xref: /openbmc/linux/drivers/net/ethernet/freescale/fs_enet/mac-fec.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Freescale Ethernet controllers
3  *
4  * Copyright (c) 2005 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_irq.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/irq.h>
39 #include <linux/uaccess.h>
40 
41 #include "fs_enet.h"
42 #include "fec.h"
43 
44 /*************************************************/
45 
46 #if defined(CONFIG_CPM1)
47 /* for a CPM1 __raw_xxx's are sufficient */
48 #define __fs_out32(addr, x)	__raw_writel(x, addr)
49 #define __fs_out16(addr, x)	__raw_writew(x, addr)
50 #define __fs_in32(addr)	__raw_readl(addr)
51 #define __fs_in16(addr)	__raw_readw(addr)
52 #else
53 /* for others play it safe */
54 #define __fs_out32(addr, x)	out_be32(addr, x)
55 #define __fs_out16(addr, x)	out_be16(addr, x)
56 #define __fs_in32(addr)	in_be32(addr)
57 #define __fs_in16(addr)	in_be16(addr)
58 #endif
59 
60 /* write */
61 #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
62 
63 /* read */
64 #define FR(_fecp, _reg)	__fs_in32(&(_fecp)->fec_ ## _reg)
65 
66 /* set bits */
67 #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
68 
69 /* clear bits */
70 #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
71 
72 /*
73  * Delay to wait for FEC reset command to complete (in us)
74  */
75 #define FEC_RESET_DELAY		50
76 
77 static int whack_reset(struct fec __iomem *fecp)
78 {
79 	int i;
80 
81 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
82 	for (i = 0; i < FEC_RESET_DELAY; i++) {
83 		if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
84 			return 0;	/* OK */
85 		udelay(1);
86 	}
87 
88 	return -1;
89 }
90 
91 static int do_pd_setup(struct fs_enet_private *fep)
92 {
93 	struct platform_device *ofdev = to_platform_device(fep->dev);
94 
95 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
96 	if (!fep->interrupt)
97 		return -EINVAL;
98 
99 	fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
100 	if (!fep->fcc.fccp)
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
106 #define FEC_NAPI_EVENT_MSK	(FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_TXF)
107 #define FEC_EVENT		(FEC_ENET_RXF | FEC_ENET_TXF)
108 #define FEC_ERR_EVENT_MSK	(FEC_ENET_HBERR | FEC_ENET_BABR | \
109 				 FEC_ENET_BABT | FEC_ENET_EBERR)
110 
111 static int setup_data(struct net_device *dev)
112 {
113 	struct fs_enet_private *fep = netdev_priv(dev);
114 
115 	if (do_pd_setup(fep) != 0)
116 		return -EINVAL;
117 
118 	fep->fec.hthi = 0;
119 	fep->fec.htlo = 0;
120 
121 	fep->ev_napi = FEC_NAPI_EVENT_MSK;
122 	fep->ev = FEC_EVENT;
123 	fep->ev_err = FEC_ERR_EVENT_MSK;
124 
125 	return 0;
126 }
127 
128 static int allocate_bd(struct net_device *dev)
129 {
130 	struct fs_enet_private *fep = netdev_priv(dev);
131 	const struct fs_platform_info *fpi = fep->fpi;
132 
133 	fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
134 					    (fpi->tx_ring + fpi->rx_ring) *
135 					    sizeof(cbd_t), &fep->ring_mem_addr,
136 					    GFP_KERNEL);
137 	if (fep->ring_base == NULL)
138 		return -ENOMEM;
139 
140 	return 0;
141 }
142 
143 static void free_bd(struct net_device *dev)
144 {
145 	struct fs_enet_private *fep = netdev_priv(dev);
146 	const struct fs_platform_info *fpi = fep->fpi;
147 
148 	if(fep->ring_base)
