksumming is necessary. Otherwise, it is [FIXME] 3011 */ 3012 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 3013 (RXFCB_CIP | RXFCB_CTU)) 3014 skb->ip_summed = CHECKSUM_UNNECESSARY; 3015 else 3016 skb_checksum_none_assert(skb); 3017 } 3018 3019 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 3020 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 3021 { 3022 struct gfar_private *priv = netdev_priv(ndev); 3023 struct rxfcb *fcb = NULL; 3024 3025 /* fcb is at the beginning if exists */ 3026 fcb = (struct rxfcb *)skb->data; 3027 3028 /* Remove the FCB from the skb 3029 * Remove the padded bytes, if there are any 3030 */ 3031 if (priv->uses_rxfcb) 3032 skb_pull(skb, GMAC_FCB_LEN); 3033 3034 /* Get receive timestamp from the skb */ 3035 if (priv->hwts_rx_en) { 3036 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 3037 u64 *ns = (u64 *) skb->data; 3038 3039 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 3040 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 3041 } 3042 3043 if (priv->padding) 3044 skb_pull(skb, priv->padding); 3045 3046 if (ndev->features & NETIF_F_RXCSUM) 3047 gfar_rx_checksum(skb, fcb); 3048 3049 /* Tell the skb what kind of packet this is */ 3050 skb->protocol = eth_type_trans(skb, ndev); 3051 3052 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 3053 * Even if vlan rx accel is disabled, on some chips 3054 * RXFCB_VLN is pseudo randomly set. 3055 */ 3056 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 3057 be16_to_cpu(fcb->flags) & RXFCB_VLN) 3058 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 3059 be16_to_cpu(fcb->vlctl)); 3060 } 3061 3062 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 3063 * until the budget/quota has been reached. Returns the number 3064 * of frames handled 3065 */ 3066 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 3067 { 3068 struct net_device *ndev = rx_queue->ndev; 3069 struct gfar_private *priv = netdev_priv(ndev); 3070 struct rxbd8 *bdp; 3071 int i, howmany = 0; 3072 struct sk_buff *skb = rx_queue->skb; 3073 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 3074 unsigned int total_bytes = 0, total_pkts = 0; 3075 3076 /* Get the first full descriptor */ 3077 i = rx_queue->next_to_clean; 3078 3079 while (rx_work_limit--) { 3080 u32 lstatus; 3081 3082 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 3083 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 3084 cleaned_cnt = 0; 3085 } 3086 3087 bdp = &rx_queue->rx_bd_base[i]; 3088 lstatus = be32_to_cpu(bdp->lstatus); 3089 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 3090 break; 3091 3092 /* order rx buffer descriptor reads */ 3093 rmb(); 3094 3095 /* fetch next to clean buffer from the ring */ 3096 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 3097 if (unlikely(!skb)) 3098 break; 3099 3100 cleaned_cnt++; 3101 howmany++; 3102 3103 if (unlikely(++i == rx_queue->rx_ring_size)) 3104 i = 0; 3105 3106 rx_queue->next_to_clean = i; 3107 3108 /* fetch next buffer if not the last in frame */ 3109 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 3110 continue; 3111 3112 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 3113 count_errors(lstatus, ndev); 3114 3115 /* discard faulty buffer */ 3116 dev_kfree_skb(skb); 3117 skb = NULL; 3118 rx_queue->stats.rx_dropped++; 3119 continue; 3120 } 3121 3122 /* Increment the number of packets */ 3123 total_pkts++; 3124 total_bytes += skb->len; 3125 3126 skb_record_rx_queue(skb, rx_queue->qindex); 3127 3128 gfar_process_frame(ndev, skb); 3129 3130 /* Send the packet up the stack */ 3131 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 3132 3133 skb = NULL; 3134 } 3135 3136 /* Store incomplete frames for completion */ 3137 rx_queue->skb = skb; 3138 3139 rx_queue->stats.rx_packets += total_pkts; 3140 