1 /* 2 * Ethernet on Serial Communications Controller (SCC) driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/init.h> 24 #include <linux/delay.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/spinlock.h> 29 #include <linux/mii.h> 30 #include <linux/ethtool.h> 31 #include <linux/bitops.h> 32 #include <linux/fs.h> 33 #include <linux/platform_device.h> 34 #include <linux/of_address.h> 35 #include <linux/of_irq.h> 36 #include <linux/of_platform.h> 37 38 #include <asm/irq.h> 39 #include <asm/uaccess.h> 40 41 #ifdef CONFIG_8xx 42 #include <asm/8xx_immap.h> 43 #include <asm/pgtable.h> 44 #include <asm/mpc8xx.h> 45 #include <asm/cpm1.h> 46 #endif 47 48 #include "fs_enet.h" 49 50 /*************************************************/ 51 #if defined(CONFIG_CPM1) 52 /* for a 8xx __raw_xxx's are sufficient */ 53 #define __fs_out32(addr, x) __raw_writel(x, addr) 54 #define __fs_out16(addr, x) __raw_writew(x, addr) 55 #define __fs_out8(addr, x) __raw_writeb(x, addr) 56 #define __fs_in32(addr) __raw_readl(addr) 57 #define __fs_in16(addr) __raw_readw(addr) 58 #define __fs_in8(addr) __raw_readb(addr) 59 #else 60 /* for others play it safe */ 61 #define __fs_out32(addr, x) out_be32(addr, x) 62 #define __fs_out16(addr, x) out_be16(addr, x) 63 #define __fs_in32(addr) in_be32(addr) 64 #define __fs_in16(addr) in_be16(addr) 65 #define __fs_out8(addr, x) out_8(addr, x) 66 #define __fs_in8(addr) in_8(addr) 67 #endif 68 69 /* write, read, set bits, clear bits */ 70 #define W32(_p, _m, _v) __fs_out32(&(_p)->_m, (_v)) 71 #define R32(_p, _m) __fs_in32(&(_p)->_m) 72 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) 73 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) 74 75 #define W16(_p, _m, _v) __fs_out16(&(_p)->_m, (_v)) 76 #define R16(_p, _m) __fs_in16(&(_p)->_m) 77 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) 78 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) 79 80 #define W8(_p, _m, _v) __fs_out8(&(_p)->_m, (_v)) 81 #define R8(_p, _m) __fs_in8(&(_p)->_m) 82 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) 83 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) 84 85 #define SCC_MAX_MULTICAST_ADDRS 64 86 87 /* 88 * Delay to wait for SCC reset command to complete (in us) 89 */ 90 #define SCC_RESET_DELAY 50 91 92 static inline int scc_cr_cmd(struct fs_enet_private *fep, u32 op) 93 { 94 const struct fs_platform_info *fpi = fep->fpi; 95 96 return cpm_command(fpi->cp_command, op); 97 } 98 99 static int do_pd_setup(struct fs_enet_private *fep) 100 { 101 struct platform_device *ofdev = to_platform_device(fep->dev); 102 103 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 104 if (fep->interrupt == NO_IRQ) 105 return -EINVAL; 106 107 fep->scc.sccp = of_iomap(ofdev->dev.of_node, 0); 108 if (!fep->scc.sccp) 109 return -EINVAL; 110 111 fep->scc.ep = of_iomap(ofdev->dev.of_node, 1); 112 if (!fep->scc.ep) { 113 iounmap(fep->scc.sccp); 114 return -EINVAL; 115 } 116 117 return 0; 118 } 119 120 #define SCC_NAPI_RX_EVENT_MSK (SCCE_ENET_RXF | SCCE_ENET_RXB) 121 #define SCC_RX_EVENT (SCCE_ENET_RXF) 122 #define SCC_TX_EVENT (SCCE_ENET_TXB) 123 #define SCC_ERR_EVENT_MSK (SCCE_ENET_TXE | SCCE_ENET_BSY) 124 125 static int setup_data(struct net_device *dev) 126 { 127 struct fs_enet_private *fep = netdev_priv(dev); 128 129 do_pd_setup(fep); 130 