1 /*
2  * FCC driver for Motorola MPC82xx (PQ2).
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mii.h>
30 #include <linux/ethtool.h>
31 #include <linux/bitops.h>
32 #include <linux/fs.h>
33 #include <linux/platform_device.h>
34 #include <linux/phy.h>
35 #include <linux/of_device.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/immap_cpm2.h>
39 #include <asm/mpc8260.h>
40 #include <asm/cpm2.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/uaccess.h>
45 
46 #include "fs_enet.h"
47 
48 /*************************************************/
49 
50 /* FCC access macros */
51 
52 /* write, read, set bits, clear bits */
53 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
54 #define R32(_p, _m)	in_be32(&(_p)->_m)
55 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
56 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
57 
58 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
59 #define R16(_p, _m)	in_be16(&(_p)->_m)
60 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
61 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
62 
63 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
64 #define R8(_p, _m)	in_8(&(_p)->_m)
65 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
66 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
67 
68 /*************************************************/
69 
70 #define FCC_MAX_MULTICAST_ADDRS	64
71 
72 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
73 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
74 #define mk_mii_end		0
75 
76 #define MAX_CR_CMD_LOOPS	10000
77 
78 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
79 {
80 	const struct fs_platform_info *fpi = fep->fpi;
81 
82 	return cpm_command(fpi->cp_command, op);
83 }
84 
85 static int do_pd_setup(struct fs_enet_private *fep)
86 {
87 	struct platform_device *ofdev = to_platform_device(fep->dev);
88 	struct fs_platform_info *fpi = fep->fpi;
89 	int ret = -EINVAL;
90 
91 	fep->interrupt = of_irq_to_resource(ofdev->dev.of_node, 0, NULL);
92 	if (fep->interrupt == NO_IRQ)
93 		goto out;
94 
95 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
96 	if (!fep->fcc.fccp)
97 		goto out;
98 
99 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
100 	if (!fep->fcc.ep)
101 		goto out_fccp;
102 
103 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
104 	if (!fep->fcc.fcccp)
105 		goto out_ep;
106 
107 	fep->fcc.mem = (void __iomem *)cpm2_immr;
108 	fpi->dpram_offset = cpm_dpalloc(128, 32);
109 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
110 		ret = fpi->dpram_offset;
111 		goto out_fcccp;
112 	}
113 
114 	return 0;
115 
116 out_fcccp:
117 	iounmap(fep->fcc.fcccp);
118 out_ep:
119 	iounmap(fep->fcc.ep);
120 out_fccp:
121 	iounmap(fep->fcc.fccp);
122 out:
123 	return ret;
124 }
125 
126 #define FCC_NAPI_RX_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB)
127 #define FCC_RX_EVENT		(FCC_ENET_RXF)
128 #define FCC_TX_EVENT		(FCC_ENET_TXB)
129 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
130 
131 static int setup_data(struct net_device *dev)
132 {
133 	struct fs_enet_private *fep = netdev_priv(dev);
134 
135 	if (do_pd_setup(fep) != 0)
136 		return -EINVAL;
137 
138 	fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
139 	fep->ev_rx = FCC_RX_EVENT;
140 	fep->ev_tx = FCC_TX_EVENT;
141 	fep->ev_err = FCC_ERR_EVENT_MSK;
142 
143 	return 0;
144 }
145 
146 static int allocate_bd(struct net_device *dev)
147 {
148 	struct fs_enet_private *fep = netdev_priv(dev);
149 	const struct fs_platform_info *fpi = fep->fpi;
150 
151 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
152 					    (fpi->tx_ring + fpi->rx_ring) *
153 					    sizeof(cbd_t), &fep->ring_mem_addr,
154 					    GFP_KERNEL);
155 	if (fep->ring_base == NULL)
156 		return -ENOMEM;
157 
158 	return 0;
159 }
160 
161 static void free_bd(struct net_device *dev)
162 {
