1 /* 2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 3 * Provides Bus interface for MIIM regs 4 * 5 * Author: Andy Fleming <afleming@freescale.com> 6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 7 * 8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 9 * 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/module.h> 26 #include <linux/mii.h> 27 #include <linux/of_address.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_device.h> 30 31 #include <asm/io.h> 32 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */ 33 34 #include "gianfar.h" 35 36 #define MIIMIND_BUSY 0x00000001 37 #define MIIMIND_NOTVALID 0x00000004 38 #define MIIMCFG_INIT_VALUE 0x00000007 39 #define MIIMCFG_RESET 0x80000000 40 41 #define MII_READ_COMMAND 0x00000001 42 43 struct fsl_pq_mii { 44 u32 miimcfg; /* MII management configuration reg */ 45 u32 miimcom; /* MII management command reg */ 46 u32 miimadd; /* MII management address reg */ 47 u32 miimcon; /* MII management control reg */ 48 u32 miimstat; /* MII management status reg */ 49 u32 miimind; /* MII management indication reg */ 50 }; 51 52 struct fsl_pq_mdio { 53 u8 res1[16]; 54 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 55 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 56 u8 res2[4]; 57 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 58 u8 res3[1280]; 59 struct fsl_pq_mii mii; 60 u8 res4[28]; 61 u32 utbipar; /* TBI phy address reg (only on UCC) */ 62 u8 res5[2728]; 63 } __packed; 64 65 /* Number of microseconds to wait for an MII register to respond */ 66 #define MII_TIMEOUT 1000 67 68 struct fsl_pq_mdio_priv { 69 void __iomem *map; 70 struct fsl_pq_mii __iomem *regs; 71 int irqs[PHY_MAX_ADDR]; 72 }; 73 74 /* 75 * Per-device-type data. Each type of device tree node that we support gets 76 * one of these. 77 * 78 * @mii_offset: the offset of the MII registers within the memory map of the 79 * node. Some nodes define only the MII registers, and some define the whole 80 * MAC (which includes the MII registers). 81 * 82 * @get_tbipa: determines the address of the TBIPA register 83 * 84 * @ucc_configure: a special function for extra QE configuration 85 */ 86 struct fsl_pq_mdio_data { 87 unsigned int mii_offset; /* offset of the MII registers */ 88 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 89 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 90 }; 91 92 /* 93 * Write value to the PHY at mii_id at register regnum, on the bus attached 94 * to the local interface, which may be different from the generic mdio bus 95 * (tied to a single interface), waiting until the write is done before 96 * returning. This is helpful in programming interfaces like the TBI which 97 * control interfaces like onchip SERDES and are always tied to the local 98 * mdio pins, which may not be the same as system mdio bus, used for 99 * controlling the external PHYs, for example. 100 */ 101 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 102 u16 value) 103 { 104 struct fsl_pq_mdio_priv *priv = bus->priv; 105 struct fsl_pq_mii __iomem *regs = priv->regs; 106 u32 status; 107 108 /* Set the PHY address and the register address we want to write */ 109 out_be32(®s->miimadd, (mii_id << 8) | regnum); 110 111 /* Write out the value we want */ 112 out_be32(®s->miimcon, value); 113 114 /* Wait for the transaction to finish */ 115 status = spin_event_timeout(!(in_be32(®s->miimind) & MIIMIND_BUSY), 116 MII_TIMEOUT, 0); 117 118 return status ? 0 : -ETIMEDOUT; 119 } 120 121 /* 122 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 123 * Clears miimcom first. 124 * 125 * All PHY operation done on the bus attached to the local interface, which 126 * may be different from the generic mdio bus. This is helpful in programming 127 * interfaces like the TBI which, in turn, control interfaces like on-chip 128 * SERDES and are always tied to the local mdio pins, which may not be the 129 * same as system mdio bus, used for controlling the external PHYs, for eg. 130 */ 131 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 132 { 133 struct fsl_pq_mdio_priv *priv = bus->priv; 134 struct fsl_pq_mii __iomem *regs = priv->regs; 135 u32 status; 136 u16 value; 137 138 /* Set the PHY address and the register address we want to read */ 139 out_be32(®s->miimadd, (mii_id << 8) | regnum); 140 141 /* Clear miimcom, and then initiate a read */ 142 out_be32(®s->miimcom, 0); 143 out_be32(®s->miimcom, MII_READ_COMMAND); 144 145 /* Wait for the transaction to finish, normally less than 100us */ 146 status = spin_event_timeout(!