1 /*
2  * FCC driver for Motorola MPC82xx (PQ2).
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * This file is licensed under the terms of the GNU General Public License
11  * version 2. This program is licensed "as is" without any warranty of any
12  * kind, whether express or implied.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/gfp.h>
37 #include <linux/pgtable.h>
38 
39 #include <asm/immap_cpm2.h>
40 #include <asm/mpc8260.h>
41 #include <asm/cpm2.h>
42 
43 #include <asm/irq.h>
44 #include <linux/uaccess.h>
45 
46 #include "fs_enet.h"
47 
48 /*************************************************/
49 
50 /* FCC access macros */
51 
52 /* write, read, set bits, clear bits */
53 #define W32(_p, _m, _v)	out_be32(&(_p)->_m, (_v))
54 #define R32(_p, _m)	in_be32(&(_p)->_m)
55 #define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
56 #define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))
57 
58 #define W16(_p, _m, _v)	out_be16(&(_p)->_m, (_v))
59 #define R16(_p, _m)	in_be16(&(_p)->_m)
60 #define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
61 #define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))
62 
63 #define W8(_p, _m, _v)	out_8(&(_p)->_m, (_v))
64 #define R8(_p, _m)	in_8(&(_p)->_m)
65 #define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
66 #define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))
67 
68 /*************************************************/
69 
70 #define FCC_MAX_MULTICAST_ADDRS	64
71 
72 #define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
73 #define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
74 #define mk_mii_end		0
75 
76 #define MAX_CR_CMD_LOOPS	10000
77 
78 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
79 {
80 	const struct fs_platform_info *fpi = fep->fpi;
81 
82 	return cpm_command(fpi->cp_command, op);
83 }
84 
85 static int do_pd_setup(struct fs_enet_private *fep)
86 {
87 	struct platform_device *ofdev = to_platform_device(fep->dev);
88 	struct fs_platform_info *fpi = fep->fpi;
89 	int ret = -EINVAL;
90 
91 	fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
92 	if (!fep->interrupt)
93 		goto out;
94 
95 	fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
96 	if (!fep->fcc.fccp)
97 		goto out;
98 
99 	fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
100 	if (!fep->fcc.ep)
101 		goto out_fccp;
102 
103 	fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
104 	if (!fep->fcc.fcccp)
105 		goto out_ep;
106 
107 	fep->fcc.mem = (void __iomem *)cpm2_immr;
108 	fpi->dpram_offset = cpm_muram_alloc(128, 32);
109 	if (IS_ERR_VALUE(fpi->dpram_offset)) {
110 		ret = fpi->dpram_offset;
111 		goto out_fcccp;
112 	}
113 
114 	return 0;
115 
116 out_fcccp:
117 	iounmap(fep->fcc.fcccp);
118 out_ep:
119 	iounmap(fep->fcc.ep);
120 out_fccp:
121 	iounmap(fep->fcc.fccp);
122 out:
123 	return ret;
124 }
125 
126 #define FCC_NAPI_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
127 #define FCC_EVENT		(FCC_ENET_RXF | FCC_ENET_TXB)
128 #define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE)
129 
130 static int setup_data(struct net_device *dev)
131 {
132 	struct fs_enet_private *fep = netdev_priv(dev);
133 
134 	if (do_pd_setup(fep) != 0)
135 		return -EINVAL;
136 
137 	fep->ev_napi = FCC_NAPI_EVENT_MSK;
138 	fep->ev = FCC_EVENT;
139 	fep->ev_err = FCC_ERR_EVENT_MSK;
140 
141 	return 0;
142 }
143 
144 static int allocate_bd(struct net_device *dev)
145 {
146 	struct fs_enet_private *fep = netdev_priv(dev);
147 	const struct fs_platform_info *fpi = fep->fpi;
148 
149 	fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
150 					    (fpi->tx_ring + fpi->rx_ring) *
151 					    sizeof(cbd_t), &fep->ring_mem_addr,
152 					    GFP_KERNEL);
153 	if (fep->ring_base == NULL)
154 		return -ENOMEM;
155 
156 	return 0;
157 }
158 
159 static void free_bd(struct net_device *dev)
160 {
