1 /* 2 * Freescale Ethernet controllers 3 * 4 * Copyright (c) 2005 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * This file is licensed under the terms of the GNU General Public License 11 * version 2. This program is licensed "as is" without any warranty of any 12 * kind, whether express or implied. 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/string.h> 19 #include <linux/ptrace.h> 20 #include <linux/errno.h> 21 #include <linux/ioport.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/skbuff.h> 27 #include <linux/spinlock.h> 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/bitops.h> 31 #include <linux/fs.h> 32 #include <linux/platform_device.h> 33 #include <linux/of_address.h> 34 #include <linux/of_device.h> 35 #include <linux/of_irq.h> 36 #include <linux/gfp.h> 37 38 #include <asm/irq.h> 39 #include <asm/uaccess.h> 40 41 #ifdef CONFIG_8xx 42 #include <asm/8xx_immap.h> 43 #include <asm/pgtable.h> 44 #include <asm/mpc8xx.h> 45 #include <asm/cpm1.h> 46 #endif 47 48 #include "fs_enet.h" 49 #include "fec.h" 50 51 /*************************************************/ 52 53 #if defined(CONFIG_CPM1) 54 /* for a CPM1 __raw_xxx's are sufficient */ 55 #define __fs_out32(addr, x) __raw_writel(x, addr) 56 #define __fs_out16(addr, x) __raw_writew(x, addr) 57 #define __fs_in32(addr) __raw_readl(addr) 58 #define __fs_in16(addr) __raw_readw(addr) 59 #else 60 /* for others play it safe */ 61 #define __fs_out32(addr, x) out_be32(addr, x) 62 #define __fs_out16(addr, x) out_be16(addr, x) 63 #define __fs_in32(addr) in_be32(addr) 64 #define __fs_in16(addr) in_be16(addr) 65 #endif 66 67 /* write */ 68 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v)) 69 70 /* read */ 71 #define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg) 72 73 /* set bits */ 74 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v)) 75 76 /* clear bits */ 77 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v)) 78 79 /* 80 * Delay to wait for FEC reset command to complete (in us) 81 */ 82 #define FEC_RESET_DELAY 50 83 84 static int whack_reset(struct fec __iomem *fecp) 85 { 86 int i; 87 88 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET); 89 for (i = 0; i < FEC_RESET_DELAY; i++) { 90 if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0) 91 return 0; /* OK */ 92 udelay(1); 93 } 94 95 return -1; 96 } 97 98 static int do_pd_setup(struct fs_enet_private *fep) 99 { 100 struct platform_device *ofdev = to_platform_device(fep->dev); 101 102 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); 103 if (fep->interrupt == NO_IRQ) 104 return -EINVAL; 105 106 fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0); 107 if (!fep->fcc.fccp) 108 return -EINVAL; 109 110 return 0; 111 } 112 113 #define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB) 114 #define FEC_RX_EVENT (FEC_ENET_RXF) 115 #define FEC_TX_EVENT (FEC_ENET_TXF) 116 #define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \ 117 FEC_ENET_BABT | FEC_ENET_EBERR) 118 119 static int setup_data(struct net_device *dev) 120 { 121 struct fs_enet_private *fep = netdev_priv(dev); 122 123 if (do_pd_setup(fep) != 0) 124 return -EINVAL; 125 126 fep->fec.hthi = 0; 127 fep->fec.htlo = 0; 128 129 fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK; 130 fep->ev_rx = FEC_RX_EVENT; 131 fep->ev_tx = FEC_TX_EVENT; 132 