1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 #include <linux/pgtable.h> 44 45 #include <linux/vmalloc.h> 46 #include <asm/irq.h> 47 #include <linux/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 57 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 58 module_param(fs_enet_debug, int, 0); 59 MODULE_PARM_DESC(fs_enet_debug, 60 "Freescale bitmapped debugging message enable value"); 61 62 #define RX_RING_SIZE 32 63 #define TX_RING_SIZE 64 64 65 #ifdef CONFIG_NET_POLL_CONTROLLER 66 static void fs_enet_netpoll(struct net_device *dev); 67 #endif 68 69 static void fs_set_multicast_list(struct net_device *dev) 70 { 71 struct fs_enet_private *fep = netdev_priv(dev); 72 73 (*fep->ops->set_multicast_list)(dev); 74 } 75 76 static void skb_align(struct sk_buff *skb, int align) 77 { 78 int off = ((unsigned long)skb->data) & (align - 1); 79 80 if (off) 81 skb_reserve(skb, align - off); 82 } 83 84 /* NAPI function */ 85 static int fs_enet_napi(struct napi_struct *napi, int budget) 86 { 87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 88 struct net_device *dev = fep->ndev; 89 const struct fs_platform_info *fpi = fep->fpi; 90 cbd_t __iomem *bdp; 91 struct sk_buff *skb, *skbn; 92 int received = 0; 93 u16 pkt_len, sc; 94 int curidx; 95 int dirtyidx, do_wake, do_restart; 96 int tx_left = TX_RING_SIZE; 97 98 spin_lock(&fep->tx_lock); 99 bdp = fep->dirty_tx; 100 101 /* clear status bits for napi*/ 102 (*fep->ops->napi_clear_event)(dev); 103 104 do_wake = do_restart = 0; 105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) { 106 dirtyidx = bdp - fep->tx_bd_base; 107 108 if (fep->tx_free == fep->tx_ring) 109 break; 110 111 skb = fep->tx_skbuff[dirtyidx]; 112 113 /* 114 * Check for errors. 115 */ 116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 118 119 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 120 dev->stats.tx_heartbeat_errors++; 121 if (sc & BD_ENET_TX_LC) /* Late collision */ 122 dev->stats.tx_window_errors++; 123 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 124 dev->stats.tx_aborted_errors++; 125 if (sc & BD_ENET_TX_UN) /* Underrun */ 126 dev->stats.tx_fifo_errors++; 127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 128 dev->stats.tx_carrier_errors++; 129 130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 131 dev->stats.tx_errors++; 132 do_restart = 1; 133 } 134 } else 135 dev->stats.tx_packets++; 136 137 if (sc & BD_ENET_TX_READY) { 138 dev_warn(fep->dev, 139 "HEY! Enet xmit interrupt and TX_READY.\n"); 140 } 141 142 /* 143 * Deferred means some collisions occurred during transmit, 144 * but we eventually sent the packet OK. 145 */ 146 if (sc & BD_ENET_TX_DEF) 147 dev->stats.collisions++; 148 149 /* unmap */ 150 if (fep->mapped_as_page[dirtyidx]) 151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 152 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 153 else 154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 155 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 156 157 /* 158 * Free the sk buffer associated with this last transmit. 159 */ 160 if (skb) { 161 dev_kfree_skb(skb); 162 fep->tx_skbuff[dirtyidx] = NULL; 163 } 164 165 /* 166 * Update pointer to next buffer descriptor to be transmitted. 