xref: /openbmc/linux/drivers/net/ethernet/freescale/fs_enet/mac-fec.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 /*
2  * Freescale Ethernet controllers
3  *
4  * Copyright (c) 2005 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/crc32.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_irq.h>
37 #include <linux/gfp.h>
38 
39 #include <asm/irq.h>
40 #include <linux/uaccess.h>
41 
42 #include "fs_enet.h"
43 #include "fec.h"
44 
45 /*************************************************/
46 
47 #if defined(CONFIG_CPM1)
48 /* for a CPM1 __raw_xxx's are sufficient */
49 #define __fs_out32(addr, x)	__raw_writel(x, addr)
50 #define __fs_out16(addr, x)	__raw_writew(x, addr)
51 #define __fs_in32(addr)	__raw_readl(addr)
52 #define __fs_in16(addr)	__raw_readw(addr)
53 #else
54 /* for others play it safe */
55 #define __fs_out32(addr, x)	out_be32(addr, x)
56 #define __fs_out16(addr, x)	out_be16(addr, x)
57 #define __fs_in32(addr)	in_be32(addr)
58 #define __fs_in16(addr)	in_be16(addr)
59 #endif
60 
61 /* write */
62 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
63 
64 /* read */
65 #define FR(_fecp, _reg)	__fs_in32(&(_fecp)->fec_ ## _reg)
66 
67 /* set bits */
68 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
69 
70 /* clear bits */
71 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
72 
73 /*
74  * Delay to wait for FEC reset command to complete (in us)
75  */
76 #define FEC_RESET_DELAY		50
77 
78 static int whack_reset(struct fec __iomem *fecp)
79 {
80 	int i;
81 
82 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
83 	for (i = 0; i < FEC_RESET_DELAY; i++) {
84 		if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
85 			return 0;	/* OK */
86 		udelay(1);
87 	}
88 
89 	return -1;
90 }
91 
92 static int do_pd_setup(struct fs_enet_private *fep)
93 {
94 	struct platform_device *ofdev = to_platform_device(fep->dev);
95 
96 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
97 	if (!fep->interrupt)
98 		return -EINVAL;
99 
100 	fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
101 	if (!fep->fec.fecp)
102 		return -EINVAL;
103 
104 	return 0;
105 }
106 
107 #define FEC_NAPI_EVENT_MSK	(FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_TXF)
108 #define FEC_EVENT		(FEC_ENET_RXF | FEC_ENET_TXF)
109 #define FEC_ERR_EVENT_MSK	(FEC_ENET_HBERR | FEC_ENET_BABR | \
110 				 FEC_ENET_BABT | FEC_ENET_EBERR)
111 
112 static int setup_data(struct net_device *dev)
113 {
114 	struct fs_enet_private *fep = netdev_priv(dev);
115 
116 	if (do_pd_setup(fep) != 0)
117 		return -EINVAL;
118 
119 	fep->fec.hthi = 0;
120 	fep->fec.htlo = 0;
121 
122 	fep->ev_napi = FEC_NAPI_EVENT_MSK;
123 	fep->ev = FEC_EVENT;
124 	fep->ev_err = FEC_ERR_EVENT_MSK;
125 
126 	return 0;
127 }
128 
129 static int allocate_bd(struct net_device *dev)
130 {
131 	struct fs_enet_private *fep = netdev_priv(dev);
132 	const struct fs_platform_info *fpi = fep->fpi;
133 
134 	fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
135 					    (fpi->tx_ring + fpi->rx_ring) *
136 					    sizeof(cbd_t), &fep->ring_mem_addr,
137 					    GFP_KERNEL);
138 	if (fep->ring_base == NULL)
139 		return -ENOMEM;
140 
141 	return 0;
142 }
143 
144 static void free_bd(struct net_device *dev)
145 {
146 	struct fs_enet_private *fep = netdev_priv(dev);
147 	const struct fs_platform_info *fpi = fep->fpi;
148 
149 	if(fep->ring_base)
150 		dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
151 					* sizeof(cbd_t),
152 					(void __force *)fep->ring_base,
153 					fep->ring_mem_addr);
154 }
155 
156 static void cleanup_data(struct net_device *dev)
157 {
158 	/* nothing */
159 }
160 
161 static void set_promiscuous_mode(struct net_device *dev)
162 {
163 	struct fs_enet_private *fep = netdev_priv(dev);
164 	struct fec __iomem *fecp = fep->fec.fecp;
165 
166 	FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
167 }
168 
169 static void set_multicast_start(struct net_device *dev)
170 {
171 	struct fs_enet_private *fep = netdev_priv(dev);
172 
173 	fep->fec.hthi = 0;
174 	fep->fec.htlo = 0;
175 }
176 
177 static void set_multicast_one(struct net_device *dev, const u8 *mac)
178 {
179 	struct fs_enet_private *fep = netdev_priv(dev);
180 	int temp, hash_index;
181 	u32 crc, csrVal;
182 
183 	crc = ether_crc(6, mac);
184 
185 	temp = (crc & 0x3f) >> 1;
186 	hash_index = ((temp & 0x01) << 4) |
187 		     ((temp & 0x02) << 2) |
