1 /* 2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 3 * Provides Bus interface for MIIM regs 4 * 5 * Author: Andy Fleming <afleming@freescale.com> 6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 7 * 8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 9 * 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/module.h> 25 #include <linux/mii.h> 26 #include <linux/of_address.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_device.h> 29 30 #include <asm/io.h> 31 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */ 32 33 #include "gianfar.h" 34 35 #define MIIMIND_BUSY 0x00000001 36 #define MIIMIND_NOTVALID 0x00000004 37 #define MIIMCFG_INIT_VALUE 0x00000007 38 #define MIIMCFG_RESET 0x80000000 39 40 #define MII_READ_COMMAND 0x00000001 41 42 struct fsl_pq_mii { 43 u32 miimcfg; /* MII management configuration reg */ 44 u32 miimcom; /* MII management command reg */ 45 u32 miimadd; /* MII management address reg */ 46 u32 miimcon; /* MII management control reg */ 47 u32 miimstat; /* MII management status reg */ 48 u32 miimind; /* MII management indication reg */ 49 }; 50 51 struct fsl_pq_mdio { 52 u8 res1[16]; 53 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 54 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 55 u8 res2[4]; 56 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 57 u8 res3[1280]; 58 struct fsl_pq_mii mii; 59 u8 res4[28]; 60 u32 utbipar; /* TBI phy address reg (only on UCC) */ 61 u8 res5[2728]; 62 } __packed; 63 64 /* Number of microseconds to wait for an MII register to respond */ 65 #define MII_TIMEOUT 1000 66 67 struct fsl_pq_mdio_priv { 68 void __iomem *map; 69 struct fsl_pq_mii __iomem *regs; 70 int irqs[PHY_MAX_ADDR]; 71 }; 72 73 /* 74 * Per-device-type data. Each type of device tree node that we support gets 75 * one of these. 76 * 77 * @mii_offset: the offset of the MII registers within the memory map of the 78 * node. Some nodes define only the MII registers, and some define the whole 79 * MAC (which includes the MII registers). 80 * 81 * @get_tbipa: determines the address of the TBIPA register 82 * 83 * @ucc_configure: a special function for extra QE configuration 84 */ 85 struct fsl_pq_mdio_data { 86 unsigned int mii_offset; /* offset of the MII registers */ 87 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 88 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 89 }; 90 91 /* 92 * Write value to the PHY at mii_id at register regnum, on the bus attached 93 * to the local interface, which may be different from the generic mdio bus 94 * (tied to a single interface), waiting until the write is done before 95 * returning. This is helpful in programming interfaces like the TBI which 96 * control interfaces like onchip SERDES and are always tied to the local 97 * mdio pins, which may not be the same as system mdio bus, used for 98 * controlling the external PHYs, for example. 99 */ 100 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 101 u16 value) 102 { 103 struct fsl_pq_mdio_priv *priv = bus->priv; 104 struct fsl_pq_mii __iomem *regs = priv->regs; 105 u32 status; 106 107 /* Set the PHY address and the register address we want to write */ 108 out_be32(®s->miimadd, (mii_id << 8) | regnum); 109 110 /* Write out the value we want */ 111 out_be32(®s->miimcon, value); 112 113 /* Wait for the transaction to finish */ 114 status = spin_event_timeout(!(in_be32(®s->miimind) & MIIMIND_BUSY), 115 MII_TIMEOUT, 0); 116 117 return status ? 0 : -ETIMEDOUT; 118 } 119 120 /* 121 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 122 * Clears miimcom first. 123 * 124 * All PHY operation done on the bus attached to the local interface, which 125 * may be different from the generic mdio bus. This is helpful in programming 126 * interfaces like the TBI which, in turn, control interfaces like on-chip 127 * SERDES and are always tied to the local mdio pins, which may not be the 128 * same as system mdio bus, used for controlling the external PHYs, for eg. 129 */ 130 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 131 { 132 struct fsl_pq_mdio_priv *priv = bus->priv; 133 struct fsl_pq_mii __iomem *regs = priv->regs; 134 u32 status; 135 u16 value; 136 137 /* Set the PHY address and the register address we want to read */ 138 out_be32(®s->miimadd, (mii_id << 8) | regnum); 139 140 /* Clear miimcom, and then initiate a read */ 141 out_be32(®s->miimcom, 0); 142 out_be32(®s->miimcom, MII_READ_COMMAND); 143 144 /* Wait for the transaction to finish, normally less than 100us */ 145 status = spin_event_timeout(!