xref: /openbmc/linux/drivers/net/ethernet/freescale/fsl_pq_mdio.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
4  * Provides Bus interface for MIIM regs
5  *
6  * Author: Andy Fleming <afleming@freescale.com>
7  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8  *
9  * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10  *
11  * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/string.h>
17 #include <linux/errno.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/module.h>
21 #include <linux/mii.h>
22 #include <linux/of_address.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_device.h>
25 
26 #include <asm/io.h>
27 #if IS_ENABLED(CONFIG_UCC_GETH)
28 #include <soc/fsl/qe/ucc.h>
29 #endif
30 
31 #include "gianfar.h"
32 
33 #define MIIMIND_BUSY		0x00000001
34 #define MIIMIND_NOTVALID	0x00000004
35 #define MIIMCFG_INIT_VALUE	0x00000007
36 #define MIIMCFG_RESET		0x80000000
37 
38 #define MII_READ_COMMAND	0x00000001
39 
40 struct fsl_pq_mii {
41 	u32 miimcfg;	/* MII management configuration reg */
42 	u32 miimcom;	/* MII management command reg */
43 	u32 miimadd;	/* MII management address reg */
44 	u32 miimcon;	/* MII management control reg */
45 	u32 miimstat;	/* MII management status reg */
46 	u32 miimind;	/* MII management indication reg */
47 };
48 
49 struct fsl_pq_mdio {
50 	u8 res1[16];
51 	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
52 	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
53 	u8 res2[4];
54 	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
55 	u8 res3[1280];
56 	struct fsl_pq_mii mii;
57 	u8 res4[28];
58 	u32 utbipar;	/* TBI phy address reg (only on UCC) */
59 	u8 res5[2728];
60 } __packed;
61 
62 /* Number of microseconds to wait for an MII register to respond */
63 #define MII_TIMEOUT	1000
64 
65 struct fsl_pq_mdio_priv {
66 	void __iomem *map;
67 	struct fsl_pq_mii __iomem *regs;
68 };
69 
70 /*
71  * Per-device-type data.  Each type of device tree node that we support gets
72  * one of these.
73  *
74  * @mii_offset: the offset of the MII registers within the memory map of the
75  * node.  Some nodes define only the MII registers, and some define the whole
76  * MAC (which includes the MII registers).
77  *
78  * @get_tbipa: determines the address of the TBIPA register
79  *
80  * @ucc_configure: a special function for extra QE configuration
81  */
82 struct fsl_pq_mdio_data {
83 	unsigned int mii_offset;	/* offset of the MII registers */
84 	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
85 	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
86 };
87 
88 /*
89  * Write value to the PHY at mii_id at register regnum, on the bus attached
90  * to the local interface, which may be different from the generic mdio bus
91  * (tied to a single interface), waiting until the write is done before
92  * returning. This is helpful in programming interfaces like the TBI which
93  * control interfaces like onchip SERDES and are always tied to the local
94  * mdio pins, which may not be the same as system mdio bus, used for
95  * controlling the external PHYs, for example.
96  */
97 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
98 		u16 value)
99 {
100 	struct fsl_pq_mdio_priv *priv = bus->priv;
101 	struct fsl_pq_mii __iomem *regs = priv->regs;
102 	unsigned int timeout;
103 
104 	/* Set the PHY address and the register address we want to write */
105 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
106 
107 	/* Write out the value we want */
108 	iowrite32be(value, &regs->miimcon);
109 
110 	/* Wait for the transaction to finish */
111 	timeout = MII_TIMEOUT;
112 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
113 		cpu_relax();
114 		timeout--;
115 	}
116 
117 	return timeout ? 0 : -ETIMEDOUT;
118 }
119 
120 /*
121  * Read the bus for PHY at addr mii_id, register regnum, and return the value.
122  * Clears miimcom first.
123  *
124  * All PHY operation done on the bus attached to the local interface, which
125  * may be different from the generic mdio bus.  This is helpful in programming
126  * interfaces like the TBI which, in turn, control interfaces like on-chip
127  * SERDES and are always tied to the local mdio pins, which may not be the
128  * same as system mdio bus, used for controlling the external PHYs, for eg.