149 		dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
150 					* sizeof(cbd_t),
151 					(void __force *)fep->ring_base,
152 					fep->ring_mem_addr);
153 }
154 
155 static void cleanup_data(struct net_device *dev)
156 {
157 	/* nothing */
158 }
159 
160 static void set_promiscuous_mode(struct net_device *dev)
161 {
162 	struct fs_enet_private *fep = netdev_priv(dev);
163 	struct fec __iomem *fecp = fep->fec.fecp;
164 
165 	FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
166 }
167 
168 static void set_multicast_start(struct net_device *dev)
169 {
170 	struct fs_enet_private *fep = netdev_priv(dev);
171 
172 	fep->fec.hthi = 0;
173 	fep->fec.htlo = 0;
174 }
175 
176 static void set_multicast_one(struct net_device *dev, const u8 *mac)
177 {
178 	struct fs_enet_private *fep = netdev_priv(dev);
179 	int temp, hash_index, i, j;
180 	u32 crc, csrVal;
181 	u8 byte, msb;
182 
183 	crc = 0xffffffff;
184 	for (i = 0; i < 6; i++) {
185 		byte = mac[i];
186 		for (j = 0; j < 8; j++) {
187 			msb = crc >> 31;
188 			crc <<= 1;
189 			if (msb ^ (byte & 0x1))
190 				crc ^= FEC_CRC_POLY;
191 			byte >>= 1;
192 		}
193 	}
194 
195 	temp = (crc & 0x3f) >> 1;
196 	hash_index = ((temp & 0x01) << 4) |
197 		     ((temp & 0x02) << 2) |
198 		     ((temp & 0x04)) |
199 		     ((temp & 0x08) >> 2) |
200 		     ((temp & 0x10) >> 4);
201 	csrVal = 1 << hash_index;
202 	if (crc & 1)
203 		fep->fec.hthi |= csrVal;
204 	else
205 		fep->fec.htlo |= csrVal;
206 }
207 
208 static void set_multicast_finish(struct net_device *dev)
209 {
210 	struct fs_enet_private *fep = netdev_priv(dev);
211 	struct fec __iomem *fecp = fep->fec.fecp;
212 
213 	/* if all multi or too many multicasts; just enable all */
214 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
215 	    netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
216 		fep->fec.hthi = 0xffffffffU;
217 		fep->fec.htlo = 0xffffffffU;
218 	}
219 
220 	FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
221 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
222 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
223 }
224 
225 static void set_multicast_list(struct net_device *dev)
226 {
227 	struct netdev_hw_addr *ha;
228 
229 	if ((dev->flags & IFF_PROMISC) == 0) {
230 		set_multicast_start(dev);
231 		netdev_for_each_mc_addr(ha, dev)
232 			set_multicast_one(dev, ha->addr);
233 		set_multicast_finish(dev);
234 	} else
235 		set_promiscuous_mode(dev);
236 }
237 
238 static void restart(struct net_device *dev)
239 {
240 	struct fs_enet_private *fep = netdev_priv(dev);
241 	struct fec __iomem *fecp = fep->fec.fecp;
242 	const struct fs_platform_info *fpi = fep->fpi;
243 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
244 	int r;
245 	u32 addrhi, addrlo;
246 
247 	struct mii_bus *mii = dev->phydev->mdio.bus;
248 	struct fec_info* fec_inf = mii->priv;
249 
250 	r = whack_reset(fep->fec.fecp);
251 	if (r != 0)
252 		dev_err(fep->dev, "FEC Reset FAILED!\n");
253 	/*
254 	 * Set station address.
255 	 */
256 	addrhi = ((u32) dev->dev_addr[0] << 24) |
257 		 ((u32) dev->dev_addr[1] << 16) |
258 		 ((u32) dev->dev_addr[2] <<  8) |
259 		  (u32) dev->dev_addr[3];
260 	addrlo = ((u32) dev->dev_addr[4] << 24) |
261 		 ((u32) dev->dev_addr[5] << 16);
262 	FW(fecp, addr_low, addrhi);
263 	FW(fecp, addr_high, addrlo);
264 
265 	/*
266 	 * Reset all multicast.
