1 /* 2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 3 * Provides Bus interface for MIIM regs 4 * 5 * Author: Andy Fleming <afleming@freescale.com> 6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 7 * 8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 9 * 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/module.h> 25 #include <linux/mii.h> 26 #include <linux/of_address.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_device.h> 29 30 #include <asm/io.h> 31 #if IS_ENABLED(CONFIG_UCC_GETH) 32 #include <soc/fsl/qe/ucc.h> 33 #endif 34 35 #include "gianfar.h" 36 37 #define MIIMIND_BUSY 0x00000001 38 #define MIIMIND_NOTVALID 0x00000004 39 #define MIIMCFG_INIT_VALUE 0x00000007 40 #define MIIMCFG_RESET 0x80000000 41 42 #define MII_READ_COMMAND 0x00000001 43 44 struct fsl_pq_mii { 45 u32 miimcfg; /* MII management configuration reg */ 46 u32 miimcom; /* MII management command reg */ 47 u32 miimadd; /* MII management address reg */ 48 u32 miimcon; /* MII management control reg */ 49 u32 miimstat; /* MII management status reg */ 50 u32 miimind; /* MII management indication reg */ 51 }; 52 53 struct fsl_pq_mdio { 54 u8 res1[16]; 55 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 56 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 57 u8 res2[4]; 58 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 59 u8 res3[1280]; 60 struct fsl_pq_mii mii; 61 u8 res4[28]; 62 u32 utbipar; /* TBI phy address reg (only on UCC) */ 63 u8 res5[2728]; 64 } __packed; 65 66 /* Number of microseconds to wait for an MII register to respond */ 67 #define MII_TIMEOUT 1000 68 69 struct fsl_pq_mdio_priv { 70 void __iomem *map; 71 struct fsl_pq_mii __iomem *regs; 72 }; 73 74 /* 75 * Per-device-type data. Each type of device tree node that we support gets 76 * one of these. 77 * 78 * @mii_offset: the offset of the MII registers within the memory map of the 79 * node. Some nodes define only the MII registers, and some define the whole 80 * MAC (which includes the MII registers). 81 * 82 * @get_tbipa: determines the address of the TBIPA register 83 * 84 * @ucc_configure: a special function for extra QE configuration 85 */ 86 struct fsl_pq_mdio_data { 87 unsigned int mii_offset; /* offset of the MII registers */ 88 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 89 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 90 }; 91 92 /* 93 * Write value to the PHY at mii_id at register regnum, on the bus attached 94 * to the local interface, which may be different from the generic mdio bus 95 * (tied to a single interface), waiting until the write is done before 96 * returning. This is helpful in programming interfaces like the TBI which 97 * control interfaces like onchip SERDES and are always tied to the local 98 * mdio pins, which may not be the same as system mdio bus, used for 99 * controlling the external PHYs, for example. 100 */ 101 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 102 u16 value) 103 { 104 struct fsl_pq_mdio_priv *priv = bus->priv; 105 struct fsl_pq_mii __iomem *regs = priv->regs; 106 unsigned int timeout; 107 108 /* Set the PHY address and the register address we want to write */ 109 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 110 111 /* Write out the value we want */ 112 iowrite32be(value, ®s->miimcon); 113 114 /* Wait for the transaction to finish */ 115 timeout = MII_TIMEOUT; 116 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 117 cpu_relax(); 118 timeout--; 119 } 120 121 return timeout ? 0 : -ETIMEDOUT; 122 } 123 124 /* 125 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 126 * Clears miimcom first. 