1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 4 * Provides Bus interface for MIIM regs 5 * 6 * Author: Andy Fleming <afleming@freescale.com> 7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 8 * 9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 10 * 11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/platform_device.h> 16 #include <linux/string.h> 17 #include <linux/errno.h> 18 #include <linux/slab.h> 19 #include <linux/delay.h> 20 #include <linux/module.h> 21 #include <linux/mii.h> 22 #include <linux/of_address.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_device.h> 25 26 #include <asm/io.h> 27 #if IS_ENABLED(CONFIG_UCC_GETH) 28 #include <soc/fsl/qe/ucc.h> 29 #endif 30 31 #include "gianfar.h" 32 33 #define MIIMIND_BUSY 0x00000001 34 #define MIIMIND_NOTVALID 0x00000004 35 #define MIIMCFG_INIT_VALUE 0x00000007 36 #define MIIMCFG_RESET 0x80000000 37 38 #define MII_READ_COMMAND 0x00000001 39 40 struct fsl_pq_mii { 41 u32 miimcfg; /* MII management configuration reg */ 42 u32 miimcom; /* MII management command reg */ 43 u32 miimadd; /* MII management address reg */ 44 u32 miimcon; /* MII management control reg */ 45 u32 miimstat; /* MII management status reg */ 46 u32 miimind; /* MII management indication reg */ 47 }; 48 49 struct fsl_pq_mdio { 50 u8 res1[16]; 51 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 52 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 53 u8 res2[4]; 54 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 55 u8 res3[1280]; 56 struct fsl_pq_mii mii; 57 u8 res4[28]; 58 u32 utbipar; /* TBI phy address reg (only on UCC) */ 59 u8 res5[2728]; 60 } __packed; 61 62 /* Number of microseconds to wait for an MII register to respond */ 63 #define MII_TIMEOUT 1000 64 65 struct fsl_pq_mdio_priv { 66 void __iomem *map; 67 struct fsl_pq_mii __iomem *regs; 68 }; 69 70 /* 71 * Per-device-type data. Each type of device tree node that we support gets 72 * one of these. 73 * 74 * @mii_offset: the offset of the MII registers within the memory map of the 75 * node. Some nodes define only the MII registers, and some define the whole 76 * MAC (which includes the MII registers). 77 * 78 * @get_tbipa: determines the address of the TBIPA register 79 * 80 * @ucc_configure: a special function for extra QE configuration 81 */ 82 struct fsl_pq_mdio_data { 83 unsigned int mii_offset; /* offset of the MII registers */ 84 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 85 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 86 }; 87 88 /* 89 * Write value to the PHY at mii_id at register regnum, on the bus attached 90 * to the local interface, which may be different from the generic mdio bus 91 * (tied to a single interface), waiting until the write is done before 92 * returning. This is helpful in programming interfaces like the TBI which 93 * control interfaces like onchip SERDES and are always tied to the local 94 * mdio pins, which may not be the same as system mdio bus, used for 95 * controlling the external PHYs, for example. 96 */ 97 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 98 u16 value) 99 { 100 struct fsl_pq_mdio_priv *priv = bus->priv; 101 struct fsl_pq_mii __iomem *regs = priv->regs; 102 unsigned int timeout; 103 104 /* Set the PHY address and the register address we want to write */ 105 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 106 107 /* Write out the value we want */ 108 iowrite32be(value, ®s->miimcon); 109 110 /* Wait for the transaction to finish */ 111 timeout = MII_TIMEOUT; 112 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 113 cpu_relax(); 114 timeout--; 115 } 116 117 return timeout ? 0 : -ETIMEDOUT; 118 } 119 120 /* 121 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 122 * Clears miimcom first. 