267 	 */
268 	FW(fecp, grp_hash_table_high, fep->fec.hthi);
269 	FW(fecp, grp_hash_table_low, fep->fec.htlo);
270 
271 	/*
272 	 * Set maximum receive buffer size.
273 	 */
274 	FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
275 #ifdef CONFIG_FS_ENET_MPC5121_FEC
276 	FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
277 #else
278 	FW(fecp, r_hash, PKT_MAXBUF_SIZE);
279 #endif
280 
281 	/* get physical address */
282 	rx_bd_base_phys = fep->ring_mem_addr;
283 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
284 
285 	/*
286 	 * Set receive and transmit descriptor base.
287 	 */
288 	FW(fecp, r_des_start, rx_bd_base_phys);
289 	FW(fecp, x_des_start, tx_bd_base_phys);
290 
291 	fs_init_bds(dev);
292 
293 	/*
294 	 * Enable big endian and don't care about SDMA FC.
295 	 */
296 #ifdef CONFIG_FS_ENET_MPC5121_FEC
297 	FS(fecp, dma_control, 0xC0000000);
298 #else
299 	FW(fecp, fun_code, 0x78000000);
300 #endif
301 
302 	/*
303 	 * Set MII speed.
304 	 */
305 	FW(fecp, mii_speed, fec_inf->mii_speed);
306 
307 	/*
308 	 * Clear any outstanding interrupt.
309 	 */
310 	FW(fecp, ievent, 0xffc0);
311 #ifndef CONFIG_FS_ENET_MPC5121_FEC
312 	FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
313 
314 	FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE);	/* MII enable */
315 #else
316 	/*
317 	 * Only set MII/RMII mode - do not touch maximum frame length
318 	 * configured before.
319 	 */
320 	FS(fecp, r_cntrl, fpi->use_rmii ?
321 			FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
322 #endif
323 	/*
324 	 * adjust to duplex mode
325 	 */
326 	if (dev->phydev->duplex) {
327 		FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
328 		FS(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD enable */
329 	} else {
330 		FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
331 		FC(fecp, x_cntrl, FEC_TCNTRL_FDEN);	/* FD disable */
332 	}
333 
334 	/* Restore multicast and promiscuous settings */
335 	set_multicast_list(dev);
336 
337 	/*
338 	 * Enable interrupts we wish to service.
339 	 */
340 	FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
341 	   FEC_ENET_RXF | FEC_ENET_RXB);
342 
343 	/*
344 	 * And last, enable the transmit and receive processing.
345 	 */
346 	FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
347 	FW(fecp, r_des_active, 0x01000000);
348 }
349 
350 static void stop(struct net_device *dev)
351 {
352 	struct fs_enet_private *fep = netdev_priv(dev);
353 	const struct fs_platform_info *fpi = fep->fpi;
354 	struct fec __iomem *fecp = fep->fec.fecp;
355 
356 	struct fec_info *feci = dev->phydev->mdio.bus->priv;
357 
358 	int i;
359 
360 	if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
361 		return;		/* already down */
362 
363 	FW(fecp, x_cntrl, 0x01);	/* Graceful transmit stop */
364 	for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
365 	     i < FEC_RESET_DELAY; i++)
366 		udelay(1);
367 
368 	if (i == FEC_RESET_DELAY)
369 		dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
370 	/*
371 	 * Disable FEC. Let only MII interrupts.
