1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <asm/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #ifdef CONFIG_NET_POLL_CONTROLLER 64 static void fs_enet_netpoll(struct net_device *dev); 65 #endif 66 67 static void fs_set_multicast_list(struct net_device *dev) 68 { 69 struct fs_enet_private *fep = netdev_priv(dev); 70 71 (*fep->ops->set_multicast_list)(dev); 72 } 73 74 static void skb_align(struct sk_buff *skb, int align) 75 { 76 int off = ((unsigned long)skb->data) & (align - 1); 77 78 if (off) 79 skb_reserve(skb, align - off); 80 } 81 82 /* NAPI receive function */ 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget) 84 { 85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 86 struct net_device *dev = fep->ndev; 87 const struct fs_platform_info *fpi = fep->fpi; 88 cbd_t __iomem *bdp; 89 struct sk_buff *skb, *skbn, *skbt; 90 int received = 0; 91 u16 pkt_len, sc; 92 int curidx; 93 94 if (budget <= 0) 95 return received; 96 97 /* 98 * First, grab all of the stats for the incoming packet. 99 * These get messed up if we get called due to a busy condition. 100 */ 101 bdp = fep->cur_rx; 102 103 /* clear RX status bits for napi*/ 104 (*fep->ops->napi_clear_rx_event)(dev); 105 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 107 curidx = bdp - fep->rx_bd_base; 108 109 /* 110 * Since we have allocated space to hold a complete frame, 111 * the last indicator should be set. 112 */ 113 if ((sc & BD_ENET_RX_LAST) == 0) 114 dev_warn(fep->dev, "rcv is not +last\n"); 115 116 /* 117 * Check for errors. 118 */ 119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 121 fep->stats.rx_errors++; 122 /* Frame too long or too short. */ 123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 124 fep->stats.rx_length_errors++; 125 /* Frame alignment */ 126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 127 fep->stats.rx_frame_errors++; 128 /* CRC Error */ 129 if (sc & BD_ENET_RX_CR) 130 fep->stats.rx_crc_errors++; 131 /* FIFO overrun */ 132 if (sc & BD_ENET_RX_OV) 133 fep->stats.rx_crc_errors++; 134 135 skb = fep->rx_skbuff[curidx]; 136 137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 139 DMA_FROM_DEVICE); 140 141 skbn = skb; 142 143 } else { 144 skb = fep->rx_skbuff[curidx]; 145 146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 148 DMA_FROM_DEVICE); 149 150 /* 151 * Process the incoming frame. 152 */ 153 fep->stats.rx_packets++; 154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 155 fep->stats.rx_bytes += pkt_len + 4; 156 157 if (pkt_len <= fpi->rx_copybreak) { 158 /* +2 to make IP header L1 cache aligned */ 159 skbn = netdev_alloc_skb(dev, pkt_len + 2); 160 if (skbn != NULL) { 161 skb_reserve(skbn, 2); /* align IP header */ 162 skb_copy_from_linear_data(skb, 163 skbn->data, pkt_len); 164 /* swap */ 165 skbt = skb; 166 skb = skbn; 167 skbn = skbt; 168 } 169 } else { 170 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 171 172 if (skbn) 173 skb_align(skbn, ENET_RX_ALIGN); 174 } 175 176 if (skbn != NULL) { 177 skb_put(skb, pkt_len); /* Make room */ 178 skb->protocol = eth_type_trans(skb, dev); 179 received++; 180 netif_receive_skb(skb); 181 } else { 182 fep->stats.rx_dropped++; 183 skbn = skb; 184 } 185 } 186 187 fep->rx_skbuff[curidx] = skbn; 188 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 189 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 190 DMA_FROM_DEVICE)); 191 CBDW_DATLEN(bdp, 0); 192 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 193 194 /* 195 * Update BD pointer to next entry. 