xref: /openbmc/linux/drivers/net/ethernet/freescale/fs_enet/mac-fcc.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /*
2  * FCC driver for Motorola MPC82xx (PQ2).
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_irq.h>
37 #include <linux/gfp.h>
38 
39 #include <asm/immap_cpm2.h>
40 #include <asm/mpc8260.h>
41 #include <asm/cpm2.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46 
47 #include "fs_enet.h"
48 
49 /*************************************************/
50 
51 /* FCC access macros */
52 
53 /* write, read, set bits, clear bits */
54 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
55 #define R32(_p, _m)	in_be32(&(_p)->_m)
56 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
57 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
58 
59 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
60 #define R16(_p, _m)	in_be16(&(_p)->_m)
61 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
62 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
63 
64 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
65 #define R8(_p, _m)	in_8(&(_p)->_m)
66 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
67 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
68 
69 /*************************************************/
70 
71 #define FCC_MAX_MULTICAST_ADDRS	64
72 
73 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
74 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
75 #define mk_mii_end		0
76 
77 #define MAX_CR_CMD_LOOPS	10000
78 
79 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
80 {
81 	const struct fs_platform_info *fpi = fep->fpi;
82 
83 	return cpm_command(fpi->cp_command, op);
84 }
85 
86 static int do_pd_setup(struct fs_enet_private *fep)
87 {
88 	struct platform_device *ofdev = to_platform_device(fep->dev);
89 	struct fs_platform_info *fpi = fep->fpi;
90 	int ret = -EINVAL;
91 
92 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
93 	if (!fep->interrupt)
94 		goto out;
95 
96 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
97 	if (!fep->fcc.fccp)
98 		goto out;
99 
100 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
101 	if (!fep->fcc.ep)
102 		goto out_fccp;
103 
104 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
105 	if (!fep->fcc.fcccp)
106 		goto out_ep;
107 
108 	fep->fcc.mem = (void __iomem *)cpm2_immr;
109 	fpi->dpram_offset = cpm_dpalloc(128, 32);
110 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
111 		ret = fpi->dpram_offset;
112 		goto out_fcccp;
113 	}
114 
115 	return 0;
116 
117 out_fcccp:
118 	iounmap(fep->fcc.fcccp);
119 out_ep:
120 	iounmap(fep->fcc.ep);
121 out_fccp:
122 	iounmap(fep->fcc.fccp);
123 out:
124 	return ret;
125 }
126 
127 #define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
128 #define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
129 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
130 
131 static int setup_data(struct net_device *dev)
132 {
133 	struct fs_enet_private *fep = netdev_priv(dev);
134 
135 	if (do_pd_setup(fep) != 0)
136 		return -EINVAL;
137 
138 	fep->ev_napi = FCC_NAPI_EVENT_MSK;
139 	fep->ev = FCC_EVENT;
140 	fep->ev_err = FCC_ERR_EVENT_MSK;
141 
142 	return 0;
143 }
144 
145 static int allocate_bd(struct net_device *dev)
146 {
147 	struct fs_enet_private *fep = netdev_priv(dev);
148 	const struct fs_platform_info *fpi = fep->fpi;
149 
150 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
151 					    (fpi->tx_ring + fpi->rx_ring) *
152 					    sizeof(cbd_t), &fep->ring_mem_addr,
153 					    GFP_KERNEL);
154 	if (fep->ring_base == NULL)
155 		return -ENOMEM;
156 
157 	return 0;
158 }
159 
160 static void free_bd(struct net_device *dev)
161 {
162 	struct fs_enet_private *fep = netdev_priv(dev);
163 	const struct fs_platform_info *fpi = fep->fpi;
