1 /* 2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 3 * Provides Bus interface for MIIM regs 4 * 5 * Author: Andy Fleming <afleming@freescale.com> 6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 7 * 8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 9 * 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/module.h> 25 #include <linux/mii.h> 26 #include <linux/of_address.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_device.h> 29 30 #include <asm/io.h> 31 #if IS_ENABLED(CONFIG_UCC_GETH) 32 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */ 33 #endif 34 35 #include "gianfar.h" 36 37 #define MIIMIND_BUSY 0x00000001 38 #define MIIMIND_NOTVALID 0x00000004 39 #define MIIMCFG_INIT_VALUE 0x00000007 40 #define MIIMCFG_RESET 0x80000000 41 42 #define MII_READ_COMMAND 0x00000001 43 44 struct fsl_pq_mii { 45 u32 miimcfg; /* MII management configuration reg */ 46 u32 miimcom; /* MII management command reg */ 47 u32 miimadd; /* MII management address reg */ 48 u32 miimcon; /* MII management control reg */ 49 u32 miimstat; /* MII management status reg */ 50 u32 miimind; /* MII management indication reg */ 51 }; 52 53 struct fsl_pq_mdio { 54 u8 res1[16]; 55 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 56 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 57 u8 res2[4]; 58 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 59 u8 res3[1280]; 60 struct fsl_pq_mii mii; 61 u8 res4[28]; 62 u32 utbipar; /* TBI phy address reg (only on UCC) */ 63 u8 res5[2728]; 64 } __packed; 65 66 /* Number of microseconds to wait for an MII register to respond */ 67 #define MII_TIMEOUT 1000 68 69 struct fsl_pq_mdio_priv { 70 void __iomem *map; 71 struct fsl_pq_mii __iomem *regs; 72 int irqs[PHY_MAX_ADDR]; 73 }; 74 75 /* 76 * Per-device-type data. Each type of device tree node that we support gets 77 * one of these. 78 * 79 * @mii_offset: the offset of the MII registers within the memory map of the 80 * node. Some nodes define only the MII registers, and some define the whole 81 * MAC (which includes the MII registers). 82 * 83 * @get_tbipa: determines the address of the TBIPA register 84 * 85 * @ucc_configure: a special function for extra QE configuration 86 */ 87 struct fsl_pq_mdio_data { 88 unsigned int mii_offset; /* offset of the MII registers */ 89 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 90 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 91 }; 92 93 /* 94 * Write value to the PHY at mii_id at register regnum, on the bus attached 95 * to the local interface, which may be different from the generic mdio bus 96 * (tied to a single interface), waiting until the write is done before 97 * returning. This is helpful in programming interfaces like the TBI which 98 * control interfaces like onchip SERDES and are always tied to the local 99 * mdio pins, which may not be the same as system mdio bus, used for 100 * controlling the external PHYs, for example. 101 */ 102 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 103 u16 value) 104 { 105 struct fsl_pq_mdio_priv *priv = bus->priv; 106 struct fsl_pq_mii __iomem *regs = priv->regs; 107 unsigned int timeout; 108 109 /* Set the PHY address and the register address we want to write */ 110 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 111 112 /* Write out the value we want */ 113 iowrite32be(value, ®s->miimcon); 114 115 /* Wait for the transaction to finish */ 116 timeout = MII_TIMEOUT; 117 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 118 cpu_relax(); 119 timeout--; 120 } 121 122 return timeout ? 0 : -ETIMEDOUT; 123 } 124 125 /* 126 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 127 * Clears miimcom first. 128 * 129 * All PHY operation done on the bus attached to the local interface, which 130 * may be different from the generic mdio bus. This is helpful in programming 131 * interfaces like the TBI which, in turn, control interfaces like on-chip 132 * SERDES and are always tied to the local mdio pins, which may not be the 133 * same as system mdio bus, used for controlling the external PHYs, for eg. 134 */ 135 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 136 { 137 struct fsl_pq_mdio_priv *priv = bus->priv; 138 struct fsl_pq_mii __iomem *regs = priv->regs; 139 unsigned int timeout; 140 u16 value; 141 142 /* Set the PHY address and the register address we want to read */ 143 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 144 145 /* Clear miimcom, and then initiate a read */ 146 iowrite32be(0, ®s->miimcom); 147 