123 * 124 * All PHY operation done on the bus attached to the local interface, which 125 * may be different from the generic mdio bus. This is helpful in programming 126 * interfaces like the TBI which, in turn, control interfaces like on-chip 127 * SERDES and are always tied to the local mdio pins, which may not be the 128 * same as system mdio bus, used for controlling the external PHYs, for eg. 129 */ 130 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 131 { 132 struct fsl_pq_mdio_priv *priv = bus->priv; 133 struct fsl_pq_mii __iomem *regs = priv->regs; 134 unsigned int timeout; 135 u16 value; 136 137 /* Set the PHY address and the register address we want to read */ 138 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 139 140 /* Clear miimcom, and then initiate a read */ 141 iowrite32be(0, ®s->miimcom); 142 iowrite32be(MII_READ_COMMAND, ®s->miimcom); 143 144 /* Wait for the transaction to finish, normally less than 100us */ 145 timeout = MII_TIMEOUT; 146 while ((ioread32be(®s->miimind) & 147 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) { 148 cpu_relax(); 149 timeout--; 150 } 151 152 if (!timeout) 153 return -ETIMEDOUT; 154 155 /* Grab the value of the register from miimstat */ 156 value = ioread32be(®s->miimstat); 157 158 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 159 return value; 160 } 161 162 /* Reset the MIIM registers, and wait for the bus to free */ 163 static int fsl_pq_mdio_reset(struct mii_bus *bus) 164 { 165 struct fsl_pq_mdio_priv *priv = bus->priv; 166 struct fsl_pq_mii __iomem *regs = priv->regs; 167 unsigned int timeout; 168 169 mutex_lock(&bus->mdio_lock); 170 171 /* Reset the management interface */ 172 iowrite32be(MIIMCFG_RESET, ®s->miimcfg); 173 174 /* Setup the MII Mgmt clock speed */ 175 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg); 176 177 /* Wait until the bus is free */ 178 timeout = MII_TIMEOUT; 179 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 180 cpu_relax(); 181 timeout--; 182 } 183 184 mutex_unlock(&bus->mdio_lock); 185 186 if (!timeout) { 187 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 188 return -EBUSY; 189 } 190 191 return 0; 192 } 193 194 #if IS_ENABLED(CONFIG_GIANFAR) 195 /* 196 * Return the TBIPA address, starting from the address 197 * of the mapped GFAR MDIO registers (struct gfar) 198 * This is mildly evil, but so is our hardware for doing this. 199 * Also, we have to cast back to struct gfar because of 200 * definition weirdness done in gianfar.h. 201 */ 202 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p) 203 { 204 struct gfar __iomem *enet_regs = p; 205 206 return &enet_regs->tbipa; 207 } 208 209 /* 210 * Return the TBIPA address, starting from the address 211 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar) 212 */ 213 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p) 214 { 215 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs)); 216 } 217 218 /* 219 * Return the TBIPAR address for an eTSEC2 node 220 */ 221 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 222 { 223 return p; 224 } 225 #endif 226 227 #if IS_ENABLED(CONFIG_UCC_GETH) 228 /* 229 * Return the TBIPAR address for a QE MDIO node, starting from the address 230 * of the mapped MII registers (struct fsl_pq_mii) 231 */ 232 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 233 { 234 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii); 235 236 return &mdio->utbipar; 237 } 238 239 /* 240 * Find the UCC node that controls the given MDIO node 241 * 242 * For some reason, the QE MDIO nodes are not children of the UCC devices 243 * that control them. Therefore, we need to scan all UCC nodes looking for 244 * the one that encompases the given MDIO node. We do this by comparing 245 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 246 * passed, and the correct UCC node will cover the entire address range. 