188 		     ((temp & 0x04)) |
189 		     ((temp & 0x08) >> 2) |
190 		     ((temp & 0x10) >> 4);
191 	csrVal = 1 << hash_index;
192 	if (crc & 1)
193 		fep->fec.hthi |= csrVal;
194 	else
195 		fep->fec.htlo |= csrVal;
196 }
197 
198 static void set_multicast_finish(struct net_device *dev)
199 {
200 	struct fs_enet_private *fep = netdev_priv(dev);
201 	struct fec __iomem *fecp = fep->fec.fecp;
202 
203 	/* if all multi or too many multicasts; just enable all */
204 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
205 	    netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
206 		fep->fec.hthi = 0xffffffffU;
207 		fep->fec.htlo = 0xffffffffU;
208 	}
209 
210 	FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
211 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
212 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
213 }
214 
215 static void set_multicast_list(struct net_device *dev)
216 {
217 	struct netdev_hw_addr *ha;
218 
219 	if ((dev->flags & IFF_PROMISC) == 0) {
220 		set_multicast_start(dev);
221 		netdev_for_each_mc_addr(ha, dev)
222 			set_multicast_one(dev, ha->addr);
223 		set_multicast_finish(dev);
224 	} else
225 		set_promiscuous_mode(dev);
226 }
227 
228 static void restart(struct net_device *dev)
229 {
230 	struct fs_enet_private *fep = netdev_priv(dev);
231 	struct fec __iomem *fecp = fep->fec.fecp;
232 	const struct fs_platform_info *fpi = fep->fpi;
233 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
234 	int r;
235 	u32 addrhi, addrlo;
236 
237 	struct mii_bus *mii = dev->phydev->mdio.bus;
238 	struct fec_info* fec_inf = mii->priv;
239 
240 	r = whack_reset(fep->fec.fecp);
241 	if (r != 0)
242 		dev_err(fep->dev, "FEC Reset FAILED!\n");
243 	/*
244 	 * Set station address.
245 	 */
246 	addrhi = ((u32) dev->dev_addr[0] << 24) |
247 		 ((u32) dev->dev_addr[1] << 16) |
248 		 ((u32) dev->dev_addr[2] <<  8) |
249 		  (u32) dev->dev_addr[3];
250 	addrlo = ((u32) dev->dev_addr[4] << 24) |
251 		 ((u32) dev->dev_addr[5] << 16);
252 	FW(fecp, addr_low, addrhi);
253 	FW(fecp, addr_high, addrlo);
254 
255 	/*
256 	 * Reset all multicast.
257 	 */
258 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
259 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
260 
261 	/*
262 	 * Set maximum receive buffer size.
263 	 */
264 	FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
265 #ifdef CONFIG_FS_ENET_MPC5121_FEC
266 	FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
267 #else
268 	FW(fecp, r_hash, PKT_MAXBUF_SIZE);
269 #endif
270 
271 	/* get physical address */
272 	rx_bd_base_phys = fep->ring_mem_addr;
273 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
274 
275 	/*
276 	 * Set receive and transmit descriptor base.
277 	 */
278 	FW(fecp, r_des_start, rx_bd_base_phys);
279 	FW(fecp, x_des_start, tx_bd_base_phys);
280 
281 	fs_init_bds(dev);
282 
283 	/*
284 	 * Enable big endian and don't care about SDMA FC.
285 	 */
286 #ifdef CONFIG_FS_ENET_MPC5121_FEC
287 	FS(fecp, dma_control, 0xC0000000);
288 #else
289 	FW(fecp, fun_code, 0x78000000);
290 #endif
291 
292 	/*
293 	 * Set MII speed.
294 	 */
295 	FW(fecp, mii_speed, fec_inf->mii_speed);
296 
297 	/*
298 	 * Clear any outstanding interrupt.
299 	 */
300 	FW(fecp, ievent, 0xffc0);
301 #ifndef CONFIG_FS_ENET_MPC5121_FEC
302 	FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
303 
304 	FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE);	/* MII enable */
305 #else
306 	/*
307 	 * Only set MII/RMII mode - do not touch maximum frame length
308 	 * configured before.
309 	 */
310 	FS(fecp, r_cntrl, fpi->use_rmii ?
311 			FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
312 #endif
313 	/*
314 	 * adjust to duplex mode
315 	 */
316 	if (dev->phydev->duplex) {
317 		FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
318 		FS(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD enable */
319 	} else {
320 		FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
321 		FC(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD disable */
322 	}
323 
324 	/* Restore multicast and promiscuous settings */
325 	set_multicast_list(dev);
326 
327 	/*
328 	 * Enable interrupts we wish to service.
329 	 */
330 	FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
331 	   FEC_ENET_RXF | FEC_ENET_RXB);
332 
333 	/*
334 	 * And last, enable the transmit and receive processing.