iowrite32be(MII_READ_COMMAND, ®s->miimcom); 148 149 /* Wait for the transaction to finish, normally less than 100us */ 150 timeout = MII_TIMEOUT; 151 while ((ioread32be(®s->miimind) & 152 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) { 153 cpu_relax(); 154 timeout--; 155 } 156 157 if (!timeout) 158 return -ETIMEDOUT; 159 160 /* Grab the value of the register from miimstat */ 161 value = ioread32be(®s->miimstat); 162 163 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 164 return value; 165 } 166 167 /* Reset the MIIM registers, and wait for the bus to free */ 168 static int fsl_pq_mdio_reset(struct mii_bus *bus) 169 { 170 struct fsl_pq_mdio_priv *priv = bus->priv; 171 struct fsl_pq_mii __iomem *regs = priv->regs; 172 unsigned int timeout; 173 174 mutex_lock(&bus->mdio_lock); 175 176 /* Reset the management interface */ 177 iowrite32be(MIIMCFG_RESET, ®s->miimcfg); 178 179 /* Setup the MII Mgmt clock speed */ 180 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg); 181 182 /* Wait until the bus is free */ 183 timeout = MII_TIMEOUT; 184 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 185 cpu_relax(); 186 timeout--; 187 } 188 189 mutex_unlock(&bus->mdio_lock); 190 191 if (!timeout) { 192 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 193 return -EBUSY; 194 } 195 196 return 0; 197 } 198 199 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 200 /* 201 * This is mildly evil, but so is our hardware for doing this. 202 * Also, we have to cast back to struct gfar because of 203 * definition weirdness done in gianfar.h. 204 */ 205 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p) 206 { 207 struct gfar __iomem *enet_regs = p; 208 209 return &enet_regs->tbipa; 210 } 211 212 /* 213 * Return the TBIPAR address for an eTSEC2 node 214 */ 215 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 216 { 217 return p; 218 } 219 #endif 220 221 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 222 /* 223 * Return the TBIPAR address for a QE MDIO node 224 */ 225 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 226 { 227 struct fsl_pq_mdio __iomem *mdio = p; 228 229 return &mdio->utbipar; 230 } 231 232 /* 233 * Find the UCC node that controls the given MDIO node 234 * 235 * For some reason, the QE MDIO nodes are not children of the UCC devices 236 * that control them. Therefore, we need to scan all UCC nodes looking for 237 * the one that encompases the given MDIO node. We do this by comparing 238 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 239 * passed, and the correct UCC node will cover the entire address range. 240 * 241 * This assumes that there is only one QE MDIO node in the entire device tree. 242 */ 243 static void ucc_configure(phys_addr_t start, phys_addr_t end) 244 { 245 static bool found_mii_master; 246 struct device_node *np = NULL; 247 248 if (found_mii_master) 249 return; 250 251 for_each_compatible_node(np, NULL, "ucc_geth") { 252 struct resource res; 253 const uint32_t *iprop; 254 uint32_t id; 255 int ret; 256 257 ret = of_address_to_resource(np, 0, &res); 258 if (ret < 0) { 259 pr_debug("fsl-pq-mdio: no address range in node %s\n", 260 np->full_name); 261 continue; 262 } 263 264 /* if our mdio regs fall within this UCC regs range */ 265 if ((start < res.start) || (end > res.end)) 266 continue; 267 268 iprop = of_get_property(np, "cell-index", NULL); 269 if (!iprop) { 270 iprop = of_get_property(np, "device-id", NULL); 271 if (!iprop) { 272 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n", 273 np->full_name); 274 continue; 275 } 276 } 277 278 id = be32_to_cpup(iprop); 279 280 /* 281 * cell-index and device-id for QE nodes are 282 * numbered from 1, not 0. 283 */ 284 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 285 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n", 286 np->full_name); 287 continue; 288 } 289 290 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 291 found_mii_master = true; 292 } 293 } 294 295 #endif 296 297 static const struct of_device_id fsl_pq_mdio_match[] = { 298 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 299 { 300 .compatible = "fsl,gianfar-tbi", 301 .data = &(struct fsl_pq_mdio_data) { 302 .mii_offset = 0, 303 .get_tbipa = get_gfar_tbipa, 304 }, 305 }, 306 { 307 .compatible = "fsl,gianfar-mdio", 308 .data = &(struct fsl_pq_mdio_data) { 309 .mii_offset = 0, 310 .get_tbipa = get_gfar_tbipa, 311 }, 312 }, 313 { 314 .type = "mdio", 315 .compatible = "gianfar", 316 .data = &(struct fsl_pq_mdio_data) { 317 