167 */ 168 if ((sc & BD_ENET_TX_WRAP) == 0) 169 bdp++; 170 else 171 bdp = fep->tx_bd_base; 172 173 /* 174 * Since we have freed up a buffer, the ring is no longer 175 * full. 176 */ 177 if (++fep->tx_free == MAX_SKB_FRAGS) 178 do_wake = 1; 179 tx_left--; 180 } 181 182 fep->dirty_tx = bdp; 183 184 if (do_restart) 185 (*fep->ops->tx_restart)(dev); 186 187 spin_unlock(&fep->tx_lock); 188 189 if (do_wake) 190 netif_wake_queue(dev); 191 192 /* 193 * First, grab all of the stats for the incoming packet. 194 * These get messed up if we get called due to a busy condition. 195 */ 196 bdp = fep->cur_rx; 197 198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 && 199 received < budget) { 200 curidx = bdp - fep->rx_bd_base; 201 202 /* 203 * Since we have allocated space to hold a complete frame, 204 * the last indicator should be set. 205 */ 206 if ((sc & BD_ENET_RX_LAST) == 0) 207 dev_warn(fep->dev, "rcv is not +last\n"); 208 209 /* 210 * Check for errors. 211 */ 212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 214 dev->stats.rx_errors++; 215 /* Frame too long or too short. */ 216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 217 dev->stats.rx_length_errors++; 218 /* Frame alignment */ 219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 220 dev->stats.rx_frame_errors++; 221 /* CRC Error */ 222 if (sc & BD_ENET_RX_CR) 223 dev->stats.rx_crc_errors++; 224 /* FIFO overrun */ 225 if (sc & BD_ENET_RX_OV) 226 dev->stats.rx_crc_errors++; 227 228 skbn = fep->rx_skbuff[curidx]; 229 } else { 230 skb = fep->rx_skbuff[curidx]; 231 232 /* 233 * Process the incoming frame. 234 */ 235 dev->stats.rx_packets++; 236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 237 dev->stats.rx_bytes += pkt_len + 4; 238 239 if (pkt_len <= fpi->rx_copybreak) { 240 /* +2 to make IP header L1 cache aligned */ 241 skbn = netdev_alloc_skb(dev, pkt_len + 2); 242 if (skbn != NULL) { 243 skb_reserve(skbn, 2); /* align IP header */ 244 skb_copy_from_linear_data(skb, 245 skbn->data, pkt_len); 246 swap(skb, skbn); 247 dma_sync_single_for_cpu(fep->dev, 248 CBDR_BUFADDR(bdp), 249 L1_CACHE_ALIGN(pkt_len), 250 DMA_FROM_DEVICE); 251 } 252 } else { 253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 254 255 if (skbn) { 256 dma_addr_t dma; 257 258 skb_align(skbn, ENET_RX_ALIGN); 259 260 dma_unmap_single(fep->dev, 261 CBDR_BUFADDR(bdp), 262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 263 DMA_FROM_DEVICE); 264 265 dma = dma_map_single(fep->dev, 266 skbn->data, 267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 268 DMA_FROM_DEVICE); 269 CBDW_BUFADDR(bdp, dma); 270 } 271 } 272 273 if (skbn != NULL) { 274 skb_put(skb, pkt_len); /* Make room */ 275 skb->protocol = eth_type_trans(skb, dev); 276 received++; 277 netif_receive_skb(skb); 278 } else { 279 dev->stats.rx_dropped++; 280 skbn = skb; 281 } 282 } 283 284 fep->rx_skbuff[curidx] = skbn; 285 CBDW_DATLEN(bdp, 0); 286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 287 288 /* 289 * Update BD pointer to next entry. 290 */ 291 if ((sc & BD_ENET_RX_WRAP) == 0) 292 bdp++; 293 else 294 bdp = fep->rx_bd_base; 295 296 (*fep->ops->rx_bd_done)(dev); 297 } 298 299 fep->cur_rx = bdp; 300 301 if (received < budget && tx_left) { 302 /* done */ 303 napi_complete_done(napi, received); 304 (*fep->ops->napi_enable)(dev); 305 306 return received; 307 } 308 309 return budget; 310 } 311 312 /* 313 * The interrupt handler. 314 * This is called from the MPC core interrupt. 