rx_queue->stats.rx_bytes += total_bytes; 3141 3142 if (cleaned_cnt) 3143 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 3144 3145 /* Update Last Free RxBD pointer for LFC */ 3146 if (unlikely(priv->tx_actual_en)) { 3147 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 3148 3149 gfar_write(rx_queue->rfbptr, bdp_dma); 3150 } 3151 3152 return howmany; 3153 } 3154 3155 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 3156 { 3157 struct gfar_priv_grp *gfargrp = 3158 container_of(napi, struct gfar_priv_grp, napi_rx); 3159 struct gfar __iomem *regs = gfargrp->regs; 3160 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 3161 int work_done = 0; 3162 3163 /* Clear IEVENT, so interrupts aren't called again 3164 * because of the packets that have already arrived 3165 */ 3166 gfar_write(®s->ievent, IEVENT_RX_MASK); 3167 3168 work_done = gfar_clean_rx_ring(rx_queue, budget); 3169 3170 if (work_done < budget) { 3171 u32 imask; 3172 napi_complete(napi); 3173 /* Clear the halt bit in RSTAT */ 3174 gfar_write(®s->rstat, gfargrp->rstat); 3175 3176 spin_lock_irq(&gfargrp->grplock); 3177 imask = gfar_read(®s->imask); 3178 imask |= IMASK_RX_DEFAULT; 3179 gfar_write(®s->imask, imask); 3180 spin_unlock_irq(&gfargrp->grplock); 3181 } 3182 3183 return work_done; 3184 } 3185 3186 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 3187 { 3188 struct gfar_priv_grp *gfargrp = 3189 container_of(napi, struct gfar_priv_grp, napi_tx); 3190 struct gfar __iomem *regs = gfargrp->regs; 3191 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 3192 u32 imask; 3193 3194 /* Clear IEVENT, so interrupts aren't called again 3195 * because of the packets that have already arrived 3196 */ 3197 gfar_write(®s->ievent, IEVENT_TX_MASK); 3198 3199 /* run Tx cleanup to completion */ 3200 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 3201 gfar_clean_tx_ring(tx_queue); 3202 3203 napi_complete(napi); 3204 3205 spin_lock_irq(&gfargrp->grplock); 3206 imask = gfar_read(®s->imask); 3207 imask |= IMASK_TX_DEFAULT; 3208 gfar_write(®s->imask, imask); 3209 spin_unlock_irq(&gfargrp->grplock); 3210 3211 return 0; 3212 } 3213 3214 static int gfar_poll_rx(struct napi_struct *napi, int budget) 3215 { 3216 struct gfar_priv_grp *gfargrp = 3217 container_of(napi, struct gfar_priv_grp, napi_rx); 3218 struct gfar_private *priv = gfargrp->priv; 3219 struct gfar __iomem *regs = gfargrp->regs; 3220 struct gfar_priv_rx_q *rx_queue = NULL; 3221 int work_done = 0, work_done_per_q = 0; 3222 int i, budget_per_q = 0; 3223 unsigned long rstat_rxf; 3224 int num_act_queues; 3225 3226 /* Clear IEVENT, so interrupts aren't called again 3227 * because of the packets that have already arrived 3228 */ 3229 gfar_write(®s->ievent, IEVENT_RX_MASK); 3230 3231 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 3232 3233 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 3234 if (num_act_queues) 3235 budget_per_q = budget/num_act_queues; 3236 3237 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 3238 /* skip queue if not active */ 3239 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 3240 continue; 3241 3242 rx_queue = priv->rx_queue[i]; 3243 work_done_per_q = 3244 gfar_clean_rx_ring(rx_queue, budget_per_q); 3245 work_done += work_done_per_q; 3246 3247 /* finished processing this queue */ 3248 if (work_done_per_q < budget_per_q) { 3249 /* clear active queue hw indication */ 3250 gfar_write(®s->rstat, 3251 RSTAT_CLEAR_RXF0 >> i); 3252 num_act_queues--; 3253 3254 if (!num_act_queues) 3255 break; 3256 } 3257 } 3258 3259 if (!num_act_queues) { 3260 u32 imask; 3261 napi_complete(napi); 3262 3263 /* Clear the halt bit in RSTAT */ 3264 gfar_write(®s->rstat, gfargrp->rstat); 3265 3266 spin_lock_irq(&gfargrp->grplock); 3267 imask = gfar_read(®s->imask); 3268 imask |= IMASK_RX_DEFAULT; 3269 gfar_write(®s->imask, imask); 3270 spin_unlock_irq(&gfargrp->grplock); 3271 } 3272 3273 return work_done; 3274 } 3275 3276 static int gfar_poll_tx(struct napi_struct *napi, int budget) 3277 { 3278 struct gfar_priv_grp *gfargrp = 3279 container_of(napi, struct gfar_priv_grp, napi_tx); 3280 struct gfar_private *priv = gfargrp->priv; 3281 struct gfar __iomem *regs = gfargrp->regs; 3282 struct gfar_priv_tx_q *tx_queue = NULL; 3283 int has_tx_work = 0; 3284 int i; 3285 3286 /* Clear IEVENT, so interrupts aren't called again 3287 * because of the packets that have already arrived 3288 */ 3289 gfar_write(®s->ievent, IEVENT_TX_MASK); 3290 3291 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 3292 tx_queue = priv->tx_queue[i]; 3293 /* run Tx cleanup to completion */ 3294 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 3295 gfar_clean_tx_ring(tx_queue); 3296 has_tx_work = 1; 3297 } 3298 } 3299 3300 if (!has_tx_work) { 3301 u32 imask; 3302 napi_complete(napi); 3303 3304 spin_lock_irq(&gfargrp->grplock); 3305 imask = gfar_read(®s->imask); 3306 imask |= IMASK_TX_DEFAULT; 3307 gfar_write(®s->imask, imask); 3308 spin_unlock_irq(&gfargrp->grplock); 3309 } 3310 3311 return 0; 3312 } 3313 3314 3315 #ifdef CONFIG_NET_POLL_CONTROLLER 3316 /* Polling 'interrupt' - used by things like netconsole to send skbs 3317 * without having to re-enable interrupts. It's not called while 3318 * the interrupt routine is executing. 3319 */ 3320 static void gfar_netpoll(struct net_device *dev) 3321 { 3322 struct gfar_private *priv = netdev_priv(dev); 3323 int i; 3324 3325 /* If the device has multiple interrupts, run tx/rx */ 3326 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3327 for (i = 0; i < priv->num_grps; i++) { 3328 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3329 3330 disable_irq(gfar_irq(grp, TX)->irq); 3331 disable_irq(gfar_irq(grp, RX)->irq); 3332 disable_irq(gfar_irq(grp, ER)->irq); 3333 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3334 enable_irq(gfar_irq(grp, ER)->irq); 3335 enable_irq(gfar_irq(grp, RX)->irq); 3336 enable_irq(gfar_irq(grp, TX)->irq); 3337 } 3338 } else { 3339 for (i = 0; i < priv->num_grps; i++) { 3340 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3341 3342 disable_irq(gfar_irq(grp, TX)->irq); 3343 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3344 enable_irq(gfar_irq(grp, TX)->irq); 3345 } 3346 } 3347 } 3348 #endif 3349 3350 /* The interrupt handler for devices with one interrupt */ 3351 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3352 { 3353 struct gfar_priv_grp *gfargrp = grp_id; 3354 3355 /* Save ievent for future reference */ 3356 u32 events = gfar_read(&gfargrp->regs->ievent); 3357 3358 /* Check for reception */ 3359 if (events & IEVENT_RX_MASK) 3360 gfar_receive(irq, grp_id); 3361 3362 /* Check for transmit completion */ 3363 if (events & IEVENT_TX_MASK) 3364 gfar_transmit(irq, grp_id); 3365 3366 /* Check for errors */ 3367 if (events & IEVENT_ERR_MASK) 3368 gfar_error(irq, grp_id); 3369 3370 return IRQ_HANDLED; 3371 } 3372 3373 /* Called every time the controller might need to be made 3374 * aware of new link state. The PHY code conveys this 3375 * information through variables in the phydev structure, and this 3376 * function converts those variables into the appropriate 3377 * register values, and can bring down the device if needed. 