372 	 */
373 	FW(fecp, imask, 0);
374 	FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
375 
376 	fs_cleanup_bds(dev);
377 
378 	/* shut down FEC1? that's where the mii bus is */
379 	if (fpi->has_phy) {
380 		FS(fecp, r_cntrl, fpi->use_rmii ?
381 				FEC_RCNTRL_RMII_MODE :
382 				FEC_RCNTRL_MII_MODE);	/* MII/RMII enable */
383 		FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
384 		FW(fecp, ievent, FEC_ENET_MII);
385 		FW(fecp, mii_speed, feci->mii_speed);
386 	}
387 }
388 
389 static void napi_clear_event_fs(struct net_device *dev)
390 {
391 	struct fs_enet_private *fep = netdev_priv(dev);
392 	struct fec __iomem *fecp = fep->fec.fecp;
393 
394 	FW(fecp, ievent, FEC_NAPI_EVENT_MSK);
395 }
396 
397 static void napi_enable_fs(struct net_device *dev)
398 {
399 	struct fs_enet_private *fep = netdev_priv(dev);
400 	struct fec __iomem *fecp = fep->fec.fecp;
401 
402 	FS(fecp, imask, FEC_NAPI_EVENT_MSK);
403 }
404 
405 static void napi_disable_fs(struct net_device *dev)
406 {
407 	struct fs_enet_private *fep = netdev_priv(dev);
408 	struct fec __iomem *fecp = fep->fec.fecp;
409 
410 	FC(fecp, imask, FEC_NAPI_EVENT_MSK);
411 }
412 
413 static void rx_bd_done(struct net_device *dev)
414 {
415 	struct fs_enet_private *fep = netdev_priv(dev);
416 	struct fec __iomem *fecp = fep->fec.fecp;
417 
418 	FW(fecp, r_des_active, 0x01000000);
419 }
420 
421 static void tx_kickstart(struct net_device *dev)
422 {
423 	struct fs_enet_private *fep = netdev_priv(dev);
424 	struct fec __iomem *fecp = fep->fec.fecp;
425 
426 	FW(fecp, x_des_active, 0x01000000);
427 }
428 
429 static u32 get_int_events(struct net_device *dev)
430 {
431 	struct fs_enet_private *fep = netdev_priv(dev);
432 	struct fec __iomem *fecp = fep->fec.fecp;
433 
434 	return FR(fecp, ievent) & FR(fecp, imask);
435 }
436 
437 static void clear_int_events(struct net_device *dev, u32 int_events)
438 {
439 	struct fs_enet_private *fep = netdev_priv(dev);
440 	struct fec __iomem *fecp = fep->fec.fecp;
441 
442 	FW(fecp, ievent, int_events);
443 }
444 
445 static void ev_error(struct net_device *dev, u32 int_events)
446 {
447 	struct fs_enet_private *fep = netdev_priv(dev);
448 
449 	dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
450 }
451 
452 static int get_regs(struct net_device *dev, void *p, int *sizep)
453 {
454 	struct fs_enet_private *fep = netdev_priv(dev);
455 
456 	if (*sizep < sizeof(struct fec))
457 		return -EINVAL;
458 
459 	memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
460 
461 	return 0;
462 }
463 
464 static int get_regs_len(struct net_device *dev)
465 {
466 	return sizeof(struct fec);
467 }
468 
469 static void tx_restart(struct net_device *dev)
470 {
471 	/* nothing */
472 }
473 
474 /*************************************************************************/
475 
476 const struct fs_ops fs_fec_ops = {
477 	.setup_data		= setup_data,
478 	.cleanup_data		= cleanup_data,
479 	.set_multicast_list	= set_multicast_list,
480 	.restart		= restart,
481 	.stop			= stop,
482 	.napi_clear_event	= napi_clear_event_fs,
483 	.napi_enable		= napi_enable_fs,
484 	.napi_disable		= napi_disable_fs,
485 	.rx_bd_done		= rx_bd_done,
486 	.tx_kickstart		= tx_kickstart,
487 	.get_int_events		= get_int_events,
488 	.clear_int_events	= clear_int_events,
489 	.ev_error		= ev_error,
490 	.get_regs		= get_regs,
491 	.get_regs_len		= get_regs_len,
492 	.tx_restart		= tx_restart,
493 	.allocate_bd		= allocate_bd,
494 	.free_bd		= free_bd,
495 };
496 
497