247 * 248 * This assumes that there is only one QE MDIO node in the entire device tree. 249 */ 250 static void ucc_configure(phys_addr_t start, phys_addr_t end) 251 { 252 static bool found_mii_master; 253 struct device_node *np = NULL; 254 255 if (found_mii_master) 256 return; 257 258 for_each_compatible_node(np, NULL, "ucc_geth") { 259 struct resource res; 260 const uint32_t *iprop; 261 uint32_t id; 262 int ret; 263 264 ret = of_address_to_resource(np, 0, &res); 265 if (ret < 0) { 266 pr_debug("fsl-pq-mdio: no address range in node %pOF\n", 267 np); 268 continue; 269 } 270 271 /* if our mdio regs fall within this UCC regs range */ 272 if ((start < res.start) || (end > res.end)) 273 continue; 274 275 iprop = of_get_property(np, "cell-index", NULL); 276 if (!iprop) { 277 iprop = of_get_property(np, "device-id", NULL); 278 if (!iprop) { 279 pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n", 280 np); 281 continue; 282 } 283 } 284 285 id = be32_to_cpup(iprop); 286 287 /* 288 * cell-index and device-id for QE nodes are 289 * numbered from 1, not 0. 290 */ 291 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 292 pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n", 293 np); 294 continue; 295 } 296 297 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 298 found_mii_master = true; 299 } 300 } 301 302 #endif 303 304 static const struct of_device_id fsl_pq_mdio_match[] = { 305 #if IS_ENABLED(CONFIG_GIANFAR) 306 { 307 .compatible = "fsl,gianfar-tbi", 308 .data = &(struct fsl_pq_mdio_data) { 309 .mii_offset = 0, 310 .get_tbipa = get_gfar_tbipa_from_mii, 311 }, 312 }, 313 { 314 .compatible = "fsl,gianfar-mdio", 315 .data = &(struct fsl_pq_mdio_data) { 316 .mii_offset = 0, 317 .get_tbipa = get_gfar_tbipa_from_mii, 318 }, 319 }, 320 { 321 .type = "mdio", 322 .compatible = "gianfar", 323 .data = &(struct fsl_pq_mdio_data) { 324 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 325 .get_tbipa = get_gfar_tbipa_from_mdio, 326 }, 327 }, 328 { 329 .compatible = "fsl,etsec2-tbi", 330 .data = &(struct fsl_pq_mdio_data) { 331 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 332 .get_tbipa = get_etsec_tbipa, 333 }, 334 }, 335 { 336 .compatible = "fsl,etsec2-mdio", 337 .data = &(struct fsl_pq_mdio_data) { 338 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 339 .get_tbipa = get_etsec_tbipa, 340 }, 341 }, 342 #endif 343 #if IS_ENABLED(CONFIG_UCC_GETH) 344 { 345 .compatible = "fsl,ucc-mdio", 346 .data = &(struct fsl_pq_mdio_data) { 347 .mii_offset = 0, 348 .get_tbipa = get_ucc_tbipa, 349 .ucc_configure = ucc_configure, 350 }, 351 }, 352 { 353 /* Legacy UCC MDIO node */ 354 .type = "mdio", 355 .compatible = "ucc_geth_phy", 356 .data = &(struct fsl_pq_mdio_data) { 357 .mii_offset = 0, 358 .get_tbipa = get_ucc_tbipa, 359 .ucc_configure = ucc_configure, 360 }, 361 }, 362 #endif 363 /* No Kconfig option for Fman support yet */ 364 { 365 .compatible = "fsl,fman-mdio", 366 .data = &(struct fsl_pq_mdio_data) { 367 .mii_offset = 0, 368 /* Fman TBI operations are handled elsewhere */ 369 }, 370 }, 371 372 {}, 373 }; 374 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 375 376 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev, 377 uint32_t __iomem * (*get_tbipa)(void __iomem *), 378 void __iomem *reg_map, struct resource *reg_res) 379 { 380 struct device_node *np = pdev->dev.of_node; 381 uint32_t __iomem *tbipa; 382 bool tbipa_mapped; 383 384 tbipa = of_iomap(np, 1); 385 if (tbipa) { 386 tbipa_mapped = true; 387 } else { 388 tbipa_mapped = false; 389 tbipa = (*get_tbipa)(reg_map); 390 391 /* 392 * Add consistency check to make sure TBI is contained within 393 * the mapped range (not because we would get a segfault, 394 * rather to catch bugs in computing TBI address). Print error 395 * message but continue anyway. 