161 	struct fs_enet_private *fep = netdev_priv(dev);
162 	const struct fs_platform_info *fpi = fep->fpi;
163 
164 	if (fep->ring_base)
165 		dma_free_coherent(fep->dev,
166 			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
167 			(void __force *)fep->ring_base, fep->ring_mem_addr);
168 }
169 
170 static void cleanup_data(struct net_device *dev)
171 {
172 	/* nothing */
173 }
174 
175 static void set_promiscuous_mode(struct net_device *dev)
176 {
177 	struct fs_enet_private *fep = netdev_priv(dev);
178 	fcc_t __iomem *fccp = fep->fcc.fccp;
179 
180 	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
181 }
182 
183 static void set_multicast_start(struct net_device *dev)
184 {
185 	struct fs_enet_private *fep = netdev_priv(dev);
186 	fcc_enet_t __iomem *ep = fep->fcc.ep;
187 
188 	W32(ep, fen_gaddrh, 0);
189 	W32(ep, fen_gaddrl, 0);
190 }
191 
192 static void set_multicast_one(struct net_device *dev, const u8 *mac)
193 {
194 	struct fs_enet_private *fep = netdev_priv(dev);
195 	fcc_enet_t __iomem *ep = fep->fcc.ep;
196 	u16 taddrh, taddrm, taddrl;
197 
198 	taddrh = ((u16)mac[5] << 8) | mac[4];
199 	taddrm = ((u16)mac[3] << 8) | mac[2];
200 	taddrl = ((u16)mac[1] << 8) | mac[0];
201 
202 	W16(ep, fen_taddrh, taddrh);
203 	W16(ep, fen_taddrm, taddrm);
204 	W16(ep, fen_taddrl, taddrl);
205 	fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
206 }
207 
208 static void set_multicast_finish(struct net_device *dev)
209 {
210 	struct fs_enet_private *fep = netdev_priv(dev);
211 	fcc_t __iomem *fccp = fep->fcc.fccp;
212 	fcc_enet_t __iomem *ep = fep->fcc.ep;
213 
214 	/* clear promiscuous always */
215 	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
216 
217 	/* if all multi or too many multicasts; just enable all */
218 	if ((dev->flags & IFF_ALLMULTI) != 0 ||
219 	    netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
220 
221 		W32(ep, fen_gaddrh, 0xffffffff);
222 		W32(ep, fen_gaddrl, 0xffffffff);
223 	}
224 
225 	/* read back */
226 	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
227 	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
228 }
229 
230 static void set_multicast_list(struct net_device *dev)
231 {
232 	struct netdev_hw_addr *ha;
233 
234 	if ((dev->flags & IFF_PROMISC) == 0) {
235 		set_multicast_start(dev);
236 		netdev_for_each_mc_addr(ha, dev)
237 			set_multicast_one(dev, ha->addr);
238 		set_multicast_finish(dev);
239 	} else
240 		set_promiscuous_mode(dev);
241 }
242 
243 static void restart(struct net_device *dev)
244 {
245 	struct fs_enet_private *fep = netdev_priv(dev);
246 	const struct fs_platform_info *fpi = fep->fpi;
247 	fcc_t __iomem *fccp = fep->fcc.fccp;
248 	fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
249 	fcc_enet_t __iomem *ep = fep->fcc.ep;
250 	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
251 	u16 paddrh, paddrm, paddrl;
252 	const unsigned char *mac;
253 	int i;
254 
255 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
256 
257 	/* clear everything (slow & steady does it) */
258 	for (i = 0; i < sizeof(*ep); i++)
259 		out_8((u8 __iomem *)ep + i, 0);
260 
261 	/* get physical address */
262 	rx_bd_base_phys = fep->ring_mem_addr;
263 	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
264 
265 	/* point to bds */
266 	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
267 	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
268 
269 	/* Set maximum bytes per receive buffer.
270 	 * It must be a multiple of 32.
271 	 */
272 	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
273 
274 	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
275 	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
276 
277 	/* Allocate space in the reserved FCC area of DPRAM for the
278 	 * internal buffers.  No one uses this space (yet), so we
279 	 * can do this.  Later, we will add resource management for
280 	 * this area.
