1 /*
2  * Freescale Ethernet controllers
3  *
4  * Copyright (c) 2005 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_device.h>
35 #include <linux/gfp.h>
36 
37 #include <asm/irq.h>
38 #include <asm/uaccess.h>
39 
40 #ifdef CONFIG_8xx
41 #include <asm/8xx_immap.h>
42 #include <asm/pgtable.h>
43 #include <asm/mpc8xx.h>
44 #include <asm/cpm1.h>
45 #endif
46 
47 #include "fs_enet.h"
48 #include "fec.h"
49 
50 /*************************************************/
51 
52 #if defined(CONFIG_CPM1)
53 /* for a CPM1 __raw_xxx's are sufficient */
54 #define __fs_out32(addr, x)	__raw_writel(x, addr)
55 #define __fs_out16(addr, x)	__raw_writew(x, addr)
56 #define __fs_in32(addr)	__raw_readl(addr)
57 #define __fs_in16(addr)	__raw_readw(addr)
58 #else
59 /* for others play it safe */
60 #define __fs_out32(addr, x)	out_be32(addr, x)
61 #define __fs_out16(addr, x)	out_be16(addr, x)
62 #define __fs_in32(addr)	in_be32(addr)
63 #define __fs_in16(addr)	in_be16(addr)
64 #endif
65 
66 /* write */
67 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
68 
69 /* read */
70 #define FR(_fecp, _reg)	__fs_in32(&(_fecp)->fec_ ## _reg)
71 
72 /* set bits */
73 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
74 
75 /* clear bits */
76 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
77 
78 /*
79  * Delay to wait for FEC reset command to complete (in us)
80  */
81 #define FEC_RESET_DELAY		50
82 
83 static int whack_reset(struct fec __iomem *fecp)
84 {
85 	int i;
86 
87 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
88 	for (i = 0; i < FEC_RESET_DELAY; i++) {
89 		if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
90 			return 0;	/* OK */
91 		udelay(1);
92 	}
93 
94 	return -1;
95 }
96 
97 static int do_pd_setup(struct fs_enet_private *fep)
98 {
99 	struct platform_device *ofdev = to_platform_device(fep->dev);
100 
101 	fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
102 	if (fep->interrupt == NO_IRQ)
103 		return -EINVAL;
104 
105 	fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
106 	if (!fep->fcc.fccp)
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 #define FEC_NAPI_RX_EVENT_MSK	(FEC_ENET_RXF | FEC_ENET_RXB)
113 #define FEC_RX_EVENT		(FEC_ENET_RXF)
114 #define FEC_TX_EVENT		(FEC_ENET_TXF)
115 #define FEC_ERR_EVENT_MSK	(FEC_ENET_HBERR | FEC_ENET_BABR | \
116 				 FEC_ENET_BABT | FEC_ENET_EBERR)
117 
118 static int setup_data(struct net_device *dev)
119 {
120 	struct fs_enet_private *fep = netdev_priv(dev);
121 
122 	if (do_pd_setup(fep) != 0)
123 		return -EINVAL;
124 
125 	fep->fec.hthi = 0;
126 	fep->fec.htlo = 0;
127 
128 	fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK;
129 	fep->ev_rx = FEC_RX_EVENT;
130 	fep->ev_tx = FEC_TX_EVENT;
131 	fep->ev_err = FEC_ERR_EVENT_MSK;
132 
133 	return 0;
134 }
135 
136 static int allocate_bd(struct net_device *dev)
137 {
138 	struct fs_enet_private *fep = netdev_priv(dev);
139 	const struct fs_platform_info *fpi = fep->fpi;
140 
141 	fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
142 					    (fpi->tx_ring + fpi->rx_ring) *
143 					    sizeof(cbd_t), &fep->ring_mem_addr,
144 					    GFP_KERNEL);
145 	if (fep->ring_base == NULL)
146 		return -ENOMEM;
147 
148 	return 0;
