1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 4 * Provides Bus interface for MIIM regs 5 * 6 * Author: Andy Fleming <afleming@freescale.com> 7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 8 * 9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 10 * 11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/slab.h> 18 #include <linux/delay.h> 19 #include <linux/module.h> 20 #include <linux/mii.h> 21 #include <linux/of_address.h> 22 #include <linux/of_mdio.h> 23 #include <linux/of_device.h> 24 25 #include <asm/io.h> 26 #if IS_ENABLED(CONFIG_UCC_GETH) 27 #include <soc/fsl/qe/ucc.h> 28 #endif 29 30 #include "gianfar.h" 31 32 #define MIIMIND_BUSY 0x00000001 33 #define MIIMIND_NOTVALID 0x00000004 34 #define MIIMCFG_INIT_VALUE 0x00000007 35 #define MIIMCFG_RESET 0x80000000 36 37 #define MII_READ_COMMAND 0x00000001 38 39 struct fsl_pq_mii { 40 u32 miimcfg; /* MII management configuration reg */ 41 u32 miimcom; /* MII management command reg */ 42 u32 miimadd; /* MII management address reg */ 43 u32 miimcon; /* MII management control reg */ 44 u32 miimstat; /* MII management status reg */ 45 u32 miimind; /* MII management indication reg */ 46 }; 47 48 struct fsl_pq_mdio { 49 u8 res1[16]; 50 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 51 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 52 u8 res2[4]; 53 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 54 u8 res3[1280]; 55 struct fsl_pq_mii mii; 56 u8 res4[28]; 57 u32 utbipar; /* TBI phy address reg (only on UCC) */ 58 u8 res5[2728]; 59 } __packed; 60 61 /* Number of microseconds to wait for an MII register to respond */ 62 #define MII_TIMEOUT 1000 63 64 struct fsl_pq_mdio_priv { 65 void __iomem *map; 66 struct fsl_pq_mii __iomem *regs; 67 }; 68 69 /* 70 * Per-device-type data. Each type of device tree node that we support gets 71 * one of these. 72 * 73 * @mii_offset: the offset of the MII registers within the memory map of the 74 * node. Some nodes define only the MII registers, and some define the whole 75 * MAC (which includes the MII registers). 76 * 77 * @get_tbipa: determines the address of the TBIPA register 78 * 79 * @ucc_configure: a special function for extra QE configuration 80 */ 81 struct fsl_pq_mdio_data { 82 unsigned int mii_offset; /* offset of the MII registers */ 83 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 84 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 85 }; 86 87 /* 88 * Write value to the PHY at mii_id at register regnum, on the bus attached 89 * to the local interface, which may be different from the generic mdio bus 90 * (tied to a single interface), waiting until the write is done before 91 * returning. This is helpful in programming interfaces like the TBI which 92 * control interfaces like onchip SERDES and are always tied to the local 93 * mdio pins, which may not be the same as system mdio bus, used for 94 * controlling the external PHYs, for example. 95 */ 96 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 97 u16 value) 98 { 99 struct fsl_pq_mdio_priv *priv = bus->priv; 100 struct fsl_pq_mii __iomem *regs = priv->regs; 101 unsigned int timeout; 102 103 /* Set the PHY address and the register address we want to write */ 104 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 105 106 /* Write out the value we want */ 107 iowrite32be(value, ®s->miimcon); 108 109 /* Wait for the transaction to finish */ 110 timeout = MII_TIMEOUT; 111 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 112 cpu_relax(); 113 timeout--; 114 } 115 116 return timeout ? 0 : -ETIMEDOUT; 117 } 118 119 /* 120 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 121 * Clears miimcom first. 