129  */
130 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
131 {
132 	struct fsl_pq_mdio_priv *priv = bus->priv;
133 	struct fsl_pq_mii __iomem *regs = priv->regs;
134 	unsigned int timeout;
135 	u16 value;
136 
137 	/* Set the PHY address and the register address we want to read */
138 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
139 
140 	/* Clear miimcom, and then initiate a read */
141 	iowrite32be(0, &regs->miimcom);
142 	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
143 
144 	/* Wait for the transaction to finish, normally less than 100us */
145 	timeout = MII_TIMEOUT;
146 	while ((ioread32be(&regs->miimind) &
147 	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
148 		cpu_relax();
149 		timeout--;
150 	}
151 
152 	if (!timeout)
153 		return -ETIMEDOUT;
154 
155 	/* Grab the value of the register from miimstat */
156 	value = ioread32be(&regs->miimstat);
157 
158 	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
159 	return value;
160 }
161 
162 /* Reset the MIIM registers, and wait for the bus to free */
163 static int fsl_pq_mdio_reset(struct mii_bus *bus)
164 {
165 	struct fsl_pq_mdio_priv *priv = bus->priv;
166 	struct fsl_pq_mii __iomem *regs = priv->regs;
167 	unsigned int timeout;
168 
169 	mutex_lock(&bus->mdio_lock);
170 
171 	/* Reset the management interface */
172 	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
173 
174 	/* Setup the MII Mgmt clock speed */
175 	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
176 
177 	/* Wait until the bus is free */
178 	timeout = MII_TIMEOUT;
179 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
180 		cpu_relax();
181 		timeout--;
182 	}
183 
184 	mutex_unlock(&bus->mdio_lock);
185 
186 	if (!timeout) {
187 		dev_err(&bus->dev, "timeout waiting for MII bus\n");
188 		return -EBUSY;
189 	}
190 
191 	return 0;
192 }
193 
194 #if IS_ENABLED(CONFIG_GIANFAR)
195 /*
196  * Return the TBIPA address, starting from the address
197  * of the mapped GFAR MDIO registers (struct gfar)
198  * This is mildly evil, but so is our hardware for doing this.
199  * Also, we have to cast back to struct gfar because of
200  * definition weirdness done in gianfar.h.
201  */
202 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
203 {
204 	struct gfar __iomem *enet_regs = p;
205 
206 	return &enet_regs->tbipa;
207 }
208 
209 /*
210  * Return the TBIPA address, starting from the address
211  * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
212  */
213 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
214 {
215 	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
216 }
217 
218 /*
219  * Return the TBIPAR address for an eTSEC2 node
220  */
221 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
222 {
223 	return p;
224 }
225 #endif
226 
227 #if IS_ENABLED(CONFIG_UCC_GETH)
228 /*
229  * Return the TBIPAR address for a QE MDIO node, starting from the address
230  * of the mapped MII registers (struct fsl_pq_mii)
231  */
232 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
233 {
234 	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
235 
236 	return &mdio->utbipar;
237 }
238 
239 /*
240  * Find the UCC node that controls the given MDIO node
241  *
242  * For some reason, the QE MDIO nodes are not children of the UCC devices
243  * that control them.  Therefore, we need to scan all UCC nodes looking for
244  * the one that encompases the given MDIO node.  We do this by comparing
245  * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
246  * passed, and the correct UCC node will cover the entire address range.
247  *
248  * This assumes that there is only one QE MDIO node in the entire device tree.
249  */
250 static void ucc_configure(phys_addr_t start, phys_addr_t end)
251 {
252 	static bool found_mii_master;
253 	struct device_node *np = NULL;
254 
255 	if (found_mii_master)
256 		return;
257 
258 	for_each_compatible_node(np, NULL, "ucc_geth") {
259 		struct resource res;
260 		const uint32_t *iprop;
261 		uint32_t id;
262 		int ret;
263 
264 		ret = of_address_to_resource(np, 0, &res);
265 		if (ret < 0) {
266 			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
267 				 np);
268 			continue;
269 		}
270 
271 		/* if our mdio regs fall within this UCC regs range */
272 		if ((start < res.start) || (end > res.end))
273 			continue;
274 
275 		iprop = of_get_property(np, "cell-index", NULL);
276 		if (!iprop) {
277 			iprop = of_get_property(np, "device-id", NULL);
278 			if (!iprop) {
279 				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
280 					 np);
281 				continue;
282 			}
283 		}
284 
285 		id = be32_to_cpup(iprop);
286 
287 		/*
288 		 * cell-index and device-id for QE nodes are
289 		 * numbered from 1, not 0.
