1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4  * Provides Bus interface for MIIM regs
5  *
6  * Author: Andy Fleming <afleming@freescale.com>
7  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8  *
9  * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10  *
11  * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/module.h>
20 #include <linux/mii.h>
21 #include <linux/of_address.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_device.h>
24 
25 #include <asm/io.h>
26 #if IS_ENABLED(CONFIG_UCC_GETH)
27 #include <soc/fsl/qe/ucc.h>
28 #endif
29 
30 #include "gianfar.h"
31 
32 #define MIIMIND_BUSY		0x00000001
33 #define MIIMIND_NOTVALID	0x00000004
34 #define MIIMCFG_INIT_VALUE	0x00000007
35 #define MIIMCFG_RESET		0x80000000
36 
37 #define MII_READ_COMMAND	0x00000001
38 
39 struct fsl_pq_mii {
40 	u32 miimcfg;	/* MII management configuration reg */
41 	u32 miimcom;	/* MII management command reg */
42 	u32 miimadd;	/* MII management address reg */
43 	u32 miimcon;	/* MII management control reg */
44 	u32 miimstat;	/* MII management status reg */
45 	u32 miimind;	/* MII management indication reg */
46 };
47 
48 struct fsl_pq_mdio {
49 	u8 res1[16];
50 	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
51 	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
52 	u8 res2[4];
53 	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
54 	u8 res3[1280];
55 	struct fsl_pq_mii mii;
56 	u8 res4[28];
57 	u32 utbipar;	/* TBI phy address reg (only on UCC) */
58 	u8 res5[2728];
59 } __packed;
60 
61 /* Number of microseconds to wait for an MII register to respond */
62 #define MII_TIMEOUT	1000
63 
64 struct fsl_pq_mdio_priv {
65 	void __iomem *map;
66 	struct fsl_pq_mii __iomem *regs;
67 };
68 
69 /*
70  * Per-device-type data.  Each type of device tree node that we support gets
71  * one of these.
72  *
73  * @mii_offset: the offset of the MII registers within the memory map of the
74  * node.  Some nodes define only the MII registers, and some define the whole
75  * MAC (which includes the MII registers).
76  *
77  * @get_tbipa: determines the address of the TBIPA register
78  *
79  * @ucc_configure: a special function for extra QE configuration
80  */
81 struct fsl_pq_mdio_data {
82 	unsigned int mii_offset;	/* offset of the MII registers */
83 	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
84 	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
85 };
86 
87 /*
88  * Write value to the PHY at mii_id at register regnum, on the bus attached
89  * to the local interface, which may be different from the generic mdio bus
90  * (tied to a single interface), waiting until the write is done before
91  * returning. This is helpful in programming interfaces like the TBI which
92  * control interfaces like onchip SERDES and are always tied to the local
93  * mdio pins, which may not be the same as system mdio bus, used for
94  * controlling the external PHYs, for example.
95  */
96 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
97 		u16 value)
98 {
99 	struct fsl_pq_mdio_priv *priv = bus->priv;
100 	struct fsl_pq_mii __iomem *regs = priv->regs;
101 	unsigned int timeout;
102 
103 	/* Set the PHY address and the register address we want to write */
104 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
105 
106 	/* Write out the value we want */
107 	iowrite32be(value, &regs->miimcon);
108 
109 	/* Wait for the transaction to finish */
110 	timeout = MII_TIMEOUT;
111 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
112 		cpu_relax();
113 		timeout--;
114 	}
115 
116 	return timeout ? 0 : -ETIMEDOUT;
117 }
118 
119 /*
120  * Read the bus for PHY at addr mii_id, register regnum, and return the value.
121  * Clears miimcom first.
122  *
123  * All PHY operation done on the bus attached to the local interface, which
124  * may be different from the generic mdio bus.  This is helpful in programming
125  * interfaces like the TBI which, in turn, control interfaces like on-chip
126  * SERDES and are always tied to the local mdio pins, which may not be the
127  * same as system mdio bus, used for controlling the external PHYs, for eg.
