1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 44 #include <linux/vmalloc.h> 45 #include <asm/pgtable.h> 46 #include <asm/irq.h> 47 #include <linux/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 MODULE_VERSION(DRV_MODULE_VERSION); 57 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 59 module_param(fs_enet_debug, int, 0); 60 MODULE_PARM_DESC(fs_enet_debug, 61 "Freescale bitmapped debugging message enable value"); 62 63 #define RX_RING_SIZE 32 64 #define TX_RING_SIZE 64 65 66 #ifdef CONFIG_NET_POLL_CONTROLLER 67 static void fs_enet_netpoll(struct net_device *dev); 68 #endif 69 70 static void fs_set_multicast_list(struct net_device *dev) 71 { 72 struct fs_enet_private *fep = netdev_priv(dev); 73 74 (*fep->ops->set_multicast_list)(dev); 75 } 76 77 static void skb_align(struct sk_buff *skb, int align) 78 { 79 int off = ((unsigned long)skb->data) & (align - 1); 80 81 if (off) 82 skb_reserve(skb, align - off); 83 } 84 85 /* NAPI function */ 86 static int fs_enet_napi(struct napi_struct *napi, int budget) 87 { 88 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 89 struct net_device *dev = fep->ndev; 90 const struct fs_platform_info *fpi = fep->fpi; 91 cbd_t __iomem *bdp; 92 struct sk_buff *skb, *skbn; 93 int received = 0; 94 u16 pkt_len, sc; 95 int curidx; 96 int dirtyidx, do_wake, do_restart; 97 int tx_left = TX_RING_SIZE; 98 99 spin_lock(&fep->tx_lock); 100 bdp = fep->dirty_tx; 101 102 /* clear status bits for napi*/ 103 (*fep->ops->napi_clear_event)(dev); 104 105 do_wake = do_restart = 0; 106 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) { 107 dirtyidx = bdp - fep->tx_bd_base; 108 109 if (fep->tx_free == fep->tx_ring) 110 break; 111 112 skb = fep->tx_skbuff[dirtyidx]; 113 114 /* 115 * Check for errors. 116 */ 117 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 118 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 119 120 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 121 dev->stats.tx_heartbeat_errors++; 122 if (sc & BD_ENET_TX_LC) /* Late collision */ 123 dev->stats.tx_window_errors++; 124 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 125 dev->stats.tx_aborted_errors++; 126 if (sc & BD_ENET_TX_UN) /* Underrun */ 127 dev->stats.tx_fifo_errors++; 128 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 129 dev->stats.tx_carrier_errors++; 130 131 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 132 dev->stats.tx_errors++; 133 do_restart = 1; 134 } 135 } else 136 dev->stats.tx_packets++; 137 138 if (sc & BD_ENET_TX_READY) { 139 dev_warn(fep->dev, 140 "HEY! Enet xmit interrupt and TX_READY.\n"); 141 } 142 143 /* 144 * Deferred means some collisions occurred during transmit, 145 * but we eventually sent the packet OK. 146 */ 147 if (sc & BD_ENET_TX_DEF) 148 dev->stats.collisions++; 149 150 /* unmap */ 151 if (fep->mapped_as_page[dirtyidx]) 152 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 153 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 154 else 155 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 156 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 157 158 /* 159 * Free the sk buffer associated with this last transmit. 160 */ 161 if (skb) { 162 dev_kfree_skb(skb); 163 fep->tx_skbuff[dirtyidx] = NULL; 164 } 165 166 /* 167 * Update pointer to next buffer descriptor to be transmitted. 