290 		 */
291 		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
292 			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
293 				 np);
294 			continue;
295 		}
296 
297 		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
298 		found_mii_master = true;
299 	}
300 }
301 
302 #endif
303 
304 static const struct of_device_id fsl_pq_mdio_match[] = {
305 #if IS_ENABLED(CONFIG_GIANFAR)
306 	{
307 		.compatible = "fsl,gianfar-tbi",
308 		.data = &(struct fsl_pq_mdio_data) {
309 			.mii_offset = 0,
310 			.get_tbipa = get_gfar_tbipa_from_mii,
311 		},
312 	},
313 	{
314 		.compatible = "fsl,gianfar-mdio",
315 		.data = &(struct fsl_pq_mdio_data) {
316 			.mii_offset = 0,
317 			.get_tbipa = get_gfar_tbipa_from_mii,
318 		},
319 	},
320 	{
321 		.type = "mdio",
322 		.compatible = "gianfar",
323 		.data = &(struct fsl_pq_mdio_data) {
324 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
325 			.get_tbipa = get_gfar_tbipa_from_mdio,
326 		},
327 	},
328 	{
329 		.compatible = "fsl,etsec2-tbi",
330 		.data = &(struct fsl_pq_mdio_data) {
331 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
332 			.get_tbipa = get_etsec_tbipa,
333 		},
334 	},
335 	{
336 		.compatible = "fsl,etsec2-mdio",
337 		.data = &(struct fsl_pq_mdio_data) {
338 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
339 			.get_tbipa = get_etsec_tbipa,
340 		},
341 	},
342 #endif
343 #if IS_ENABLED(CONFIG_UCC_GETH)
344 	{
345 		.compatible = "fsl,ucc-mdio",
346 		.data = &(struct fsl_pq_mdio_data) {
347 			.mii_offset = 0,
348 			.get_tbipa = get_ucc_tbipa,
349 			.ucc_configure = ucc_configure,
350 		},
351 	},
352 	{
353 		/* Legacy UCC MDIO node */
354 		.type = "mdio",
355 		.compatible = "ucc_geth_phy",
356 		.data = &(struct fsl_pq_mdio_data) {
357 			.mii_offset = 0,
358 			.get_tbipa = get_ucc_tbipa,
359 			.ucc_configure = ucc_configure,
360 		},
361 	},
362 #endif
363 	/* No Kconfig option for Fman support yet */
364 	{
365 		.compatible = "fsl,fman-mdio",
366 		.data = &(struct fsl_pq_mdio_data) {
367 			.mii_offset = 0,
368 			/* Fman TBI operations are handled elsewhere */
369 		},
370 	},
371 
372 	{},
373 };
374 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
375 
376 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
377 		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
378 		      void __iomem *reg_map, struct resource *reg_res)
379 {
380 	struct device_node *np = pdev->dev.of_node;
381 	uint32_t __iomem *tbipa;
382 	bool tbipa_mapped;
383 
384 	tbipa = of_iomap(np, 1);
385 	if (tbipa) {
386 		tbipa_mapped = true;
387 	} else {
388 		tbipa_mapped = false;
389 		tbipa = (*get_tbipa)(reg_map);
390 
391 		/*
392 		 * Add consistency check to make sure TBI is contained within
393 		 * the mapped range (not because we would get a segfault,
394 		 * rather to catch bugs in computing TBI address). Print error
395 		 * message but continue anyway.