163 	struct fs_enet_private *fep = netdev_priv(dev);
164 	const struct fs_platform_info *fpi = fep->fpi;
165 
166 	if (fep->ring_base)
167 		dma_free_coherent(fep->dev,
168 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
169 			(void __force *)fep->ring_base, fep->ring_mem_addr);
170 }
171 
172 static void cleanup_data(struct net_device *dev)
173 {
174 	/* nothing */
175 }
176 
177 static void set_promiscuous_mode(struct net_device *dev)
178 {
179 	struct fs_enet_private *fep = netdev_priv(dev);
180 	fcc_t __iomem *fccp = fep->fcc.fccp;
181 
182 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
183 }
184 
185 static void set_multicast_start(struct net_device *dev)
186 {
187 	struct fs_enet_private *fep = netdev_priv(dev);
188 	fcc_enet_t __iomem *ep = fep->fcc.ep;
189 
190 	W32(ep, fen_gaddrh, 0);
191 	W32(ep, fen_gaddrl, 0);
192 }
193 
194 static void set_multicast_one(struct net_device *dev, const u8 *mac)
195 {
196 	struct fs_enet_private *fep = netdev_priv(dev);
197 	fcc_enet_t __iomem *ep = fep->fcc.ep;
198 	u16 taddrh, taddrm, taddrl;
199 
200 	taddrh = ((u16)mac[5] << 8) | mac[4];
201 	taddrm = ((u16)mac[3] << 8) | mac[2];
202 	taddrl = ((u16)mac[1] << 8) | mac[0];
203 
204 	W16(ep, fen_taddrh, taddrh);
205 	W16(ep, fen_taddrm, taddrm);
206 	W16(ep, fen_taddrl, taddrl);
207 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
208 }
209 
210 static void set_multicast_finish(struct net_device *dev)
211 {
212 	struct fs_enet_private *fep = netdev_priv(dev);
213 	fcc_t __iomem *fccp = fep->fcc.fccp;
214 	fcc_enet_t __iomem *ep = fep->fcc.ep;
215 
216 	/* clear promiscuous always */
217 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
218 
219 	/* if all multi or too many multicasts; just enable all */
220 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
221 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
222 
223 		W32(ep, fen_gaddrh, 0xffffffff);
224 		W32(ep, fen_gaddrl, 0xffffffff);
225 	}
226 
227 	/* read back */
228 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
229 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
230 }
231 
232 static void set_multicast_list(struct net_device *dev)
233 {
234 	struct netdev_hw_addr *ha;
235 
236 	if ((dev->flags & IFF_PROMISC) == 0) {
237 		set_multicast_start(dev);
238 		netdev_for_each_mc_addr(ha, dev)
239 			set_multicast_one(dev, ha->addr);
240 		set_multicast_finish(dev);
241 	} else
242 		set_promiscuous_mode(dev);
243 }
244 
245 static void restart(struct net_device *dev)
246 {
247 	struct fs_enet_private *fep = netdev_priv(dev);
248 	const struct fs_platform_info *fpi = fep->fpi;
249 	fcc_t __iomem *fccp = fep->fcc.fccp;
250 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
251 	fcc_enet_t __iomem *ep = fep->fcc.ep;
252 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
253 	u16 paddrh, paddrm, paddrl;
254 	const unsigned char *mac;
255 	int i;
256 
257 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
258 
259 	/* clear everything (slow & steady does it) */
260 	for (i = 0; i < sizeof(*ep); i++)
261 		out_8((u8 __iomem *)ep + i, 0);
262 
263 	/* get physical address */
264 	rx_bd_base_phys = fep->ring_mem_addr;
265 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
266 
267 	/* point to bds */
268 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
269 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
270 
271 	/* Set maximum bytes per receive buffer.
272 	 * It must be a multiple of 32.
273 	 */
274 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
275 
276 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
277 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
278 
279 	/* Allocate space in the reserved FCC area of DPRAM for the
280 	 * internal buffers.  No one uses this space (yet), so we
281 	 * can do this.  Later, we will add resource management for
282 	 * this area.
