1 /* 2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/spinlock.h> 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/bitops.h> 31 #include <linux/fs.h> 32 #include <linux/platform_device.h> 33 #include <linux/of_address.h> 34 #include <linux/of_irq.h> 35 #include <linux/of_platform.h> 36 37 #include <asm/irq.h> 38 #include <linux/uaccess.h> 39 40 #include "fs_enet.h" 41 42 /*************************************************/ 43 #if defined(CONFIG_CPM1) 44 /* for a 8xx __raw_xxx's are sufficient */ 45 #define __fs_out32(addr, x) __raw_writel(x, addr) 46 #define __fs_out16(addr, x) __raw_writew(x, addr) 47 #define __fs_out8(addr, x) __raw_writeb(x, addr) 48 #define __fs_in32(addr) __raw_readl(addr) 49 #define __fs_in16(addr) __raw_readw(addr) 50 #define __fs_in8(addr) __raw_readb(addr) 51 #else 52 /* for others play it safe */ 53 #define __fs_out32(addr, x) out_be32(addr, x) 54 #define __fs_out16(addr, x) out_be16(addr, x) 55 #define __fs_in32(addr) in_be32(addr) 56 #define __fs_in16(addr) in_be16(addr) 57 #define __fs_out8(addr, x) out_8(addr, x) 58 #define __fs_in8(addr) in_8(addr) 59 #endif 60 61 /* write, read, set bits, clear bits */ 62 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v)) 63 #define R32(_p, _m) __fs_in32(&(_p)->_m) 64 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) 65 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) 66 67 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v)) 68 #define R16(_p, _m) __fs_in16(&(_p)->_m) 69 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) 70 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) 71 72 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v)) 73 #define R8(_p, _m) __fs_in8(&(_p)->_m) 74 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) 75 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) 76 77 #define SCC_MAX_MULTICAST_ADDRS 64 78 79 /* 80 * Delay to wait for SCC reset command to complete (in us) 81 */ 82 #define SCC_RESET_DELAY 50 83 84 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op) 85 { 86 const struct fs_platform_info *fpi = fep->fpi; 87 88 return cpm_command(fpi->cp_command, op); 89 } 90 91 static int do_pd_setup(struct fs_enet_private *fep) 92 { 93 struct platform_device *ofdev = to_platform_device(fep->dev); 94 95 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 96 if (!fep->interrupt) 97 return -EINVAL; 98 99 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0); 100 if (!fep->scc.sccp) 101 return -EINVAL; 102 103 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1); 104 if (!fep->scc.ep) { 105 iounmap(fep->scc.sccp); 106 return -EINVAL; 107 } 108 109 return 0; 110 } 111 112 #define SCC_NAPI_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB | SCCE_ENET_TXB) 113 #define SCC_EVENT (SCCE_ENET_RXF | SCCE_ENET_TXB) 114 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY) 115 116 static int setup_data(struct net_device *dev) 117 { 118 struct fs_enet_private *fep = netdev_priv(dev); 119 120 do_pd_setup(fep); 121 122 fep->scc.hthi = 0; 123 fep->scc.htlo = 0; 124 125 fep->ev_napi = SCC_NAPI_EVENT_MSK; 126 fep->ev = SCC_EVENT | SCCE_ENET_TXE; 127 fep->ev_err = SCC_ERR_EVENT_MSK; 128 129 return 0; 130 } 131 132 static int allocate_bd(struct net_device *dev) 133 { 134 struct fs_enet_private *fep = netdev_priv(dev); 135 const struct fs_platform_info *fpi = fep->fpi; 136 137 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) * 138 sizeof(cbd_t), 8); 139 if (IS_ERR_VALUE(fep->ring_mem_addr)) 140 return -ENOMEM; 141 142 fep->ring_base = (void __iomem __force*) 143 cpm_dpram_addr(fep->ring_mem_addr); 144 145 return 0; 146 } 147 148 static void free_bd(struct net_device *dev) 149 { 150 struct fs_enet_private *fep = netdev_priv(dev); 151 152 if (fep->ring_base) 153 cpm_dpfree(fep->ring_mem_addr); 154 } 155 156 static void cleanup_data(struct net_device *dev) 157 { 158 /* nothing */ 159 } 160 161 static void set_promiscuous_mode(struct net_device *dev) 162 { 163 struct fs_enet_private *fep = netdev_priv(dev); 164 scc_t __iomem *sccp = fep->scc.sccp; 165 166 S16(sccp, scc_psmr, SCC_PSMR_PRO); 167 } 168 169 static void set_multicast_start(struct net_device *dev) 170 { 171 struct fs_enet_private *fep = netdev_priv(dev); 172 scc_enet_t __iomem *ep = fep->scc.ep; 173 174 W16(ep, sen_gaddr1, 0); 175 