fep->ev_err = FEC_ERR_EVENT_MSK; 133 134 return 0; 135 } 136 137 static int allocate_bd(struct net_device *dev) 138 { 139 struct fs_enet_private *fep = netdev_priv(dev); 140 const struct fs_platform_info *fpi = fep->fpi; 141 142 fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev, 143 (fpi->tx_ring + fpi->rx_ring) * 144 sizeof(cbd_t), &fep->ring_mem_addr, 145 GFP_KERNEL); 146 if (fep->ring_base == NULL) 147 return -ENOMEM; 148 149 return 0; 150 } 151 152 static void free_bd(struct net_device *dev) 153 { 154 struct fs_enet_private *fep = netdev_priv(dev); 155 const struct fs_platform_info *fpi = fep->fpi; 156 157 if(fep->ring_base) 158 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) 159 * sizeof(cbd_t), 160 (void __force *)fep->ring_base, 161 fep->ring_mem_addr); 162 } 163 164 static void cleanup_data(struct net_device *dev) 165 { 166 /* nothing */ 167 } 168 169 static void set_promiscuous_mode(struct net_device *dev) 170 { 171 struct fs_enet_private *fep = netdev_priv(dev); 172 struct fec __iomem *fecp = fep->fec.fecp; 173 174 FS(fecp, r_cntrl, FEC_RCNTRL_PROM); 175 } 176 177 static void set_multicast_start(struct net_device *dev) 178 { 179 struct fs_enet_private *fep = netdev_priv(dev); 180 181 fep->fec.hthi = 0; 182 fep->fec.htlo = 0; 183 } 184 185 static void set_multicast_one(struct net_device *dev, const u8 *mac) 186 { 187 struct fs_enet_private *fep = netdev_priv(dev); 188 int temp, hash_index, i, j; 189 u32 crc, csrVal; 190 u8 byte, msb; 191 192 crc = 0xffffffff; 193 for (i = 0; i < 6; i++) { 194 byte = mac[i]; 195 for (j = 0; j < 8; j++) { 196 msb = crc >> 31; 197 crc <<= 1; 198 if (msb ^ (byte & 0x1)) 199 crc ^= FEC_CRC_POLY; 200 byte >>= 1; 201 } 202 } 203 204 temp = (crc & 0x3f) >> 1; 205 hash_index = ((temp & 0x01) << 4) | 206 ((temp & 0x02) << 2) | 207 ((temp & 0x04)) | 208 ((temp & 0x08) >> 2) | 209 ((temp & 0x10) >> 4); 210 csrVal = 1 << hash_index; 211 if (crc & 1) 212 fep->fec.hthi |= csrVal; 213 else 214 fep->fec.htlo |= csrVal; 215 } 216 217 static void set_multicast_finish(struct net_device *dev) 218 { 219 struct fs_enet_private *fep = netdev_priv(dev); 220 struct fec __iomem *fecp = fep->fec.fecp; 221 222 /* if all multi or too many multicasts; just enable all */ 223 if ((dev->flags & IFF_ALLMULTI) != 0 || 224 netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) { 225 fep->fec.hthi = 0xffffffffU; 226 fep->fec.htlo = 0xffffffffU; 227 } 228 229 FC(fecp, r_cntrl, FEC_RCNTRL_PROM); 230 FW(fecp, grp_hash_table_high, fep->fec.hthi); 231 FW(fecp, grp_hash_table_low, fep->fec.htlo); 232 } 233 234 static void set_multicast_list(struct net_device *dev) 235 { 236 struct netdev_hw_addr *ha; 237 238 if ((dev->flags & IFF_PROMISC) == 0) { 239 set_multicast_start(dev); 240 netdev_for_each_mc_addr(ha, dev) 241 set_multicast_one(dev, ha->addr); 242 set_multicast_finish(dev); 243 } else 244 set_promiscuous_mode(dev); 245 } 246 247 static void restart(struct net_device *dev) 248 { 249 struct fs_enet_private *fep = netdev_priv(dev); 250 struct fec __iomem *fecp = fep->fec.fecp; 251 const struct fs_platform_info *fpi = fep->fpi; 252 dma_addr_t rx_bd_base_phys, tx_bd_base_phys; 253 int r; 254 u32 addrhi, addrlo; 255 256 struct mii_bus* mii = fep->phydev->bus; 257 struct fec_info* fec_inf = mii->priv; 258 259 r = whack_reset(fep->fec.fecp); 260 if (r != 0) 261 dev_err(fep->dev, "FEC Reset FAILED!