(in_be32(®s->miimind) & 147 (MIIMIND_NOTVALID | MIIMIND_BUSY)), 148 MII_TIMEOUT, 0); 149 if (!status) 150 return -ETIMEDOUT; 151 152 /* Grab the value of the register from miimstat */ 153 value = in_be32(®s->miimstat); 154 155 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 156 return value; 157 } 158 159 /* Reset the MIIM registers, and wait for the bus to free */ 160 static int fsl_pq_mdio_reset(struct mii_bus *bus) 161 { 162 struct fsl_pq_mdio_priv *priv = bus->priv; 163 struct fsl_pq_mii __iomem *regs = priv->regs; 164 u32 status; 165 166 mutex_lock(&bus->mdio_lock); 167 168 /* Reset the management interface */ 169 out_be32(®s->miimcfg, MIIMCFG_RESET); 170 171 /* Setup the MII Mgmt clock speed */ 172 out_be32(®s->miimcfg, MIIMCFG_INIT_VALUE); 173 174 /* Wait until the bus is free */ 175 status = spin_event_timeout(!(in_be32(®s->miimind) & MIIMIND_BUSY), 176 MII_TIMEOUT, 0); 177 178 mutex_unlock(&bus->mdio_lock); 179 180 if (!status) { 181 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 182 return -EBUSY; 183 } 184 185 return 0; 186 } 187 188 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 189 /* 190 * This is mildly evil, but so is our hardware for doing this. 191 * Also, we have to cast back to struct gfar because of 192 * definition weirdness done in gianfar.h. 193 */ 194 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p) 195 { 196 struct gfar __iomem *enet_regs = p; 197 198 return &enet_regs->tbipa; 199 } 200 201 /* 202 * Return the TBIPAR address for an eTSEC2 node 203 */ 204 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 205 { 206 return p; 207 } 208 #endif 209 210 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 211 /* 212 * Return the TBIPAR address for a QE MDIO node 213 */ 214 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 215 { 216 struct fsl_pq_mdio __iomem *mdio = p; 217 218 return &mdio->utbipar; 219 } 220 221 /* 222 * Find the UCC node that controls the given MDIO node 223 * 224 * For some reason, the QE MDIO nodes are not children of the UCC devices 225 * that control them. Therefore, we need to scan all UCC nodes looking for 226 * the one that encompases the given MDIO node. We do this by comparing 227 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 228 * passed, and the correct UCC node will cover the entire address range. 229 * 230 * This assumes that there is only one QE MDIO node in the entire device tree. 231 */ 232 static void ucc_configure(phys_addr_t start, phys_addr_t end) 233 { 234 static bool found_mii_master; 235 struct device_node *np = NULL; 236 237 if (found_mii_master) 238 return; 239 240 for_each_compatible_node(np, NULL, "ucc_geth") { 241 struct resource res; 242 const uint32_t *iprop; 243 uint32_t id; 244 int ret; 245 246 ret = of_address_to_resource(np, 0, &res); 247 if (ret < 0) { 248 pr_debug("fsl-pq-mdio: no address range in node %s\n", 249 np->full_name); 250 continue; 251 } 252 253 /* if our mdio regs fall within this UCC regs range */ 254 if ((start < res.start) || (end > res.end)) 255 continue; 256 257 iprop = of_get_property(np, "cell-index", NULL); 258 if (!iprop) { 259 iprop = of_get_property(np, "device-id", NULL); 260 if (!iprop) { 261 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n", 262 np->full_name); 263 continue; 264 } 265 } 266 267 id = be32_to_cpup(iprop); 268 269 /* 270 * cell-index and device-id for QE nodes are 271 * numbered from 1, not 0. 272 */ 273 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 274 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n", 275 np->full_name); 276 continue; 277 } 278 279 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 280 found_mii_master = true; 281 } 282 } 283 284 #endif 285 286 static struct of_device_id fsl_pq_mdio_match[] = { 287 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 288 { 289 .compatible = "fsl,gianfar-tbi", 290 .data = &(struct fsl_pq_mdio_data) { 291 .mii_offset = 0, 292 .get_tbipa = get_gfar_tbipa, 293 }, 294 }, 295 { 296 .compatible = "fsl,gianfar-mdio", 297 .data = &(struct fsl_pq_mdio_data) { 298 .mii_offset = 0, 299 .get_tbipa = get_gfar_tbipa, 300 }, 301 }, 302 { 303 .type = "mdio", 304 .compatible = "gianfar", 305 .data = &(struct fsl_pq_mdio_data) { 306 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 307 .get_tbipa = get_gfar_tbipa, 308 }, 309 }, 310 { 311 .compatible = "fsl,etsec2-tbi", 312 .data = &(struct fsl_pq_mdio_data) { 313 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 314 .get_tbipa = get_etsec_tbipa, 315 }, 316 }, 317 { 318 .compatible = "fsl,etsec2-mdio", 319 .data = &(struct fsl_pq_mdio_data) { 320 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 321 .get_tbipa = get_etsec_tbipa, 322 }, 323 }, 324 #endif 325 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 326 { 327 .compatible = "fsl,ucc-mdio", 328 .data = &(struct fsl_pq_mdio_data) { 329 .mii_offset = 0, 330 .get_tbipa = get_ucc_tbipa, 331 .ucc_configure = ucc_configure, 332 }, 333 }, 334 { 335 /* Legacy UCC MDIO node */ 336 .type = "mdio", 337 .compatible = "ucc_geth_phy", 338 .data = &(struct fsl_pq_mdio_data) { 339 .mii_offset = 0, 340 .get_tbipa = get_ucc_tbipa, 341 .ucc_configure = ucc_configure, 342 }, 343 }, 344 #endif 345 /* No Kconfig option for Fman support yet */ 346 { 347 .compatible = "fsl,fman-mdio", 348 .data = &(struct fsl_pq_mdio_data) { 349 .mii_offset = 0, 350 /* Fman TBI operations are handled elsewhere */ 351 }, 352 }, 353 354 {}, 355 }; 356 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 357 358 static int fsl_pq_mdio_probe(struct platform_device *pdev) 359 { 360 const struct of_device_id *id = 361 of_match_device(fsl_pq_mdio_match, &pdev->dev); 362 const struct fsl_pq_mdio_data *data = id->data; 363 struct device_node *np = pdev->dev.of_node; 364 struct resource res; 365 struct device_node *tbi; 366 struct fsl_pq_mdio_priv *priv; 367 struct mii_bus *new_bus; 368 int err; 369 370 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 371 372 new_bus = mdiobus_alloc_size(sizeof(*priv)); 373 if (!new_bus) 374 return -ENOMEM; 375 376 priv = new_bus->priv; 377 new_bus->name = "Freescale PowerQUICC MII Bus", 378 new_bus->read = &fsl_pq_mdio_read; 379 new_bus->write = &fsl_pq_mdio_write; 380 new_bus->reset = &fsl_pq_mdio_reset; 381 new_bus->irq = priv->irqs; 382 383 err = of_address_to_resource(np, 0, &res); 384 if (err < 0) { 385 dev_err(&pdev->dev, "could not obtain address information\n"); 386 goto error; 387 } 388 389 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name, 390 (unsigned long long)res.start); 391 392 priv->map = of_iomap(np, 0); 393 if (!priv->map) { 394 err = -ENOMEM; 395 goto error; 396 } 397 398 /* 399 * Some device tree nodes represent only the MII registers, and 400 * others represent the MAC and MII registers. The 'mii_offset' field 401 * contains the offset of the MII registers inside the mapped register 402 * space. 403 */ 404 if (data->mii_offset > resource_size(&res)) { 405 dev_err(&pdev->dev, "invalid register map\n"); 406 err = -EINVAL; 407 goto error; 408 } 409 priv->regs = priv->map + data->mii_offset; 410 411 new_bus->parent = &pdev->dev; 412 platform_set_drvdata(pdev, new_bus); 413 414 if (data->get_tbipa) { 415 for_each_child_of_node(np, tbi) { 416 if (strcmp(tbi->type, "tbi-phy") == 0) { 417 dev_dbg(&pdev->dev, "found TBI PHY node %s\n", 418 strrchr(tbi->full_name, '/') + 1); 419 break; 420 } 421 } 422 423 if (tbi) { 424 const u32 *prop = of_get_property(tbi, "reg", NULL); 425 uint32_t __iomem *tbipa; 426 427 if (!prop) { 428 dev_err(&pdev->dev, 429 "missing 'reg' property in node %s\n", 430 tbi->full_name); 431 err = -EBUSY; 432 goto error; 433 } 434 435 tbipa = data->get_tbipa(priv->map); 436 437 out_be32(tbipa, be32_to_cpup(prop)); 438 } 439 } 440 441 if (data->ucc_configure) 442 data->ucc_configure(res.start, res.end); 443 444 err = of_mdiobus_register(new_bus, np); 445 if (err) { 446 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 447 new_bus->name); 448 goto error; 449 } 450 451 return 0; 452 453 error: 454 if (priv->map) 455 iounmap(priv->map); 456 457 kfree(new_bus); 458 459 return err; 460 } 461 462 463 static int fsl_pq_mdio_remove(struct platform_device *pdev) 464 { 465 struct device *device = &pdev->dev; 466 struct mii_bus *bus = dev_get_drvdata(device); 467 struct fsl_pq_mdio_priv *priv = bus->priv; 468 469 mdiobus_unregister(bus); 470 471 iounmap(priv->map); 472 mdiobus_free(bus); 473 474 return 0; 475 } 476 477 static struct platform_driver fsl_pq_mdio_driver = { 478 .driver = { 479 .name = "fsl-pq_mdio", 480 .owner = THIS_MODULE, 481 .of_match_table = fsl_pq_mdio_match, 482 }, 483 .probe = fsl_pq_mdio_probe, 484 .remove = fsl_pq_mdio_remove, 485 }; 486 487 module_platform_driver(fsl_pq_mdio_driver); 488 489 MODULE_LICENSE("GPL"); 490