1 /* 2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/spinlock.h> 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/bitops.h> 31 #include <linux/fs.h> 32 #include <linux/platform_device.h> 33 #include <linux/of_address.h> 34 #include <linux/of_irq.h> 35 36 #include <asm/irq.h> 37 #include <linux/uaccess.h> 38 39 #include "fs_enet.h" 40 41 /*************************************************/ 42 #if defined(CONFIG_CPM1) 43 /* for a 8xx __raw_xxx's are sufficient */ 44 #define __fs_out32(addr, x) __raw_writel(x, addr) 45 #define __fs_out16(addr, x) __raw_writew(x, addr) 46 #define __fs_out8(addr, x) __raw_writeb(x, addr) 47 #define __fs_in32(addr) __raw_readl(addr) 48 #define __fs_in16(addr) __raw_readw(addr) 49 #define __fs_in8(addr) __raw_readb(addr) 50 #else 51 /* for others play it safe */ 52 #define __fs_out32(addr, x) out_be32(addr, x) 53 #define __fs_out16(addr, x) out_be16(addr, x) 54 #define __fs_in32(addr) in_be32(addr) 55 #define __fs_in16(addr) in_be16(addr) 56 #define __fs_out8(addr, x) out_8(addr, x) 57 #define __fs_in8(addr) in_8(addr) 58 #endif 59 60 /* write, read, set bits, clear bits */ 61 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v)) 62 #define R32(_p, _m) __fs_in32(&(_p)->_m) 63 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) 64 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) 65 66 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v)) 67 #define R16(_p, _m) __fs_in16(&(_p)->_m) 68 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) 69 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) 70 71 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v)) 72 #define R8(_p, _m) __fs_in8(&(_p)->_m) 73 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) 74 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) 75 76 #define SCC_MAX_MULTICAST_ADDRS 64 77 78 /* 79 * Delay to wait for SCC reset command to complete (in us) 80 */ 81 #define SCC_RESET_DELAY 50 82 83 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op) 84 { 85 const struct fs_platform_info *fpi = fep->fpi; 86 87 return cpm_command(fpi->cp_command, op); 88 } 89 90 static int do_pd_setup(struct fs_enet_private *fep) 91 { 92 struct platform_device *ofdev = to_platform_device(fep->dev); 93 94 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 95 if (!fep->interrupt) 96 return -EINVAL; 97 98 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0); 99 if (!fep->scc.sccp) 100 return -EINVAL; 101 102 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1); 103 if (!fep->scc.ep) { 104 iounmap(fep->scc.sccp); 105 return -EINVAL; 106 } 107 108 return 0; 109 } 110 111 #define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB) 112 #define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB) 113 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY) 114 115 static int setup_data(struct net_device *dev) 116 { 117 struct fs_enet_private *fep = netdev_priv(dev); 118 119 do_pd_setup(fep); 120 121 fep->scc.hthi = 0; 122 fep->scc.htlo = 0; 123 124 fep->ev_napi = SCC_NAPI_EVENT_MSK; 125 fep->ev = SCC_EVENT | SCCE_ENET_TXE; 126 fep->ev_err = SCC_ERR_EVENT_MSK; 127 128 return 0; 129 } 130 131 static int allocate_bd(struct net_device *dev) 132 { 133 struct fs_enet_private *fep = netdev_priv(dev); 134 const struct fs_platform_info *fpi = fep->fpi; 135 136 fep->ring_mem_addr = cpm_muram_alloc((fpi->tx_ring + fpi->rx_ring) * 137 sizeof(cbd_t), 8); 138 if (IS_ERR_VALUE(fep->ring_mem_addr)) 139 return -ENOMEM; 140 141 fep->ring_base = (void __iomem __force*) 142 cpm_muram_addr(fep->ring_mem_addr); 143 144 return 0; 145 } 146 147 static void free_bd(struct net_device *dev) 148 { 149 struct fs_enet_private *fep = netdev_priv(dev); 150 151 if (fep->ring_base) 152 cpm_muram_free(fep->ring_mem_addr); 153 } 154 155 static void cleanup_data(struct net_device *dev) 156 { 157 /* nothing */ 158 } 159 160 static void set_promiscuous_mode(struct net_device *dev) 161 { 162 struct fs_enet_private *fep = netdev_priv(dev); 163 scc_t __iomem *sccp = fep->scc.sccp; 164 165 S16(sccp, scc_psmr, SCC_PSMR_PRO); 166 } 167 168 static void set_multicast_start(struct net_device *dev) 169 { 170 struct fs_enet_private *fep = netdev_priv(dev); 171 scc_enet_t __iomem *ep = fep->scc.ep; 172 173 W16(ep, sen_gaddr1, 0); 174 W16(ep, sen_gaddr2, 0); 175 W16(ep, sen_gaddr3, 