283 	 */
284 
285 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
286 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
287 
288 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
289 
290 	/* fill with special symbol...  */
291 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
292 
293 	W32(ep, fen_genfcc.fcc_rbptr, 0);
294 	W32(ep, fen_genfcc.fcc_tbptr, 0);
295 	W32(ep, fen_genfcc.fcc_rcrc, 0);
296 	W32(ep, fen_genfcc.fcc_tcrc, 0);
297 	W16(ep, fen_genfcc.fcc_res1, 0);
298 	W32(ep, fen_genfcc.fcc_res2, 0);
299 
300 	/* no CAM */
301 	W32(ep, fen_camptr, 0);
302 
303 	/* Set CRC preset and mask */
304 	W32(ep, fen_cmask, 0xdebb20e3);
305 	W32(ep, fen_cpres, 0xffffffff);
306 
307 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
308 	W32(ep, fen_alec, 0);		/* alignment error counter */
309 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
310 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
311 	W16(ep, fen_pper, 0);		/* Normal persistence      */
312 
313 	/* set group address */
314 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
315 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
316 
317 	/* Clear hash filter tables */
318 	W32(ep, fen_iaddrh, 0);
319 	W32(ep, fen_iaddrl, 0);
320 
321 	/* Clear the Out-of-sequence TxBD  */
322 	W16(ep, fen_tfcstat, 0);
323 	W16(ep, fen_tfclen, 0);
324 	W32(ep, fen_tfcptr, 0);
325 
326 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
327 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
328 
329 	/* set address */
330 	mac = dev->dev_addr;
331 	paddrh = ((u16)mac[5] << 8) | mac[4];
332 	paddrm = ((u16)mac[3] << 8) | mac[2];
333 	paddrl = ((u16)mac[1] << 8) | mac[0];
334 
335 	W16(ep, fen_paddrh, paddrh);
336 	W16(ep, fen_paddrm, paddrm);
337 	W16(ep, fen_paddrl, paddrl);
338 
339 	W16(ep, fen_taddrh, 0);
340 	W16(ep, fen_taddrm, 0);
341 	W16(ep, fen_taddrl, 0);
342 
343 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
344 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
345 
346 	/* Clear stat counters, in case we ever enable RMON */
347 	W32(ep, fen_octc, 0);
348 	W32(ep, fen_colc, 0);
349 	W32(ep, fen_broc, 0);
350 	W32(ep, fen_mulc, 0);
351 	W32(ep, fen_uspc, 0);
352 	W32(ep, fen_frgc, 0);
353 	W32(ep, fen_ospc, 0);
354 	W32(ep, fen_jbrc, 0);
355 	W32(ep, fen_p64c, 0);
356 	W32(ep, fen_p65c, 0);
357 	W32(ep, fen_p128c, 0);
358 	W32(ep, fen_p256c, 0);
359 	W32(ep, fen_p512c, 0);
360 	W32(ep, fen_p1024c, 0);
361 
362 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
363 	W16(ep, fen_rfcnt, 0);
364 	W16(ep, fen_cftype, 0);
365 
366 	fs_init_bds(dev);
367 
368 	/* adjust to speed (for RMII mode) */
369 	if (fpi->use_rmii) {
370 		if (fep->phydev->speed == 100)
371 			C8(fcccp, fcc_gfemr, 0x20);
372 		else
373 			S8(fcccp, fcc_gfemr, 0x20);
374 	}
375 
376 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
377 
378 	/* clear events */
379 	W16(fccp, fcc_fcce, 0xffff);
380 
381 	/* Enable interrupts we wish to service */
382 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
383 
384 	/* Set GFMR to enable Ethernet operating mode */
385 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
386 
387 	/* set sync/delimiters */
388 	W16(fccp, fcc_fdsr, 0xd555);
389 
390 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
391 
392 	if (fpi->use_rmii)
393 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
394 
395 	/* adjust to duplex mode */
396 	if (fep->phydev->duplex)
397 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
398 	else
399 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
400 
401 	/* Restore multicast and promiscuous settings */
402 	set_multicast_list(dev);
403 
404 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
405 }
406 
407 static void stop(struct net_device *dev)
408 {
409 	struct fs_enet_private *fep = netdev_priv(dev);
410 	fcc_t __iomem *fccp = fep->fcc.fccp;
411 
412 	/* stop ethernet */
413 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
414 
415 	/* clear events */
416 	W16(fccp, fcc_fcce, 0xffff);
417 
418 	/* clear interrupt mask */
419 	W16(fccp, fcc_fccm, 0);
420 
421 	fs_cleanup_bds(dev);
422 }
423 
424 static void napi_clear_rx_event(struct net_device *dev)
425 {
426 	struct fs_enet_private *fep = netdev_priv(dev);
427 	fcc_t __iomem *fccp = fep->fcc.fccp;
428 
429 	W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
430 }
431 
432 static void napi_enable_rx(struct net_device *dev)
433 {
434 	struct fs_enet_private *fep = netdev_priv(dev);
435 	fcc_t __iomem *fccp = fep->fcc.fccp;
436 
437 	S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
438 }
439 
440 static void napi_disable_rx(struct net_device *dev)
441 {
442 	struct fs_enet_private *fep = netdev_priv(dev);