127 * 128 * All PHY operation done on the bus attached to the local interface, which 129 * may be different from the generic mdio bus. This is helpful in programming 130 * interfaces like the TBI which, in turn, control interfaces like on-chip 131 * SERDES and are always tied to the local mdio pins, which may not be the 132 * same as system mdio bus, used for controlling the external PHYs, for eg. 133 */ 134 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 135 { 136 struct fsl_pq_mdio_priv *priv = bus->priv; 137 struct fsl_pq_mii __iomem *regs = priv->regs; 138 unsigned int timeout; 139 u16 value; 140 141 /* Set the PHY address and the register address we want to read */ 142 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 143 144 /* Clear miimcom, and then initiate a read */ 145 iowrite32be(0, ®s->miimcom); 146 iowrite32be(MII_READ_COMMAND, ®s->miimcom); 147 148 /* Wait for the transaction to finish, normally less than 100us */ 149 timeout = MII_TIMEOUT; 150 while ((ioread32be(®s->miimind) & 151 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) { 152 cpu_relax(); 153 timeout--; 154 } 155 156 if (!timeout) 157 return -ETIMEDOUT; 158 159 /* Grab the value of the register from miimstat */ 160 value = ioread32be(®s->miimstat); 161 162 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 163 return value; 164 } 165 166 /* Reset the MIIM registers, and wait for the bus to free */ 167 static int fsl_pq_mdio_reset(struct mii_bus *bus) 168 { 169 struct fsl_pq_mdio_priv *priv = bus->priv; 170 struct fsl_pq_mii __iomem *regs = priv->regs; 171 unsigned int timeout; 172 173 mutex_lock(&bus->mdio_lock); 174 175 /* Reset the management interface */ 176 iowrite32be(MIIMCFG_RESET, ®s->miimcfg); 177 178 /* Setup the MII Mgmt clock speed */ 179 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg); 180 181 /* Wait until the bus is free */ 182 timeout = MII_TIMEOUT; 183 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 184 cpu_relax(); 185 timeout--; 186 } 187 188 mutex_unlock(&bus->mdio_lock); 189 190 if (!timeout) { 191 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 192 return -EBUSY; 193 } 194 195 return 0; 196 } 197 198 #if IS_ENABLED(CONFIG_GIANFAR) 199 /* 200 * Return the TBIPA address, starting from the address 201 * of the mapped GFAR MDIO registers (struct gfar) 202 * This is mildly evil, but so is our hardware for doing this. 203 * Also, we have to cast back to struct gfar because of 204 * definition weirdness done in gianfar.h. 205 */ 206 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p) 207 { 208 struct gfar __iomem *enet_regs = p; 209 210 return &enet_regs->tbipa; 211 } 212 213 /* 214 * Return the TBIPA address, starting from the address 215 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar) 216 */ 217 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p) 218 { 219 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs)); 220 } 221 222 /* 223 * Return the TBIPAR address for an eTSEC2 node 224 */ 225 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 226 { 227 return p; 228 } 229 #endif 230 231 #if IS_ENABLED(CONFIG_UCC_GETH) 232 /* 233 * Return the TBIPAR address for a QE MDIO node, starting from the address 234 * of the mapped MII registers (struct fsl_pq_mii) 235 */ 236 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 237 { 238 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii); 239 240 return &mdio->utbipar; 241 } 242 243 /* 244 * Find the UCC node that controls the given MDIO node 245 * 246 * For some reason, the QE MDIO nodes are not children of the UCC devices 247 * that control them. Therefore, we need to scan all UCC nodes looking for 248 * the one that encompases the given MDIO node. We do this by comparing 249 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 250 * passed, and the correct UCC node will cover the entire address range. 