\n"); 262 /* 263 * Set station address. 264 */ 265 addrhi = ((u32) dev->dev_addr[0] << 24) | 266 ((u32) dev->dev_addr[1] << 16) | 267 ((u32) dev->dev_addr[2] << 8) | 268 (u32) dev->dev_addr[3]; 269 addrlo = ((u32) dev->dev_addr[4] << 24) | 270 ((u32) dev->dev_addr[5] << 16); 271 FW(fecp, addr_low, addrhi); 272 FW(fecp, addr_high, addrlo); 273 274 /* 275 * Reset all multicast. 276 */ 277 FW(fecp, grp_hash_table_high, fep->fec.hthi); 278 FW(fecp, grp_hash_table_low, fep->fec.htlo); 279 280 /* 281 * Set maximum receive buffer size. 282 */ 283 FW(fecp, r_buff_size, PKT_MAXBLR_SIZE); 284 #ifdef CONFIG_FS_ENET_MPC5121_FEC 285 FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16); 286 #else 287 FW(fecp, r_hash, PKT_MAXBUF_SIZE); 288 #endif 289 290 /* get physical address */ 291 rx_bd_base_phys = fep->ring_mem_addr; 292 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring; 293 294 /* 295 * Set receive and transmit descriptor base. 296 */ 297 FW(fecp, r_des_start, rx_bd_base_phys); 298 FW(fecp, x_des_start, tx_bd_base_phys); 299 300 fs_init_bds(dev); 301 302 /* 303 * Enable big endian and don't care about SDMA FC. 304 */ 305 #ifdef CONFIG_FS_ENET_MPC5121_FEC 306 FS(fecp, dma_control, 0xC0000000); 307 #else 308 FW(fecp, fun_code, 0x78000000); 309 #endif 310 311 /* 312 * Set MII speed. 313 */ 314 FW(fecp, mii_speed, fec_inf->mii_speed); 315 316 /* 317 * Clear any outstanding interrupt. 318 */ 319 FW(fecp, ievent, 0xffc0); 320 #ifndef CONFIG_FS_ENET_MPC5121_FEC 321 FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29); 322 323 FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */ 324 #else 325 /* 326 * Only set MII/RMII mode - do not touch maximum frame length 327 * configured before. 328 */ 329 FS(fecp, r_cntrl, fpi->use_rmii ? 330 FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE); 331 #endif 332 /* 333 * adjust to duplex mode 334 */ 335 if (fep->phydev->duplex) { 336 FC(fecp, r_cntrl, FEC_RCNTRL_DRT); 337 FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */ 338 } else { 339 FS(fecp, r_cntrl, FEC_RCNTRL_DRT); 340 FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */ 341 } 342 343 /* 344 * Enable interrupts we wish to service. 345 */ 346 FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB | 347 FEC_ENET_RXF | FEC_ENET_RXB); 348 349 /* 350 * And last, enable the transmit and receive processing. 351 */ 352 FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); 353 FW(fecp, r_des_active, 0x01000000); 354 } 355 356 static void stop(struct net_device *dev) 357 { 358 struct fs_enet_private *fep = netdev_priv(dev); 359 const struct fs_platform_info *fpi = fep->fpi; 360 struct fec __iomem *fecp = fep->fec.fecp; 361 362 struct fec_info* feci= fep->phydev->bus->priv; 363 364 int i; 365 366 if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0) 367 return; /* already down */ 368 369 FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */ 370 for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) && 371 i < FEC_RESET_DELAY; i++) 372 udelay(1); 373 374 if (i == FEC_RESET_DELAY) 375 dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n"); 376 /* 377 * Disable FEC. Let only MII interrupts. 378 */ 379 FW(fecp, imask, 0); 380 FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN); 381 382 fs_cleanup_bds(dev); 383 384 /* shut down FEC1? that's where the mii bus is */ 385 if (fpi->has_phy) { 386 FS(fecp, r_cntrl, fpi->use_rmii ? 