168 */ 169 if ((sc & BD_ENET_TX_WRAP) == 0) 170 bdp++; 171 else 172 bdp = fep->tx_bd_base; 173 174 /* 175 * Since we have freed up a buffer, the ring is no longer 176 * full. 177 */ 178 if (++fep->tx_free == MAX_SKB_FRAGS) 179 do_wake = 1; 180 tx_left--; 181 } 182 183 fep->dirty_tx = bdp; 184 185 if (do_restart) 186 (*fep->ops->tx_restart)(dev); 187 188 spin_unlock(&fep->tx_lock); 189 190 if (do_wake) 191 netif_wake_queue(dev); 192 193 /* 194 * First, grab all of the stats for the incoming packet. 195 * These get messed up if we get called due to a busy condition. 196 */ 197 bdp = fep->cur_rx; 198 199 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 && 200 received < budget) { 201 curidx = bdp - fep->rx_bd_base; 202 203 /* 204 * Since we have allocated space to hold a complete frame, 205 * the last indicator should be set. 206 */ 207 if ((sc & BD_ENET_RX_LAST) == 0) 208 dev_warn(fep->dev, "rcv is not +last\n"); 209 210 /* 211 * Check for errors. 212 */ 213 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 214 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 215 dev->stats.rx_errors++; 216 /* Frame too long or too short. */ 217 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 218 dev->stats.rx_length_errors++; 219 /* Frame alignment */ 220 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 221 dev->stats.rx_frame_errors++; 222 /* CRC Error */ 223 if (sc & BD_ENET_RX_CR) 224 dev->stats.rx_crc_errors++; 225 /* FIFO overrun */ 226 if (sc & BD_ENET_RX_OV) 227 dev->stats.rx_crc_errors++; 228 229 skbn = fep->rx_skbuff[curidx]; 230 } else { 231 skb = fep->rx_skbuff[curidx]; 232 233 /* 234 * Process the incoming frame. 235 */ 236 dev->stats.rx_packets++; 237 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 238 dev->stats.rx_bytes += pkt_len + 4; 239 240 if (pkt_len <= fpi->rx_copybreak) { 241 /* +2 to make IP header L1 cache aligned */ 242 skbn = netdev_alloc_skb(dev, pkt_len + 2); 243 if (skbn != NULL) { 244 skb_reserve(skbn, 2); /* align IP header */ 245 skb_copy_from_linear_data(skb, 246 skbn->data, pkt_len); 247 swap(skb, skbn); 248 dma_sync_single_for_cpu(fep->dev, 249 CBDR_BUFADDR(bdp), 250 L1_CACHE_ALIGN(pkt_len), 251 DMA_FROM_DEVICE); 252 } 253 } else { 254 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 255 256 if (skbn) { 257 dma_addr_t dma; 258 259 skb_align(skbn, ENET_RX_ALIGN); 260 261 dma_unmap_single(fep->dev, 262 CBDR_BUFADDR(bdp), 263 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 264 DMA_FROM_DEVICE); 265 266 dma = dma_map_single(fep->dev, 267 skbn->data, 268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 269 DMA_FROM_DEVICE); 270 CBDW_BUFADDR(bdp, dma); 271 } 272 } 273 274 if (skbn != NULL) { 275 skb_put(skb, pkt_len); /* Make room */ 276 skb->protocol = eth_type_trans(skb, dev); 277 received++; 278 netif_receive_skb(skb); 279 } else { 280 dev->stats.rx_dropped++; 281 skbn = skb; 282 } 283 } 284 285 fep->rx_skbuff[curidx] = skbn; 286 CBDW_DATLEN(bdp, 0); 287 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 288 289 /* 290 * Update BD pointer to next entry. 291 */ 292 if ((sc & BD_ENET_RX_WRAP) == 0) 293 bdp++; 294 else 295 bdp = fep->rx_bd_base; 296 297 (*fep->ops->rx_bd_done)(dev); 298 } 299 300 fep->cur_rx = bdp; 301 302 if (received < budget && tx_left) { 303 /* done */ 304 napi_complete_done(napi, received); 305 (*fep->ops->napi_enable)(dev); 306 307 return received; 308 } 309 310 return budget; 311 } 312 313 /* 314 * The interrupt handler. 315 * This is called from the MPC core interrupt. 