W16(ep, sen_gaddr2, 0); 176 W16(ep, sen_gaddr3, 0); 177 W16(ep, sen_gaddr4, 0); 178 } 179 180 static void set_multicast_one(struct net_device *dev, const u8 * mac) 181 { 182 struct fs_enet_private *fep = netdev_priv(dev); 183 scc_enet_t __iomem *ep = fep->scc.ep; 184 u16 taddrh, taddrm, taddrl; 185 186 taddrh = ((u16) mac[5] << 8) | mac[4]; 187 taddrm = ((u16) mac[3] << 8) | mac[2]; 188 taddrl = ((u16) mac[1] << 8) | mac[0]; 189 190 W16(ep, sen_taddrh, taddrh); 191 W16(ep, sen_taddrm, taddrm); 192 W16(ep, sen_taddrl, taddrl); 193 scc_cr_cmd(fep, CPM_CR_SET_GADDR); 194 } 195 196 static void set_multicast_finish(struct net_device *dev) 197 { 198 struct fs_enet_private *fep = netdev_priv(dev); 199 scc_t __iomem *sccp = fep->scc.sccp; 200 scc_enet_t __iomem *ep = fep->scc.ep; 201 202 /* clear promiscuous always */ 203 C16(sccp, scc_psmr, SCC_PSMR_PRO); 204 205 /* if all multi or too many multicasts; just enable all */ 206 if ((dev->flags & IFF_ALLMULTI) != 0 || 207 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) { 208 209 W16(ep, sen_gaddr1, 0xffff); 210 W16(ep, sen_gaddr2, 0xffff); 211 W16(ep, sen_gaddr3, 0xffff); 212 W16(ep, sen_gaddr4, 0xffff); 213 } 214 } 215 216 static void set_multicast_list(struct net_device *dev) 217 { 218 struct netdev_hw_addr *ha; 219 220 if ((dev->flags & IFF_PROMISC) == 0) { 221 set_multicast_start(dev); 222 netdev_for_each_mc_addr(ha, dev) 223 set_multicast_one(dev, ha->addr); 224 set_multicast_finish(dev); 225 } else 226 set_promiscuous_mode(dev); 227 } 228 229 /* 230 * This function is called to start or restart the FEC during a link 231 * change. This only happens when switching between half and full 232 * duplex. 233 */ 234 static void restart(struct net_device *dev) 235 { 236 struct fs_enet_private *fep = netdev_priv(dev); 237 scc_t __iomem *sccp = fep->scc.sccp; 238 scc_enet_t __iomem *ep = fep->scc.ep; 239 const struct fs_platform_info *fpi = fep->fpi; 240 u16 paddrh, paddrm, paddrl; 241 const unsigned char *mac; 242 int i; 243 244 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 245 246 /* clear everything (slow & steady does it) */ 247 for (i = 0; i < sizeof(*ep); i++) 248 __fs_out8((u8 __iomem *)ep + i, 0); 249 250 /* point to bds */ 251 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr); 252 W16(ep, sen_genscc.scc_tbase, 253 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring); 254 255 /* Initialize function code registers for big-endian. 256 */ 257 #ifndef CONFIG_NOT_COHERENT_CACHE 258 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL); 259 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL); 260 #else 261 W8(ep, sen_genscc.scc_rfcr, SCC_EB); 262 W8(ep, sen_genscc.scc_tfcr, SCC_EB); 263 #endif 264 265 /* Set maximum bytes per receive buffer. 266 * This appears to be an Ethernet frame size, not the buffer 267 * fragment size. It must be a multiple of four. 268 */ 269 W16(ep, sen_genscc.scc_mrblr, 0x5f0); 270 271 /* Set CRC preset and mask. 272 */ 273 W32(ep, sen_cpres, 0xffffffff); 274 W32(ep, sen_cmask, 0xdebb20e3); 275 276 W32(ep, sen_crcec, 0); /* CRC Error counter */ 277 W32(ep, sen_alec, 0); /* alignment error counter */ 278 W32(ep, sen_disfc, 0); /* discard frame counter */ 279 280 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */ 281 W16(ep, sen_retlim, 15); /* Retry limit threshold */ 282 283 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */ 284 285 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ 286 287 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */ 288 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */ 289 290 /* Clear hash tables. 291 */ 292 W16(ep, sen_gaddr1, 0); 293 W16(ep, sen_gaddr2, 0); 294 W16(ep, sen_gaddr3, 0); 295 W16(ep, sen_gaddr4, 0); 296 W16(ep, sen_iaddr1, 0); 297 W16(ep, sen_iaddr2, 0); 298 W16(ep, sen_iaddr3, 0); 299 W16(ep, sen_iaddr4, 0); 300 301 /* set address 302 */ 303 mac = dev->dev_addr; 304 paddrh = ((u16) mac[5] << 8) | mac[4]; 305 paddrm = ((u16) mac[3] << 8) | mac[2]; 306 paddrl = ((u16) mac[1] << 8) | mac[0]; 307 308 W16(ep, sen_paddrh, paddrh); 309 W16(ep, sen_paddrm, paddrm); 310 W16(ep, sen_paddrl, paddrl); 311 312 W16(ep, sen_pper, 0); 313 W16(ep, sen_taddrl, 0); 314 W16(ep, sen_taddrm, 0); 315 W16(ep, sen_taddrh, 0); 316 317 fs_init_bds(dev); 318 319 scc_cr_cmd(fep, CPM_CR_INIT_TRX); 320 321 W16(sccp, scc_scce, 0xffff); 322 323 /* Enable interrupts we wish to service. 