196 */ 197 if ((sc & BD_ENET_RX_WRAP) == 0) 198 bdp++; 199 else 200 bdp = fep->rx_bd_base; 201 202 (*fep->ops->rx_bd_done)(dev); 203 204 if (received >= budget) 205 break; 206 } 207 208 fep->cur_rx = bdp; 209 210 if (received < budget) { 211 /* done */ 212 napi_complete(napi); 213 (*fep->ops->napi_enable_rx)(dev); 214 } 215 return received; 216 } 217 218 /* non NAPI receive function */ 219 static int fs_enet_rx_non_napi(struct net_device *dev) 220 { 221 struct fs_enet_private *fep = netdev_priv(dev); 222 const struct fs_platform_info *fpi = fep->fpi; 223 cbd_t __iomem *bdp; 224 struct sk_buff *skb, *skbn, *skbt; 225 int received = 0; 226 u16 pkt_len, sc; 227 int curidx; 228 /* 229 * First, grab all of the stats for the incoming packet. 230 * These get messed up if we get called due to a busy condition. 231 */ 232 bdp = fep->cur_rx; 233 234 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) { 235 236 curidx = bdp - fep->rx_bd_base; 237 238 /* 239 * Since we have allocated space to hold a complete frame, 240 * the last indicator should be set. 241 */ 242 if ((sc & BD_ENET_RX_LAST) == 0) 243 dev_warn(fep->dev, "rcv is not +last\n"); 244 245 /* 246 * Check for errors. 247 */ 248 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 249 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 250 fep->stats.rx_errors++; 251 /* Frame too long or too short. */ 252 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 253 fep->stats.rx_length_errors++; 254 /* Frame alignment */ 255 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 256 fep->stats.rx_frame_errors++; 257 /* CRC Error */ 258 if (sc & BD_ENET_RX_CR) 259 fep->stats.rx_crc_errors++; 260 /* FIFO overrun */ 261 if (sc & BD_ENET_RX_OV) 262 fep->stats.rx_crc_errors++; 263 264 skb = fep->rx_skbuff[curidx]; 265 266 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 268 DMA_FROM_DEVICE); 269 270 skbn = skb; 271 272 } else { 273 274 skb = fep->rx_skbuff[curidx]; 275 276 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 277 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 278 DMA_FROM_DEVICE); 279 280 /* 281 * Process the incoming frame. 282 */ 283 fep->stats.rx_packets++; 284 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 285 fep->stats.rx_bytes += pkt_len + 4; 286 287 if (pkt_len <= fpi->rx_copybreak) { 288 /* +2 to make IP header L1 cache aligned */ 289 skbn = netdev_alloc_skb(dev, pkt_len + 2); 290 if (skbn != NULL) { 291 skb_reserve(skbn, 2); /* align IP header */ 292 skb_copy_from_linear_data(skb, 293 skbn->data, pkt_len); 294 /* swap */ 295 skbt = skb; 296 skb = skbn; 297 skbn = skbt; 298 } 299 } else { 300 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 301 302 if (skbn) 303 skb_align(skbn, ENET_RX_ALIGN); 304 } 305 306 if (skbn != NULL) { 307 skb_put(skb, pkt_len); /* Make room */ 308 skb->protocol = eth_type_trans(skb, dev); 309 received++; 310 netif_rx(skb); 311 } else { 312 fep->stats.rx_dropped++; 313 skbn = skb; 314 } 315 } 316 317 fep->rx_skbuff[curidx] = skbn; 318 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data, 319 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 320 DMA_FROM_DEVICE)); 321 CBDW_DATLEN(bdp, 0); 322 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 323 324 /* 325 * Update BD pointer to next entry. 326 */ 327 if ((sc & BD_ENET_RX_WRAP) == 0) 328 bdp++; 329 else 330 bdp = fep->rx_bd_base; 331 332 (*fep->ops->rx_bd_done)(dev); 333 } 334 335 fep->cur_rx = bdp; 336 337 return 0; 338 } 339 340 static void fs_enet_tx(struct net_device *dev) 341 { 342 struct fs_enet_private *fep = netdev_priv(dev); 343 cbd_t __iomem *bdp; 344 struct sk_buff *skb; 345 int dirtyidx, do_wake, do_restart; 346 u16 sc; 347 348 spin_lock(&fep->tx_lock); 349 bdp = fep->dirty_tx; 350 351 do_wake = do_restart = 0; 352 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) { 353 dirtyidx = bdp - fep->tx_bd_base; 354 355 if (fep->tx_free == fep->tx_ring) 356 break; 357 358 skb = fep->tx_skbuff[dirtyidx]; 359 360 /* 361 * Check for errors. 