443 	fcc_t __iomem *fccp = fep->fcc.fccp;
444 
445 	C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
446 }
447 
448 static void rx_bd_done(struct net_device *dev)
449 {
450 	/* nothing */
451 }
452 
453 static void tx_kickstart(struct net_device *dev)
454 {
455 	struct fs_enet_private *fep = netdev_priv(dev);
456 	fcc_t __iomem *fccp = fep->fcc.fccp;
457 
458 	S16(fccp, fcc_ftodr, 0x8000);
459 }
460 
461 static u32 get_int_events(struct net_device *dev)
462 {
463 	struct fs_enet_private *fep = netdev_priv(dev);
464 	fcc_t __iomem *fccp = fep->fcc.fccp;
465 
466 	return (u32)R16(fccp, fcc_fcce);
467 }
468 
469 static void clear_int_events(struct net_device *dev, u32 int_events)
470 {
471 	struct fs_enet_private *fep = netdev_priv(dev);
472 	fcc_t __iomem *fccp = fep->fcc.fccp;
473 
474 	W16(fccp, fcc_fcce, int_events & 0xffff);
475 }
476 
477 static void ev_error(struct net_device *dev, u32 int_events)
478 {
479 	struct fs_enet_private *fep = netdev_priv(dev);
480 
481 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
482 }
483 
484 static int get_regs(struct net_device *dev, void *p, int *sizep)
485 {
486 	struct fs_enet_private *fep = netdev_priv(dev);
487 
488 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
489 		return -EINVAL;
490 
491 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
492 	p = (char *)p + sizeof(fcc_t);
493 
494 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
495 	p = (char *)p + sizeof(fcc_enet_t);
496 
497 	memcpy_fromio(p, fep->fcc.fcccp, 1);
498 	return 0;
499 }
500 
501 static int get_regs_len(struct net_device *dev)
502 {
503 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
504 }
505 
506 /* Some transmit errors cause the transmitter to shut
507  * down.  We now issue a restart transmit.
508  * Also, to workaround 8260 device erratum CPM37, we must
509  * disable and then re-enable the transmitterfollowing a
510  * Late Collision, Underrun, or Retry Limit error.
511  * In addition, tbptr may point beyond BDs beyond still marked
512  * as ready due to internal pipelining, so we need to look back
513  * through the BDs and adjust tbptr to point to the last BD
514  * marked as ready.  This may result in some buffers being
515  * retransmitted.
516  */
517 static void tx_restart(struct net_device *dev)
518 {
519 	struct fs_enet_private *fep = netdev_priv(dev);
520 	fcc_t __iomem *fccp = fep->fcc.fccp;
521 	const struct fs_platform_info *fpi = fep->fpi;
522 	fcc_enet_t __iomem *ep = fep->fcc.ep;
523 	cbd_t __iomem *curr_tbptr;
524 	cbd_t __iomem *recheck_bd;
525 	cbd_t __iomem *prev_bd;
526 	cbd_t __iomem *last_tx_bd;
527 
528 	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring * sizeof(cbd_t));
529 
530 	/* get the current bd held in TBPTR  and scan back from this point */
531 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
532 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
533 		fep->ring_base);
534 
535 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
536 
537 	/* Move through the bds in reverse, look for the earliest buffer
538 	 * that is not ready.  Adjust TBPTR to the following buffer */
539 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
540 		/* Go back one buffer */
541 		recheck_bd = prev_bd;
542 
543 		/* update the previous buffer */
544 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
545 
546 		/* We should never see all bds marked as ready, check anyway */
547 		if (recheck_bd == curr_tbptr)
548 			break;
549 	}
550 	/* Now update the TBPTR and dirty flag to the current buffer */
551 	W32(ep, fen_genfcc.fcc_tbptr,
552 		(uint) (((void *)recheck_bd - fep->ring_base) +
553 		fep->ring_mem_addr));
554 	fep->dirty_tx = recheck_bd;
555 
556 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
557 	udelay(10);
558 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
559 
560 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
561 }
562 
563 /*************************************************************************/
564 
565 const struct fs_ops fs_fcc_ops = {
566 	.setup_data		= setup_data,
567 	.cleanup_data		= cleanup_data,
568 	.set_multicast_list	= set_multicast_list,
569 	.restart		= restart,
570 	.stop			= stop,
571 	.napi_clear_rx_event	= napi_clear_rx_event,
572 	.napi_enable_rx		= napi_enable_rx,
573 	.napi_disable_rx	= napi_disable_rx,
574 	.rx_bd_done		= rx_bd_done,
575 	.tx_kickstart		= tx_kickstart,
576 	.get_int_events		= get_int_events,
577 	.clear_int_events	= clear_int_events,
578 	.ev_error		= ev_error,
579 	.get_regs		= get_regs,
580 	.get_regs_len		= get_regs_len,
581 	.tx_restart		= tx_restart,
582 	.allocate_bd		= allocate_bd,
583 	.free_bd		= free_bd,
584 };
585