1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
48 
49 #include "fs_enet.h"
50 
51 /*************************************************/
52 
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57 
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 		 "Freescale bitmapped debugging message enable value");
62 
63 #define RX_RING_SIZE	32
64 #define TX_RING_SIZE	64
65 
66 #ifdef CONFIG_NET_POLL_CONTROLLER
67 static void fs_enet_netpoll(struct net_device *dev);
68 #endif
69 
70 static void fs_set_multicast_list(struct net_device *dev)
71 {
72 	struct fs_enet_private *fep = netdev_priv(dev);
73 
74 	(*fep->ops->set_multicast_list)(dev);
75 }
76 
77 static void skb_align(struct sk_buff *skb, int align)
78 {
79 	int off = ((unsigned long)skb->data) & (align - 1);
80 
81 	if (off)
82 		skb_reserve(skb, align - off);
83 }
84 
85 /* NAPI function */
86 static int fs_enet_napi(struct napi_struct *napi, int budget)
87 {
88 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89 	struct net_device *dev = fep->ndev;
90 	const struct fs_platform_info *fpi = fep->fpi;
91 	cbd_t __iomem *bdp;
92 	struct sk_buff *skb, *skbn;
93 	int received = 0;
94 	u16 pkt_len, sc;
95 	int curidx;
96 	int dirtyidx, do_wake, do_restart;
97 	int tx_left = TX_RING_SIZE;
98 
99 	spin_lock(&fep->tx_lock);
100 	bdp = fep->dirty_tx;
101 
102 	/* clear status bits for napi*/
103 	(*fep->ops->napi_clear_event)(dev);
104 
105 	do_wake = do_restart = 0;
106 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107 		dirtyidx = bdp - fep->tx_bd_base;
108 
109 		if (fep->tx_free == fep->tx_ring)
110 			break;
111 
112 		skb = fep->tx_skbuff[dirtyidx];
113 
114 		/*
115 		 * Check for errors.
116 		 */
117 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119 
120 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
121 				dev->stats.tx_heartbeat_errors++;
122 			if (sc & BD_ENET_TX_LC)	/* Late collision */
123 				dev->stats.tx_window_errors++;
124 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
125 				dev->stats.tx_aborted_errors++;
126 			if (sc & BD_ENET_TX_UN)	/* Underrun */
127 				dev->stats.tx_fifo_errors++;
128 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
129 				dev->stats.tx_carrier_errors++;
130 
131 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132 				dev->stats.tx_errors++;
133 				do_restart = 1;
134 			}
135 		} else
136 			dev->stats.tx_packets++;
137 
138 		if (sc & BD_ENET_TX_READY) {
139 			dev_warn(fep->dev,
140 				 "HEY! Enet xmit interrupt and TX_READY.\n");
141 		}
142 
143 		/*
144 		 * Deferred means some collisions occurred during transmit,
145 		 * but we eventually sent the packet OK.
146 		 */
147 		if (sc & BD_ENET_TX_DEF)
148 			dev->stats.collisions++;
149 
150 		/* unmap */
151 		if (fep->mapped_as_page[dirtyidx])
152 			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153 				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154 		else
155 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156 					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157 
158 		/*
159 		 * Free the sk buffer associated with this last transmit.
160 		 */
161 		if (skb) {
162 			dev_kfree_skb(skb);
163 			fep->tx_skbuff[dirtyidx] = NULL;
164 		}
165 
166 		/*
167 		 * Update pointer to next buffer descriptor to be transmitted.
168 		 */
169 		if ((sc & BD_ENET_TX_WRAP) == 0)
170 			bdp++;
171 		else
172 			bdp = fep->tx_bd_base;
173 
174 		/*
175 		 * Since we have freed up a buffer, the ring is no longer
176 		 * full.