362 */ 363 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 364 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 365 366 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 367 fep->stats.tx_heartbeat_errors++; 368 if (sc & BD_ENET_TX_LC) /* Late collision */ 369 fep->stats.tx_window_errors++; 370 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 371 fep->stats.tx_aborted_errors++; 372 if (sc & BD_ENET_TX_UN) /* Underrun */ 373 fep->stats.tx_fifo_errors++; 374 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 375 fep->stats.tx_carrier_errors++; 376 377 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 378 fep->stats.tx_errors++; 379 do_restart = 1; 380 } 381 } else 382 fep->stats.tx_packets++; 383 384 if (sc & BD_ENET_TX_READY) { 385 dev_warn(fep->dev, 386 "HEY! Enet xmit interrupt and TX_READY.\n"); 387 } 388 389 /* 390 * Deferred means some collisions occurred during transmit, 391 * but we eventually sent the packet OK. 392 */ 393 if (sc & BD_ENET_TX_DEF) 394 fep->stats.collisions++; 395 396 /* unmap */ 397 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 398 skb->len, DMA_TO_DEVICE); 399 400 /* 401 * Free the sk buffer associated with this last transmit. 402 */ 403 dev_kfree_skb_irq(skb); 404 fep->tx_skbuff[dirtyidx] = NULL; 405 406 /* 407 * Update pointer to next buffer descriptor to be transmitted. 408 */ 409 if ((sc & BD_ENET_TX_WRAP) == 0) 410 bdp++; 411 else 412 bdp = fep->tx_bd_base; 413 414 /* 415 * Since we have freed up a buffer, the ring is no longer 416 * full. 417 */ 418 if (!fep->tx_free++) 419 do_wake = 1; 420 } 421 422 fep->dirty_tx = bdp; 423 424 if (do_restart) 425 (*fep->ops->tx_restart)(dev); 426 427 spin_unlock(&fep->tx_lock); 428 429 if (do_wake) 430 netif_wake_queue(dev); 431 } 432 433 /* 434 * The interrupt handler. 435 * This is called from the MPC core interrupt. 436 */ 437 static irqreturn_t 438 fs_enet_interrupt(int irq, void *dev_id) 439 { 440 struct net_device *dev = dev_id; 441 struct fs_enet_private *fep; 442 const struct fs_platform_info *fpi; 443 u32 int_events; 444 u32 int_clr_events; 445 int nr, napi_ok; 446 int handled; 447 448 fep = netdev_priv(dev); 449 fpi = fep->fpi; 450 451 nr = 0; 452 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 453 nr++; 454 455 int_clr_events = int_events; 456 if (fpi->use_napi) 457 int_clr_events &= ~fep->ev_napi_rx; 458 459 (*fep->ops->clear_int_events)(dev, int_clr_events); 460 461 if (int_events & fep->ev_err) 462 (*fep->ops->ev_error)(dev, int_events); 463 464 if (int_events & fep->ev_rx) { 465 if (!fpi->use_napi) 466 fs_enet_rx_non_napi(dev); 467 else { 468 napi_ok = napi_schedule_prep(&fep->napi); 469 470 (*fep->ops->napi_disable_rx)(dev); 471 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx); 472 473 /* NOTE: it is possible for FCCs in NAPI mode */ 474 /* to submit a spurious interrupt while in poll */ 475 if (napi_ok) 476 __napi_schedule(&fep->napi); 477 } 478 } 479 480 if (int_events & fep->ev_tx) 481 fs_enet_tx(dev); 482 } 483 484 handled = nr > 0; 485 return IRQ_RETVAL(handled); 486 } 487 488 void fs_init_bds(struct net_device *dev) 489 { 490 struct fs_enet_private *fep = netdev_priv(dev); 491 cbd_t __iomem *bdp; 492 struct sk_buff *skb; 493 int i; 494 495 fs_cleanup_bds(dev); 496 497 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 498 fep->tx_free = fep->tx_ring; 499 fep->cur_rx = fep->rx_bd_base; 500 501 /* 502 * Initialize the receive buffer descriptors. 