281 	 */
282 
283 	W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
284 	W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
285 
286 	W16(ep, fen_padptr, fpi->dpram_offset + 64);
287 
288 	/* fill with special symbol...  */
289 	memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
290 
291 	W32(ep, fen_genfcc.fcc_rbptr, 0);
292 	W32(ep, fen_genfcc.fcc_tbptr, 0);
293 	W32(ep, fen_genfcc.fcc_rcrc, 0);
294 	W32(ep, fen_genfcc.fcc_tcrc, 0);
295 	W16(ep, fen_genfcc.fcc_res1, 0);
296 	W32(ep, fen_genfcc.fcc_res2, 0);
297 
298 	/* no CAM */
299 	W32(ep, fen_camptr, 0);
300 
301 	/* Set CRC preset and mask */
302 	W32(ep, fen_cmask, 0xdebb20e3);
303 	W32(ep, fen_cpres, 0xffffffff);
304 
305 	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
306 	W32(ep, fen_alec, 0);		/* alignment error counter */
307 	W32(ep, fen_disfc, 0);		/* discard frame counter   */
308 	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
309 	W16(ep, fen_pper, 0);		/* Normal persistence      */
310 
311 	/* set group address */
312 	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
313 	W32(ep, fen_gaddrl, fep->fcc.gaddrh);
314 
315 	/* Clear hash filter tables */
316 	W32(ep, fen_iaddrh, 0);
317 	W32(ep, fen_iaddrl, 0);
318 
319 	/* Clear the Out-of-sequence TxBD  */
320 	W16(ep, fen_tfcstat, 0);
321 	W16(ep, fen_tfclen, 0);
322 	W32(ep, fen_tfcptr, 0);
323 
324 	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
325 	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */
326 
327 	/* set address */
328 	mac = dev->dev_addr;
329 	paddrh = ((u16)mac[5] << 8) | mac[4];
330 	paddrm = ((u16)mac[3] << 8) | mac[2];
331 	paddrl = ((u16)mac[1] << 8) | mac[0];
332 
333 	W16(ep, fen_paddrh, paddrh);
334 	W16(ep, fen_paddrm, paddrm);
335 	W16(ep, fen_paddrl, paddrl);
336 
337 	W16(ep, fen_taddrh, 0);
338 	W16(ep, fen_taddrm, 0);
339 	W16(ep, fen_taddrl, 0);
340 
341 	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
342 	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */
343 
344 	/* Clear stat counters, in case we ever enable RMON */
345 	W32(ep, fen_octc, 0);
346 	W32(ep, fen_colc, 0);
347 	W32(ep, fen_broc, 0);
348 	W32(ep, fen_mulc, 0);
349 	W32(ep, fen_uspc, 0);
350 	W32(ep, fen_frgc, 0);
351 	W32(ep, fen_ospc, 0);
352 	W32(ep, fen_jbrc, 0);
353 	W32(ep, fen_p64c, 0);
354 	W32(ep, fen_p65c, 0);
355 	W32(ep, fen_p128c, 0);
356 	W32(ep, fen_p256c, 0);
357 	W32(ep, fen_p512c, 0);
358 	W32(ep, fen_p1024c, 0);
359 
360 	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
361 	W16(ep, fen_rfcnt, 0);
362 	W16(ep, fen_cftype, 0);
363 
364 	fs_init_bds(dev);
365 
366 	/* adjust to speed (for RMII mode) */
367 	if (fpi->use_rmii) {
368 		if (dev->phydev->speed == 100)
369 			C8(fcccp, fcc_gfemr, 0x20);
370 		else
371 			S8(fcccp, fcc_gfemr, 0x20);
372 	}
373 
374 	fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
375 
376 	/* clear events */
377 	W16(fccp, fcc_fcce, 0xffff);
378 
379 	/* Enable interrupts we wish to service */
380 	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
381 
382 	/* Set GFMR to enable Ethernet operating mode */
383 	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
384 
385 	/* set sync/delimiters */
386 	W16(fccp, fcc_fdsr, 0xd555);
387 
388 	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
389 
390 	if (fpi->use_rmii)
391 		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
392 
393 	/* adjust to duplex mode */
394 	if (dev->phydev->duplex)
395 		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
396 	else
397 		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
398 
399 	/* Restore multicast and promiscuous settings */
400 	set_multicast_list(dev);
401 
402 	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
403 }
404 
405 static void stop(struct net_device *dev)
406 {
407 	struct fs_enet_private *fep = netdev_priv(dev);
408 	fcc_t __iomem *fccp = fep->fcc.fccp;
409 
410 	/* stop ethernet */
411 	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
412 
413 	/* clear events */
414 	W16(fccp, fcc_fcce, 0xffff);
415 
416 	/* clear interrupt mask */
417 	W16(fccp, fcc_fccm, 0);
418 
419 	fs_cleanup_bds(dev);
420 }
421 
422 static void napi_clear_event_fs(struct net_device *dev)
423 {
424 	struct fs_enet_private *fep = netdev_priv(dev);
425 	fcc_t __iomem *fccp = fep->fcc.fccp;
426 
427 	W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
428 }
429 
430 static void napi_enable_fs(struct net_device *dev)
431 {
432 	struct fs_enet_private *fep = netdev_priv(dev);
433 	fcc_t __iomem *fccp = fep->fcc.fccp;
434 
435 	S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
436 }
437 
438 static void napi_disable_fs(struct net_device *dev)
439 {
440 	struct fs_enet_private *fep = netdev_priv(dev);