164 
165 	if (fep->ring_base)
166 		dma_free_coherent(fep->dev,
167 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
168 			(void __force *)fep->ring_base, fep->ring_mem_addr);
169 }
170 
171 static void cleanup_data(struct net_device *dev)
172 {
173 	/* nothing */
174 }
175 
176 static void set_promiscuous_mode(struct net_device *dev)
177 {
178 	struct fs_enet_private *fep = netdev_priv(dev);
179 	fcc_t __iomem *fccp = fep->fcc.fccp;
180 
181 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
182 }
183 
184 static void set_multicast_start(struct net_device *dev)
185 {
186 	struct fs_enet_private *fep = netdev_priv(dev);
187 	fcc_enet_t __iomem *ep = fep->fcc.ep;
188 
189 	W32(ep, fen_gaddrh, 0);
190 	W32(ep, fen_gaddrl, 0);
191 }
192 
193 static void set_multicast_one(struct net_device *dev, const u8 *mac)
194 {
195 	struct fs_enet_private *fep = netdev_priv(dev);
196 	fcc_enet_t __iomem *ep = fep->fcc.ep;
197 	u16 taddrh, taddrm, taddrl;
198 
199 	taddrh = ((u16)mac[5] << 8) | mac[4];
200 	taddrm = ((u16)mac[3] << 8) | mac[2];
201 	taddrl = ((u16)mac[1] << 8) | mac[0];
202 
203 	W16(ep, fen_taddrh, taddrh);
204 	W16(ep, fen_taddrm, taddrm);
205 	W16(ep, fen_taddrl, taddrl);
206 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
207 }
208 
209 static void set_multicast_finish(struct net_device *dev)
210 {
211 	struct fs_enet_private *fep = netdev_priv(dev);
212 	fcc_t __iomem *fccp = fep->fcc.fccp;
213 	fcc_enet_t __iomem *ep = fep->fcc.ep;
214 
215 	/* clear promiscuous always */
216 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
217 
218 	/* if all multi or too many multicasts; just enable all */
219 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
220 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
221 
222 		W32(ep, fen_gaddrh, 0xffffffff);
223 		W32(ep, fen_gaddrl, 0xffffffff);
224 	}
225 
226 	/* read back */
227 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
228 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
229 }
230 
231 static void set_multicast_list(struct net_device *dev)
232 {
233 	struct netdev_hw_addr *ha;
234 
235 	if ((dev->flags & IFF_PROMISC) == 0) {
236 		set_multicast_start(dev);
237 		netdev_for_each_mc_addr(ha, dev)
238 			set_multicast_one(dev, ha->addr);
239 		set_multicast_finish(dev);
240 	} else
241 		set_promiscuous_mode(dev);
242 }
243 
244 static void restart(struct net_device *dev)
245 {
246 	struct fs_enet_private *fep = netdev_priv(dev);
247 	const struct fs_platform_info *fpi = fep->fpi;
248 	fcc_t __iomem *fccp = fep->fcc.fccp;
249 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
250 	fcc_enet_t __iomem *ep = fep->fcc.ep;
251 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
252 	u16 paddrh, paddrm, paddrl;
253 	const unsigned char *mac;
254 	int i;
255 
256 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
257 
258 	/* clear everything (slow & steady does it) */
259 	for (i = 0; i < sizeof(*ep); i++)
260 		out_8((u8 __iomem *)ep + i, 0);
261 
262 	/* get physical address */
263 	rx_bd_base_phys = fep->ring_mem_addr;
264 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
265 
266 	/* point to bds */
267 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
268 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
269 
270 	/* Set maximum bytes per receive buffer.
271 	 * It must be a multiple of 32.
272 	 */
273 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
274 
275 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
276 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
277 
278 	/* Allocate space in the reserved FCC area of DPRAM for the
279 	 * internal buffers.  No one uses this space (yet), so we
280 	 * can do this.  Later, we will add resource management for
281 	 * this area.