122 * 123 * All PHY operation done on the bus attached to the local interface, which 124 * may be different from the generic mdio bus. This is helpful in programming 125 * interfaces like the TBI which, in turn, control interfaces like on-chip 126 * SERDES and are always tied to the local mdio pins, which may not be the 127 * same as system mdio bus, used for controlling the external PHYs, for eg. 128 */ 129 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 130 { 131 struct fsl_pq_mdio_priv *priv = bus->priv; 132 struct fsl_pq_mii __iomem *regs = priv->regs; 133 unsigned int timeout; 134 u16 value; 135 136 /* Set the PHY address and the register address we want to read */ 137 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 138 139 /* Clear miimcom, and then initiate a read */ 140 iowrite32be(0, ®s->miimcom); 141 iowrite32be(MII_READ_COMMAND, ®s->miimcom); 142 143 /* Wait for the transaction to finish, normally less than 100us */ 144 timeout = MII_TIMEOUT; 145 while ((ioread32be(®s->miimind) & 146 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) { 147 cpu_relax(); 148 timeout--; 149 } 150 151 if (!timeout) 152 return -ETIMEDOUT; 153 154 /* Grab the value of the register from miimstat */ 155 value = ioread32be(®s->miimstat); 156 157 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 158 return value; 159 } 160 161 /* Reset the MIIM registers, and wait for the bus to free */ 162 static int fsl_pq_mdio_reset(struct mii_bus *bus) 163 { 164 struct fsl_pq_mdio_priv *priv = bus->priv; 165 struct fsl_pq_mii __iomem *regs = priv->regs; 166 unsigned int timeout; 167 168 mutex_lock(&bus->mdio_lock); 169 170 /* Reset the management interface */ 171 iowrite32be(MIIMCFG_RESET, ®s->miimcfg); 172 173 /* Setup the MII Mgmt clock speed */ 174 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg); 175 176 /* Wait until the bus is free */ 177 timeout = MII_TIMEOUT; 178 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 179 cpu_relax(); 180 timeout--; 181 } 182 183 mutex_unlock(&bus->mdio_lock); 184 185 if (!timeout) { 186 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 187 return -EBUSY; 188 } 189 190 return 0; 191 } 192 193 #if IS_ENABLED(CONFIG_GIANFAR) 194 /* 195 * Return the TBIPA address, starting from the address 196 * of the mapped GFAR MDIO registers (struct gfar) 197 * This is mildly evil, but so is our hardware for doing this. 198 * Also, we have to cast back to struct gfar because of 199 * definition weirdness done in gianfar.h. 200 */ 201 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p) 202 { 203 struct gfar __iomem *enet_regs = p; 204 205 return &enet_regs->tbipa; 206 } 207 208 /* 209 * Return the TBIPA address, starting from the address 210 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar) 211 */ 212 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p) 213 { 214 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs)); 215 } 216 217 /* 218 * Return the TBIPAR address for an eTSEC2 node 219 */ 220 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 221 { 222 return p; 223 } 224 #endif 225 226 #if IS_ENABLED(CONFIG_UCC_GETH) 227 /* 228 * Return the TBIPAR address for a QE MDIO node, starting from the address 229 * of the mapped MII registers (struct fsl_pq_mii) 230 */ 231 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 232 { 233 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii); 234 235 return &mdio->utbipar; 236 } 237 238 /* 239 * Find the UCC node that controls the given MDIO node 240 * 241 * For some reason, the QE MDIO nodes are not children of the UCC devices 242 * that control them. Therefore, we need to scan all UCC nodes looking for 243 * the one that encompases the given MDIO node. We do this by comparing 244 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 245 * passed, and the correct UCC node will cover the entire address range. 