503 */ 504 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 505 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 506 if (skb == NULL) 507 break; 508 509 skb_align(skb, ENET_RX_ALIGN); 510 fep->rx_skbuff[i] = skb; 511 CBDW_BUFADDR(bdp, 512 dma_map_single(fep->dev, skb->data, 513 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 514 DMA_FROM_DEVICE)); 515 CBDW_DATLEN(bdp, 0); /* zero */ 516 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 517 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 518 } 519 /* 520 * if we failed, fillup remainder 521 */ 522 for (; i < fep->rx_ring; i++, bdp++) { 523 fep->rx_skbuff[i] = NULL; 524 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 525 } 526 527 /* 528 * ...and the same for transmit. 529 */ 530 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 531 fep->tx_skbuff[i] = NULL; 532 CBDW_BUFADDR(bdp, 0); 533 CBDW_DATLEN(bdp, 0); 534 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 535 } 536 } 537 538 void fs_cleanup_bds(struct net_device *dev) 539 { 540 struct fs_enet_private *fep = netdev_priv(dev); 541 struct sk_buff *skb; 542 cbd_t __iomem *bdp; 543 int i; 544 545 /* 546 * Reset SKB transmit buffers. 547 */ 548 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 549 if ((skb = fep->tx_skbuff[i]) == NULL) 550 continue; 551 552 /* unmap */ 553 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 554 skb->len, DMA_TO_DEVICE); 555 556 fep->tx_skbuff[i] = NULL; 557 dev_kfree_skb(skb); 558 } 559 560 /* 561 * Reset SKB receive buffers 562 */ 563 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 564 if ((skb = fep->rx_skbuff[i]) == NULL) 565 continue; 566 567 /* unmap */ 568 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 569 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 570 DMA_FROM_DEVICE); 571 572 fep->rx_skbuff[i] = NULL; 573 574 dev_kfree_skb(skb); 575 } 576 } 577 578 /**********************************************************************************/ 579 580 #ifdef CONFIG_FS_ENET_MPC5121_FEC 581 /* 582 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 583 */ 584 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 585 struct sk_buff *skb) 586 { 587 struct sk_buff *new_skb; 588 589 /* Alloc new skb */ 590 new_skb = netdev_alloc_skb(dev, skb->len + 4); 591 if (!new_skb) 592 return NULL; 593 594 /* Make sure new skb is properly aligned */ 595 skb_align(new_skb, 4); 596 597 /* Copy data to new skb ... */ 598 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 599 skb_put(new_skb, skb->len); 600 601 /* ... and free an old one */ 602 dev_kfree_skb_any(skb); 603 604 return new_skb; 605 } 606 #endif 607 608 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 609 { 610 struct fs_enet_private *fep = netdev_priv(dev); 611 cbd_t __iomem *bdp; 612 int curidx; 613 u16 sc; 614 unsigned long flags; 615 616 #ifdef CONFIG_FS_ENET_MPC5121_FEC 617 if (((unsigned long)skb->data) & 0x3) { 618 skb = tx_skb_align_workaround(dev, skb); 619 if (!skb) { 620 /* 621 * We have lost packet due to memory allocation error 622 * in tx_skb_align_workaround(). Hopefully original 623 * skb is still valid, so try transmit it later. 624 */ 625 return NETDEV_TX_BUSY; 626 } 627 } 628 #endif 629 spin_lock_irqsave(&fep->tx_lock, flags); 630 631 /* 632 * Fill in a Tx ring entry 633 */ 634 bdp = fep->cur_tx; 635 636 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 637 netif_stop_queue(dev); 638 spin_unlock_irqrestore(&fep->tx_lock, flags); 639 640 /* 641 * Ooops. All transmit buffers are full. Bail out. 642 * This should not happen, since the tx queue should be stopped. 