251 * 252 * This assumes that there is only one QE MDIO node in the entire device tree. 253 */ 254 static void ucc_configure(phys_addr_t start, phys_addr_t end) 255 { 256 static bool found_mii_master; 257 struct device_node *np = NULL; 258 259 if (found_mii_master) 260 return; 261 262 for_each_compatible_node(np, NULL, "ucc_geth") { 263 struct resource res; 264 const uint32_t *iprop; 265 uint32_t id; 266 int ret; 267 268 ret = of_address_to_resource(np, 0, &res); 269 if (ret < 0) { 270 pr_debug("fsl-pq-mdio: no address range in node %pOF\n", 271 np); 272 continue; 273 } 274 275 /* if our mdio regs fall within this UCC regs range */ 276 if ((start < res.start) || (end > res.end)) 277 continue; 278 279 iprop = of_get_property(np, "cell-index", NULL); 280 if (!iprop) { 281 iprop = of_get_property(np, "device-id", NULL); 282 if (!iprop) { 283 pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n", 284 np); 285 continue; 286 } 287 } 288 289 id = be32_to_cpup(iprop); 290 291 /* 292 * cell-index and device-id for QE nodes are 293 * numbered from 1, not 0. 294 */ 295 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 296 pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n", 297 np); 298 continue; 299 } 300 301 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 302 found_mii_master = true; 303 } 304 } 305 306 #endif 307 308 static const struct of_device_id fsl_pq_mdio_match[] = { 309 #if IS_ENABLED(CONFIG_GIANFAR) 310 { 311 .compatible = "fsl,gianfar-tbi", 312 .data = &(struct fsl_pq_mdio_data) { 313 .mii_offset = 0, 314 .get_tbipa = get_gfar_tbipa_from_mii, 315 }, 316 }, 317 { 318 .compatible = "fsl,gianfar-mdio", 319 .data = &(struct fsl_pq_mdio_data) { 320 .mii_offset = 0, 321 .get_tbipa = get_gfar_tbipa_from_mii, 322 }, 323 }, 324 { 325 .type = "mdio", 326 .compatible = "gianfar", 327 .data = &(struct fsl_pq_mdio_data) { 328 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 329 .get_tbipa = get_gfar_tbipa_from_mdio, 330 }, 331 }, 332 { 333 .compatible = "fsl,etsec2-tbi", 334 .data = &(struct fsl_pq_mdio_data) { 335 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 336 .get_tbipa = get_etsec_tbipa, 337 }, 338 }, 339 { 340 .compatible = "fsl,etsec2-mdio", 341 .data = &(struct fsl_pq_mdio_data) { 342 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 343 .get_tbipa = get_etsec_tbipa, 344 }, 345 }, 346 #endif 347 #if IS_ENABLED(CONFIG_UCC_GETH) 348 { 349 .compatible = "fsl,ucc-mdio", 350 .data = &(struct fsl_pq_mdio_data) { 351 .mii_offset = 0, 352 .get_tbipa = get_ucc_tbipa, 353 .ucc_configure = ucc_configure, 354 }, 355 }, 356 { 357 /* Legacy UCC MDIO node */ 358 .type = "mdio", 359 .compatible = "ucc_geth_phy", 360 .data = &(struct fsl_pq_mdio_data) { 361 .mii_offset = 0, 362 .get_tbipa = get_ucc_tbipa, 363 .ucc_configure = ucc_configure, 364 }, 365 }, 366 #endif 367 /* No Kconfig option for Fman support yet */ 368 { 369 .compatible = "fsl,fman-mdio", 370 .data = &(struct fsl_pq_mdio_data) { 371 .mii_offset = 0, 372 /* Fman TBI operations are handled elsewhere */ 373 }, 374 }, 375 376 {}, 377 }; 378 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 379 380 static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev, 381 uint32_t __iomem * (*get_tbipa)(void __iomem *), 382 void __iomem *reg_map, struct resource *reg_res) 383 { 384 struct device_node *np = pdev->dev.of_node; 385 uint32_t __iomem *tbipa; 386 bool tbipa_mapped; 387 388 tbipa = of_iomap(np, 1); 389 if (tbipa) { 390 tbipa_mapped = true; 391 } else { 392 tbipa_mapped = false; 393 tbipa = (*get_tbipa)(reg_map); 394 395 /* 396 * Add consistency check to make sure TBI is contained within 397 * the mapped range (not because we would get a segfault, 398 * rather to catch bugs in computing TBI address). Print error 399 * message but continue anyway. 