3378 */ 3379 static void adjust_link(struct net_device *dev) 3380 { 3381 struct gfar_private *priv = netdev_priv(dev); 3382 struct phy_device *phydev = priv->phydev; 3383 3384 if (unlikely(phydev->link != priv->oldlink || 3385 (phydev->link && (phydev->duplex != priv->oldduplex || 3386 phydev->speed != priv->oldspeed)))) 3387 gfar_update_link_state(priv); 3388 } 3389 3390 /* Update the hash table based on the current list of multicast 3391 * addresses we subscribe to. Also, change the promiscuity of 3392 * the device based on the flags (this function is called 3393 * whenever dev->flags is changed 3394 */ 3395 static void gfar_set_multi(struct net_device *dev) 3396 { 3397 struct netdev_hw_addr *ha; 3398 struct gfar_private *priv = netdev_priv(dev); 3399 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3400 u32 tempval; 3401 3402 if (dev->flags & IFF_PROMISC) { 3403 /* Set RCTRL to PROM */ 3404 tempval = gfar_read(®s->rctrl); 3405 tempval |= RCTRL_PROM; 3406 gfar_write(®s->rctrl, tempval); 3407 } else { 3408 /* Set RCTRL to not PROM */ 3409 tempval = gfar_read(®s->rctrl); 3410 tempval &= ~(RCTRL_PROM); 3411 gfar_write(®s->rctrl, tempval); 3412 } 3413 3414 if (dev->flags & IFF_ALLMULTI) { 3415 /* Set the hash to rx all multicast frames */ 3416 gfar_write(®s->igaddr0, 0xffffffff); 3417 gfar_write(®s->igaddr1, 0xffffffff); 3418 gfar_write(®s->igaddr2, 0xffffffff); 3419 gfar_write(®s->igaddr3, 0xffffffff); 3420 gfar_write(®s->igaddr4, 0xffffffff); 3421 gfar_write(®s->igaddr5, 0xffffffff); 3422 gfar_write(®s->igaddr6, 0xffffffff); 3423 gfar_write(®s->igaddr7, 0xffffffff); 3424 gfar_write(®s->gaddr0, 0xffffffff); 3425 gfar_write(®s->gaddr1, 0xffffffff); 3426 gfar_write(®s->gaddr2, 0xffffffff); 3427 gfar_write(®s->gaddr3, 0xffffffff); 3428 gfar_write(®s->gaddr4, 0xffffffff); 3429 gfar_write(®s->gaddr5, 0xffffffff); 3430 gfar_write(®s->gaddr6, 0xffffffff); 3431 gfar_write(®s->gaddr7, 0xffffffff); 3432 } else { 3433 int em_num; 3434 int idx; 3435 3436 /* zero out the hash */ 3437 gfar_write(®s->igaddr0, 0x0); 3438 gfar_write(®s->igaddr1, 0x0); 3439 gfar_write(®s->igaddr2, 0x0); 3440 gfar_write(®s->igaddr3, 0x0); 3441 gfar_write(®s->igaddr4, 0x0); 3442 gfar_write(®s->igaddr5, 0x0); 3443 gfar_write(®s->igaddr6, 0x0); 3444 gfar_write(®s->igaddr7, 0x0); 3445 gfar_write(®s->gaddr0, 0x0); 3446 gfar_write(®s->gaddr1, 0x0); 3447 gfar_write(®s->gaddr2, 0x0); 3448 gfar_write(®s->gaddr3, 0x0); 3449 gfar_write(®s->gaddr4, 0x0); 3450 gfar_write(®s->gaddr5, 0x0); 3451 gfar_write(®s->gaddr6, 0x0); 3452 gfar_write(®s->gaddr7, 0x0); 3453 3454 /* If we have extended hash tables, we need to 3455 * clear the exact match registers to prepare for 3456 * setting them 3457 */ 3458 if (priv->extended_hash) { 3459 em_num = GFAR_EM_NUM + 1; 3460 gfar_clear_exact_match(dev); 3461 idx = 1; 3462 } else { 3463 idx = 0; 3464 em_num = 0; 3465 } 3466 3467 if (netdev_mc_empty(dev)) 3468 return; 3469 3470 /* Parse the list, and set the appropriate bits */ 3471 netdev_for_each_mc_addr(ha, dev) { 3472 if (idx < em_num) { 3473 gfar_set_mac_for_addr(dev, idx, ha->addr); 3474 idx++; 3475 } else 3476 gfar_set_hash_for_addr(dev, ha->addr); 3477 } 3478 } 3479 } 3480 3481 3482 /* Clears each of the exact match registers to zero, so they 3483 * don't interfere with normal reception 3484 */ 3485 static void gfar_clear_exact_match(struct net_device *dev) 3486 { 3487 int idx; 3488 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3489 3490 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3491 gfar_set_mac_for_addr(dev, idx, zero_arr); 3492 } 3493 3494 /* Set the appropriate hash bit for the given addr */ 3495 /* The algorithm works like so: 3496 * 1) Take the Destination Address (ie the multicast address), and 3497 * do a CRC on it (little endian), and reverse the bits of the 3498 * result. 3499 * 2) Use the 8 most significant bits as a hash into a 256-entry 3500 * table. The table is controlled through 8 32-bit registers: 3501 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3502 * gaddr7. This means that the 3 most significant bits in the 3503 * hash index which gaddr register to use, and the 5 other bits 3504 * indicate which bit (assuming an IBM numbering scheme, which 3505 * for PowerPC (tm) is usually the case) in the register holds 3506 * the entry. 