282 	 */
283 
284 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
285 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
286 
287 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
288 
289 	/* fill with special symbol...  */
290 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
291 
292 	W32(ep, fen_genfcc.fcc_rbptr, 0);
293 	W32(ep, fen_genfcc.fcc_tbptr, 0);
294 	W32(ep, fen_genfcc.fcc_rcrc, 0);
295 	W32(ep, fen_genfcc.fcc_tcrc, 0);
296 	W16(ep, fen_genfcc.fcc_res1, 0);
297 	W32(ep, fen_genfcc.fcc_res2, 0);
298 
299 	/* no CAM */
300 	W32(ep, fen_camptr, 0);
301 
302 	/* Set CRC preset and mask */
303 	W32(ep, fen_cmask, 0xdebb20e3);
304 	W32(ep, fen_cpres, 0xffffffff);
305 
306 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
307 	W32(ep, fen_alec, 0);		/* alignment error counter */
308 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
309 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
310 	W16(ep, fen_pper, 0);		/* Normal persistence      */
311 
312 	/* set group address */
313 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
314 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
315 
316 	/* Clear hash filter tables */
317 	W32(ep, fen_iaddrh, 0);
318 	W32(ep, fen_iaddrl, 0);
319 
320 	/* Clear the Out-of-sequence TxBD  */
321 	W16(ep, fen_tfcstat, 0);
322 	W16(ep, fen_tfclen, 0);
323 	W32(ep, fen_tfcptr, 0);
324 
325 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
326 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
327 
328 	/* set address */
329 	mac = dev->dev_addr;
330 	paddrh = ((u16)mac[5] << 8) | mac[4];
331 	paddrm = ((u16)mac[3] << 8) | mac[2];
332 	paddrl = ((u16)mac[1] << 8) | mac[0];
333 
334 	W16(ep, fen_paddrh, paddrh);
335 	W16(ep, fen_paddrm, paddrm);
336 	W16(ep, fen_paddrl, paddrl);
337 
338 	W16(ep, fen_taddrh, 0);
339 	W16(ep, fen_taddrm, 0);
340 	W16(ep, fen_taddrl, 0);
341 
342 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
343 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
344 
345 	/* Clear stat counters, in case we ever enable RMON */
346 	W32(ep, fen_octc, 0);
347 	W32(ep, fen_colc, 0);
348 	W32(ep, fen_broc, 0);
349 	W32(ep, fen_mulc, 0);
350 	W32(ep, fen_uspc, 0);
351 	W32(ep, fen_frgc, 0);
352 	W32(ep, fen_ospc, 0);
353 	W32(ep, fen_jbrc, 0);
354 	W32(ep, fen_p64c, 0);
355 	W32(ep, fen_p65c, 0);
356 	W32(ep, fen_p128c, 0);
357 	W32(ep, fen_p256c, 0);
358 	W32(ep, fen_p512c, 0);
359 	W32(ep, fen_p1024c, 0);
360 
361 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
362 	W16(ep, fen_rfcnt, 0);
363 	W16(ep, fen_cftype, 0);
364 
365 	fs_init_bds(dev);
366 
367 	/* adjust to speed (for RMII mode) */
368 	if (fpi->use_rmii) {
369 		if (dev->phydev->speed == 100)
370 			C8(fcccp, fcc_gfemr, 0x20);
371 		else
372 			S8(fcccp, fcc_gfemr, 0x20);
373 	}
374 
375 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
376 
377 	/* clear events */
378 	W16(fccp, fcc_fcce, 0xffff);
379 
380 	/* Enable interrupts we wish to service */
381 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
382 
383 	/* Set GFMR to enable Ethernet operating mode */
384 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
385 
386 	/* set sync/delimiters */
387 	W16(fccp, fcc_fdsr, 0xd555);
388 
389 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
390 
391 	if (fpi->use_rmii)
392 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
393 
394 	/* adjust to duplex mode */
395 	if (dev->phydev->duplex)
396 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
397 	else
398 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
399 
400 	/* Restore multicast and promiscuous settings */
401 	set_multicast_list(dev);
402 
403 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
404 }
405 
406 static void stop(struct net_device *dev)
407 {
408 	struct fs_enet_private *fep = netdev_priv(dev);
409 	fcc_t __iomem *fccp = fep->fcc.fccp;
410 
411 	/* stop ethernet */
412 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
413 
414 	/* clear events */
415 	W16(fccp, fcc_fcce, 0xffff);
416 
417 	/* clear interrupt mask */
418 	W16(fccp, fcc_fccm, 0);
419 
420 	fs_cleanup_bds(dev);
421 }
422 
423 static void napi_clear_event_fs(struct net_device *dev)
424 {
425 	struct fs_enet_private *fep = netdev_priv(dev);
426 	fcc_t __iomem *fccp = fep->fcc.fccp;
427 
428 	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
429 }
430 
431 static void napi_enable_fs(struct net_device *dev)
432 {
433 	struct fs_enet_private *fep = netdev_priv(dev);
434 	fcc_t __iomem *fccp = fep->fcc.fccp;
435 
436 	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
437 }
438 
439 static void napi_disable_fs(struct net_device *dev)
440 {