149 }
150 
151 static void free_bd(struct net_device *dev)
152 {
153 	struct fs_enet_private *fep = netdev_priv(dev);
154 	const struct fs_platform_info *fpi = fep->fpi;
155 
156 	if(fep->ring_base)
157 		dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
158 					* sizeof(cbd_t),
159 					(void __force *)fep->ring_base,
160 					fep->ring_mem_addr);
161 }
162 
163 static void cleanup_data(struct net_device *dev)
164 {
165 	/* nothing */
166 }
167 
168 static void set_promiscuous_mode(struct net_device *dev)
169 {
170 	struct fs_enet_private *fep = netdev_priv(dev);
171 	struct fec __iomem *fecp = fep->fec.fecp;
172 
173 	FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
174 }
175 
176 static void set_multicast_start(struct net_device *dev)
177 {
178 	struct fs_enet_private *fep = netdev_priv(dev);
179 
180 	fep->fec.hthi = 0;
181 	fep->fec.htlo = 0;
182 }
183 
184 static void set_multicast_one(struct net_device *dev, const u8 *mac)
185 {
186 	struct fs_enet_private *fep = netdev_priv(dev);
187 	int temp, hash_index, i, j;
188 	u32 crc, csrVal;
189 	u8 byte, msb;
190 
191 	crc = 0xffffffff;
192 	for (i = 0; i < 6; i++) {
193 		byte = mac[i];
194 		for (j = 0; j < 8; j++) {
195 			msb = crc >> 31;
196 			crc <<= 1;
197 			if (msb ^ (byte & 0x1))
198 				crc ^= FEC_CRC_POLY;
199 			byte >>= 1;
200 		}
201 	}
202 
203 	temp = (crc & 0x3f) >> 1;
204 	hash_index = ((temp & 0x01) << 4) |
205 		     ((temp & 0x02) << 2) |
206 		     ((temp & 0x04)) |
207 		     ((temp & 0x08) >> 2) |
208 		     ((temp & 0x10) >> 4);
209 	csrVal = 1 << hash_index;
210 	if (crc & 1)
211 		fep->fec.hthi |= csrVal;
212 	else
213 		fep->fec.htlo |= csrVal;
214 }
215 
216 static void set_multicast_finish(struct net_device *dev)
217 {
218 	struct fs_enet_private *fep = netdev_priv(dev);
219 	struct fec __iomem *fecp = fep->fec.fecp;
220 
221 	/* if all multi or too many multicasts; just enable all */
222 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
223 	    netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
224 		fep->fec.hthi = 0xffffffffU;
225 		fep->fec.htlo = 0xffffffffU;
226 	}
227 
228 	FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
229 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
230 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
231 }
232 
233 static void set_multicast_list(struct net_device *dev)
234 {
235 	struct netdev_hw_addr *ha;
236 
237 	if ((dev->flags & IFF_PROMISC) == 0) {
238 		set_multicast_start(dev);
239 		netdev_for_each_mc_addr(ha, dev)
240 			set_multicast_one(dev, ha->addr);
241 		set_multicast_finish(dev);
242 	} else
243 		set_promiscuous_mode(dev);
244 }
245 
246 static void restart(struct net_device *dev)
247 {
248 	struct fs_enet_private *fep = netdev_priv(dev);
249 	struct fec __iomem *fecp = fep->fec.fecp;
250 	const struct fs_platform_info *fpi = fep->fpi;
251 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
252 	int r;
253 	u32 addrhi, addrlo;
254 
255 	struct mii_bus* mii = fep->phydev->bus;
256 	struct fec_info* fec_inf = mii->priv;
257 
258 	r = whack_reset(fep->fec.fecp);
259 	if (r != 0)
260 		dev_err(fep->dev, "FEC Reset FAILED!\n");
261 	/*
262 	 * Set station address.