643 */ 644 dev_warn(fep->dev, "tx queue full!.\n"); 645 return NETDEV_TX_BUSY; 646 } 647 648 curidx = bdp - fep->tx_bd_base; 649 /* 650 * Clear all of the status flags. 651 */ 652 CBDC_SC(bdp, BD_ENET_TX_STATS); 653 654 /* 655 * Save skb pointer. 656 */ 657 fep->tx_skbuff[curidx] = skb; 658 659 fep->stats.tx_bytes += skb->len; 660 661 /* 662 * Push the data cache so the CPM does not get stale memory data. 663 */ 664 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 665 skb->data, skb->len, DMA_TO_DEVICE)); 666 CBDW_DATLEN(bdp, skb->len); 667 668 /* 669 * If this was the last BD in the ring, start at the beginning again. 670 */ 671 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 672 fep->cur_tx++; 673 else 674 fep->cur_tx = fep->tx_bd_base; 675 676 if (!--fep->tx_free) 677 netif_stop_queue(dev); 678 679 /* Trigger transmission start */ 680 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 681 BD_ENET_TX_LAST | BD_ENET_TX_TC; 682 683 /* note that while FEC does not have this bit 684 * it marks it as available for software use 685 * yay for hw reuse :) */ 686 if (skb->len <= 60) 687 sc |= BD_ENET_TX_PAD; 688 CBDS_SC(bdp, sc); 689 690 skb_tx_timestamp(skb); 691 692 (*fep->ops->tx_kickstart)(dev); 693 694 spin_unlock_irqrestore(&fep->tx_lock, flags); 695 696 return NETDEV_TX_OK; 697 } 698 699 static void fs_timeout(struct net_device *dev) 700 { 701 struct fs_enet_private *fep = netdev_priv(dev); 702 unsigned long flags; 703 int wake = 0; 704 705 fep->stats.tx_errors++; 706 707 spin_lock_irqsave(&fep->lock, flags); 708 709 if (dev->flags & IFF_UP) { 710 phy_stop(fep->phydev); 711 (*fep->ops->stop)(dev); 712 (*fep->ops->restart)(dev); 713 phy_start(fep->phydev); 714 } 715 716 phy_start(fep->phydev); 717 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 718 spin_unlock_irqrestore(&fep->lock, flags); 719 720 if (wake) 721 netif_wake_queue(dev); 722 } 723 724 /*----------------------------------------------------------------------------- 725 * generic link-change handler - should be sufficient for most cases 726 *-----------------------------------------------------------------------------*/ 727 static void generic_adjust_link(struct net_device *dev) 728 { 729 struct fs_enet_private *fep = netdev_priv(dev); 730 struct phy_device *phydev = fep->phydev; 731 int new_state = 0; 732 733 if (phydev->link) { 734 /* adjust to duplex mode */ 735 if (phydev->duplex != fep->oldduplex) { 736 new_state = 1; 737 fep->oldduplex = phydev->duplex; 738 } 739 740 if (phydev->speed != fep->oldspeed) { 741 new_state = 1; 742 fep->oldspeed = phydev->speed; 743 } 744 745 if (!fep->oldlink) { 746 new_state = 1; 747 fep->oldlink = 1; 748 } 749 750 if (new_state) 751 fep->ops->restart(dev); 752 } else if (fep->oldlink) { 753 new_state = 1; 754 fep->oldlink = 0; 755 fep->oldspeed = 0; 756 fep->oldduplex = -1; 757 } 758 759 if (new_state && netif_msg_link(fep)) 760 phy_print_status(phydev); 761 } 762 763 764 static void fs_adjust_link(struct net_device *dev) 765 { 766 struct fs_enet_private *fep = netdev_priv(dev); 767 unsigned long flags; 768 769 spin_lock_irqsave(&fep->lock, flags); 770 771 if(fep->ops->adjust_link) 772 fep->ops->adjust_link(dev); 773 else 774 generic_adjust_link(dev); 775 776 spin_unlock_irqrestore(&fep->lock, flags); 777 } 778 779 static int fs_init_phy(struct net_device *dev) 780 { 781 struct fs_enet_private *fep = netdev_priv(dev); 782 struct phy_device *phydev; 783 phy_interface_t iface; 784 785 fep->oldlink = 0; 786 fep->oldspeed = 0; 787 fep->oldduplex = -1; 788 789 iface = fep->fpi->use_rmii ? 