316 */ 317 static irqreturn_t 318 fs_enet_interrupt(int irq, void *dev_id) 319 { 320 struct net_device *dev = dev_id; 321 struct fs_enet_private *fep; 322 const struct fs_platform_info *fpi; 323 u32 int_events; 324 u32 int_clr_events; 325 int nr, napi_ok; 326 int handled; 327 328 fep = netdev_priv(dev); 329 fpi = fep->fpi; 330 331 nr = 0; 332 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 333 nr++; 334 335 int_clr_events = int_events; 336 int_clr_events &= ~fep->ev_napi; 337 338 (*fep->ops->clear_int_events)(dev, int_clr_events); 339 340 if (int_events & fep->ev_err) 341 (*fep->ops->ev_error)(dev, int_events); 342 343 if (int_events & fep->ev) { 344 napi_ok = napi_schedule_prep(&fep->napi); 345 346 (*fep->ops->napi_disable)(dev); 347 (*fep->ops->clear_int_events)(dev, fep->ev_napi); 348 349 /* NOTE: it is possible for FCCs in NAPI mode */ 350 /* to submit a spurious interrupt while in poll */ 351 if (napi_ok) 352 __napi_schedule(&fep->napi); 353 } 354 355 } 356 357 handled = nr > 0; 358 return IRQ_RETVAL(handled); 359 } 360 361 void fs_init_bds(struct net_device *dev) 362 { 363 struct fs_enet_private *fep = netdev_priv(dev); 364 cbd_t __iomem *bdp; 365 struct sk_buff *skb; 366 int i; 367 368 fs_cleanup_bds(dev); 369 370 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 371 fep->tx_free = fep->tx_ring; 372 fep->cur_rx = fep->rx_bd_base; 373 374 /* 375 * Initialize the receive buffer descriptors. 376 */ 377 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 378 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 379 if (skb == NULL) 380 break; 381 382 skb_align(skb, ENET_RX_ALIGN); 383 fep->rx_skbuff[i] = skb; 384 CBDW_BUFADDR(bdp, 385 dma_map_single(fep->dev, skb->data, 386 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 387 DMA_FROM_DEVICE)); 388 CBDW_DATLEN(bdp, 0); /* zero */ 389 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 390 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 391 } 392 /* 393 * if we failed, fillup remainder 394 */ 395 for (; i < fep->rx_ring; i++, bdp++) { 396 fep->rx_skbuff[i] = NULL; 397 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 398 } 399 400 /* 401 * ...and the same for transmit. 402 */ 403 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 404 fep->tx_skbuff[i] = NULL; 405 CBDW_BUFADDR(bdp, 0); 406 CBDW_DATLEN(bdp, 0); 407 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 408 } 409 } 410 411 void fs_cleanup_bds(struct net_device *dev) 412 { 413 struct fs_enet_private *fep = netdev_priv(dev); 414 struct sk_buff *skb; 415 cbd_t __iomem *bdp; 416 int i; 417 418 /* 419 * Reset SKB transmit buffers. 420 */ 421 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 422 if ((skb = fep->tx_skbuff[i]) == NULL) 423 continue; 424 425 /* unmap */ 426 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 427 skb->len, DMA_TO_DEVICE); 428 429 fep->tx_skbuff[i] = NULL; 430 dev_kfree_skb(skb); 431 } 432 433 /* 434 * Reset SKB receive buffers 435 */ 436 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 437 if ((skb = fep->rx_skbuff[i]) == NULL) 438 continue; 439 440 /* unmap */ 441 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 442 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 443 DMA_FROM_DEVICE); 444 445 fep->rx_skbuff[i] = NULL; 446 447 dev_kfree_skb(skb); 448 } 449 } 450 451 /**********************************************************************************/ 452 453 #ifdef CONFIG_FS_ENET_MPC5121_FEC 454 /* 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 456 */ 457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 458 struct sk_buff *skb) 459 { 460 struct sk_buff *new_skb; 461 462 if (skb_linearize(skb)) 463 return NULL; 464 465 /* Alloc new skb */ 466 new_skb = netdev_alloc_skb(dev, skb->len + 4); 467 if (!new_skb) 468 return NULL; 469 470 /* Make sure new skb is properly aligned */ 471 skb_align(new_skb, 4); 472 473 /* Copy data to new skb ... */ 474 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 475 skb_put(new_skb, skb->len); 476 477 /* ... and free an old one */ 478 dev_kfree_skb_any(skb); 479 480 return new_skb; 481 } 482 #endif 483 484 static netdev_tx_t 485 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 486 { 487 struct fs_enet_private *fep = netdev_priv(dev); 488 cbd_t __iomem *bdp; 489 int curidx; 490 u16 sc; 491 int nr_frags; 492 skb_frag_t *frag; 493 int len; 494 #ifdef CONFIG_FS_ENET_MPC5121_FEC 495 int is_aligned = 1; 496 int i; 497 498 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 499 is_aligned = 0; 500 } else { 501 nr_frags = skb_shinfo(skb)->nr_frags; 502 frag = skb_shinfo(skb)->frags; 503 for (i = 0; i < nr_frags; i++, frag++) { 504 if (!IS_ALIGNED(skb_frag_off(frag), 4)) { 505 is_aligned = 0; 506 break; 507 } 508 } 509 } 510 511 if (!is_aligned) { 512 skb = tx_skb_align_workaround(dev, skb); 513 if (!skb) { 514 /* 515 * We have lost packet due to memory allocation error 516 * in tx_skb_align_workaround(). Hopefully original 517 * skb is still valid, so try transmit it later. 518 */ 519 return NETDEV_TX_BUSY; 520 } 521 } 522 #endif 523 524 spin_lock(&fep->tx_lock); 525 526 /* 527 * Fill in a Tx ring entry 528 */ 529 bdp = fep->cur_tx; 530 531 nr_frags = skb_shinfo(skb)->nr_frags; 532 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 533 netif_stop_queue(dev); 534 spin_unlock(&fep->tx_lock); 535 536 /* 537 * Ooops. All transmit buffers are full. Bail out. 538 * This should not happen, since the tx queue should be stopped. 539 */ 540 dev_warn(fep->dev, "tx queue full!.\n"); 541 return NETDEV_TX_BUSY; 542 } 543 544 curidx = bdp - fep->tx_bd_base; 545 546 len = skb->len; 547 dev->stats.tx_bytes += len; 548 if (nr_frags) 549 len -= skb->data_len; 550 fep->tx_free -= nr_frags + 1; 551 /* 552 * Push the data cache so the CPM does not get stale memory data. 553 */ 554 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 555 skb->data, len, DMA_TO_DEVICE)); 556 CBDW_DATLEN(bdp, len); 557 558 fep->mapped_as_page[curidx] = 0; 559 frag = skb_shinfo(skb)->frags; 560 while (nr_frags) { 561 CBDC_SC(bdp, 562 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | 563 BD_ENET_TX_TC); 564 CBDS_SC(bdp, BD_ENET_TX_READY); 565 566 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 567 bdp++, curidx++; 568 else 569 bdp = fep->tx_bd_base, curidx = 0; 570 571 len = skb_frag_size(frag); 572 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 573 DMA_TO_DEVICE)); 574 CBDW_DATLEN(bdp, len); 575 576 fep->tx_skbuff[curidx] = NULL; 577 fep->mapped_as_page[curidx] = 1; 578 579 frag++; 580 nr_frags--; 581 } 582 583 /* Trigger transmission start */ 584 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 585 BD_ENET_TX_LAST | BD_ENET_TX_TC; 586 587 /* note that while FEC does not have this bit 588 * it marks it as available for software use 589 * yay for hw reuse :) */ 590 if (skb->len <= 60) 591 sc |= BD_ENET_TX_PAD; 592 CBDC_SC(bdp, BD_ENET_TX_STATS); 593 CBDS_SC(bdp, sc); 594 595 /* Save skb pointer. */ 596 fep->tx_skbuff[curidx] = skb; 597 598 /* If this was the last BD in the ring, start at the beginning again. */ 599 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 