263 	 */
264 	addrhi = ((u32) dev->dev_addr[0] << 24) |
265 		 ((u32) dev->dev_addr[1] << 16) |
266 		 ((u32) dev->dev_addr[2] <<  8) |
267 		  (u32) dev->dev_addr[3];
268 	addrlo = ((u32) dev->dev_addr[4] << 24) |
269 		 ((u32) dev->dev_addr[5] << 16);
270 	FW(fecp, addr_low, addrhi);
271 	FW(fecp, addr_high, addrlo);
272 
273 	/*
274 	 * Reset all multicast.
275 	 */
276 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
277 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
278 
279 	/*
280 	 * Set maximum receive buffer size.
281 	 */
282 	FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
283 #ifdef CONFIG_FS_ENET_MPC5121_FEC
284 	FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
285 #else
286 	FW(fecp, r_hash, PKT_MAXBUF_SIZE);
287 #endif
288 
289 	/* get physical address */
290 	rx_bd_base_phys = fep->ring_mem_addr;
291 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
292 
293 	/*
294 	 * Set receive and transmit descriptor base.
295 	 */
296 	FW(fecp, r_des_start, rx_bd_base_phys);
297 	FW(fecp, x_des_start, tx_bd_base_phys);
298 
299 	fs_init_bds(dev);
300 
301 	/*
302 	 * Enable big endian and don't care about SDMA FC.
303 	 */
304 #ifdef CONFIG_FS_ENET_MPC5121_FEC
305 	FS(fecp, dma_control, 0xC0000000);
306 #else
307 	FW(fecp, fun_code, 0x78000000);
308 #endif
309 
310 	/*
311 	 * Set MII speed.
312 	 */
313 	FW(fecp, mii_speed, fec_inf->mii_speed);
314 
315 	/*
316 	 * Clear any outstanding interrupt.
317 	 */
318 	FW(fecp, ievent, 0xffc0);
319 #ifndef CONFIG_FS_ENET_MPC5121_FEC
320 	FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
321 
322 	FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE);	/* MII enable */
323 #else
324 	/*
325 	 * Only set MII/RMII mode - do not touch maximum frame length
326 	 * configured before.
327 	 */
328 	FS(fecp, r_cntrl, fpi->use_rmii ?
329 			FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
330 #endif
331 	/*
332 	 * adjust to duplex mode
333 	 */
334 	if (fep->phydev->duplex) {
335 		FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
336 		FS(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD enable */
337 	} else {
338 		FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
339 		FC(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD disable */
340 	}
341 
342 	/*
343 	 * Enable interrupts we wish to service.
344 	 */
345 	FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
346 	   FEC_ENET_RXF | FEC_ENET_RXB);
347 
348 	/*
349 	 * And last, enable the transmit and receive processing.
350 	 */
351 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
352 	FW(fecp, r_des_active, 0x01000000);
353 }
354 
355 static void stop(struct net_device *dev)
356 {
357 	struct fs_enet_private *fep = netdev_priv(dev);
358 	const struct fs_platform_info *fpi = fep->fpi;
359 	struct fec __iomem *fecp = fep->fec.fecp;
360 
361 	struct fec_info* feci= fep->phydev->bus->priv;
362 
363 	int i;
364 
365 	if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
366 		return;		/* already down */
367 
368 	FW(fecp, x_cntrl, 0x01);	/* Graceful transmit stop */
369 	for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
370 	     i < FEC_RESET_DELAY; i++)
371 		udelay(1);
372 
373 	if (i == FEC_RESET_DELAY)
374 		dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
375 	/*
376 	 * Disable FEC. Let only MII interrupts.