790 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 791 792 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 793 iface); 794 if (!phydev) { 795 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link, 796 iface); 797 } 798 if (!phydev) { 799 dev_err(&dev->dev, "Could not attach to PHY\n"); 800 return -ENODEV; 801 } 802 803 fep->phydev = phydev; 804 805 return 0; 806 } 807 808 static int fs_enet_open(struct net_device *dev) 809 { 810 struct fs_enet_private *fep = netdev_priv(dev); 811 int r; 812 int err; 813 814 /* to initialize the fep->cur_rx,... */ 815 /* not doing this, will cause a crash in fs_enet_rx_napi */ 816 fs_init_bds(fep->ndev); 817 818 if (fep->fpi->use_napi) 819 napi_enable(&fep->napi); 820 821 /* Install our interrupt handler. */ 822 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 823 "fs_enet-mac", dev); 824 if (r != 0) { 825 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 826 if (fep->fpi->use_napi) 827 napi_disable(&fep->napi); 828 return -EINVAL; 829 } 830 831 err = fs_init_phy(dev); 832 if (err) { 833 free_irq(fep->interrupt, dev); 834 if (fep->fpi->use_napi) 835 napi_disable(&fep->napi); 836 return err; 837 } 838 phy_start(fep->phydev); 839 840 netif_start_queue(dev); 841 842 return 0; 843 } 844 845 static int fs_enet_close(struct net_device *dev) 846 { 847 struct fs_enet_private *fep = netdev_priv(dev); 848 unsigned long flags; 849 850 netif_stop_queue(dev); 851 netif_carrier_off(dev); 852 if (fep->fpi->use_napi) 853 napi_disable(&fep->napi); 854 phy_stop(fep->phydev); 855 856 spin_lock_irqsave(&fep->lock, flags); 857 spin_lock(&fep->tx_lock); 858 (*fep->ops->stop)(dev); 859 spin_unlock(&fep->tx_lock); 860 spin_unlock_irqrestore(&fep->lock, flags); 861 862 /* release any irqs */ 863 phy_disconnect(fep->phydev); 864 fep->phydev = NULL; 865 free_irq(fep->interrupt, dev); 866 867 return 0; 868 } 869 870 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev) 871 { 872 struct fs_enet_private *fep = netdev_priv(dev); 873 return &fep->stats; 874 } 875 876 /*************************************************************************/ 877 878 static void fs_get_drvinfo(struct net_device *dev, 879 struct ethtool_drvinfo *info) 880 { 881 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 882 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 883 } 884 885 static int fs_get_regs_len(struct net_device *dev) 886 { 887 struct fs_enet_private *fep = netdev_priv(dev); 888 889 return (*fep->ops->get_regs_len)(dev); 890 } 891 892 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 893 void *p) 894 { 895 struct fs_enet_private *fep = netdev_priv(dev); 896 unsigned long flags; 897 int r, len; 898 899 len = regs->len; 900 901 spin_lock_irqsave(&fep->lock, flags); 902 r = (*fep->ops->get_regs)(dev, p, &len); 903 spin_unlock_irqrestore(&fep->lock, flags); 904 905 if (r == 0) 906 regs->version = 0; 907 } 908 909 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 910 { 911 struct fs_enet_private *fep = netdev_priv(dev); 912 913 if (!fep->phydev) 914 return -ENODEV; 915 916 return phy_ethtool_gset(fep->phydev, cmd); 917 } 918 919 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 920 { 921 struct fs_enet_private *fep = netdev_priv(dev); 922 923 if (!fep->phydev) 924 return -ENODEV; 925 926 return phy_ethtool_sset(fep->phydev, cmd); 927 } 928 929 static int fs_nway_reset(struct net_device *dev) 930 { 931 return 0; 932 } 933 934 static u32 fs_get_msglevel(struct net_device *dev) 935 { 936 struct fs_enet_private *fep = netdev_priv(dev); 937 return fep->msg_enable; 938 } 939 940 static void fs_set_msglevel(struct net_device *dev, u32 value) 941 { 942 struct fs_enet_private *fep = netdev_priv(dev); 943 fep->msg_enable = value; 944 } 945 946 static const struct ethtool_ops fs_ethtool_ops = { 947 .get_drvinfo = fs_get_drvinfo, 948 .get_regs_len = fs_get_regs_len, 949 .get_settings = fs_get_settings, 950 .set_settings = fs_set_settings, 951 .nway_reset = fs_nway_reset, 952 .get_link = ethtool_op_get_link, 953 .get_msglevel = fs_get_msglevel, 954 .set_msglevel = fs_set_msglevel, 955 .get_regs = fs_get_regs, 956 .get_ts_info = ethtool_op_get_ts_info, 957 }; 958 959 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 960 { 961 struct fs_enet_private *fep = netdev_priv(dev); 962 963 if (!netif_running(dev)) 964 return -EINVAL; 965 966 return phy_mii_ioctl(fep->phydev, rq, cmd); 967 } 968 969 extern int fs_mii_connect(struct net_device *dev); 970 extern void fs_mii_disconnect(struct net_device *dev); 971 972 /**************************************************************************************/ 973 974 #ifdef CONFIG_FS_ENET_HAS_FEC 975 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 976 #else 977 #define IS_FEC(match) 0 978 #endif 979 980 static const struct net_device_ops fs_enet_netdev_ops = { 981 .ndo_open = fs_enet_open, 982 .ndo_stop = fs_enet_close, 983 .ndo_get_stats = fs_enet_get_stats, 984 .ndo_start_xmit = fs_enet_start_xmit, 985 .ndo_tx_timeout = fs_timeout, 986 .ndo_set_rx_mode = fs_set_multicast_list, 987 .ndo_do_ioctl = fs_ioctl, 988 .ndo_validate_addr = eth_validate_addr, 989 .ndo_set_mac_address = eth_mac_addr, 990 .ndo_change_mtu = eth_change_mtu, 991 #ifdef CONFIG_NET_POLL_CONTROLLER 992 .ndo_poll_controller = fs_enet_netpoll, 993 #endif 994 }; 995 996 static struct of_device_id fs_enet_match[]; 997 static int fs_enet_probe(struct platform_device *ofdev) 998 { 999 const struct of_device_id *match; 1000 struct net_device *ndev; 1001 struct fs_enet_private *fep; 1002 struct fs_platform_info *fpi; 1003 const u32 *data; 1004 struct clk *clk; 1005 int err; 1006 const u8 *mac_addr; 1007 const char *phy_connection_type; 1008 int privsize, len, ret = -ENODEV; 1009 1010 match = of_match_device(fs_enet_match, &ofdev->dev); 1011 if (!match) 1012 return -EINVAL; 1013 1014 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 1015 if (!fpi) 1016 return -ENOMEM; 1017 1018 if (!IS_FEC(match)) { 1019 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 1020 if (!data || len != 4) 1021 goto out_free_fpi; 1022 1023 fpi->cp_command = *data; 1024 } 1025 1026 fpi->rx_ring = 32; 1027 fpi->tx_ring = 32; 1028 fpi->rx_copybreak = 240; 1029 fpi->use_napi = 1; 1030 fpi->napi_weight = 17; 1031 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 1032 if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link", 1033 NULL))) 1034 goto out_free_fpi; 1035 1036 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 1037 phy_connection_type = of_get_property(ofdev->dev.of_node, 1038 "phy-connection-type", NULL); 1039 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 1040 fpi->use_rmii = 1; 1041 } 1042 1043 /* make clock lookup non-fatal (the driver is shared among platforms), 1044 * but require enable to succeed when a clock was specified/found, 1045 * keep a reference to the clock upon successful acquisition 1046 */ 1047 clk = devm_clk_get(&ofdev->dev, "per"); 1048 if (!IS_ERR(clk)) { 1049 err = clk_prepare_enable(clk); 1050 if (err) { 1051 ret = err; 1052 goto out_free_fpi; 1053 } 1054 fpi->clk_per = clk; 1055 } 1056 1057 privsize = sizeof(*fep) + 1058 sizeof(struct sk_buff **) * 1059 (fpi->rx_ring + fpi->tx_ring); 1060 1061 ndev = alloc_etherdev(privsize); 1062 if (!ndev) { 1063 