600 bdp++; 601 else 602 bdp = fep->tx_bd_base; 603 fep->cur_tx = bdp; 604 605 if (fep->tx_free < MAX_SKB_FRAGS) 606 netif_stop_queue(dev); 607 608 skb_tx_timestamp(skb); 609 610 (*fep->ops->tx_kickstart)(dev); 611 612 spin_unlock(&fep->tx_lock); 613 614 return NETDEV_TX_OK; 615 } 616 617 static void fs_timeout_work(struct work_struct *work) 618 { 619 struct fs_enet_private *fep = container_of(work, struct fs_enet_private, 620 timeout_work); 621 struct net_device *dev = fep->ndev; 622 unsigned long flags; 623 int wake = 0; 624 625 dev->stats.tx_errors++; 626 627 spin_lock_irqsave(&fep->lock, flags); 628 629 if (dev->flags & IFF_UP) { 630 phy_stop(dev->phydev); 631 (*fep->ops->stop)(dev); 632 (*fep->ops->restart)(dev); 633 } 634 635 phy_start(dev->phydev); 636 wake = fep->tx_free >= MAX_SKB_FRAGS && 637 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 638 spin_unlock_irqrestore(&fep->lock, flags); 639 640 if (wake) 641 netif_wake_queue(dev); 642 } 643 644 static void fs_timeout(struct net_device *dev, unsigned int txqueue) 645 { 646 struct fs_enet_private *fep = netdev_priv(dev); 647 648 schedule_work(&fep->timeout_work); 649 } 650 651 /*----------------------------------------------------------------------------- 652 * generic link-change handler - should be sufficient for most cases 653 *-----------------------------------------------------------------------------*/ 654 static void generic_adjust_link(struct net_device *dev) 655 { 656 struct fs_enet_private *fep = netdev_priv(dev); 657 struct phy_device *phydev = dev->phydev; 658 int new_state = 0; 659 660 if (phydev->link) { 661 /* adjust to duplex mode */ 662 if (phydev->duplex != fep->oldduplex) { 663 new_state = 1; 664 fep->oldduplex = phydev->duplex; 665 } 666 667 if (phydev->speed != fep->oldspeed) { 668 new_state = 1; 669 fep->oldspeed = phydev->speed; 670 } 671 672 if (!fep->oldlink) { 673 new_state = 1; 674 fep->oldlink = 1; 675 } 676 677 if (new_state) 678 fep->ops->restart(dev); 679 } else if (fep->oldlink) { 680 new_state = 1; 681 fep->oldlink = 0; 682 fep->oldspeed = 0; 683 fep->oldduplex = -1; 684 } 685 686 if (new_state && netif_msg_link(fep)) 687 phy_print_status(phydev); 688 } 689 690 691 static void fs_adjust_link(struct net_device *dev) 692 { 693 struct fs_enet_private *fep = netdev_priv(dev); 694 unsigned long flags; 695 696 spin_lock_irqsave(&fep->lock, flags); 697 698 if(fep->ops->adjust_link) 699 fep->ops->adjust_link(dev); 700 else 701 generic_adjust_link(dev); 702 703 spin_unlock_irqrestore(&fep->lock, flags); 704 } 705 706 static int fs_init_phy(struct net_device *dev) 707 { 708 struct fs_enet_private *fep = netdev_priv(dev); 709 struct phy_device *phydev; 710 phy_interface_t iface; 711 712 fep->oldlink = 0; 713 fep->oldspeed = 0; 714 fep->oldduplex = -1; 715 716 iface = fep->fpi->use_rmii ? 717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 718 719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 720 iface); 721 if (!phydev) { 722 dev_err(&dev->dev, "Could not attach to PHY\n"); 723 return -ENODEV; 724 } 725 726 return 0; 727 } 728 729 static int fs_enet_open(struct net_device *dev) 730 { 731 struct fs_enet_private *fep = netdev_priv(dev); 732 int r; 733 int err; 734 735 /* to initialize the fep->cur_rx,... */ 736 /* not doing this, will cause a crash in fs_enet_napi */ 737 fs_init_bds(fep->ndev); 738 739 napi_enable(&fep->napi); 740 741 /* Install our interrupt handler. */ 742 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 