400 */ 401 if ((void *)tbipa > reg_map + resource_size(reg_res) - 4) 402 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n", 403 ((void *)tbipa - reg_map) + 4); 404 } 405 406 iowrite32be(be32_to_cpu(tbipa_val), tbipa); 407 408 if (tbipa_mapped) 409 iounmap(tbipa); 410 } 411 412 static int fsl_pq_mdio_probe(struct platform_device *pdev) 413 { 414 const struct of_device_id *id = 415 of_match_device(fsl_pq_mdio_match, &pdev->dev); 416 const struct fsl_pq_mdio_data *data; 417 struct device_node *np = pdev->dev.of_node; 418 struct resource res; 419 struct device_node *tbi; 420 struct fsl_pq_mdio_priv *priv; 421 struct mii_bus *new_bus; 422 int err; 423 424 if (!id) { 425 dev_err(&pdev->dev, "Failed to match device\n"); 426 return -ENODEV; 427 } 428 429 data = id->data; 430 431 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 432 433 new_bus = mdiobus_alloc_size(sizeof(*priv)); 434 if (!new_bus) 435 return -ENOMEM; 436 437 priv = new_bus->priv; 438 new_bus->name = "Freescale PowerQUICC MII Bus", 439 new_bus->read = &fsl_pq_mdio_read; 440 new_bus->write = &fsl_pq_mdio_write; 441 new_bus->reset = &fsl_pq_mdio_reset; 442 443 err = of_address_to_resource(np, 0, &res); 444 if (err < 0) { 445 dev_err(&pdev->dev, "could not obtain address information\n"); 446 goto error; 447 } 448 449 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np, 450 (unsigned long long)res.start); 451 452 priv->map = of_iomap(np, 0); 453 if (!priv->map) { 454 err = -ENOMEM; 455 goto error; 456 } 457 458 /* 459 * Some device tree nodes represent only the MII registers, and 460 * others represent the MAC and MII registers. The 'mii_offset' field 461 * contains the offset of the MII registers inside the mapped register 462 * space. 463 */ 464 if (data->mii_offset > resource_size(&res)) { 465 dev_err(&pdev->dev, "invalid register map\n"); 466 err = -EINVAL; 467 goto error; 468 } 469 priv->regs = priv->map + data->mii_offset; 470 471 new_bus->parent = &pdev->dev; 472 platform_set_drvdata(pdev, new_bus); 473 474 if (data->get_tbipa) { 475 for_each_child_of_node(np, tbi) { 476 if (strcmp(tbi->type, "tbi-phy") == 0) { 477 dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n", 478 tbi); 479 break; 480 } 481 } 482 483 if (tbi) { 484 const u32 *prop = of_get_property(tbi, "reg", NULL); 485 if (!prop) { 486 dev_err(&pdev->dev, 487 "missing 'reg' property in node %pOF\n", 488 tbi); 489 err = -EBUSY; 490 goto error; 491 } 492 set_tbipa(*prop, pdev, 493 data->get_tbipa, priv->map, &res); 494 } 495 } 496 497 if (data->ucc_configure) 498 data->ucc_configure(res.start, res.end); 499 500 err = of_mdiobus_register(new_bus, np); 501 if (err) { 502 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 503 new_bus->name); 504 goto error; 505 } 506 507 return 0; 508 509 error: 510 if (priv->map) 511 iounmap(priv->map); 512 513 kfree(new_bus); 514 515 return err; 516 } 517 518 519 static int fsl_pq_mdio_remove(struct platform_device *pdev) 520 { 521 struct device *device = &pdev->dev; 522 struct mii_bus *bus = dev_get_drvdata(device); 523 struct fsl_pq_mdio_priv *priv = bus->priv; 524 525 mdiobus_unregister(bus); 526 527 iounmap(priv->map); 528 mdiobus_free(bus); 529 530 return 0; 531 } 532 533 static struct platform_driver fsl_pq_mdio_driver = { 534 .driver = { 535 .name = "fsl-pq_mdio", 536 .of_match_table = fsl_pq_mdio_match, 537 }, 538 .probe = fsl_pq_mdio_probe, 539 .remove = fsl_pq_mdio_remove, 540 }; 541 542 module_platform_driver(fsl_pq_mdio_driver); 543 544 MODULE_LICENSE("GPL"); 545