131 fep->scc.hthi = 0; 132 fep->scc.htlo = 0; 133 134 fep->ev_napi_rx = SCC_NAPI_RX_EVENT_MSK; 135 fep->ev_rx = SCC_RX_EVENT; 136 fep->ev_tx = SCC_TX_EVENT | SCCE_ENET_TXE; 137 fep->ev_err = SCC_ERR_EVENT_MSK; 138 139 return 0; 140 } 141 142 static int allocate_bd(struct net_device *dev) 143 { 144 struct fs_enet_private *fep = netdev_priv(dev); 145 const struct fs_platform_info *fpi = fep->fpi; 146 147 fep->ring_mem_addr = cpm_dpalloc((fpi->tx_ring + fpi->rx_ring) * 148 sizeof(cbd_t), 8); 149 if (IS_ERR_VALUE(fep->ring_mem_addr)) 150 return -ENOMEM; 151 152 fep->ring_base = (void __iomem __force*) 153 cpm_dpram_addr(fep->ring_mem_addr); 154 155 return 0; 156 } 157 158 static void free_bd(struct net_device *dev) 159 { 160 struct fs_enet_private *fep = netdev_priv(dev); 161 162 if (fep->ring_base) 163 cpm_dpfree(fep->ring_mem_addr); 164 } 165 166 static void cleanup_data(struct net_device *dev) 167 { 168 /* nothing */ 169 } 170 171 static void set_promiscuous_mode(struct net_device *dev) 172 { 173 struct fs_enet_private *fep = netdev_priv(dev); 174 scc_t __iomem *sccp = fep->scc.sccp; 175 176 S16(sccp, scc_psmr, SCC_PSMR_PRO); 177 } 178 179 static void set_multicast_start(struct net_device *dev) 180 { 181 struct fs_enet_private *fep = netdev_priv(dev); 182 scc_enet_t __iomem *ep = fep->scc.ep; 183 184 W16(ep, sen_gaddr1, 0); 185 W16(ep, sen_gaddr2, 0); 186 W16(ep, sen_gaddr3, 0); 187 W16(ep, sen_gaddr4, 0); 188 } 189 190 static void set_multicast_one(struct net_device *dev, const u8 * mac) 191 { 192 struct fs_enet_private *fep = netdev_priv(dev); 193 scc_enet_t __iomem *ep = fep->scc.ep; 194 u16 taddrh, taddrm, taddrl; 195 196 taddrh = ((u16) mac[5] << 8) | mac[4]; 197 taddrm = ((u16) mac[3] << 8) | mac[2]; 198 taddrl = ((u16) mac[1] << 8) | mac[0]; 199 200 W16(ep, sen_taddrh, taddrh); 201 W16(ep, sen_taddrm, taddrm); 202 W16(ep, sen_taddrl, taddrl); 203 scc_cr_cmd(fep, CPM_CR_SET_GADDR); 204 } 205 206 static void set_multicast_finish(struct net_device *dev) 207 { 208 struct fs_enet_private *fep = netdev_priv(dev); 209 scc_t __iomem *sccp = fep->scc.sccp; 210 scc_enet_t __iomem *ep = fep->scc.ep; 211 212 /* clear promiscuous always */ 213 C16(sccp, scc_psmr, SCC_PSMR_PRO); 214 215 /* if all multi or too many multicasts; just enable all */ 216 if ((dev->flags & IFF_ALLMULTI) != 0 || 217 netdev_mc_count(dev) > SCC_MAX_MULTICAST_ADDRS) { 218 219 W16(ep, sen_gaddr1, 0xffff); 220 W16(ep, sen_gaddr2, 0xffff); 221 W16(ep, sen_gaddr3, 0xffff); 222 W16(ep, sen_gaddr4, 0xffff); 223 } 224 } 225 226 static void set_multicast_list(struct net_device *dev) 227 { 228 struct netdev_hw_addr *ha; 229 230 if ((dev->flags & IFF_PROMISC) == 0) { 231 set_multicast_start(dev); 232 netdev_for_each_mc_addr(ha, dev) 233 set_multicast_one(dev, ha->addr); 234 set_multicast_finish(dev); 235 } else 236 set_promiscuous_mode(dev); 237 } 238 239 /* 240 * This function is called to start or restart the FEC during a link 241 * change. This only happens when switching between half and full 242 * duplex. 