3507 */ 3508 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3509 { 3510 u32 tempval; 3511 struct gfar_private *priv = netdev_priv(dev); 3512 u32 result = ether_crc(ETH_ALEN, addr); 3513 int width = priv->hash_width; 3514 u8 whichbit = (result >> (32 - width)) & 0x1f; 3515 u8 whichreg = result >> (32 - width + 5); 3516 u32 value = (1 << (31-whichbit)); 3517 3518 tempval = gfar_read(priv->hash_regs[whichreg]); 3519 tempval |= value; 3520 gfar_write(priv->hash_regs[whichreg], tempval); 3521 } 3522 3523 3524 /* There are multiple MAC Address register pairs on some controllers 3525 * This function sets the numth pair to a given address 3526 */ 3527 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3528 const u8 *addr) 3529 { 3530 struct gfar_private *priv = netdev_priv(dev); 3531 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3532 u32 tempval; 3533 u32 __iomem *macptr = ®s->macstnaddr1; 3534 3535 macptr += num*2; 3536 3537 /* For a station address of 0x12345678ABCD in transmission 3538 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 3539 * MACnADDR2 is set to 0x34120000. 3540 */ 3541 tempval = (addr[5] << 24) | (addr[4] << 16) | 3542 (addr[3] << 8) | addr[2]; 3543 3544 gfar_write(macptr, tempval); 3545 3546 tempval = (addr[1] << 24) | (addr[0] << 16); 3547 3548 gfar_write(macptr+1, tempval); 3549 } 3550 3551 /* GFAR error interrupt handler */ 3552 static irqreturn_t gfar_error(int irq, void *grp_id) 3553 { 3554 struct gfar_priv_grp *gfargrp = grp_id; 3555 struct gfar __iomem *regs = gfargrp->regs; 3556 struct gfar_private *priv= gfargrp->priv; 3557 struct net_device *dev = priv->ndev; 3558 3559 /* Save ievent for future reference */ 3560 u32 events = gfar_read(®s->ievent); 3561 3562 /* Clear IEVENT */ 3563 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3564 3565 /* Magic Packet is not an error. */ 3566 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3567 (events & IEVENT_MAG)) 3568 events &= ~IEVENT_MAG; 3569 3570 /* Hmm... */ 3571 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3572 netdev_dbg(dev, 3573 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3574 events, gfar_read(®s->imask)); 3575 3576 /* Update the error counters */ 3577 if (events & IEVENT_TXE) { 3578 dev->stats.tx_errors++; 3579 3580 if (events & IEVENT_LC) 3581 dev->stats.tx_window_errors++; 3582 if (events & IEVENT_CRL) 3583 dev->stats.tx_aborted_errors++; 3584 if (events & IEVENT_XFUN) { 3585 netif_dbg(priv, tx_err, dev, 3586 "TX FIFO underrun, packet dropped\n"); 3587 dev->stats.tx_dropped++; 3588 atomic64_inc(&priv->extra_stats.tx_underrun); 3589 3590 schedule_work(&priv->reset_task); 3591 } 3592 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3593 } 3594 if (events & IEVENT_BSY) { 3595 dev->stats.rx_over_errors++; 3596 atomic64_inc(&priv->extra_stats.rx_bsy); 3597 3598 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3599 gfar_read(®s->rstat)); 3600 } 3601 if (events & IEVENT_BABR) { 3602 dev->stats.rx_errors++; 3603 atomic64_inc(&priv->extra_stats.rx_babr); 3604 3605 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3606 } 3607 if (events & IEVENT_EBERR) { 3608 atomic64_inc(&priv->extra_stats.eberr); 3609 netif_dbg(priv, rx_err, dev, "bus error\n"); 3610 } 3611 if (events & IEVENT_RXC) 3612 netif_dbg(priv, rx_status, dev, "control frame\n"); 3613 3614 if (events & IEVENT_BABT) { 3615 atomic64_inc(&priv->extra_stats.tx_babt); 3616 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3617 } 3618 return IRQ_HANDLED; 3619 } 3620 3621 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3622 { 3623 struct phy_device *phydev = priv->phydev; 3624 u32 val = 0; 3625 3626 if (!phydev->duplex) 3627 return