315 */ 316 static irqreturn_t 317 fs_enet_interrupt(int irq, void *dev_id) 318 { 319 struct net_device *dev = dev_id; 320 struct fs_enet_private *fep; 321 const struct fs_platform_info *fpi; 322 u32 int_events; 323 u32 int_clr_events; 324 int nr, napi_ok; 325 int handled; 326 327 fep = netdev_priv(dev); 328 fpi = fep->fpi; 329 330 nr = 0; 331 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 332 nr++; 333 334 int_clr_events = int_events; 335 int_clr_events &= ~fep->ev_napi; 336 337 (*fep->ops->clear_int_events)(dev, int_clr_events); 338 339 if (int_events & fep->ev_err) 340 (*fep->ops->ev_error)(dev, int_events); 341 342 if (int_events & fep->ev) { 343 napi_ok = napi_schedule_prep(&fep->napi); 344 345 (*fep->ops->napi_disable)(dev); 346 (*fep->ops->clear_int_events)(dev, fep->ev_napi); 347 348 /* NOTE: it is possible for FCCs in NAPI mode */ 349 /* to submit a spurious interrupt while in poll */ 350 if (napi_ok) 351 __napi_schedule(&fep->napi); 352 } 353 354 } 355 356 handled = nr > 0; 357 return IRQ_RETVAL(handled); 358 } 359 360 void fs_init_bds(struct net_device *dev) 361 { 362 struct fs_enet_private *fep = netdev_priv(dev); 363 cbd_t __iomem *bdp; 364 struct sk_buff *skb; 365 int i; 366 367 fs_cleanup_bds(dev); 368 369 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 370 fep->tx_free = fep->tx_ring; 371 fep->cur_rx = fep->rx_bd_base; 372 373 /* 374 * Initialize the receive buffer descriptors. 375 */ 376 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 377 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 378 if (skb == NULL) 379 break; 380 381 skb_align(skb, ENET_RX_ALIGN); 382 fep->rx_skbuff[i] = skb; 383 CBDW_BUFADDR(bdp, 384 dma_map_single(fep->dev, skb->data, 385 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 386 DMA_FROM_DEVICE)); 387 CBDW_DATLEN(bdp, 0); /* zero */ 388 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 389 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 390 } 391 /* 392 * if we failed, fillup remainder 393 */ 394 for (; i < fep->rx_ring; i++, bdp++) { 395 fep->rx_skbuff[i] = NULL; 396 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 397 } 398 399 /* 400 * ...and the same for transmit. 401 */ 402 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 403 fep->tx_skbuff[i] = NULL; 404 CBDW_BUFADDR(bdp, 0); 405 CBDW_DATLEN(bdp, 0); 406 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 407 } 408 } 409 410 void fs_cleanup_bds(struct net_device *dev) 411 { 412 struct fs_enet_private *fep = netdev_priv(dev); 413 struct sk_buff *skb; 414 cbd_t __iomem *bdp; 415 int i; 416 417 /* 418 * Reset SKB transmit buffers. 419 */ 420 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 421 if ((skb = fep->tx_skbuff[i]) == NULL) 422 continue; 423 424 /* unmap */ 425 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 426 skb->len, DMA_TO_DEVICE); 427 428 fep->tx_skbuff[i] = NULL; 429 dev_kfree_skb(skb); 430 } 431 432 /* 433 * Reset SKB receive buffers 434 */ 435 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 436 if ((skb = fep->rx_skbuff[i]) == NULL) 437 continue; 438 439 /* unmap */ 440 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 441 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 442 DMA_FROM_DEVICE); 443 444 fep->rx_skbuff[i] = NULL; 445 446 dev_kfree_skb(skb); 447 } 448 } 449 450 /**********************************************************************************/ 451 452 #ifdef CONFIG_FS_ENET_MPC5121_FEC 453 /* 454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 455 */ 456 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 457 struct sk_buff *skb) 458 { 459 struct sk_buff *new_skb; 460 461 if (skb_linearize(skb)) 462 return NULL; 463 464 /* Alloc new skb */ 465 new_skb = netdev_alloc_skb(dev, skb->len + 4); 466 if (!new_skb) 467 return NULL; 468 469 /* Make sure new skb is properly aligned */ 470 skb_align(new_skb, 4); 471 472 /* Copy data to new skb ... */ 473 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 474 skb_put(new_skb, skb->len); 475 476 /* ... and free an old one */ 477 dev_kfree_skb_any(skb); 478 479 return new_skb; 480 } 481 #endif 482 483 static netdev_tx_t 484 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 485 { 486 struct fs_enet_private *fep = netdev_priv(dev); 487 cbd_t __iomem *bdp; 488 int curidx; 489 u16 sc; 490 int nr_frags; 491 skb_frag_t *frag; 492 int len; 493 #ifdef CONFIG_FS_ENET_MPC5121_FEC 494 int is_aligned = 1; 495 int i; 496 497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 498 is_aligned = 0; 499 } else { 500 nr_frags = skb_shinfo(skb)->nr_frags; 501 frag = skb_shinfo(skb)->frags; 502 for (i = 0; i < nr_frags; i++, frag++) { 503 if (!IS_ALIGNED(skb_frag_off(frag), 4)) { 504 is_aligned = 0; 505 break; 506 } 507 } 508 } 509 510 if (!is_aligned) { 511 skb = tx_skb_align_workaround(dev, skb); 512 if (!skb) { 513 /* 514 * We have lost packet due to memory allocation error 515 * in tx_skb_align_workaround(). Hopefully original 516 * skb is still valid, so try transmit it later. 517 */ 518 return NETDEV_TX_BUSY; 519 } 520 } 521 #endif 522 523 spin_lock(&fep->tx_lock); 524 525 /* 526 * Fill in a Tx ring entry 527 */ 528 bdp = fep->cur_tx; 529 530 nr_frags = skb_shinfo(skb)->nr_frags; 531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 532 netif_stop_queue(dev); 533 spin_unlock(&fep->tx_lock); 534 535 /* 536 * Ooops. All transmit buffers are full. Bail out. 537 * This should not happen, since the tx queue should be stopped. 538 */ 539 dev_warn(fep->dev, "tx queue full!.\n"); 540 return NETDEV_TX_BUSY; 541 } 542 543 curidx = bdp - fep->tx_bd_base; 544 545 len = skb->len; 546 dev->stats.tx_bytes += len; 547 if (nr_frags) 548 len -= skb->data_len; 549 fep->tx_free -= nr_frags + 1; 550 /* 551 * Push the data cache so the CPM does not get stale memory data. 552 */ 553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 554 skb->data, len, DMA_TO_DEVICE)); 555 CBDW_DATLEN(bdp, len); 556 557 fep->mapped_as_page[curidx] = 0; 558 frag = skb_shinfo(skb)->frags; 559 while (nr_frags) { 560 CBDC_SC(bdp, 561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | 562 BD_ENET_TX_TC); 563 CBDS_SC(bdp, BD_ENET_TX_READY); 564 565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) { 566 bdp++; 567 curidx++; 568 } else { 569 bdp = fep->tx_bd_base; 570 curidx = 0; 571 } 572 573 len = skb_frag_size(frag); 574 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 575 DMA_TO_DEVICE)); 576 CBDW_DATLEN(bdp, len); 577 578 fep->tx_skbuff[curidx] = NULL; 579 fep->mapped_as_page[curidx] = 1; 580 581 frag++; 582 nr_frags--; 583 } 584 585 /* Trigger transmission start */ 586 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 587 BD_ENET_TX_LAST | BD_ENET_TX_TC; 588 589 /* note that while FEC does not have this bit 590 * it marks it as available for software use 591 * yay for hw reuse :) */ 592 if (skb->len <= 60) 593 sc |= BD_ENET_TX_PAD; 594 CBDC_SC(bdp, BD_ENET_TX_STATS); 595 CBDS_SC(bdp, sc); 596 597 /* Save skb pointer. */ 598 fep->tx_skbuff[curidx] = skb; 599 600 /* If this was the last BD in the ring, start at the beginning again. */ 601 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 602 