177 		 */
178 		if (++fep->tx_free == MAX_SKB_FRAGS)
179 			do_wake = 1;
180 		tx_left--;
181 	}
182 
183 	fep->dirty_tx = bdp;
184 
185 	if (do_restart)
186 		(*fep->ops->tx_restart)(dev);
187 
188 	spin_unlock(&fep->tx_lock);
189 
190 	if (do_wake)
191 		netif_wake_queue(dev);
192 
193 	/*
194 	 * First, grab all of the stats for the incoming packet.
195 	 * These get messed up if we get called due to a busy condition.
196 	 */
197 	bdp = fep->cur_rx;
198 
199 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200 	       received < budget) {
201 		curidx = bdp - fep->rx_bd_base;
202 
203 		/*
204 		 * Since we have allocated space to hold a complete frame,
205 		 * the last indicator should be set.
206 		 */
207 		if ((sc & BD_ENET_RX_LAST) == 0)
208 			dev_warn(fep->dev, "rcv is not +last\n");
209 
210 		/*
211 		 * Check for errors.
212 		 */
213 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215 			dev->stats.rx_errors++;
216 			/* Frame too long or too short. */
217 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218 				dev->stats.rx_length_errors++;
219 			/* Frame alignment */
220 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221 				dev->stats.rx_frame_errors++;
222 			/* CRC Error */
223 			if (sc & BD_ENET_RX_CR)
224 				dev->stats.rx_crc_errors++;
225 			/* FIFO overrun */
226 			if (sc & BD_ENET_RX_OV)
227 				dev->stats.rx_crc_errors++;
228 
229 			skbn = fep->rx_skbuff[curidx];
230 		} else {
231 			skb = fep->rx_skbuff[curidx];
232 
233 			/*
234 			 * Process the incoming frame.
235 			 */
236 			dev->stats.rx_packets++;
237 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
238 			dev->stats.rx_bytes += pkt_len + 4;
239 
240 			if (pkt_len <= fpi->rx_copybreak) {
241 				/* +2 to make IP header L1 cache aligned */
242 				skbn = netdev_alloc_skb(dev, pkt_len + 2);
243 				if (skbn != NULL) {
244 					skb_reserve(skbn, 2);	/* align IP header */
245 					skb_copy_from_linear_data(skb,
246 						      skbn->data, pkt_len);
247 					swap(skb, skbn);
248 					dma_sync_single_for_cpu(fep->dev,
249 						CBDR_BUFADDR(bdp),
250 						L1_CACHE_ALIGN(pkt_len),
251 						DMA_FROM_DEVICE);
252 				}
253 			} else {
254 				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255 
256 				if (skbn) {
257 					dma_addr_t dma;
258 
259 					skb_align(skbn, ENET_RX_ALIGN);
260 
261 					dma_unmap_single(fep->dev,
262 						CBDR_BUFADDR(bdp),
263 						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264 						DMA_FROM_DEVICE);
265 
266 					dma = dma_map_single(fep->dev,
267 						skbn->data,
268 						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269 						DMA_FROM_DEVICE);
270 					CBDW_BUFADDR(bdp, dma);
271 				}
272 			}
273 
274 			if (skbn != NULL) {
275 				skb_put(skb, pkt_len);	/* Make room */
276 				skb->protocol = eth_type_trans(skb, dev);
277 				received++;
278 				netif_receive_skb(skb);
279 			} else {
280 				dev->stats.rx_dropped++;
281 				skbn = skb;
282 			}
283 		}
284 
285 		fep->rx_skbuff[curidx] = skbn;
286 		CBDW_DATLEN(bdp, 0);
287 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288 
289 		/*
290 		 * Update BD pointer to next entry.
291 		 */
292 		if ((sc & BD_ENET_RX_WRAP) == 0)
293 			bdp++;
294 		else
295 			bdp = fep->rx_bd_base;
296 
297 		(*fep->ops->rx_bd_done)(dev);
298 	}
299 
300 	fep->cur_rx = bdp;
301 
302 	if (received < budget && tx_left) {
303 		/* done */
304 		napi_complete_done(napi, received);
305 		(*fep->ops->napi_enable)(dev);
306 
307 		return received;
308 	}
309 
310 	return budget;
311 }
312 
313 /*
314  * The interrupt handler.