246 * 247 * This assumes that there is only one QE MDIO node in the entire device tree. 248 */ 249 static void ucc_configure(phys_addr_t start, phys_addr_t end) 250 { 251 static bool found_mii_master; 252 struct device_node *np = NULL; 253 254 if (found_mii_master) 255 return; 256 257 for_each_compatible_node(np, NULL, "ucc_geth") { 258 struct resource res; 259 const uint32_t *iprop; 260 uint32_t id; 261 int ret; 262 263 ret = of_address_to_resource(np, 0, &res); 264 if (ret < 0) { 265 pr_debug("fsl-pq-mdio: no address range in node %pOF\n", 266 np); 267 continue; 268 } 269 270 /* if our mdio regs fall within this UCC regs range */ 271 if ((start < res.start) || (end > res.end)) 272 continue; 273 274 iprop = of_get_property(np, "cell-index", NULL); 275 if (!iprop) { 276 iprop = of_get_property(np, "device-id", NULL); 277 if (!iprop) { 278 pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n", 279 np); 280 continue; 281 } 282 } 283 284 id = be32_to_cpup(iprop); 285 286 /* 287 * cell-index and device-id for QE nodes are 288 * numbered from 1, not 0. 289 */ 290 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 291 pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n", 292 np); 293 continue; 294 } 295 296 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 297 found_mii_master = true; 298 } 299 } 300 301 #endif 302 303 static const struct of_device_id fsl_pq_mdio_match[] = { 304 #if IS_ENABLED(CONFIG_GIANFAR) 305 { 306 .compatible = "fsl,gianfar-tbi", 307 .data = &(struct fsl_pq_mdio_data) { 308 .mii_offset = 0, 309 .get_tbipa = get_gfar_tbipa_from_mii, 310 }, 311 }, 312 { 313 .compatible = "fsl,gianfar-mdio", 314 .data = &(struct fsl_pq_mdio_data) { 315 .mii_offset = 0, 316 .get_tbipa = get_gfar_tbipa_from_mii, 317 }, 318 }, 319 { 320 .type = "mdio", 321 .compatible = "gianfar", 322 .data = &(struct fsl_pq_mdio_data) { 323 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 324 .get_tbipa = get_gfar_tbipa_from_mdio, 325 }, 326 }, 327 { 328 .compatible = "fsl,etsec2-tbi", 329 .data = &(struct fsl_pq_mdio_data) { 330 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 331 .get_tbipa = get_etsec_tbipa, 332 }, 333 }, 334 { 335 .compatible = "fsl,etsec2-mdio", 336 .data = &(struct fsl_pq_mdio_data) { 337 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 338 .get_tbipa = get_etsec_tbipa, 339 }, 340 }, 341 #endif 342 #if IS_ENABLED(CONFIG_UCC_GETH) 343 { 344 .compatible = "fsl,ucc-mdio", 345 .data = &(struct fsl_pq_mdio_data) { 346 .mii_offset = 0, 347 .get_tbipa = get_ucc_tbipa, 348 .ucc_configure = ucc_configure, 349 }, 350 }, 351 { 352 /* Legacy UCC MDIO node */ 353 .type = "mdio", 354 .compatible = "ucc_geth_phy", 355 .data = &(struct fsl_pq_mdio_data) { 356 .mii_offset = 0, 357 .get_tbipa = get_ucc_tbipa, 358 .ucc_configure = ucc_configure, 359 }, 360 }, 361 #endif 362 /* No Kconfig option for Fman support yet */ 363 { 364 .compatible = "fsl,fman-mdio", 365 .data = &(struct fsl_pq_mdio_data) { 366 .mii_offset = 0, 367 /* Fman TBI operations are handled elsewhere */ 368 }, 369 }, 370 371 {}, 372 }; 373 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 374 375 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev, 376 uint32_t __iomem * (*get_tbipa)(void __iomem *), 377 void __iomem *reg_map, struct resource *reg_res) 378 { 379 struct device_node *np = pdev->dev.of_node; 380 uint32_t __iomem *tbipa; 381 bool tbipa_mapped; 382 383 tbipa = of_iomap(np, 1); 384 if (tbipa) { 385 tbipa_mapped = true; 386 } else { 387 tbipa_mapped = false; 388 tbipa = (*get_tbipa)(reg_map); 389 390 /* 391 * Add consistency check to make sure TBI is contained within 392 * the mapped range (not because we would get a segfault, 393 * rather to catch bugs in computing TBI address). Print error 394 * message but continue anyway. 