396 		 */
397 		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
398 			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
399 				((void *)tbipa - reg_map) + 4);
400 	}
401 
402 	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
403 
404 	if (tbipa_mapped)
405 		iounmap(tbipa);
406 }
407 
408 static int fsl_pq_mdio_probe(struct platform_device *pdev)
409 {
410 	const struct of_device_id *id =
411 		of_match_device(fsl_pq_mdio_match, &pdev->dev);
412 	const struct fsl_pq_mdio_data *data;
413 	struct device_node *np = pdev->dev.of_node;
414 	struct resource res;
415 	struct device_node *tbi;
416 	struct fsl_pq_mdio_priv *priv;
417 	struct mii_bus *new_bus;
418 	int err;
419 
420 	if (!id) {
421 		dev_err(&pdev->dev, "Failed to match device\n");
422 		return -ENODEV;
423 	}
424 
425 	data = id->data;
426 
427 	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
428 
429 	new_bus = mdiobus_alloc_size(sizeof(*priv));
430 	if (!new_bus)
431 		return -ENOMEM;
432 
433 	priv = new_bus->priv;
434 	new_bus->name = "Freescale PowerQUICC MII Bus";
435 	new_bus->read = &fsl_pq_mdio_read;
436 	new_bus->write = &fsl_pq_mdio_write;
437 	new_bus->reset = &fsl_pq_mdio_reset;
438 
439 	err = of_address_to_resource(np, 0, &res);
440 	if (err < 0) {
441 		dev_err(&pdev->dev, "could not obtain address information\n");
442 		goto error;
443 	}
444 
445 	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
446 		 (unsigned long long)res.start);
447 
448 	priv->map = of_iomap(np, 0);
449 	if (!priv->map) {
450 		err = -ENOMEM;
451 		goto error;
452 	}
453 
454 	/*
455 	 * Some device tree nodes represent only the MII registers, and
456 	 * others represent the MAC and MII registers.  The 'mii_offset' field
457 	 * contains the offset of the MII registers inside the mapped register
458 	 * space.
459 	 */
460 	if (data->mii_offset > resource_size(&res)) {
461 		dev_err(&pdev->dev, "invalid register map\n");
462 		err = -EINVAL;
463 		goto error;
464 	}
465 	priv->regs = priv->map + data->mii_offset;
466 
467 	new_bus->parent = &pdev->dev;
468 	platform_set_drvdata(pdev, new_bus);
469 
470 	if (data->get_tbipa) {
471 		for_each_child_of_node(np, tbi) {
472 			if (of_node_is_type(tbi, "tbi-phy")) {
473 				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
474 					tbi);
475 				break;
476 			}
477 		}
478 
479 		if (tbi) {
480 			const u32 *prop = of_get_property(tbi, "reg", NULL);
481 			if (!prop) {
482 				dev_err(&pdev->dev,
483 					"missing 'reg' property in node %pOF\n",
484 					tbi);
485 				err = -EBUSY;
486 				goto error;
487 			}
488 			set_tbipa(*prop, pdev,
489 				  data->get_tbipa, priv->map, &res);
490 		}
491 	}
492 
493 	if (data->ucc_configure)
494 		data->ucc_configure(res.start, res.end);
495 
496 	err = of_mdiobus_register(new_bus, np);
497 	if (err) {
498 		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
499 			new_bus->name);
500 		goto error;
501 	}
502 
503 	return 0;
504 
505 error:
506 	if (priv->map)
507 		iounmap(priv->map);
508 
509 	kfree(new_bus);
510 
511 	return err;
512 }
513 
514 
515 static void fsl_pq_mdio_remove(struct platform_device *pdev)
516 {
517 	struct device *device = &pdev->dev;
518 	struct mii_bus *bus = dev_get_drvdata(device);
519 	struct fsl_pq_mdio_priv *priv = bus->priv;
520 
521 	mdiobus_unregister(bus);
522 
523 	iounmap(priv->map);
524 	mdiobus_free(bus);
525 }
526 
527 static struct platform_driver fsl_pq_mdio_driver = {
528 	.driver = {
529 		.name = "fsl-pq_mdio",
530 		.of_match_table = fsl_pq_mdio_match,
531 	},
532 	.probe = fsl_pq_mdio_probe,
533 	.remove_new = fsl_pq_mdio_remove,
534 };
535 
536 module_platform_driver(fsl_pq_mdio_driver);
537 
538 MODULE_LICENSE("GPL");
539