377 	 */
378 	FW(fecp, imask, 0);
379 	FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
380 
381 	fs_cleanup_bds(dev);
382 
383 	/* shut down FEC1? that's where the mii bus is */
384 	if (fpi->has_phy) {
385 		FS(fecp, r_cntrl, fpi->use_rmii ?
386 				FEC_RCNTRL_RMII_MODE :
387 				FEC_RCNTRL_MII_MODE);	/* MII/RMII enable */
388 		FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
389 		FW(fecp, ievent, FEC_ENET_MII);
390 		FW(fecp, mii_speed, feci->mii_speed);
391 	}
392 }
393 
394 static void napi_clear_rx_event(struct net_device *dev)
395 {
396 	struct fs_enet_private *fep = netdev_priv(dev);
397 	struct fec __iomem *fecp = fep->fec.fecp;
398 
399 	FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
400 }
401 
402 static void napi_enable_rx(struct net_device *dev)
403 {
404 	struct fs_enet_private *fep = netdev_priv(dev);
405 	struct fec __iomem *fecp = fep->fec.fecp;
406 
407 	FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
408 }
409 
410 static void napi_disable_rx(struct net_device *dev)
411 {
412 	struct fs_enet_private *fep = netdev_priv(dev);
413 	struct fec __iomem *fecp = fep->fec.fecp;
414 
415 	FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
416 }
417 
418 static void rx_bd_done(struct net_device *dev)
419 {
420 	struct fs_enet_private *fep = netdev_priv(dev);
421 	struct fec __iomem *fecp = fep->fec.fecp;
422 
423 	FW(fecp, r_des_active, 0x01000000);
424 }
425 
426 static void tx_kickstart(struct net_device *dev)
427 {
428 	struct fs_enet_private *fep = netdev_priv(dev);
429 	struct fec __iomem *fecp = fep->fec.fecp;
430 
431 	FW(fecp, x_des_active, 0x01000000);
432 }
433 
434 static u32 get_int_events(struct net_device *dev)
435 {
436 	struct fs_enet_private *fep = netdev_priv(dev);
437 	struct fec __iomem *fecp = fep->fec.fecp;
438 
439 	return FR(fecp, ievent) & FR(fecp, imask);
440 }
441 
442 static void clear_int_events(struct net_device *dev, u32 int_events)
443 {
444 	struct fs_enet_private *fep = netdev_priv(dev);
445 	struct fec __iomem *fecp = fep->fec.fecp;
446 
447 	FW(fecp, ievent, int_events);
448 }
449 
450 static void ev_error(struct net_device *dev, u32 int_events)
451 {
452 	struct fs_enet_private *fep = netdev_priv(dev);
453 
454 	dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
455 }
456 
457 static int get_regs(struct net_device *dev, void *p, int *sizep)
458 {
459 	struct fs_enet_private *fep = netdev_priv(dev);
460 
461 	if (*sizep < sizeof(struct fec))
462 		return -EINVAL;
463 
464 	memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
465 
466 	return 0;
467 }
468 
469 static int get_regs_len(struct net_device *dev)
470 {
471 	return sizeof(struct fec);
472 }
473 
474 static void tx_restart(struct net_device *dev)
475 {
476 	/* nothing */
477 }
478 
479 /*************************************************************************/
480 
481 const struct fs_ops fs_fec_ops = {
482 	.setup_data		= setup_data,
483 	.cleanup_data		= cleanup_data,
484 	.set_multicast_list	= set_multicast_list,
485 	.restart		= restart,
486 	.stop			= stop,
487 	.napi_clear_rx_event	= napi_clear_rx_event,
488 	.napi_enable_rx		= napi_enable_rx,
489 	.napi_disable_rx	= napi_disable_rx,
490 	.rx_bd_done		= rx_bd_done,
491 	.tx_kickstart		= tx_kickstart,
492 	.get_int_events		= get_int_events,
493 	.clear_int_events	= clear_int_events,
494 	.ev_error		= ev_error,
495 	.get_regs		= get_regs,
496 	.get_regs_len		= get_regs_len,
497 	.tx_restart		= tx_restart,
498 	.allocate_bd		= allocate_bd,
499 	.free_bd		= free_bd,
500 };
501 
502