441 	fcc_t __iomem *fccp = fep->fcc.fccp;
442 
443 	C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
444 }
445 
446 static void rx_bd_done(struct net_device *dev)
447 {
448 	/* nothing */
449 }
450 
451 static void tx_kickstart(struct net_device *dev)
452 {
453 	struct fs_enet_private *fep = netdev_priv(dev);
454 	fcc_t __iomem *fccp = fep->fcc.fccp;
455 
456 	S16(fccp, fcc_ftodr, 0x8000);
457 }
458 
459 static u32 get_int_events(struct net_device *dev)
460 {
461 	struct fs_enet_private *fep = netdev_priv(dev);
462 	fcc_t __iomem *fccp = fep->fcc.fccp;
463 
464 	return (u32)R16(fccp, fcc_fcce);
465 }
466 
467 static void clear_int_events(struct net_device *dev, u32 int_events)
468 {
469 	struct fs_enet_private *fep = netdev_priv(dev);
470 	fcc_t __iomem *fccp = fep->fcc.fccp;
471 
472 	W16(fccp, fcc_fcce, int_events & 0xffff);
473 }
474 
475 static void ev_error(struct net_device *dev, u32 int_events)
476 {
477 	struct fs_enet_private *fep = netdev_priv(dev);
478 
479 	dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
480 }
481 
482 static int get_regs(struct net_device *dev, void *p, int *sizep)
483 {
484 	struct fs_enet_private *fep = netdev_priv(dev);
485 
486 	if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
487 		return -EINVAL;
488 
489 	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
490 	p = (char *)p + sizeof(fcc_t);
491 
492 	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
493 	p = (char *)p + sizeof(fcc_enet_t);
494 
495 	memcpy_fromio(p, fep->fcc.fcccp, 1);
496 	return 0;
497 }
498 
499 static int get_regs_len(struct net_device *dev)
500 {
501 	return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
502 }
503 
504 /* Some transmit errors cause the transmitter to shut
505  * down.  We now issue a restart transmit.
506  * Also, to workaround 8260 device erratum CPM37, we must
507  * disable and then re-enable the transmitterfollowing a
508  * Late Collision, Underrun, or Retry Limit error.
509  * In addition, tbptr may point beyond BDs beyond still marked
510  * as ready due to internal pipelining, so we need to look back
511  * through the BDs and adjust tbptr to point to the last BD
512  * marked as ready.  This may result in some buffers being
513  * retransmitted.
514  */
515 static void tx_restart(struct net_device *dev)
516 {
517 	struct fs_enet_private *fep = netdev_priv(dev);
518 	fcc_t __iomem *fccp = fep->fcc.fccp;
519 	const struct fs_platform_info *fpi = fep->fpi;
520 	fcc_enet_t __iomem *ep = fep->fcc.ep;
521 	cbd_t __iomem *curr_tbptr;
522 	cbd_t __iomem *recheck_bd;
523 	cbd_t __iomem *prev_bd;
524 	cbd_t __iomem *last_tx_bd;
525 
526 	last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
527 
528 	/* get the current bd held in TBPTR  and scan back from this point */
529 	recheck_bd = curr_tbptr = (cbd_t __iomem *)
530 		((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
531 		fep->ring_base);
532 
533 	prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
534 
535 	/* Move through the bds in reverse, look for the earliest buffer
536 	 * that is not ready.  Adjust TBPTR to the following buffer */
537 	while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
538 		/* Go back one buffer */
539 		recheck_bd = prev_bd;
540 
541 		/* update the previous buffer */
542 		prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
543 
544 		/* We should never see all bds marked as ready, check anyway */
545 		if (recheck_bd == curr_tbptr)
546 			break;
547 	}
548 	/* Now update the TBPTR and dirty flag to the current buffer */
549 	W32(ep, fen_genfcc.fcc_tbptr,
550 		(uint)(((void __iomem *)recheck_bd - fep->ring_base) +
551 		fep->ring_mem_addr));
552 	fep->dirty_tx = recheck_bd;
553 
554 	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
555 	udelay(10);
556 	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
557 
558 	fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
559 }
560 
561 /*************************************************************************/
562 
563 const struct fs_ops fs_fcc_ops = {
564 	.setup_data		= setup_data,
565 	.cleanup_data		= cleanup_data,
566 	.set_multicast_list	= set_multicast_list,
567 	.restart		= restart,
568 	.stop			= stop,
569 	.napi_clear_event	= napi_clear_event_fs,
570 	.napi_enable		= napi_enable_fs,
571 	.napi_disable		= napi_disable_fs,
572 	.rx_bd_done		= rx_bd_done,
573 	.tx_kickstart		= tx_kickstart,
574 	.get_int_events		= get_int_events,
575 	.clear_int_events	= clear_int_events,
576 	.ev_error		= ev_error,
577 	.get_regs		= get_regs,
578 	.get_regs_len		= get_regs_len,
579 	.tx_restart		= tx_restart,
580 	.allocate_bd		= allocate_bd,
581 	.free_bd		= free_bd,
582 };
583