bdp++; 603 else 604 bdp = fep->tx_bd_base; 605 fep->cur_tx = bdp; 606 607 if (fep->tx_free < MAX_SKB_FRAGS) 608 netif_stop_queue(dev); 609 610 skb_tx_timestamp(skb); 611 612 (*fep->ops->tx_kickstart)(dev); 613 614 spin_unlock(&fep->tx_lock); 615 616 return NETDEV_TX_OK; 617 } 618 619 static void fs_timeout_work(struct work_struct *work) 620 { 621 struct fs_enet_private *fep = container_of(work, struct fs_enet_private, 622 timeout_work); 623 struct net_device *dev = fep->ndev; 624 unsigned long flags; 625 int wake = 0; 626 627 dev->stats.tx_errors++; 628 629 spin_lock_irqsave(&fep->lock, flags); 630 631 if (dev->flags & IFF_UP) { 632 phy_stop(dev->phydev); 633 (*fep->ops->stop)(dev); 634 (*fep->ops->restart)(dev); 635 } 636 637 phy_start(dev->phydev); 638 wake = fep->tx_free >= MAX_SKB_FRAGS && 639 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 640 spin_unlock_irqrestore(&fep->lock, flags); 641 642 if (wake) 643 netif_wake_queue(dev); 644 } 645 646 static void fs_timeout(struct net_device *dev, unsigned int txqueue) 647 { 648 struct fs_enet_private *fep = netdev_priv(dev); 649 650 schedule_work(&fep->timeout_work); 651 } 652 653 /*----------------------------------------------------------------------------- 654 * generic link-change handler - should be sufficient for most cases 655 *-----------------------------------------------------------------------------*/ 656 static void generic_adjust_link(struct net_device *dev) 657 { 658 struct fs_enet_private *fep = netdev_priv(dev); 659 struct phy_device *phydev = dev->phydev; 660 int new_state = 0; 661 662 if (phydev->link) { 663 /* adjust to duplex mode */ 664 if (phydev->duplex != fep->oldduplex) { 665 new_state = 1; 666 fep->oldduplex = phydev->duplex; 667 } 668 669 if (phydev->speed != fep->oldspeed) { 670 new_state = 1; 671 fep->oldspeed = phydev->speed; 672 } 673 674 if (!fep->oldlink) { 675 new_state = 1; 676 fep->oldlink = 1; 677 } 678 679 if (new_state) 680 fep->ops->restart(dev); 681 } else if (fep->oldlink) { 682 new_state = 1; 683 fep->oldlink = 0; 684 fep->oldspeed = 0; 685 fep->oldduplex = -1; 686 } 687 688 if (new_state && netif_msg_link(fep)) 689 phy_print_status(phydev); 690 } 691 692 693 static void fs_adjust_link(struct net_device *dev) 694 { 695 struct fs_enet_private *fep = netdev_priv(dev); 696 unsigned long flags; 697 698 spin_lock_irqsave(&fep->lock, flags); 699 700 if(fep->ops->adjust_link) 701 fep->ops->adjust_link(dev); 702 else 703 generic_adjust_link(dev); 704 705 spin_unlock_irqrestore(&fep->lock, flags); 706 } 707 708 static int fs_init_phy(struct net_device *dev) 709 { 710 struct fs_enet_private *fep = netdev_priv(dev); 711 struct phy_device *phydev; 712 phy_interface_t iface; 713 714 fep->oldlink = 0; 715 fep->oldspeed = 0; 716 fep->oldduplex = -1; 717 718 iface = fep->fpi->use_rmii ? 719 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 720 721 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 722 iface); 723 if (!phydev) { 724 dev_err(&dev->dev, "Could not attach to PHY\n"); 725 return -ENODEV; 726 } 727 728 return 0; 729 } 730 731 static int fs_enet_open(struct net_device *dev) 732 { 733 struct fs_enet_private *fep = netdev_priv(dev); 734 int r; 735 int err; 736 737 /* to initialize the fep->cur_rx,... */ 738 /* not doing this, will cause a crash in fs_enet_napi */ 739 fs_init_bds(fep->ndev); 740 741 napi_enable(&fep->napi); 742 743 /* Install our interrupt handler. */ 744 