(in_be32(®s->miimind) & 146 (MIIMIND_NOTVALID | MIIMIND_BUSY)), 147 MII_TIMEOUT, 0); 148 if (!status) 149 return -ETIMEDOUT; 150 151 /* Grab the value of the register from miimstat */ 152 value = in_be32(®s->miimstat); 153 154 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 155 return value; 156 } 157 158 /* Reset the MIIM registers, and wait for the bus to free */ 159 static int fsl_pq_mdio_reset(struct mii_bus *bus) 160 { 161 struct fsl_pq_mdio_priv *priv = bus->priv; 162 struct fsl_pq_mii __iomem *regs = priv->regs; 163 u32 status; 164 165 mutex_lock(&bus->mdio_lock); 166 167 /* Reset the management interface */ 168 out_be32(®s->miimcfg, MIIMCFG_RESET); 169 170 /* Setup the MII Mgmt clock speed */ 171 out_be32(®s->miimcfg, MIIMCFG_INIT_VALUE); 172 173 /* Wait until the bus is free */ 174 status = spin_event_timeout(!(in_be32(®s->miimind) & MIIMIND_BUSY), 175 MII_TIMEOUT, 0); 176 177 mutex_unlock(&bus->mdio_lock); 178 179 if (!status) { 180 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 181 return -EBUSY; 182 } 183 184 return 0; 185 } 186 187 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 188 /* 189 * This is mildly evil, but so is our hardware for doing this. 190 * Also, we have to cast back to struct gfar because of 191 * definition weirdness done in gianfar.h. 192 */ 193 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p) 194 { 195 struct gfar __iomem *enet_regs = p; 196 197 return &enet_regs->tbipa; 198 } 199 200 /* 201 * Return the TBIPAR address for an eTSEC2 node 202 */ 203 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 204 { 205 return p; 206 } 207 #endif 208 209 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 210 /* 211 * Return the TBIPAR address for a QE MDIO node 212 */ 213 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 214 { 215 struct fsl_pq_mdio __iomem *mdio = p; 216 217 return &mdio->utbipar; 218 } 219 220 /* 221 * Find the UCC node that controls the given MDIO node 222 * 223 * For some reason, the QE MDIO nodes are not children of the UCC devices 224 * that control them. Therefore, we need to scan all UCC nodes looking for 225 * the one that encompases the given MDIO node. We do this by comparing 226 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 227 * passed, and the correct UCC node will cover the entire address range. 228 * 229 * This assumes that there is only one QE MDIO node in the entire device tree. 230 */ 231 static void ucc_configure(phys_addr_t start, phys_addr_t end) 232 { 233 static bool found_mii_master; 234 struct device_node *np = NULL; 235 236 if (found_mii_master) 237 return; 238 239 for_each_compatible_node(np, NULL, "ucc_geth") { 240 struct resource res; 241 const uint32_t *iprop; 242 uint32_t id; 243 int ret; 244 245 ret = of_address_to_resource(np, 0, &res); 246 if (ret < 0) { 247 pr_debug("fsl-pq-mdio: no address range in node %s\n", 248 np->full_name); 249 continue; 250 } 251 252 /* if our mdio regs fall within this UCC regs range */ 253 if ((start < res.start) || (end > res.end)) 254 continue; 255 256 iprop = of_get_property(np, "cell-index", NULL); 257 if (!iprop) { 258 iprop = of_get_property(np, "device-id", NULL); 259 if (!iprop) { 260 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n", 261 np->full_name); 262 continue; 263 } 264 } 265 266 id = be32_to_cpup(iprop); 267 268 /* 269 * cell-index and device-id for QE nodes are 270 * numbered from 1, not 0. 271 */ 272 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 273 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n", 274 np->full_name); 275 continue; 276 } 277 278 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 279 found_mii_master = true; 280 } 281 } 282 283 #endif 284 285 static struct of_device_id fsl_pq_mdio_match[] = { 286 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 287 { 288 .compatible = "fsl,gianfar-tbi", 289 .data = &(struct fsl_pq_mdio_data) { 290 .mii_offset = 0, 291 .get_tbipa = get_gfar_tbipa, 292 }, 293 }, 294 { 295 .compatible = "fsl,gianfar-mdio", 296 .data = &(struct fsl_pq_mdio_data) { 297 .mii_offset = 0, 298 .get_tbipa = get_gfar_tbipa, 299 }, 300 }, 301 { 302 .type = "mdio", 303 .compatible = "gianfar", 304 .data = &(struct fsl_pq_mdio_data) { 305 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 306 .get_tbipa = get_gfar_tbipa, 307 }, 308 }, 309 { 310 .compatible = "fsl,etsec2-tbi", 311 .data = &(struct fsl_pq_mdio_data) { 312 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 313 .get_tbipa = get_etsec_tbipa, 314 }, 315 }, 316 { 317 .compatible = "fsl,etsec2-mdio", 318 .data = &(struct fsl_pq_mdio_data) { 319 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 320 .get_tbipa = get_etsec_tbipa, 321 }, 322 }, 323 #endif 324 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 325 { 326 .compatible = "fsl,ucc-mdio", 327 .data = &(struct fsl_pq_mdio_data) { 328 .mii_offset = 0, 329 .get_tbipa = get_ucc_tbipa, 330 .ucc_configure = ucc_configure, 331 }, 332 }, 333 { 334 /* Legacy UCC MDIO node */ 335 .type = "mdio", 336 .compatible = "ucc_geth_phy", 337 .data = &(struct fsl_pq_mdio_data) { 338 .mii_offset = 0, 339 .get_tbipa = get_ucc_tbipa, 340 .ucc_configure = ucc_configure, 341 }, 342 }, 343 #endif 344 /* No Kconfig option for Fman support yet */ 345 { 346 .compatible = "fsl,fman-mdio", 347 .data = &(struct fsl_pq_mdio_data) { 348 .mii_offset = 0, 349 /* Fman TBI operations are handled elsewhere */ 350 }, 351 }, 352 353 {}, 354 }; 355 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 356 357 static int fsl_pq_mdio_probe(struct platform_device *pdev) 358 { 359 const struct of_device_id *id = 360 of_match_device(fsl_pq_mdio_match, &pdev->dev); 361 const struct fsl_pq_mdio_data *data = id->data; 362 struct device_node *np = pdev->dev.of_node; 363 struct resource res; 364 struct device_node *tbi; 365 struct fsl_pq_mdio_priv *priv; 366 struct mii_bus *new_bus; 367 int err; 368 369 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 370 371 new_bus = mdiobus_alloc_size(sizeof(*priv)); 372 if (!new_bus) 373 return -ENOMEM; 374 375 priv = new_bus->priv; 376 new_bus->name = "Freescale PowerQUICC MII Bus", 377 new_bus->read = &fsl_pq_mdio_read; 378 new_bus->write = &fsl_pq_mdio_write; 379 new_bus->reset = &fsl_pq_mdio_reset; 380 new_bus->irq = priv->irqs; 381 382 err = of_address_to_resource(np, 0, &res); 383 if (err < 0) { 384 dev_err(&pdev->dev, "could not obtain address information\n"); 385 goto error; 386 } 387 388 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name, 389 (unsigned long long)res.start); 390 391 priv->map = of_iomap(np, 0); 392 if (!priv->map) { 393 err = -ENOMEM; 394 goto error; 395 } 396 397 /* 398 * Some device tree nodes represent only the MII registers, and 399 * others represent the MAC and MII registers. The 'mii_offset' field 400 * contains the offset of the MII registers inside the mapped register 401 * space. 402 */ 403 if (data->mii_offset > resource_size(&res)) { 404 dev_err(&pdev->dev, "invalid register map\n"); 405 err = -EINVAL; 406 goto error; 407 } 408 priv->regs = priv->map + data->mii_offset; 409 410 new_bus->parent = &pdev->dev; 411 platform_set_drvdata(pdev, new_bus); 412 413 if (data->get_tbipa) { 414 for_each_child_of_node(np, tbi) { 415 if (strcmp(tbi->type, "tbi-phy") == 0) { 416 dev_dbg(&pdev->dev, "found TBI PHY node %s\n", 417 strrchr(tbi->full_name, '/') + 1); 418 break; 419 } 420 } 421 422 if (tbi) { 423 const u32 *prop = of_get_property(tbi, "reg", NULL); 424 uint32_t __iomem *tbipa; 425 426 if (!prop) { 427 dev_err(&pdev->dev, 428 "missing 'reg' property in node %s\n", 429 tbi->full_name); 430 err = -EBUSY; 431 goto error; 432 } 433 434 tbipa = data->get_tbipa(priv->map); 435 436 out_be32(tbipa, be32_to_cpup(prop)); 437 } 438 } 439 440 if (data->ucc_configure) 441 data->ucc_configure(res.start, res.end); 442 443 err = of_mdiobus_register(new_bus, np); 444 if (err) { 445 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 446 new_bus->name); 447 goto error; 448 } 449 450 return 0; 451 452 error: 453 if (priv->map) 454 iounmap(priv->map); 455 456 kfree(new_bus); 457 458 return err; 459 } 460 461 462 static int fsl_pq_mdio_remove(struct platform_device *pdev) 463 { 464 struct device *device = &pdev->dev; 465 struct mii_bus *bus = dev_get_drvdata(device); 466 struct fsl_pq_mdio_priv *priv = bus->priv; 467 468 mdiobus_unregister(bus); 469 470 iounmap(priv->map); 471 mdiobus_free(bus); 472 473 return 0; 474 } 475 476 static struct platform_driver fsl_pq_mdio_driver = { 477 .driver = { 478 .name = "fsl-pq_mdio", 479 .owner = THIS_MODULE, 480 .of_match_table = fsl_pq_mdio_match, 481 }, 482 .probe = fsl_pq_mdio_probe, 483 .remove = fsl_pq_mdio_remove, 484 }; 485 486 module_platform_driver(fsl_pq_mdio_driver); 487 488 MODULE_LICENSE("GPL"); 489