324 */ 325 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); 326 327 /* Set GSMR_H to enable all normal operating modes. 328 * Set GSMR_L to enable Ethernet to MC68160. 329 */ 330 W32(sccp, scc_gsmrh, 0); 331 W32(sccp, scc_gsmrl, 332 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | 333 SCC_GSMRL_MODE_ENET); 334 335 /* Set sync/delimiters. 336 */ 337 W16(sccp, scc_dsr, 0xd555); 338 339 /* Set processing mode. Use Ethernet CRC, catch broadcast, and 340 * start frame search 22 bit times after RENA. 341 */ 342 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22); 343 344 /* Set full duplex mode if needed */ 345 if (dev->phydev->duplex) 346 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE); 347 348 /* Restore multicast and promiscuous settings */ 349 set_multicast_list(dev); 350 351 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 352 } 353 354 static void stop(struct net_device *dev) 355 { 356 struct fs_enet_private *fep = netdev_priv(dev); 357 scc_t __iomem *sccp = fep->scc.sccp; 358 int i; 359 360 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++) 361 udelay(1); 362 363 if (i == SCC_RESET_DELAY) 364 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n"); 365 366 W16(sccp, scc_sccm, 0); 367 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 368 369 fs_cleanup_bds(dev); 370 } 371 372 static void napi_clear_event_fs(struct net_device *dev) 373 { 374 struct fs_enet_private *fep = netdev_priv(dev); 375 scc_t __iomem *sccp = fep->scc.sccp; 376 377 W16(sccp, scc_scce, SCC_NAPI_EVENT_MSK); 378 } 379 380 static void napi_enable_fs(struct net_device *dev) 381 { 382 struct fs_enet_private *fep = netdev_priv(dev); 383 scc_t __iomem *sccp = fep->scc.sccp; 384 385 S16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 386 } 387 388 static void napi_disable_fs(struct net_device *dev) 389 { 390 struct fs_enet_private *fep = netdev_priv(dev); 391 scc_t __iomem *sccp = fep->scc.sccp; 392 393 C16(sccp, scc_sccm, SCC_NAPI_EVENT_MSK); 394 } 395 396 static void rx_bd_done(struct net_device *dev) 397 { 398 /* nothing */ 399 } 400 401 static void tx_kickstart(struct net_device *dev) 402 { 403 /* nothing */ 404 } 405 406 static u32 get_int_events(struct net_device *dev) 407 { 408 struct fs_enet_private *fep = netdev_priv(dev); 409 scc_t __iomem *sccp = fep->scc.sccp; 410 411 return (u32) R16(sccp, scc_scce); 412 } 413 414 static void clear_int_events(struct net_device *dev, u32 int_events) 415 { 416 struct fs_enet_private *fep = netdev_priv(dev); 417 scc_t __iomem *sccp = fep->scc.sccp; 418 419 W16(sccp, scc_scce, int_events & 0xffff); 420 } 421 422 static void ev_error(struct net_device *dev, u32 int_events) 423 { 424 struct fs_enet_private *fep = netdev_priv(dev); 425 426 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events); 427 } 428 429 static int get_regs(struct net_device *dev, void *p, int *sizep) 430 { 431 struct fs_enet_private *fep = netdev_priv(dev); 432 433 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *)) 434 return -EINVAL; 435 436 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t)); 437 p = (char *)p + sizeof(scc_t); 438 439 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *)); 440 441 return 0; 442 } 443 444 static int get_regs_len(struct net_device *dev) 445 { 446 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *); 447 } 448 449 static void tx_restart(struct net_device *dev) 450 { 451 struct fs_enet_private *fep = netdev_priv(dev); 452 453 scc_cr_cmd(fep, CPM_CR_RESTART_TX); 454 } 455 456 457 458 /*************************************************************************/ 459 460 const struct fs_ops fs_scc_ops = { 461 .setup_data = setup_data, 462 .cleanup_data = cleanup_data, 463 .set_multicast_list = set_multicast_list, 464 .restart = restart, 465 .stop = stop, 466 .napi_clear_event = napi_clear_event_fs, 467 .napi_enable = napi_enable_fs, 468 .napi_disable = napi_disable_fs, 469 .rx_bd_done = rx_bd_done, 470 .tx_kickstart = tx_kickstart, 471 .get_int_events = get_int_events, 472 .clear_int_events = clear_int_events, 473 .ev_error = ev_error, 474 .get_regs = get_regs, 475 .get_regs_len = get_regs_len, 476 .tx_restart = tx_restart, 477 .allocate_bd = allocate_bd, 478 .free_bd = free_bd, 479 }; 480