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 318 .get_tbipa = get_gfar_tbipa, 319 }, 320 }, 321 { 322 .compatible = "fsl,etsec2-tbi", 323 .data = &(struct fsl_pq_mdio_data) { 324 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 325 .get_tbipa = get_etsec_tbipa, 326 }, 327 }, 328 { 329 .compatible = "fsl,etsec2-mdio", 330 .data = &(struct fsl_pq_mdio_data) { 331 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 332 .get_tbipa = get_etsec_tbipa, 333 }, 334 }, 335 #endif 336 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 337 { 338 .compatible = "fsl,ucc-mdio", 339 .data = &(struct fsl_pq_mdio_data) { 340 .mii_offset = 0, 341 .get_tbipa = get_ucc_tbipa, 342 .ucc_configure = ucc_configure, 343 }, 344 }, 345 { 346 /* Legacy UCC MDIO node */ 347 .type = "mdio", 348 .compatible = "ucc_geth_phy", 349 .data = &(struct fsl_pq_mdio_data) { 350 .mii_offset = 0, 351 .get_tbipa = get_ucc_tbipa, 352 .ucc_configure = ucc_configure, 353 }, 354 }, 355 #endif 356 /* No Kconfig option for Fman support yet */ 357 { 358 .compatible = "fsl,fman-mdio", 359 .data = &(struct fsl_pq_mdio_data) { 360 .mii_offset = 0, 361 /* Fman TBI operations are handled elsewhere */ 362 }, 363 }, 364 365 {}, 366 }; 367 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 368 369 static int fsl_pq_mdio_probe(struct platform_device *pdev) 370 { 371 const struct of_device_id *id = 372 of_match_device(fsl_pq_mdio_match, &pdev->dev); 373 const struct fsl_pq_mdio_data *data = id->data; 374 struct device_node *np = pdev->dev.of_node; 375 struct resource res; 376 struct device_node *tbi; 377 struct fsl_pq_mdio_priv *priv; 378 struct mii_bus *new_bus; 379 int err; 380 381 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 382 383 new_bus = mdiobus_alloc_size(sizeof(*priv)); 384 if (!new_bus) 385 return -ENOMEM; 386 387 priv = new_bus->priv; 388 new_bus->name = "Freescale PowerQUICC MII Bus", 389 new_bus->read = &fsl_pq_mdio_read; 390 new_bus->write = &fsl_pq_mdio_write; 391 new_bus->reset = &fsl_pq_mdio_reset; 392 new_bus->irq = priv->irqs; 393 394 err = of_address_to_resource(np, 0, &res); 395 if (err < 0) { 396 dev_err(&pdev->dev, "could not obtain address information\n"); 397 goto error; 398 } 399 400 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name, 401 (unsigned long long)res.start); 402 403 priv->map = of_iomap(np, 0); 404 if (!priv->map) { 405 err = -ENOMEM; 406 goto error; 407 } 408 409 /* 410 * Some device tree nodes represent only the MII registers, and 411 * others represent the MAC and MII registers. The 'mii_offset' field 412 * contains the offset of the MII registers inside the mapped register 413 * space. 414 */ 415 if (data->mii_offset > resource_size(&res)) { 416 dev_err(&pdev->dev, "invalid register map\n"); 417 err = -EINVAL; 418 goto error; 419 } 420 priv->regs = priv->map + data->mii_offset; 421 422 new_bus->parent = &pdev->dev; 423 platform_set_drvdata(pdev, new_bus); 424 425 if (data->get_tbipa) { 426 for_each_child_of_node(np, tbi) { 427 if (strcmp(tbi->type, "tbi-phy") == 0) { 428 dev_dbg(&pdev->dev, "found TBI PHY node %s\n", 429 strrchr(tbi->full_name, '/') + 1); 430 break; 431 } 432 } 433 434 if (tbi) { 435 const u32 *prop = of_get_property(tbi, "reg", NULL); 436 uint32_t __iomem *tbipa; 437 438 if (!prop) { 439 dev_err(&pdev->dev, 440 "missing 'reg' property in node %s\n", 441 tbi->full_name); 442 err = -EBUSY; 443 goto error; 444 } 445 446 tbipa = data->get_tbipa(priv->map); 447 448 iowrite32be(be32_to_cpup(prop), tbipa); 449 } 450 } 451 452 if (data->ucc_configure) 453 data->ucc_configure(res.start, res.end); 454 455 err = of_mdiobus_register(new_bus, np); 456 if (err) { 457 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 458 new_bus->name); 459 goto error; 460 } 461 462 return 0; 463 464 error: 465 if (priv->map) 466 iounmap(priv->map); 467 468 kfree(new_bus); 469 470 return err; 471 } 472 473 474 static int fsl_pq_mdio_remove(struct platform_device *pdev) 475 { 476 struct device *device = &pdev->dev; 477 struct mii_bus *bus = dev_get_drvdata(device); 478 struct fsl_pq_mdio_priv *priv = bus->priv; 479 480 mdiobus_unregister(bus); 481 482 iounmap(priv->map); 483 mdiobus_free(bus); 484 485 return 0; 486 } 487 488 static struct platform_driver fsl_pq_mdio_driver = { 489 .driver = { 490 .name = "fsl-pq_mdio", 491 .of_match_table = fsl_pq_mdio_match, 492 }, 493 .probe = fsl_pq_mdio_probe, 494 .remove = fsl_pq_mdio_remove, 495 }; 496 497 module_platform_driver(fsl_pq_mdio_driver); 498 499 MODULE_LICENSE("GPL"); 500