243 */ 244 static void restart(struct net_device *dev) 245 { 246 struct fs_enet_private *fep = netdev_priv(dev); 247 scc_t __iomem *sccp = fep->scc.sccp; 248 scc_enet_t __iomem *ep = fep->scc.ep; 249 const struct fs_platform_info *fpi = fep->fpi; 250 u16 paddrh, paddrm, paddrl; 251 const unsigned char *mac; 252 int i; 253 254 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 255 256 /* clear everything (slow & steady does it) */ 257 for (i = 0; i < sizeof(*ep); i++) 258 __fs_out8((u8 __iomem *)ep + i, 0); 259 260 /* point to bds */ 261 W16(ep, sen_genscc.scc_rbase, fep->ring_mem_addr); 262 W16(ep, sen_genscc.scc_tbase, 263 fep->ring_mem_addr + sizeof(cbd_t) * fpi->rx_ring); 264 265 /* Initialize function code registers for big-endian. 266 */ 267 #ifndef CONFIG_NOT_COHERENT_CACHE 268 W8(ep, sen_genscc.scc_rfcr, SCC_EB | SCC_GBL); 269 W8(ep, sen_genscc.scc_tfcr, SCC_EB | SCC_GBL); 270 #else 271 W8(ep, sen_genscc.scc_rfcr, SCC_EB); 272 W8(ep, sen_genscc.scc_tfcr, SCC_EB); 273 #endif 274 275 /* Set maximum bytes per receive buffer. 276 * This appears to be an Ethernet frame size, not the buffer 277 * fragment size. It must be a multiple of four. 278 */ 279 W16(ep, sen_genscc.scc_mrblr, 0x5f0); 280 281 /* Set CRC preset and mask. 282 */ 283 W32(ep, sen_cpres, 0xffffffff); 284 W32(ep, sen_cmask, 0xdebb20e3); 285 286 W32(ep, sen_crcec, 0); /* CRC Error counter */ 287 W32(ep, sen_alec, 0); /* alignment error counter */ 288 W32(ep, sen_disfc, 0); /* discard frame counter */ 289 290 W16(ep, sen_pads, 0x8888); /* Tx short frame pad character */ 291 W16(ep, sen_retlim, 15); /* Retry limit threshold */ 292 293 W16(ep, sen_maxflr, 0x5ee); /* maximum frame length register */ 294 295 W16(ep, sen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ 296 297 W16(ep, sen_maxd1, 0x000005f0); /* maximum DMA1 length */ 298 W16(ep, sen_maxd2, 0x000005f0); /* maximum DMA2 length */ 299 300 /* Clear hash tables. 301 */ 302 W16(ep, sen_gaddr1, 0); 303 W16(ep, sen_gaddr2, 0); 304 W16(ep, sen_gaddr3, 0); 305 W16(ep, sen_gaddr4, 0); 306 W16(ep, sen_iaddr1, 0); 307 W16(ep, sen_iaddr2, 0); 308 W16(ep, sen_iaddr3, 0); 309 W16(ep, sen_iaddr4, 0); 310 311 /* set address 312 */ 313 mac = dev->dev_addr; 314 paddrh = ((u16) mac[5] << 8) | mac[4]; 315 paddrm = ((u16) mac[3] << 8) | mac[2]; 316 paddrl = ((u16) mac[1] << 8) | mac[0]; 317 318 W16(ep, sen_paddrh, paddrh); 319 W16(ep, sen_paddrm, paddrm); 320 W16(ep, sen_paddrl, paddrl); 321 322 W16(ep, sen_pper, 0); 323 W16(ep, sen_taddrl, 0); 324 W16(ep, sen_taddrm, 0); 325 W16(ep, sen_taddrh, 0); 326 327 fs_init_bds(dev); 328 329 scc_cr_cmd(fep, CPM_CR_INIT_TRX); 330 331 W16(sccp, scc_scce, 0xffff); 332 333 /* Enable interrupts we wish to service. 334 */ 335 W16(sccp, scc_sccm, SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); 336 337 /* Set GSMR_H to enable all normal operating modes. 338 * Set GSMR_L to enable Ethernet to MC68160. 339 */ 340 W32(sccp, scc_gsmrh, 0); 341 W32(sccp, scc_gsmrl, 342 SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | 343 SCC_GSMRL_MODE_ENET); 344 345 /* Set sync/delimiters. 346 */ 347 W16(sccp, scc_dsr, 0xd555); 348 349 /* Set processing mode. Use Ethernet CRC, catch broadcast, and 350 * start frame search 22 bit times after RENA. 351 */ 352 W16(sccp, scc_psmr, SCC_PSMR_ENCRC | SCC_PSMR_NIB22); 353 354 /* Set full duplex mode if needed */ 355 if (fep->phydev->duplex) 356 S16(sccp, scc_psmr, SCC_PSMR_LPB | SCC_PSMR_FDE); 357 358 S32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 359 } 360 361 static void stop(struct net_device *dev) 362 { 363 struct fs_enet_private *fep = netdev_priv(dev); 364 scc_t __iomem *sccp = fep->scc.sccp; 365 int i; 366 367 for (i = 0; (R16(sccp, scc_sccm) == 0) && i < SCC_RESET_DELAY; i++) 368 udelay(1); 369 370 if (i == SCC_RESET_DELAY) 371 dev_warn(fep->dev, "SCC timeout on graceful transmit stop\n"); 372 373 W16(sccp, scc_sccm, 0); 374 C32(sccp, scc_gsmrl, SCC_GSMRL_ENR | SCC_GSMRL_ENT); 375 376 fs_cleanup_bds(dev); 377 } 378 379 static void napi_clear_rx_event(struct net_device *dev) 380 { 381 struct fs_enet_private *fep = netdev_priv(dev); 382 scc_t __iomem *sccp = fep->scc.sccp; 383 384 W16(sccp, scc_scce, SCC_NAPI_RX_EVENT_MSK); 385 } 386 387 static void napi_enable_rx(struct net_device *dev) 388 { 389 struct fs_enet_private *fep = netdev_priv(dev); 390 scc_t __iomem *sccp = fep->scc.sccp; 391 392 S16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK); 393 } 394 395 static void napi_disable_rx(struct net_device *dev) 396 { 397 struct fs_enet_private *fep = netdev_priv(dev); 398 scc_t __iomem *sccp = fep->scc.sccp; 399 400 C16(sccp, scc_sccm, SCC_NAPI_RX_EVENT_MSK); 401 } 402 403 static void rx_bd_done(struct net_device *dev) 404 { 405 /* nothing */ 406 } 407 408 static void tx_kickstart(struct net_device *dev) 409 { 410 /* nothing */ 411 } 412 413 static u32 get_int_events(struct net_device *dev) 414 { 415 struct fs_enet_private *fep = netdev_priv(dev); 416 scc_t __iomem *sccp = fep->scc.sccp; 417 418 return (u32) R16(sccp, scc_scce); 419 } 420 421 static void clear_int_events(struct net_device *dev, u32 int_events) 422 { 423 struct fs_enet_private *fep = netdev_priv(dev); 424 scc_t __iomem *sccp = fep->scc.sccp; 425 426 W16(sccp, scc_scce, int_events & 0xffff); 427 } 428 429 static void ev_error(struct net_device *dev, u32 int_events) 430 { 431 struct fs_enet_private *fep = netdev_priv(dev); 432 433 dev_warn(fep->dev, "SCC ERROR(s) 0x%x\n", int_events); 434 } 435 436 static int get_regs(struct net_device *dev, void *p, int *sizep) 437 { 438 struct fs_enet_private *fep = netdev_priv(dev); 439 440 if (*sizep < sizeof(scc_t) + sizeof(scc_enet_t __iomem *)) 441 return -EINVAL; 442 443 memcpy_fromio(p, fep->scc.sccp, sizeof(scc_t)); 444 p = (char *)p + sizeof(scc_t); 445 446 memcpy_fromio(p, fep->scc.ep, sizeof(scc_enet_t __iomem *)); 447 448 return 0; 449 } 450 451 static int get_regs_len(struct net_device *dev) 452 { 453 return sizeof(scc_t) + sizeof(scc_enet_t __iomem *); 454 } 455 456 static void tx_restart(struct net_device *dev) 457 { 458 struct fs_enet_private *fep = netdev_priv(dev); 459 460 scc_cr_cmd(fep, CPM_CR_RESTART_TX); 461 } 462 463 464 465 /*************************************************************************/ 466 467 const struct fs_ops fs_scc_ops = { 468 .setup_data = setup_data, 469 .cleanup_data = cleanup_data, 470 .set_multicast_list = set_multicast_list, 471 .restart = restart, 472 .stop = stop, 473 .napi_clear_rx_event = napi_clear_rx_event, 474 .napi_enable_rx = napi_enable_rx, 475 .napi_disable_rx = napi_disable_rx, 476 .rx_bd_done = rx_bd_done, 477 .tx_kickstart = tx_kickstart, 478 .get_int_events = get_int_events, 479 .clear_int_events = clear_int_events, 480 .ev_error = ev_error, 481 .get_regs = get_regs, 482 .get_regs_len = get_regs_len, 483 .tx_restart = tx_restart, 484 .allocate_bd = allocate_bd, 485 .free_bd = free_bd, 486 }; 487