441 	struct fs_enet_private *fep = netdev_priv(dev);
442 	fcc_t __iomem *fccp = fep->fcc.fccp;
443 
444 	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
445 }
446 
447 static void rx_bd_done(struct net_device *dev)
448 {
449 	/* nothing */
450 }
451 
452 static void tx_kickstart(struct net_device *dev)
453 {
454 	struct fs_enet_private *fep = netdev_priv(dev);
455 	fcc_t __iomem *fccp = fep->fcc.fccp;
456 
457 	S16(fccp, fcc_ftodr, 0x8000);
458 }
459 
460 static u32 get_int_events(struct net_device *dev)
461 {
462 	struct fs_enet_private *fep = netdev_priv(dev);
463 	fcc_t __iomem *fccp = fep->fcc.fccp;
464 
465 	return (u32)R16(fccp, fcc_fcce);
466 }
467 
468 static void clear_int_events(struct net_device *dev, u32 int_events)
469 {
470 	struct fs_enet_private *fep = netdev_priv(dev);
471 	fcc_t __iomem *fccp = fep->fcc.fccp;
472 
473 	W16(fccp, fcc_fcce, int_events & 0xffff);
474 }
475 
476 static void ev_error(struct net_device *dev, u32 int_events)
477 {
478 	struct fs_enet_private *fep = netdev_priv(dev);
479 
480 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
481 }
482 
483 static int get_regs(struct net_device *dev, void *p, int *sizep)
484 {
485 	struct fs_enet_private *fep = netdev_priv(dev);
486 
487 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
488 		return -EINVAL;
489 
490 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
491 	p = (char *)p + sizeof(fcc_t);
492 
493 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
494 	p = (char *)p + sizeof(fcc_enet_t);
495 
496 	memcpy_fromio(p, fep->fcc.fcccp, 1);
497 	return 0;
498 }
499 
500 static int get_regs_len(struct net_device *dev)
501 {
502 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
503 }
504 
505 /* Some transmit errors cause the transmitter to shut
506  * down.  We now issue a restart transmit.
507  * Also, to workaround 8260 device erratum CPM37, we must
508  * disable and then re-enable the transmitterfollowing a
509  * Late Collision, Underrun, or Retry Limit error.
510  * In addition, tbptr may point beyond BDs beyond still marked
511  * as ready due to internal pipelining, so we need to look back
512  * through the BDs and adjust tbptr to point to the last BD
513  * marked as ready.  This may result in some buffers being
514  * retransmitted.
515  */
516 static void tx_restart(struct net_device *dev)
517 {
518 	struct fs_enet_private *fep = netdev_priv(dev);
519 	fcc_t __iomem *fccp = fep->fcc.fccp;
520 	const struct fs_platform_info *fpi = fep->fpi;
521 	fcc_enet_t __iomem *ep = fep->fcc.ep;
522 	cbd_t __iomem *curr_tbptr;
523 	cbd_t __iomem *recheck_bd;
524 	cbd_t __iomem *prev_bd;
525 	cbd_t __iomem *last_tx_bd;
526 
527 	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
528 
529 	/* get the current bd held in TBPTR  and scan back from this point */
530 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
531 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
532 		fep->ring_base);
533 
534 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
535 
536 	/* Move through the bds in reverse, look for the earliest buffer
537 	 * that is not ready.  Adjust TBPTR to the following buffer */
538 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
539 		/* Go back one buffer */
540 		recheck_bd = prev_bd;
541 
542 		/* update the previous buffer */
543 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
544 
545 		/* We should never see all bds marked as ready, check anyway */
546 		if (recheck_bd == curr_tbptr)
547 			break;
548 	}
549 	/* Now update the TBPTR and dirty flag to the current buffer */
550 	W32(ep, fen_genfcc.fcc_tbptr,
551 		(uint) (((void *)recheck_bd - fep->ring_base) +
552 		fep->ring_mem_addr));
553 	fep->dirty_tx = recheck_bd;
554 
555 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
556 	udelay(10);
557 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
558 
559 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
560 }
561 
562 /*************************************************************************/
563 
564 const struct fs_ops fs_fcc_ops = {
565 	.setup_data		= setup_data,
566 	.cleanup_data		= cleanup_data,
567 	.set_multicast_list	= set_multicast_list,
568 	.restart		= restart,
569 	.stop			= stop,
570 	.napi_clear_event	= napi_clear_event_fs,
571 	.napi_enable		= napi_enable_fs,
572 	.napi_disable		= napi_disable_fs,
573 	.rx_bd_done		= rx_bd_done,
574 	.tx_kickstart		= tx_kickstart,
575 	.get_int_events		= get_int_events,
576 	.clear_int_events	= clear_int_events,
577 	.ev_error		= ev_error,
578 	.get_regs		= get_regs,
579 	.get_regs_len		= get_regs_len,
580 	.tx_restart		= tx_restart,
581 	.allocate_bd		= allocate_bd,
582 	.free_bd		= free_bd,
583 };
584