743 "fs_enet-mac", dev); 744 if (r != 0) { 745 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 746 napi_disable(&fep->napi); 747 return -EINVAL; 748 } 749 750 err = fs_init_phy(dev); 751 if (err) { 752 free_irq(fep->interrupt, dev); 753 napi_disable(&fep->napi); 754 return err; 755 } 756 phy_start(dev->phydev); 757 758 netif_start_queue(dev); 759 760 return 0; 761 } 762 763 static int fs_enet_close(struct net_device *dev) 764 { 765 struct fs_enet_private *fep = netdev_priv(dev); 766 unsigned long flags; 767 768 netif_stop_queue(dev); 769 netif_carrier_off(dev); 770 napi_disable(&fep->napi); 771 cancel_work_sync(&fep->timeout_work); 772 phy_stop(dev->phydev); 773 774 spin_lock_irqsave(&fep->lock, flags); 775 spin_lock(&fep->tx_lock); 776 (*fep->ops->stop)(dev); 777 spin_unlock(&fep->tx_lock); 778 spin_unlock_irqrestore(&fep->lock, flags); 779 780 /* release any irqs */ 781 phy_disconnect(dev->phydev); 782 free_irq(fep->interrupt, dev); 783 784 return 0; 785 } 786 787 /*************************************************************************/ 788 789 static void fs_get_drvinfo(struct net_device *dev, 790 struct ethtool_drvinfo *info) 791 { 792 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 793 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); 794 } 795 796 static int fs_get_regs_len(struct net_device *dev) 797 { 798 struct fs_enet_private *fep = netdev_priv(dev); 799 800 return (*fep->ops->get_regs_len)(dev); 801 } 802 803 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 804 void *p) 805 { 806 struct fs_enet_private *fep = netdev_priv(dev); 807 unsigned long flags; 808 int r, len; 809 810 len = regs->len; 811 812 spin_lock_irqsave(&fep->lock, flags); 813 r = (*fep->ops->get_regs)(dev, p, &len); 814 spin_unlock_irqrestore(&fep->lock, flags); 815 816 if (r == 0) 817 regs->version = 0; 818 } 819 820 static u32 fs_get_msglevel(struct net_device *dev) 821 { 822 struct fs_enet_private *fep = netdev_priv(dev); 823 return fep->msg_enable; 824 } 825 826 static void fs_set_msglevel(struct net_device *dev, u32 value) 827 { 828 struct fs_enet_private *fep = netdev_priv(dev); 829 fep->msg_enable = value; 830 } 831 832 static int fs_get_tunable(struct net_device *dev, 833 const struct ethtool_tunable *tuna, void *data) 834 { 835 struct fs_enet_private *fep = netdev_priv(dev); 836 struct fs_platform_info *fpi = fep->fpi; 837 int ret = 0; 838 839 switch (tuna->id) { 840 case ETHTOOL_RX_COPYBREAK: 841 *(u32 *)data = fpi->rx_copybreak; 842 break; 843 default: 844 ret = -EINVAL; 845 break; 846 } 847 848 return ret; 849 } 850 851 static int fs_set_tunable(struct net_device *dev, 852 const struct ethtool_tunable *tuna, const void *data) 853 { 854 struct fs_enet_private *fep = netdev_priv(dev); 855 struct fs_platform_info *fpi = fep->fpi; 856 int ret = 0; 857 858 switch (tuna->id) { 859 case ETHTOOL_RX_COPYBREAK: 860 fpi->rx_copybreak = *(u32 *)data; 861 break; 862 default: 863 ret = -EINVAL; 864 break; 865 } 866 867 return ret; 868 } 869 870 static const struct ethtool_ops fs_ethtool_ops = { 871 .get_drvinfo = fs_get_drvinfo, 872 .get_regs_len = fs_get_regs_len, 873 .nway_reset = phy_ethtool_nway_reset, 874 .get_link = ethtool_op_get_link, 875 .get_msglevel = fs_get_msglevel, 876 .set_msglevel = fs_set_msglevel, 877 .get_regs = fs_get_regs, 878 .get_ts_info = ethtool_op_get_ts_info, 879 .get_link_ksettings = phy_ethtool_get_link_ksettings, 880 .set_link_ksettings = phy_ethtool_set_link_ksettings, 881 .get_tunable = fs_get_tunable, 882 .set_tunable = fs_set_tunable, 883 }; 884 885 extern int fs_mii_connect(struct net_device *dev); 886 extern void fs_mii_disconnect(struct net_device *dev); 887 888 /**************************************************************************************/ 889 890 #ifdef CONFIG_FS_ENET_HAS_FEC 891 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 892 #else 893 #define IS_FEC(match) 0 894 #endif 895 896 static const struct net_device_ops fs_enet_netdev_ops = { 897 .ndo_open = fs_enet_open, 898 .ndo_stop = fs_enet_close, 899 .ndo_start_xmit = fs_enet_start_xmit, 900 .ndo_tx_timeout = fs_timeout, 901 .ndo_set_rx_mode = fs_set_multicast_list, 902 .ndo_do_ioctl = phy_do_ioctl_running, 903 .ndo_validate_addr = eth_validate_addr, 904 .ndo_set_mac_address = eth_mac_addr, 905 #ifdef CONFIG_NET_POLL_CONTROLLER 906 .ndo_poll_controller = fs_enet_netpoll, 907 #endif 908 }; 909 910 static const struct of_device_id fs_enet_match[]; 911 static int fs_enet_probe(struct platform_device *ofdev) 912 { 913 const struct of_device_id *match; 914 struct net_device *ndev; 915 struct fs_enet_private *fep; 916 struct fs_platform_info *fpi; 917 const u32 *data; 918 struct clk *clk; 919 int err; 920 const u8 *mac_addr; 921 const char *phy_connection_type; 922 int privsize, len, ret = -ENODEV; 923 924 match = of_match_device(fs_enet_match, &ofdev->dev); 925 if (!match) 926 return -EINVAL; 927 928 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 929 if (!fpi) 930 return -ENOMEM; 931 932 if (!IS_FEC(match)) { 933 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 934 if (!data || len != 4) 935 goto out_free_fpi; 936 937 fpi->cp_command = *data; 938 } 939 940 fpi->rx_ring = RX_RING_SIZE; 941 fpi->tx_ring = TX_RING_SIZE; 942 fpi->rx_copybreak = 240; 943 fpi->napi_weight = 17; 944 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 945 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 946 err = of_phy_register_fixed_link(ofdev->dev.of_node); 947 if (err) 948 goto out_free_fpi; 949 950 /* In the case of a fixed PHY, the DT node associated 951 * to the PHY is the Ethernet MAC DT node. 952 */ 953 fpi->phy_node = of_node_get(ofdev->dev.of_node); 954 } 955 956 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 957 phy_connection_type = of_get_property(ofdev->dev.of_node, 958 "phy-connection-type", NULL); 959 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 960 fpi->use_rmii = 1; 961 } 962 963 /* make clock lookup non-fatal (the driver is shared among platforms), 964 * but require enable to succeed when a clock was specified/found, 965 * keep a reference to the clock upon successful acquisition 966 */ 967 clk = devm_clk_get(&ofdev->dev, "per"); 968 if (!IS_ERR(clk)) { 969 ret = clk_prepare_enable(clk); 970 if (ret) 971 goto out_deregister_fixed_link; 972 973 fpi->clk_per = clk; 974 } 975 976 privsize = sizeof(*fep) + 977 sizeof(struct sk_buff **) * 978 (fpi->rx_ring + fpi->tx_ring) + 979 sizeof(char) * fpi->tx_ring; 980 981 ndev = alloc_etherdev(privsize); 982 if (!ndev) { 983 ret = -ENOMEM; 984 goto out_put; 985 } 986 987 SET_NETDEV_DEV(ndev, &ofdev->dev); 988 platform_set_drvdata(ofdev, ndev); 989 990 fep = netdev_priv(ndev); 991 fep->dev = &ofdev->dev; 992 fep->ndev = ndev; 993 fep->fpi = fpi; 994 fep->ops = match->data; 995 996 ret = fep->ops->setup_data(ndev); 997 if (ret) 998 goto out_free_dev; 999 1000 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 1001 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 