387 FEC_RCNTRL_RMII_MODE : 388 FEC_RCNTRL_MII_MODE); /* MII/RMII enable */ 389 FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN); 390 FW(fecp, ievent, FEC_ENET_MII); 391 FW(fecp, mii_speed, feci->mii_speed); 392 } 393 } 394 395 static void napi_clear_rx_event(struct net_device *dev) 396 { 397 struct fs_enet_private *fep = netdev_priv(dev); 398 struct fec __iomem *fecp = fep->fec.fecp; 399 400 FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK); 401 } 402 403 static void napi_enable_rx(struct net_device *dev) 404 { 405 struct fs_enet_private *fep = netdev_priv(dev); 406 struct fec __iomem *fecp = fep->fec.fecp; 407 408 FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK); 409 } 410 411 static void napi_disable_rx(struct net_device *dev) 412 { 413 struct fs_enet_private *fep = netdev_priv(dev); 414 struct fec __iomem *fecp = fep->fec.fecp; 415 416 FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK); 417 } 418 419 static void rx_bd_done(struct net_device *dev) 420 { 421 struct fs_enet_private *fep = netdev_priv(dev); 422 struct fec __iomem *fecp = fep->fec.fecp; 423 424 FW(fecp, r_des_active, 0x01000000); 425 } 426 427 static void tx_kickstart(struct net_device *dev) 428 { 429 struct fs_enet_private *fep = netdev_priv(dev); 430 struct fec __iomem *fecp = fep->fec.fecp; 431 432 FW(fecp, x_des_active, 0x01000000); 433 } 434 435 static u32 get_int_events(struct net_device *dev) 436 { 437 struct fs_enet_private *fep = netdev_priv(dev); 438 struct fec __iomem *fecp = fep->fec.fecp; 439 440 return FR(fecp, ievent) & FR(fecp, imask); 441 } 442 443 static void clear_int_events(struct net_device *dev, u32 int_events) 444 { 445 struct fs_enet_private *fep = netdev_priv(dev); 446 struct fec __iomem *fecp = fep->fec.fecp; 447 448 FW(fecp, ievent, int_events); 449 } 450 451 static void ev_error(struct net_device *dev, u32 int_events) 452 { 453 struct fs_enet_private *fep = netdev_priv(dev); 454 455 dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events); 456 } 457 458 static int get_regs(struct net_device *dev, void *p, int *sizep) 459 { 460 struct fs_enet_private *fep = netdev_priv(dev); 461 462 if (*sizep < sizeof(struct fec)) 463 return -EINVAL; 464 465 memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec)); 466 467 return 0; 468 } 469 470 static int get_regs_len(struct net_device *dev) 471 { 472 return sizeof(struct fec); 473 } 474 475 static void tx_restart(struct net_device *dev) 476 { 477 /* nothing */ 478 } 479 480 /*************************************************************************/ 481 482 const struct fs_ops fs_fec_ops = { 483 .setup_data = setup_data, 484 .cleanup_data = cleanup_data, 485 .set_multicast_list = set_multicast_list, 486 .restart = restart, 487 .stop = stop, 488 .napi_clear_rx_event = napi_clear_rx_event, 489 .napi_enable_rx = napi_enable_rx, 490 .napi_disable_rx = napi_disable_rx, 491 .rx_bd_done = rx_bd_done, 492 .tx_kickstart = tx_kickstart, 493 .get_int_events = get_int_events, 494 .clear_int_events = clear_int_events, 495 .ev_error = ev_error, 496 .get_regs = get_regs, 497 .get_regs_len = get_regs_len, 498 .tx_restart = tx_restart, 499 .allocate_bd = allocate_bd, 500 .free_bd = free_bd, 501 }; 502 503