0); 176 W16(ep, sen_gaddr4, 0); 177 } 178 179 static void set_multicast_one(struct net_device *dev, const u8 * mac) 180 { 181 struct fs_enet_private *fep = netdev_priv(dev); 182 scc_enet_t __iomem *ep = fep->scc.ep; 183 u16 taddrh, taddrm, taddrl; 184 185 taddrh = ((u16) mac[5] << 8) | mac[4]; 186 taddrm = ((u16) mac[3] << 8) | mac[2]; 187 taddrl = ((u16) mac[1] << 8) | mac[0]; 188 189 W16(ep, sen_taddrh, taddrh); 190 W16(ep, sen_taddrm, taddrm); 191 W16(ep, sen_taddrl, taddrl); 192 scc_cr_cmd(fep, CPM_CR_SET_GADDR); 193 } 194 195 static void set_multicast_finish(struct net_device *dev) 196 { 197 struct fs_enet_private *fep = netdev_priv(dev); 198 scc_t __iomem *sccp = fep->scc.sccp; 199 scc_enet_t __iomem *ep = fep->scc.ep; 200 201 /* clear promiscuous always */ 202 C16(sccp, scc_psmr, SCC_PSMR_PRO); 203 204 /* if all multi or too many multicasts; just enable all */ 205 if ((dev->flags & IFF_ALLMULTI) != 0 || 206 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) { 207 208 W16(ep, sen_gaddr1, 0xffff); 209 W16(ep, sen_gaddr2, 0xffff); 210 W16(ep, sen_gaddr3, 0xffff); 211 W16(ep, sen_gaddr4, 0xffff); 212 } 213 } 214 215 static void set_multicast_list(struct net_device *dev) 216 { 217 struct netdev_hw_addr *ha; 218 219 if ((dev->flags & IFF_PROMISC) == 0) { 220 set_multicast_start(dev); 221 netdev_for_each_mc_addr(ha, dev) 222 set_multicast_one(dev, ha->addr); 223 set_multicast_finish(dev); 224 } else 225 set_promiscuous_mode(dev); 226 } 227 228 /* 229 * This function is called to start or restart the FEC during a link 230 * change. This only happens when switching between half and full 231 * duplex. 232 */ 233 static void restart(struct net_device *dev) 234 { 235 struct fs_enet_private *fep = netdev_priv(dev); 236 scc_t __iomem *sccp = fep->scc.sccp; 237 scc_enet_t __iomem *ep = fep->scc.ep; 238 const struct fs_platform_info *fpi = fep->fpi; 239 u16 paddrh, paddrm, paddrl; 240 const unsigned char *mac; 241 int i; 242 243 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 244 245 /* clear everything (slow & steady does it) */ 246 for (i = 0; i < sizeof(*ep); i++) 247 __fs_out8((u8 __iomem *)ep + i, 0); 248 249 /* point to bds */ 250 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr); 251 W16(ep, sen_genscc.scc_tbase, 252 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring); 253 254 /* Initialize function code registers for big-endian. 255 */ 256 #ifndef CONFIG_NOT_COHERENT_CACHE 257 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL); 258 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL); 259 #else 260 W8(ep, sen_genscc.scc_rfcr, SCC_EB); 261 W8(ep, sen_genscc.scc_tfcr, SCC_EB); 262 #endif 263 264 /* Set maximum bytes per receive buffer. 265 * This appears to be an Ethernet frame size, not the buffer 266 * fragment size. It must be a multiple of four. 267 */ 268 W16(ep, sen_genscc.scc_mrblr, 0x5f0); 269 270 /* Set CRC preset and mask. 271 */ 272 W32(ep, sen_cpres, 0xffffffff); 273 W32(ep, sen_cmask, 0xdebb20e3); 274 275 W32(ep, sen_crcec, 0); /* CRC Error counter */ 276 W32(ep, sen_alec, 0); /* alignment error counter */ 277 W32(ep, sen_disfc, 0); /* discard frame counter */ 278 279 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */ 280 W16(ep, sen_retlim, 15); /* Retry limit threshold */ 281 282 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */ 283 284 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ 285 286 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */ 287 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */ 288 289 /* Clear hash tables. 290 */ 291 W16(ep, sen_gaddr1, 0); 292 W16(ep, sen_gaddr2, 0); 293 W16(ep, sen_gaddr3, 0); 294 W16(ep, sen_gaddr4, 0); 295 W16(ep, sen_iaddr1, 0); 296 W16(ep, sen_iaddr2, 0); 297 W16(ep, sen_iaddr3, 0); 298 W16(ep, sen_iaddr4, 0); 299 300 /* set address 301 */ 302 mac = dev->dev_addr; 303 paddrh = ((u16) mac[5] << 8) | mac[4]; 304 paddrm = ((u16) mac[3] << 8) | mac[2]; 305 paddrl = ((u16) mac[1] << 8) | mac[0]; 306 307 W16(ep, sen_paddrh, paddrh); 308 W16(ep, sen_paddrm, paddrm); 309 W16(ep, sen_paddrl, paddrl); 310 311 W16(ep, sen_pper, 0); 312 W16(ep, sen_taddrl, 0); 313 W16(ep, sen_taddrm, 0); 314 W16(ep, sen_taddrh, 0); 315 316 fs_init_bds(dev); 317 318 scc_cr_cmd(fep, CPM_CR_INIT_TRX); 319 320 W16(sccp, scc_scce, 0xffff); 321 322 /* Enable interrupts we wish to service. 