1002 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 1003 fpi->tx_ring); 1004 1005 spin_lock_init(&fep->lock); 1006 spin_lock_init(&fep->tx_lock); 1007 1008 mac_addr = of_get_mac_address(ofdev->dev.of_node); 1009 if (!IS_ERR(mac_addr)) 1010 ether_addr_copy(ndev->dev_addr, mac_addr); 1011 1012 ret = fep->ops->allocate_bd(ndev); 1013 if (ret) 1014 goto out_cleanup_data; 1015 1016 fep->rx_bd_base = fep->ring_base; 1017 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1018 1019 fep->tx_ring = fpi->tx_ring; 1020 fep->rx_ring = fpi->rx_ring; 1021 1022 ndev->netdev_ops = &fs_enet_netdev_ops; 1023 ndev->watchdog_timeo = 2 * HZ; 1024 INIT_WORK(&fep->timeout_work, fs_timeout_work); 1025 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight); 1026 1027 ndev->ethtool_ops = &fs_ethtool_ops; 1028 1029 netif_carrier_off(ndev); 1030 1031 ndev->features |= NETIF_F_SG; 1032 1033 ret = register_netdev(ndev); 1034 if (ret) 1035 goto out_free_bd; 1036 1037 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1038 1039 return 0; 1040 1041 out_free_bd: 1042 fep->ops->free_bd(ndev); 1043 out_cleanup_data: 1044 fep->ops->cleanup_data(ndev); 1045 out_free_dev: 1046 free_netdev(ndev); 1047 out_put: 1048 if (fpi->clk_per) 1049 clk_disable_unprepare(fpi->clk_per); 1050 out_deregister_fixed_link: 1051 of_node_put(fpi->phy_node); 1052 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1053 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1054 out_free_fpi: 1055 kfree(fpi); 1056 return ret; 1057 } 1058 1059 static int fs_enet_remove(struct platform_device *ofdev) 1060 { 1061 struct net_device *ndev = platform_get_drvdata(ofdev); 1062 struct fs_enet_private *fep = netdev_priv(ndev); 1063 1064 unregister_netdev(ndev); 1065 1066 fep->ops->free_bd(ndev); 1067 fep->ops->cleanup_data(ndev); 1068 dev_set_drvdata(fep->dev, NULL); 1069 of_node_put(fep->fpi->phy_node); 1070 if (fep->fpi->clk_per) 1071 clk_disable_unprepare(fep->fpi->clk_per); 1072 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1073 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1074 free_netdev(ndev); 1075 return 0; 1076 } 1077 1078 static const struct of_device_id fs_enet_match[] = { 1079 #ifdef CONFIG_FS_ENET_HAS_SCC 1080 { 1081 .compatible = "fsl,cpm1-scc-enet", 1082 .data = (void *)&fs_scc_ops, 1083 }, 1084 { 1085 .compatible = "fsl,cpm2-scc-enet", 1086 .data = (void *)&fs_scc_ops, 1087 }, 1088 #endif 1089 #ifdef CONFIG_FS_ENET_HAS_FCC 1090 { 1091 .compatible = "fsl,cpm2-fcc-enet", 1092 .data = (void *)&fs_fcc_ops, 1093 }, 1094 #endif 1095 #ifdef CONFIG_FS_ENET_HAS_FEC 1096 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1097 { 1098 .compatible = "fsl,mpc5121-fec", 1099 .data = (void *)&fs_fec_ops, 1100 }, 1101 { 1102 .compatible = "fsl,mpc5125-fec", 1103 .data = (void *)&fs_fec_ops, 1104 }, 1105 #else 1106 { 1107 .compatible = "fsl,pq1-fec-enet", 1108 .data = (void *)&fs_fec_ops, 1109 }, 1110 #endif 1111 #endif 1112 {} 1113 }; 1114 MODULE_DEVICE_TABLE(of, fs_enet_match); 1115 1116 static struct platform_driver fs_enet_driver = { 1117 .driver = { 1118 .name = "fs_enet", 1119 .of_match_table = fs_enet_match, 1120 }, 1121 .probe = fs_enet_probe, 1122 .remove = fs_enet_remove, 1123 }; 1124 1125 #ifdef CONFIG_NET_POLL_CONTROLLER 1126 static void fs_enet_netpoll(struct net_device *dev) 1127 { 1128 disable_irq(dev->irq); 1129 fs_enet_interrupt(dev->irq, dev); 1130 enable_irq(dev->irq); 1131 } 1132 #endif 1133 1134 module_platform_driver(fs_enet_driver); 1135