ret = -ENOMEM; 1064 goto out_put; 1065 } 1066 1067 SET_NETDEV_DEV(ndev, &ofdev->dev); 1068 platform_set_drvdata(ofdev, ndev); 1069 1070 fep = netdev_priv(ndev); 1071 fep->dev = &ofdev->dev; 1072 fep->ndev = ndev; 1073 fep->fpi = fpi; 1074 fep->ops = match->data; 1075 1076 ret = fep->ops->setup_data(ndev); 1077 if (ret) 1078 goto out_free_dev; 1079 1080 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1081 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1082 1083 spin_lock_init(&fep->lock); 1084 spin_lock_init(&fep->tx_lock); 1085 1086 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1087 if (mac_addr) 1088 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 1089 1090 ret = fep->ops->allocate_bd(ndev); 1091 if (ret) 1092 goto out_cleanup_data; 1093 1094 fep->rx_bd_base = fep->ring_base; 1095 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1096 1097 fep->tx_ring = fpi->tx_ring; 1098 fep->rx_ring = fpi->rx_ring; 1099 1100 ndev->netdev_ops = &fs_enet_netdev_ops; 1101 ndev->watchdog_timeo = 2 * HZ; 1102 if (fpi->use_napi) 1103 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, 1104 fpi->napi_weight); 1105 1106 ndev->ethtool_ops = &fs_ethtool_ops; 1107 1108 init_timer(&fep->phy_timer_list); 1109 1110 netif_carrier_off(ndev); 1111 1112 ret = register_netdev(ndev); 1113 if (ret) 1114 goto out_free_bd; 1115 1116 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1117 1118 return 0; 1119 1120 out_free_bd: 1121 fep->ops->free_bd(ndev); 1122 out_cleanup_data: 1123 fep->ops->cleanup_data(ndev); 1124 out_free_dev: 1125 free_netdev(ndev); 1126 out_put: 1127 of_node_put(fpi->phy_node); 1128 if (fpi->clk_per) 1129 clk_disable_unprepare(fpi->clk_per); 1130 out_free_fpi: 1131 kfree(fpi); 1132 return ret; 1133 } 1134 1135 static int fs_enet_remove(struct platform_device *ofdev) 1136 { 1137 struct net_device *ndev = platform_get_drvdata(ofdev); 1138 struct fs_enet_private *fep = netdev_priv(ndev); 1139 1140 unregister_netdev(ndev); 1141 1142 fep->ops->free_bd(ndev); 1143 fep->ops->cleanup_data(ndev); 1144 dev_set_drvdata(fep->dev, NULL); 1145 of_node_put(fep->fpi->phy_node); 1146 if (fep->fpi->clk_per) 1147 clk_disable_unprepare(fep->fpi->clk_per); 1148 free_netdev(ndev); 1149 return 0; 1150 } 1151 1152 static struct of_device_id fs_enet_match[] = { 1153 #ifdef CONFIG_FS_ENET_HAS_SCC 1154 { 1155 .compatible = "fsl,cpm1-scc-enet", 1156 .data = (void *)&fs_scc_ops, 1157 }, 1158 { 1159 .compatible = "fsl,cpm2-scc-enet", 1160 .data = (void *)&fs_scc_ops, 1161 }, 1162 #endif 1163 #ifdef CONFIG_FS_ENET_HAS_FCC 1164 { 1165 .compatible = "fsl,cpm2-fcc-enet", 1166 .data = (void *)&fs_fcc_ops, 1167 }, 1168 #endif 1169 #ifdef CONFIG_FS_ENET_HAS_FEC 1170 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1171 { 1172 .compatible = "fsl,mpc5121-fec", 1173 .data = (void *)&fs_fec_ops, 1174 }, 1175 { 1176 .compatible = "fsl,mpc5125-fec", 1177 .data = (void *)&fs_fec_ops, 1178 }, 1179 #else 1180 { 1181 .compatible = "fsl,pq1-fec-enet", 1182 .data = (void *)&fs_fec_ops, 1183 }, 1184 #endif 1185 #endif 1186 {} 1187 }; 1188 MODULE_DEVICE_TABLE(of, fs_enet_match); 1189 1190 static struct platform_driver fs_enet_driver = { 1191 .driver = { 1192 .owner = THIS_MODULE, 1193 .name = "fs_enet", 1194 .of_match_table = fs_enet_match, 1195 }, 1196 .probe = fs_enet_probe, 1197 .remove = fs_enet_remove, 1198 }; 1199 1200 #ifdef CONFIG_NET_POLL_CONTROLLER 1201 static void fs_enet_netpoll(struct net_device *dev) 1202 { 1203 disable_irq(dev->irq); 1204 fs_enet_interrupt(dev->irq, dev); 1205 enable_irq(dev->irq); 1206 } 1207 #endif 1208 1209 module_platform_driver(fs_enet_driver); 1210