323 */ 324 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); 325 326 /* Set GSMR_H to enable all normal operating modes. 327 * Set GSMR_L to enable Ethernet to MC68160. 328 */ 329 W32(sccp, scc_gsmrh, 0); 330 W32(sccp, scc_gsmrl, 331 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | 332 SCC_GSMRL_MODE_ENET); 333 334 /* Set sync/delimiters. 335 */ 336 W16(sccp, scc_dsr, 0xd555); 337 338 /* Set processing mode. Use Ethernet CRC, catch broadcast, and 339 * start frame search 22 bit times after RENA. 340 */ 341 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22); 342 343 /* Set full duplex mode if needed */ 344 if (dev->phydev->duplex) 345 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE); 346 347 /* Restore multicast and promiscuous settings */ 348 set_multicast_list(dev); 349 350 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 351 } 352 353 static void stop(struct net_device *dev) 354 { 355 struct fs_enet_private *fep = netdev_priv(dev); 356 scc_t __iomem *sccp = fep->scc.sccp; 357 int i; 358 359 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++) 360 udelay(1); 361 362 if (i == SCC_RESET_DELAY) 363 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n"); 364 365 W16(sccp, scc_sccm, 0); 366 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 367 368 fs_cleanup_bds(dev); 369 } 370 371 static void napi_clear_event_fs(struct net_device *dev) 372 { 373 struct fs_enet_private *fep = netdev_priv(dev); 374 scc_t __iomem *sccp = fep->scc.sccp; 375 376 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK); 377 } 378 379 static void napi_enable_fs(struct net_device *dev) 380 { 381 struct fs_enet_private *fep = netdev_priv(dev); 382 scc_t __iomem *sccp = fep->scc.sccp; 383 384 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 385 } 386 387 static void napi_disable_fs(struct net_device *dev) 388 { 389 struct fs_enet_private *fep = netdev_priv(dev); 390 scc_t __iomem *sccp = fep->scc.sccp; 391 392 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 393 } 394 395 static void rx_bd_done(struct net_device *dev) 396 { 397 /* nothing */ 398 } 399 400 static void tx_kickstart(struct net_device *dev) 401 { 402 /* nothing */ 403 } 404 405 static u32 get_int_events(struct net_device *dev) 406 { 407 struct fs_enet_private *fep = netdev_priv(dev); 408 scc_t __iomem *sccp = fep->scc.sccp; 409 410 return (u32) R16(sccp, scc_scce); 411 } 412 413 static void clear_int_events(struct net_device *dev, u32 int_events) 414 { 415 struct fs_enet_private *fep = netdev_priv(dev); 416 scc_t __iomem *sccp = fep->scc.sccp; 417 418 W16(sccp, scc_scce, int_events & 0xffff); 419 } 420 421 static void ev_error(struct net_device *dev, u32 int_events) 422 { 423 struct fs_enet_private *fep = netdev_priv(dev); 424 425 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events); 426 } 427 428 static int get_regs(struct net_device *dev, void *p, int *sizep) 429 { 430 struct fs_enet_private *fep = netdev_priv(dev); 431 432 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *)) 433 return -EINVAL; 434 435 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t)); 436 p = (char *)p + sizeof(scc_t); 437 438 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *)); 439 440 return 0; 441 } 442 443 static int get_regs_len(struct net_device *dev) 444 { 445 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *); 446 } 447 448 static void tx_restart(struct net_device *dev) 449 { 450 struct fs_enet_private *fep = netdev_priv(dev); 451 452 scc_cr_cmd(fep, CPM_CR_RESTART_TX); 453 } 454 455 456 457 /*************************************************************************/ 458 459 const struct fs_ops fs_scc_ops = { 460 .setup_data = setup_data, 461 .cleanup_data = cleanup_data, 462 .set_multicast_list = set_multicast_list, 463 .restart = restart, 464 .stop = stop, 465 .napi_clear_event = napi_clear_event_fs, 466 .napi_enable = napi_enable_fs, 467 .napi_disable = napi_disable_fs, 468 .rx_bd_done = rx_bd_done, 469 .tx_kickstart = tx_kickstart, 470 .get_int_events = get_int_events, 471 .clear_int_events = clear_int_events, 472 .ev_error = ev_error, 473 .get_regs = get_regs, 474 .get_regs_len = get_regs_len, 475 .tx_restart = tx_restart, 476 .allocate_bd = allocate_bd, 477 .free_bd = free_bd, 478 }; 479