395 */ 396 if ((void *)tbipa > reg_map + resource_size(reg_res) - 4) 397 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n", 398 ((void *)tbipa - reg_map) + 4); 399 } 400 401 iowrite32be(be32_to_cpu(tbipa_val), tbipa); 402 403 if (tbipa_mapped) 404 iounmap(tbipa); 405 } 406 407 static int fsl_pq_mdio_probe(struct platform_device *pdev) 408 { 409 const struct of_device_id *id = 410 of_match_device(fsl_pq_mdio_match, &pdev->dev); 411 const struct fsl_pq_mdio_data *data; 412 struct device_node *np = pdev->dev.of_node; 413 struct resource res; 414 struct device_node *tbi; 415 struct fsl_pq_mdio_priv *priv; 416 struct mii_bus *new_bus; 417 int err; 418 419 if (!id) { 420 dev_err(&pdev->dev, "Failed to match device\n"); 421 return -ENODEV; 422 } 423 424 data = id->data; 425 426 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 427 428 new_bus = mdiobus_alloc_size(sizeof(*priv)); 429 if (!new_bus) 430 return -ENOMEM; 431 432 priv = new_bus->priv; 433 new_bus->name = "Freescale PowerQUICC MII Bus"; 434 new_bus->read = &fsl_pq_mdio_read; 435 new_bus->write = &fsl_pq_mdio_write; 436 new_bus->reset = &fsl_pq_mdio_reset; 437 438 err = of_address_to_resource(np, 0, &res); 439 if (err < 0) { 440 dev_err(&pdev->dev, "could not obtain address information\n"); 441 goto error; 442 } 443 444 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np, 445 (unsigned long long)res.start); 446 447 priv->map = of_iomap(np, 0); 448 if (!priv->map) { 449 err = -ENOMEM; 450 goto error; 451 } 452 453 /* 454 * Some device tree nodes represent only the MII registers, and 455 * others represent the MAC and MII registers. The 'mii_offset' field 456 * contains the offset of the MII registers inside the mapped register 457 * space. 458 */ 459 if (data->mii_offset > resource_size(&res)) { 460 dev_err(&pdev->dev, "invalid register map\n"); 461 err = -EINVAL; 462 goto error; 463 } 464 priv->regs = priv->map + data->mii_offset; 465 466 new_bus->parent = &pdev->dev; 467 platform_set_drvdata(pdev, new_bus); 468 469 if (data->get_tbipa) { 470 for_each_child_of_node(np, tbi) { 471 if (of_node_is_type(tbi, "tbi-phy")) { 472 dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n", 473 tbi); 474 break; 475 } 476 } 477 478 if (tbi) { 479 const u32 *prop = of_get_property(tbi, "reg", NULL); 480 if (!prop) { 481 dev_err(&pdev->dev, 482 "missing 'reg' property in node %pOF\n", 483 tbi); 484 err = -EBUSY; 485 goto error; 486 } 487 set_tbipa(*prop, pdev, 488 data->get_tbipa, priv->map, &res); 489 } 490 } 491 492 if (data->ucc_configure) 493 data->ucc_configure(res.start, res.end); 494 495 err = of_mdiobus_register(new_bus, np); 496 if (err) { 497 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 498 new_bus->name); 499 goto error; 500 } 501 502 return 0; 503 504 error: 505 if (priv->map) 506 iounmap(priv->map); 507 508 kfree(new_bus); 509 510 return err; 511 } 512 513 514 static int fsl_pq_mdio_remove(struct platform_device *pdev) 515 { 516 struct device *device = &pdev->dev; 517 struct mii_bus *bus = dev_get_drvdata(device); 518 struct fsl_pq_mdio_priv *priv = bus->priv; 519 520 mdiobus_unregister(bus); 521 522 iounmap(priv->map); 523 mdiobus_free(bus); 524 525 return 0; 526 } 527 528 static struct platform_driver fsl_pq_mdio_driver = { 529 .driver = { 530 .name = "fsl-pq_mdio", 531 .of_match_table = fsl_pq_mdio_match, 532 }, 533 .probe = fsl_pq_mdio_probe, 534 .remove = fsl_pq_mdio_remove, 535 }; 536 537 module_platform_driver(fsl_pq_mdio_driver); 538 539 MODULE_LICENSE("GPL"); 540