335 	 */
336 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
337 	FW(fecp, r_des_active, 0x01000000);
338 }
339 
340 static void stop(struct net_device *dev)
341 {
342 	struct fs_enet_private *fep = netdev_priv(dev);
343 	const struct fs_platform_info *fpi = fep->fpi;
344 	struct fec __iomem *fecp = fep->fec.fecp;
345 
346 	struct fec_info *feci = dev->phydev->mdio.bus->priv;
347 
348 	int i;
349 
350 	if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
351 		return;		/* already down */
352 
353 	FW(fecp, x_cntrl, 0x01);	/* Graceful transmit stop */
354 	for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
355 	     i < FEC_RESET_DELAY; i++)
356 		udelay(1);
357 
358 	if (i == FEC_RESET_DELAY)
359 		dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
360 	/*
361 	 * Disable FEC. Let only MII interrupts.
362 	 */
363 	FW(fecp, imask, 0);
364 	FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
365 
366 	fs_cleanup_bds(dev);
367 
368 	/* shut down FEC1? that's where the mii bus is */
369 	if (fpi->has_phy) {
370 		FS(fecp, r_cntrl, fpi->use_rmii ?
371 				FEC_RCNTRL_RMII_MODE :
372 				FEC_RCNTRL_MII_MODE);	/* MII/RMII enable */
373 		FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
374 		FW(fecp, ievent, FEC_ENET_MII);
375 		FW(fecp, mii_speed, feci->mii_speed);
376 	}
377 }
378 
379 static void napi_clear_event_fs(struct net_device *dev)
380 {
381 	struct fs_enet_private *fep = netdev_priv(dev);
382 	struct fec __iomem *fecp = fep->fec.fecp;
383 
384 	FW(fecp, ievent, FEC_NAPI_EVENT_MSK);
385 }
386 
387 static void napi_enable_fs(struct net_device *dev)
388 {
389 	struct fs_enet_private *fep = netdev_priv(dev);
390 	struct fec __iomem *fecp = fep->fec.fecp;
391 
392 	FS(fecp, imask, FEC_NAPI_EVENT_MSK);
393 }
394 
395 static void napi_disable_fs(struct net_device *dev)
396 {
397 	struct fs_enet_private *fep = netdev_priv(dev);
398 	struct fec __iomem *fecp = fep->fec.fecp;
399 
400 	FC(fecp, imask, FEC_NAPI_EVENT_MSK);
401 }
402 
403 static void rx_bd_done(struct net_device *dev)
404 {
405 	struct fs_enet_private *fep = netdev_priv(dev);
406 	struct fec __iomem *fecp = fep->fec.fecp;
407 
408 	FW(fecp, r_des_active, 0x01000000);
409 }
410 
411 static void tx_kickstart(struct net_device *dev)
412 {
413 	struct fs_enet_private *fep = netdev_priv(dev);
414 	struct fec __iomem *fecp = fep->fec.fecp;
415 
416 	FW(fecp, x_des_active, 0x01000000);
417 }
418 
419 static u32 get_int_events(struct net_device *dev)
420 {
421 	struct fs_enet_private *fep = netdev_priv(dev);
422 	struct fec __iomem *fecp = fep->fec.fecp;
423 
424 	return FR(fecp, ievent) & FR(fecp, imask);
425 }
426 
427 static void clear_int_events(struct net_device *dev, u32 int_events)
428 {
429 	struct fs_enet_private *fep = netdev_priv(dev);
430 	struct fec __iomem *fecp = fep->fec.fecp;
431 
432 	FW(fecp, ievent, int_events);
433 }
434 
435 static void ev_error(struct net_device *dev, u32 int_events)
436 {
437 	struct fs_enet_private *fep = netdev_priv(dev);
438 
439 	dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
440 }
441 
442 static int get_regs(struct net_device *dev, void *p, int *sizep)
443 {
444 	struct fs_enet_private *fep = netdev_priv(dev);
445 
446 	if (*sizep < sizeof(struct fec))
447 		return -EINVAL;
448 
449 	memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
450 
451 	return 0;
452 }
453 
454 static int get_regs_len(struct net_device *dev)
455 {
456 	return sizeof(struct fec);
457 }
458 
459 static void tx_restart(struct net_device *dev)
460 {
461 	/* nothing */
462 }
463 
464 /*************************************************************************/
465 
466 const struct fs_ops fs_fec_ops = {
467 	.setup_data		= setup_data,
468 	.cleanup_data		= cleanup_data,
469 	.set_multicast_list	= set_multicast_list,
470 	.restart		= restart,
471 	.stop			= stop,
472 	.napi_clear_event	= napi_clear_event_fs,
473 	.napi_enable		= napi_enable_fs,
474 	.napi_disable		= napi_disable_fs,
475 	.rx_bd_done		= rx_bd_done,
476 	.tx_kickstart		= tx_kickstart,
477 	.get_int_events		= get_int_events,
478 	.clear_int_events	= clear_int_events,
479 	.ev_error		= ev_error,
480 	.get_regs		= get_regs,
481 	.get_regs_len		= get_regs_len,
482 	.tx_restart		= tx_restart,
483 	.allocate_bd		= allocate_bd,
484 	.free_bd		= free_bd,
485 };
486 
487