128  */
129 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
130 {
131 	struct fsl_pq_mdio_priv *priv = bus->priv;
132 	struct fsl_pq_mii __iomem *regs = priv->regs;
133 	unsigned int timeout;
134 	u16 value;
135 
136 	/* Set the PHY address and the register address we want to read */
137 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
138 
139 	/* Clear miimcom, and then initiate a read */
140 	iowrite32be(0, &regs->miimcom);
141 	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
142 
143 	/* Wait for the transaction to finish, normally less than 100us */
144 	timeout = MII_TIMEOUT;
145 	while ((ioread32be(&regs->miimind) &
146 	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
147 		cpu_relax();
148 		timeout--;
149 	}
150 
151 	if (!timeout)
152 		return -ETIMEDOUT;
153 
154 	/* Grab the value of the register from miimstat */
155 	value = ioread32be(&regs->miimstat);
156 
157 	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
158 	return value;
159 }
160 
161 /* Reset the MIIM registers, and wait for the bus to free */
162 static int fsl_pq_mdio_reset(struct mii_bus *bus)
163 {
164 	struct fsl_pq_mdio_priv *priv = bus->priv;
165 	struct fsl_pq_mii __iomem *regs = priv->regs;
166 	unsigned int timeout;
167 
168 	mutex_lock(&bus->mdio_lock);
169 
170 	/* Reset the management interface */
171 	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
172 
173 	/* Setup the MII Mgmt clock speed */
174 	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
175 
176 	/* Wait until the bus is free */
177 	timeout = MII_TIMEOUT;
178 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
179 		cpu_relax();
180 		timeout--;
181 	}
182 
183 	mutex_unlock(&bus->mdio_lock);
184 
185 	if (!timeout) {
186 		dev_err(&bus->dev, "timeout waiting for MII bus\n");
187 		return -EBUSY;
188 	}
189 
190 	return 0;
191 }
192 
193 #if IS_ENABLED(CONFIG_GIANFAR)
194 /*
195  * Return the TBIPA address, starting from the address
196  * of the mapped GFAR MDIO registers (struct gfar)
197  * This is mildly evil, but so is our hardware for doing this.
198  * Also, we have to cast back to struct gfar because of
199  * definition weirdness done in gianfar.h.
200  */
201 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
202 {
203 	struct gfar __iomem *enet_regs = p;
204 
205 	return &enet_regs->tbipa;
206 }
207 
208 /*
209  * Return the TBIPA address, starting from the address
210  * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
211  */
212 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
213 {
214 	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
215 }
216 
217 /*
218  * Return the TBIPAR address for an eTSEC2 node
219  */
220 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
221 {
222 	return p;
223 }
224 #endif
225 
226 #if IS_ENABLED(CONFIG_UCC_GETH)
227 /*
228  * Return the TBIPAR address for a QE MDIO node, starting from the address
229  * of the mapped MII registers (struct fsl_pq_mii)
230  */
231 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
232 {
233 	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
234 
235 	return &mdio->utbipar;
236 }
237 
238 /*
239  * Find the UCC node that controls the given MDIO node
240  *
241  * For some reason, the QE MDIO nodes are not children of the UCC devices
242  * that control them.  Therefore, we need to scan all UCC nodes looking for
243  * the one that encompases the given MDIO node.  We do this by comparing
244  * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
245  * passed, and the correct UCC node will cover the entire address range.
246  *
247  * This assumes that there is only one QE MDIO node in the entire device tree.
248  */
249 static void ucc_configure(phys_addr_t start, phys_addr_t end)
250 {
251 	static bool found_mii_master;
252 	struct device_node *np = NULL;
253 
254 	if (found_mii_master)
255 		return;
256 
257 	for_each_compatible_node(np, NULL, "ucc_geth") {
258 		struct resource res;
259 		const uint32_t *iprop;
260 		uint32_t id;
261 		int ret;
262 
263 		ret = of_address_to_resource(np, 0, &res);
264 		if (ret < 0) {
265 			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
266 				 np);
267 			continue;
268 		}
269 
270 		/* if our mdio regs fall within this UCC regs range */
271 		if ((start < res.start) || (end > res.end))
272 			continue;
273 
274 		iprop = of_get_property(np, "cell-index", NULL);
275 		if (!iprop) {
276 			iprop = of_get_property(np, "device-id", NULL);
277 			if (!iprop) {
278 				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
279 					 np);
280 				continue;
281 			}
282 		}
283 
284 		id = be32_to_cpup(iprop);
285 
286 		/*
287 		 * cell-index and device-id for QE nodes are
288 		 * numbered from 1, not 0.