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 745 "fs_enet-mac", dev); 746 if (r != 0) { 747 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 748 napi_disable(&fep->napi); 749 return -EINVAL; 750 } 751 752 err = fs_init_phy(dev); 753 if (err) { 754 free_irq(fep->interrupt, dev); 755 napi_disable(&fep->napi); 756 return err; 757 } 758 phy_start(dev->phydev); 759 760 netif_start_queue(dev); 761 762 return 0; 763 } 764 765 static int fs_enet_close(struct net_device *dev) 766 { 767 struct fs_enet_private *fep = netdev_priv(dev); 768 unsigned long flags; 769 770 netif_stop_queue(dev); 771 netif_carrier_off(dev); 772 napi_disable(&fep->napi); 773 cancel_work_sync(&fep->timeout_work); 774 phy_stop(dev->phydev); 775 776 spin_lock_irqsave(&fep->lock, flags); 777 spin_lock(&fep->tx_lock); 778 (*fep->ops->stop)(dev); 779 spin_unlock(&fep->tx_lock); 780 spin_unlock_irqrestore(&fep->lock, flags); 781 782 /* release any irqs */ 783 phy_disconnect(dev->phydev); 784 free_irq(fep->interrupt, dev); 785 786 return 0; 787 } 788 789 /*************************************************************************/ 790 791 static void fs_get_drvinfo(struct net_device *dev, 792 struct ethtool_drvinfo *info) 793 { 794 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 795 } 796 797 static int fs_get_regs_len(struct net_device *dev) 798 { 799 struct fs_enet_private *fep = netdev_priv(dev); 800 801 return (*fep->ops->get_regs_len)(dev); 802 } 803 804 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 805 void *p) 806 { 807 struct fs_enet_private *fep = netdev_priv(dev); 808 unsigned long flags; 809 int r, len; 810 811 len = regs->len; 812 813 spin_lock_irqsave(&fep->lock, flags); 814 r = (*fep->ops->get_regs)(dev, p, &len); 815 spin_unlock_irqrestore(&fep->lock, flags); 816 817 if (r == 0) 818 regs->version = 0; 819 } 820 821 static u32 fs_get_msglevel(struct net_device *dev) 822 { 823 struct fs_enet_private *fep = netdev_priv(dev); 824 return fep->msg_enable; 825 } 826 827 static void fs_set_msglevel(struct net_device *dev, u32 value) 828 { 829 struct fs_enet_private *fep = netdev_priv(dev); 830 fep->msg_enable = value; 831 } 832 833 static int fs_get_tunable(struct net_device *dev, 834 const struct ethtool_tunable *tuna, void *data) 835 { 836 struct fs_enet_private *fep = netdev_priv(dev); 837 struct fs_platform_info *fpi = fep->fpi; 838 int ret = 0; 839 840 switch (tuna->id) { 841 case ETHTOOL_RX_COPYBREAK: 842 *(u32 *)data = fpi->rx_copybreak; 843 break; 844 default: 845 ret = -EINVAL; 846 break; 847 } 848 849 return ret; 850 } 851 852 static int fs_set_tunable(struct net_device *dev, 853 const struct ethtool_tunable *tuna, const void *data) 854 { 855 struct fs_enet_private *fep = netdev_priv(dev); 856 struct fs_platform_info *fpi = fep->fpi; 857 int ret = 0; 858 859 switch (tuna->id) { 860 case ETHTOOL_RX_COPYBREAK: 861 fpi->rx_copybreak = *(u32 *)data; 862 break; 863 default: 864 ret = -EINVAL; 865 break; 866 } 867 868 return ret; 869 } 870 871 static const struct ethtool_ops fs_ethtool_ops = { 872 .get_drvinfo = fs_get_drvinfo, 873 .get_regs_len = fs_get_regs_len, 874 .nway_reset = phy_ethtool_nway_reset, 875 .get_link = ethtool_op_get_link, 876 .get_msglevel = fs_get_msglevel, 877 .set_msglevel = fs_set_msglevel, 878 .get_regs = fs_get_regs, 879 .get_ts_info = ethtool_op_get_ts_info, 880 .get_link_ksettings = phy_ethtool_get_link_ksettings, 881 .set_link_ksettings = phy_ethtool_set_link_ksettings, 882 .get_tunable = fs_get_tunable, 883 .set_tunable = fs_set_tunable, 884 }; 885 886 extern int fs_mii_connect(struct net_device *dev); 887 extern void fs_mii_disconnect(struct net_device *dev); 888 889 /**************************************************************************************/ 890 891 #ifdef CONFIG_FS_ENET_HAS_FEC 892 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 893 #else 894 #define IS_FEC(match) 0 895 #endif 896 897 static const struct net_device_ops fs_enet_netdev_ops = { 898 .ndo_open = fs_enet_open, 899 .ndo_stop = fs_enet_close, 900 .ndo_start_xmit = fs_enet_start_xmit, 901 .ndo_tx_timeout = fs_timeout, 902 .ndo_set_rx_mode = fs_set_multicast_list, 903 .ndo_do_ioctl = phy_do_ioctl_running, 904 .ndo_validate_addr = eth_validate_addr, 905 .ndo_set_mac_address = eth_mac_addr, 906 #ifdef CONFIG_NET_POLL_CONTROLLER 907 .ndo_poll_controller = fs_enet_netpoll, 908 #endif 909 }; 910 911 static const struct of_device_id fs_enet_match[]; 912 static int fs_enet_probe(struct platform_device *ofdev) 913 { 914 const struct of_device_id *match; 915 struct net_device *ndev; 916 struct fs_enet_private *fep; 917 struct fs_platform_info *fpi; 918 const u32 *data; 919 struct clk *clk; 920 int err; 921 const u8 *mac_addr; 922 const char *phy_connection_type; 923 int privsize, len, ret = -ENODEV; 924 925 match = of_match_device(fs_enet_match, &ofdev->dev); 926 if (!match) 927 return -EINVAL; 928 929 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 930 if (!fpi) 931 return -ENOMEM; 932 933 if (!IS_FEC(match)) { 934 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 935 if (!data || len != 4) 936 goto out_free_fpi; 937 938 fpi->cp_command = *data; 939 } 940 941 fpi->rx_ring = RX_RING_SIZE; 942 fpi->tx_ring = TX_RING_SIZE; 943 fpi->rx_copybreak = 240; 944 fpi->napi_weight = 17; 945 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 946 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 947 err = of_phy_register_fixed_link(ofdev->dev.of_node); 948 if (err) 949 goto out_free_fpi; 950 951 /* In the case of a fixed PHY, the DT node associated 952 * to the PHY is the Ethernet MAC DT node. 953 */ 954 fpi->phy_node = of_node_get(ofdev->dev.of_node); 955 } 956 957 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 958 phy_connection_type = of_get_property(ofdev->dev.of_node, 959 "phy-connection-type", NULL); 960 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 961 fpi->use_rmii = 1; 962 } 963 964 /* make clock lookup non-fatal (the driver is shared among platforms), 965 * but require enable to succeed when a clock was specified/found, 966 * keep a reference to the clock upon successful acquisition 967 */ 968 clk = devm_clk_get(&ofdev->dev, "per"); 969 if (!IS_ERR(clk)) { 970 ret = clk_prepare_enable(clk); 971 if (ret) 972 goto out_deregister_fixed_link; 973 974 fpi->clk_per = clk; 975 } 976 977 privsize = sizeof(*fep) + 978 sizeof(struct sk_buff **) * 979 (fpi->rx_ring + fpi->tx_ring) + 980 sizeof(char) * fpi->tx_ring; 981 982 ndev = alloc_etherdev(privsize); 983 if (!ndev) { 984 ret = -ENOMEM; 985 goto out_put; 986 } 987 988 SET_NETDEV_DEV(ndev, &ofdev->dev); 989 platform_set_drvdata(ofdev, ndev); 990 991 fep = netdev_priv(ndev); 992 fep->dev = &ofdev->dev; 993 fep->ndev = ndev; 994 fep->fpi = fpi; 995 fep->ops = match->data; 996 997 ret = fep->ops->setup_data(ndev); 998 if (ret) 999 goto out_free_dev; 1000 1001 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1002 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1003 