val; 3628 3629 if (!priv->pause_aneg_en) { 3630 if (priv->tx_pause_en) 3631 val |= MACCFG1_TX_FLOW; 3632 if (priv->rx_pause_en) 3633 val |= MACCFG1_RX_FLOW; 3634 } else { 3635 u16 lcl_adv, rmt_adv; 3636 u8 flowctrl; 3637 /* get link partner capabilities */ 3638 rmt_adv = 0; 3639 if (phydev->pause) 3640 rmt_adv = LPA_PAUSE_CAP; 3641 if (phydev->asym_pause) 3642 rmt_adv |= LPA_PAUSE_ASYM; 3643 3644 lcl_adv = 0; 3645 if (phydev->advertising & ADVERTISED_Pause) 3646 lcl_adv |= ADVERTISE_PAUSE_CAP; 3647 if (phydev->advertising & ADVERTISED_Asym_Pause) 3648 lcl_adv |= ADVERTISE_PAUSE_ASYM; 3649 3650 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3651 if (flowctrl & FLOW_CTRL_TX) 3652 val |= MACCFG1_TX_FLOW; 3653 if (flowctrl & FLOW_CTRL_RX) 3654 val |= MACCFG1_RX_FLOW; 3655 } 3656 3657 return val; 3658 } 3659 3660 static noinline void gfar_update_link_state(struct gfar_private *priv) 3661 { 3662 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3663 struct phy_device *phydev = priv->phydev; 3664 struct gfar_priv_rx_q *rx_queue = NULL; 3665 int i; 3666 3667 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 3668 return; 3669 3670 if (phydev->link) { 3671 u32 tempval1 = gfar_read(®s->maccfg1); 3672 u32 tempval = gfar_read(®s->maccfg2); 3673 u32 ecntrl = gfar_read(®s->ecntrl); 3674 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW); 3675 3676 if (phydev->duplex != priv->oldduplex) { 3677 if (!(phydev->duplex)) 3678 tempval &= ~(MACCFG2_FULL_DUPLEX); 3679 else 3680 tempval |= MACCFG2_FULL_DUPLEX; 3681 3682 priv->oldduplex = phydev->duplex; 3683 } 3684 3685 if (phydev->speed != priv->oldspeed) { 3686 switch (phydev->speed) { 3687 case 1000: 3688 tempval = 3689 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3690 3691 ecntrl &= ~(ECNTRL_R100); 3692 break; 3693 case 100: 3694 case 10: 3695 tempval = 3696 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3697 3698 /* Reduced mode distinguishes 3699 * between 10 and 100 3700 */ 3701 if (phydev->speed == SPEED_100) 3702 ecntrl |= ECNTRL_R100; 3703 else 3704 ecntrl &= ~(ECNTRL_R100); 3705 break; 3706 default: 3707 netif_warn(priv, link, priv->ndev, 3708 "Ack! Speed (%d) is not 10/100/1000!\n", 3709 phydev->speed); 3710 break; 3711 } 3712 3713 priv->oldspeed = phydev->speed; 3714 } 3715 3716 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3717 tempval1 |= gfar_get_flowctrl_cfg(priv); 3718 3719 /* Turn last free buffer recording on */ 3720 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 3721 for (i = 0; i < priv->num_rx_queues; i++) { 3722 u32 bdp_dma; 3723 3724 rx_queue = priv->rx_queue[i]; 3725 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 3726 gfar_write(rx_queue->rfbptr, bdp_dma); 3727 } 3728 3729 priv->tx_actual_en = 1; 3730 } 3731 3732 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 3733 priv->tx_actual_en = 0; 3734 3735 gfar_write(®s->maccfg1, tempval1); 3736 gfar_write(®s->maccfg2, tempval); 3737 gfar_write(®s->ecntrl, ecntrl); 3738 3739 if (!priv->oldlink) 3740 priv->oldlink = 1; 3741 3742 } else if (priv->oldlink) { 3743 priv->oldlink = 0; 3744 priv->oldspeed = 0; 3745 priv->oldduplex = -1; 3746 } 3747 3748 if (netif_msg_link(priv)) 3749 phy_print_status(phydev); 3750 } 3751 3752 static const struct of_device_id gfar_match[] = 3753 { 3754 { 3755 .type = "network", 3756 .compatible = "gianfar", 3757 }, 3758 { 3759 .compatible = "fsl,etsec2", 3760 }, 3761 {}, 3762 }; 3763 MODULE_DEVICE_TABLE(of, gfar_match); 3764 3765 /* Structure for a device driver */ 3766 static struct platform_driver gfar_driver = { 3767 .driver = { 3768 .name = "fsl-gianfar", 3769 .pm = GFAR_PM_OPS, 3770 .of_match_table = gfar_match, 3771 }, 3772 .probe = gfar_probe, 3773 .remove = gfar_remove, 3774 }; 3775 3776 module_platform_driver(gfar_driver); 3777