289 		 */
290 		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
291 			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
292 				 np);
293 			continue;
294 		}
295 
296 		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
297 		found_mii_master = true;
298 	}
299 }
300 
301 #endif
302 
303 static const struct of_device_id fsl_pq_mdio_match[] = {
304 #if IS_ENABLED(CONFIG_GIANFAR)
305 	{
306 		.compatible = "fsl,gianfar-tbi",
307 		.data = &(struct fsl_pq_mdio_data) {
308 			.mii_offset = 0,
309 			.get_tbipa = get_gfar_tbipa_from_mii,
310 		},
311 	},
312 	{
313 		.compatible = "fsl,gianfar-mdio",
314 		.data = &(struct fsl_pq_mdio_data) {
315 			.mii_offset = 0,
316 			.get_tbipa = get_gfar_tbipa_from_mii,
317 		},
318 	},
319 	{
320 		.type = "mdio",
321 		.compatible = "gianfar",
322 		.data = &(struct fsl_pq_mdio_data) {
323 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
324 			.get_tbipa = get_gfar_tbipa_from_mdio,
325 		},
326 	},
327 	{
328 		.compatible = "fsl,etsec2-tbi",
329 		.data = &(struct fsl_pq_mdio_data) {
330 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
331 			.get_tbipa = get_etsec_tbipa,
332 		},
333 	},
334 	{
335 		.compatible = "fsl,etsec2-mdio",
336 		.data = &(struct fsl_pq_mdio_data) {
337 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
338 			.get_tbipa = get_etsec_tbipa,
339 		},
340 	},
341 #endif
342 #if IS_ENABLED(CONFIG_UCC_GETH)
343 	{
344 		.compatible = "fsl,ucc-mdio",
345 		.data = &(struct fsl_pq_mdio_data) {
346 			.mii_offset = 0,
347 			.get_tbipa = get_ucc_tbipa,
348 			.ucc_configure = ucc_configure,
349 		},
350 	},
351 	{
352 		/* Legacy UCC MDIO node */
353 		.type = "mdio",
354 		.compatible = "ucc_geth_phy",
355 		.data = &(struct fsl_pq_mdio_data) {
356 			.mii_offset = 0,
357 			.get_tbipa = get_ucc_tbipa,
358 			.ucc_configure = ucc_configure,
359 		},
360 	},
361 #endif
362 	/* No Kconfig option for Fman support yet */
363 	{
364 		.compatible = "fsl,fman-mdio",
365 		.data = &(struct fsl_pq_mdio_data) {
366 			.mii_offset = 0,
367 			/* Fman TBI operations are handled elsewhere */
368 		},
369 	},
370 
371 	{},
372 };
373 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
374 
375 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
376 		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
377 		      void __iomem *reg_map, struct resource *reg_res)
378 {
379 	struct device_node *np = pdev->dev.of_node;
380 	uint32_t __iomem *tbipa;
381 	bool tbipa_mapped;
382 
383 	tbipa = of_iomap(np, 1);
384 	if (tbipa) {
385 		tbipa_mapped = true;
386 	} else {
387 		tbipa_mapped = false;
388 		tbipa = (*get_tbipa)(reg_map);
389 
390 		/*
391 		 * Add consistency check to make sure TBI is contained within
392 		 * the mapped range (not because we would get a segfault,
393 		 * rather to catch bugs in computing TBI address). Print error
394 		 * message but continue anyway.