396 */ 397 if ((void *)tbipa > reg_map + resource_size(reg_res) - 4) 398 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n", 399 ((void *)tbipa - reg_map) + 4); 400 } 401 402 iowrite32be(be32_to_cpu(tbipa_val), tbipa); 403 404 if (tbipa_mapped) 405 iounmap(tbipa); 406 } 407 408 static int fsl_pq_mdio_probe(struct platform_device *pdev) 409 { 410 const struct of_device_id *id = 411 of_match_device(fsl_pq_mdio_match, &pdev->dev); 412 const struct fsl_pq_mdio_data *data; 413 struct device_node *np = pdev->dev.of_node; 414 struct resource res; 415 struct device_node *tbi; 416 struct fsl_pq_mdio_priv *priv; 417 struct mii_bus *new_bus; 418 int err; 419 420 if (!id) { 421 dev_err(&pdev->dev, "Failed to match device\n"); 422 return -ENODEV; 423 } 424 425 data = id->data; 426 427 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 428 429 new_bus = mdiobus_alloc_size(sizeof(*priv)); 430 if (!new_bus) 431 return -ENOMEM; 432 433 priv = new_bus->priv; 434 new_bus->name = "Freescale PowerQUICC MII Bus"; 435 new_bus->read = &fsl_pq_mdio_read; 436 new_bus->write = &fsl_pq_mdio_write; 437 new_bus->reset = &fsl_pq_mdio_reset; 438 439 err = of_address_to_resource(np, 0, &res); 440 if (err < 0) { 441 dev_err(&pdev->dev, "could not obtain address information\n"); 442 goto error; 443 } 444 445 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np, 446 (unsigned long long)res.start); 447 448 priv->map = of_iomap(np, 0); 449 if (!priv->map) { 450 err = -ENOMEM; 451 goto error; 452 } 453 454 /* 455 * Some device tree nodes represent only the MII registers, and 456 * others represent the MAC and MII registers. The 'mii_offset' field 457 * contains the offset of the MII registers inside the mapped register 458 * space. 459 */ 460 if (data->mii_offset > resource_size(&res)) { 461 dev_err(&pdev->dev, "invalid register map\n"); 462 err = -EINVAL; 463 goto error; 464 } 465 priv->regs = priv->map + data->mii_offset; 466 467 new_bus->parent = &pdev->dev; 468 platform_set_drvdata(pdev, new_bus); 469 470 if (data->get_tbipa) { 471 for_each_child_of_node(np, tbi) { 472 if (of_node_is_type(tbi, "tbi-phy")) { 473 dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n", 474 tbi); 475 break; 476 } 477 } 478 479 if (tbi) { 480 const u32 *prop = of_get_property(tbi, "reg", NULL); 481 if (!prop) { 482 dev_err(&pdev->dev, 483 "missing 'reg' property in node %pOF\n", 484 tbi); 485 err = -EBUSY; 486 goto error; 487 } 488 set_tbipa(*prop, pdev, 489 data->get_tbipa, priv->map, &res); 490 } 491 } 492 493 if (data->ucc_configure) 494 data->ucc_configure(res.start, res.end); 495 496 err = of_mdiobus_register(new_bus, np); 497 if (err) { 498 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 499 new_bus->name); 500 goto error; 501 } 502 503 return 0; 504 505 error: 506 if (priv->map) 507 iounmap(priv->map); 508 509 kfree(new_bus); 510 511 return err; 512 } 513 514 515 static void fsl_pq_mdio_remove(struct platform_device *pdev) 516 { 517 struct device *device = &pdev->dev; 518 struct mii_bus *bus = dev_get_drvdata(device); 519 struct fsl_pq_mdio_priv *priv = bus->priv; 520 521 mdiobus_unregister(bus); 522 523 iounmap(priv->map); 524 mdiobus_free(bus); 525 } 526 527 static struct platform_driver fsl_pq_mdio_driver = { 528 .driver = { 529 .name = "fsl-pq_mdio", 530 .of_match_table = fsl_pq_mdio_match, 531 }, 532 .probe = fsl_pq_mdio_probe, 533 .remove_new = fsl_pq_mdio_remove, 534 }; 535 536 module_platform_driver(fsl_pq_mdio_driver); 537 538 MODULE_LICENSE("GPL"); 539