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1004 fpi->tx_ring); 1005 1006 spin_lock_init(&fep->lock); 1007 spin_lock_init(&fep->tx_lock); 1008 1009 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1010 if (!IS_ERR(mac_addr)) 1011 ether_addr_copy(ndev->dev_addr, mac_addr); 1012 1013 ret = fep->ops->allocate_bd(ndev); 1014 if (ret) 1015 goto out_cleanup_data; 1016 1017 fep->rx_bd_base = fep->ring_base; 1018 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1019 1020 fep->tx_ring = fpi->tx_ring; 1021 fep->rx_ring = fpi->rx_ring; 1022 1023 ndev->netdev_ops = &fs_enet_netdev_ops; 1024 ndev->watchdog_timeo = 2 * HZ; 1025 INIT_WORK(&fep->timeout_work, fs_timeout_work); 1026 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight); 1027 1028 ndev->ethtool_ops = &fs_ethtool_ops; 1029 1030 netif_carrier_off(ndev); 1031 1032 ndev->features |= NETIF_F_SG; 1033 1034 ret = register_netdev(ndev); 1035 if (ret) 1036 goto out_free_bd; 1037 1038 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1039 1040 return 0; 1041 1042 out_free_bd: 1043 fep->ops->free_bd(ndev); 1044 out_cleanup_data: 1045 fep->ops->cleanup_data(ndev); 1046 out_free_dev: 1047 free_netdev(ndev); 1048 out_put: 1049 clk_disable_unprepare(fpi->clk_per); 1050 out_deregister_fixed_link: 1051 of_node_put(fpi->phy_node); 1052 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1053 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1054 out_free_fpi: 1055 kfree(fpi); 1056 return ret; 1057 } 1058 1059 static int fs_enet_remove(struct platform_device *ofdev) 1060 { 1061 struct net_device *ndev = platform_get_drvdata(ofdev); 1062 struct fs_enet_private *fep = netdev_priv(ndev); 1063 1064 unregister_netdev(ndev); 1065 1066 fep->ops->free_bd(ndev); 1067 fep->ops->cleanup_data(ndev); 1068 dev_set_drvdata(fep->dev, NULL); 1069 of_node_put(fep->fpi->phy_node); 1070 clk_disable_unprepare(fep->fpi->clk_per); 1071 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1072 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1073 free_netdev(ndev); 1074 return 0; 1075 } 1076 1077 static const struct of_device_id fs_enet_match[] = { 1078 #ifdef CONFIG_FS_ENET_HAS_SCC 1079 { 1080 .compatible = "fsl,cpm1-scc-enet", 1081 .data = (void *)&fs_scc_ops, 1082 }, 1083 { 1084 .compatible = "fsl,cpm2-scc-enet", 1085 .data = (void *)&fs_scc_ops, 1086 }, 1087 #endif 1088 #ifdef CONFIG_FS_ENET_HAS_FCC 1089 { 1090 .compatible = "fsl,cpm2-fcc-enet", 1091 .data = (void *)&fs_fcc_ops, 1092 }, 1093 #endif 1094 #ifdef CONFIG_FS_ENET_HAS_FEC 1095 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1096 { 1097 .compatible = "fsl,mpc5121-fec", 1098 .data = (void *)&fs_fec_ops, 1099 }, 1100 { 1101 .compatible = "fsl,mpc5125-fec", 1102 .data = (void *)&fs_fec_ops, 1103 }, 1104 #else 1105 { 1106 .compatible = "fsl,pq1-fec-enet", 1107 .data = (void *)&fs_fec_ops, 1108 }, 1109 #endif 1110 #endif 1111 {} 1112 }; 1113 MODULE_DEVICE_TABLE(of, fs_enet_match); 1114 1115 static struct platform_driver fs_enet_driver = { 1116 .driver = { 1117 .name = "fs_enet", 1118 .of_match_table = fs_enet_match, 1119 }, 1120 .probe = fs_enet_probe, 1121 .remove = fs_enet_remove, 1122 }; 1123 1124 #ifdef CONFIG_NET_POLL_CONTROLLER 1125 static void fs_enet_netpoll(struct net_device *dev) 1126 { 1127 disable_irq(dev->irq); 1128 fs_enet_interrupt(dev->irq, dev); 1129 enable_irq(dev->irq); 1130 } 1131 #endif 1132 1133 module_platform_driver(fs_enet_driver); 1134