395 		 */
396 		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
397 			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
398 				((void *)tbipa - reg_map) + 4);
399 	}
400 
401 	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
402 
403 	if (tbipa_mapped)
404 		iounmap(tbipa);
405 }
406 
407 static int fsl_pq_mdio_probe(struct platform_device *pdev)
408 {
409 	const struct of_device_id *id =
410 		of_match_device(fsl_pq_mdio_match, &pdev->dev);
411 	const struct fsl_pq_mdio_data *data;
412 	struct device_node *np = pdev->dev.of_node;
413 	struct resource res;
414 	struct device_node *tbi;
415 	struct fsl_pq_mdio_priv *priv;
416 	struct mii_bus *new_bus;
417 	int err;
418 
419 	if (!id) {
420 		dev_err(&pdev->dev, "Failed to match device\n");
421 		return -ENODEV;
422 	}
423 
424 	data = id->data;
425 
426 	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
427 
428 	new_bus = mdiobus_alloc_size(sizeof(*priv));
429 	if (!new_bus)
430 		return -ENOMEM;
431 
432 	priv = new_bus->priv;
433 	new_bus->name = "Freescale PowerQUICC MII Bus",
434 	new_bus->read = &fsl_pq_mdio_read;
435 	new_bus->write = &fsl_pq_mdio_write;
436 	new_bus->reset = &fsl_pq_mdio_reset;
437 
438 	err = of_address_to_resource(np, 0, &res);
439 	if (err < 0) {
440 		dev_err(&pdev->dev, "could not obtain address information\n");
441 		goto error;
442 	}
443 
444 	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
445 		 (unsigned long long)res.start);
446 
447 	priv->map = of_iomap(np, 0);
448 	if (!priv->map) {
449 		err = -ENOMEM;
450 		goto error;
451 	}
452 
453 	/*
454 	 * Some device tree nodes represent only the MII registers, and
455 	 * others represent the MAC and MII registers.  The 'mii_offset' field
456 	 * contains the offset of the MII registers inside the mapped register
457 	 * space.
458 	 */
459 	if (data->mii_offset > resource_size(&res)) {
460 		dev_err(&pdev->dev, "invalid register map\n");
461 		err = -EINVAL;
462 		goto error;
463 	}
464 	priv->regs = priv->map + data->mii_offset;
465 
466 	new_bus->parent = &pdev->dev;
467 	platform_set_drvdata(pdev, new_bus);
468 
469 	if (data->get_tbipa) {
470 		for_each_child_of_node(np, tbi) {
471 			if (of_node_is_type(tbi, "tbi-phy")) {
472 				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
473 					tbi);
474 				break;
475 			}
476 		}
477 
478 		if (tbi) {
479 			const u32 *prop = of_get_property(tbi, "reg", NULL);
480 			if (!prop) {
481 				dev_err(&pdev->dev,
482 					"missing 'reg' property in node %pOF\n",
483 					tbi);
484 				err = -EBUSY;
485 				goto error;
486 			}
487 			set_tbipa(*prop, pdev,
488 				  data->get_tbipa, priv->map, &res);
489 		}
490 	}
491 
492 	if (data->ucc_configure)
493 		data->ucc_configure(res.start, res.end);
494 
495 	err = of_mdiobus_register(new_bus, np);
496 	if (err) {
497 		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
498 			new_bus->name);
499 		goto error;
500 	}
501 
502 	return 0;
503 
504 error:
505 	if (priv->map)
506 		iounmap(priv->map);
507 
508 	kfree(new_bus);
509 
510 	return err;
511 }
512 
513 
514 static int fsl_pq_mdio_remove(struct platform_device *pdev)
515 {
516 	struct device *device = &pdev->dev;
517 	struct mii_bus *bus = dev_get_drvdata(device);
518 	struct fsl_pq_mdio_priv *priv = bus->priv;
519 
520 	mdiobus_unregister(bus);
521 
522 	iounmap(priv->map);
523 	mdiobus_free(bus);
524 
525 	return 0;
526 }
527 
528 static struct platform_driver fsl_pq_mdio_driver = {
529 	.driver = {
530 		.name = "fsl-pq_mdio",
531 		.of_match_table = fsl_pq_mdio_match,
532 	},
533 	.probe = fsl_pq_mdio_probe,
534 	.remove = fsl_pq_mdio_remove,
535 };
536 
537 module_platform_driver(fsl_pq_mdio_driver);
538 
539 MODULE_LICENSE("GPL");
540