315  * This is called from the MPC core interrupt.
316  */
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
319 {
320 	struct net_device *dev = dev_id;
321 	struct fs_enet_private *fep;
322 	const struct fs_platform_info *fpi;
323 	u32 int_events;
324 	u32 int_clr_events;
325 	int nr, napi_ok;
326 	int handled;
327 
328 	fep = netdev_priv(dev);
329 	fpi = fep->fpi;
330 
331 	nr = 0;
332 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333 		nr++;
334 
335 		int_clr_events = int_events;
336 		int_clr_events &= ~fep->ev_napi;
337 
338 		(*fep->ops->clear_int_events)(dev, int_clr_events);
339 
340 		if (int_events & fep->ev_err)
341 			(*fep->ops->ev_error)(dev, int_events);
342 
343 		if (int_events & fep->ev) {
344 			napi_ok = napi_schedule_prep(&fep->napi);
345 
346 			(*fep->ops->napi_disable)(dev);
347 			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
348 
349 			/* NOTE: it is possible for FCCs in NAPI mode    */
350 			/* to submit a spurious interrupt while in poll  */
351 			if (napi_ok)
352 				__napi_schedule(&fep->napi);
353 		}
354 
355 	}
356 
357 	handled = nr > 0;
358 	return IRQ_RETVAL(handled);
359 }
360 
361 void fs_init_bds(struct net_device *dev)
362 {
363 	struct fs_enet_private *fep = netdev_priv(dev);
364 	cbd_t __iomem *bdp;
365 	struct sk_buff *skb;
366 	int i;
367 
368 	fs_cleanup_bds(dev);
369 
370 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371 	fep->tx_free = fep->tx_ring;
372 	fep->cur_rx = fep->rx_bd_base;
373 
374 	/*
375 	 * Initialize the receive buffer descriptors.
376 	 */
377 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378 		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379 		if (skb == NULL)
380 			break;
381 
382 		skb_align(skb, ENET_RX_ALIGN);
383 		fep->rx_skbuff[i] = skb;
384 		CBDW_BUFADDR(bdp,
385 			dma_map_single(fep->dev, skb->data,
386 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387 				DMA_FROM_DEVICE));
388 		CBDW_DATLEN(bdp, 0);	/* zero */
389 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391 	}
392 	/*
393 	 * if we failed, fillup remainder
394 	 */
395 	for (; i < fep->rx_ring; i++, bdp++) {
396 		fep->rx_skbuff[i] = NULL;
397 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398 	}
399 
400 	/*
401 	 * ...and the same for transmit.
402 	 */
403 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404 		fep->tx_skbuff[i] = NULL;
405 		CBDW_BUFADDR(bdp, 0);
406 		CBDW_DATLEN(bdp, 0);
407 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408 	}
409 }
410 
411 void fs_cleanup_bds(struct net_device *dev)
412 {
413 	struct fs_enet_private *fep = netdev_priv(dev);
414 	struct sk_buff *skb;
415 	cbd_t __iomem *bdp;
416 	int i;
417 
418 	/*
419 	 * Reset SKB transmit buffers.
420 	 */
421 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422 		if ((skb = fep->tx_skbuff[i]) == NULL)
423 			continue;
424 
425 		/* unmap */
426 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427 				skb->len, DMA_TO_DEVICE);
428 
429 		fep->tx_skbuff[i] = NULL;
430 		dev_kfree_skb(skb);
431 	}
432 
433 	/*
434 	 * Reset SKB receive buffers
435 	 */
436 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437 		if ((skb = fep->rx_skbuff[i]) == NULL)
438 			continue;
439 
440 		/* unmap */
441 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442 			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443 			DMA_FROM_DEVICE);
444 
445 		fep->rx_skbuff[i] = NULL;
446 
447 		dev_kfree_skb(skb);
448 	}
449 }
450 
451 /**********************************************************************************/
452 
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
454 /*
455  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456  */
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458 					       struct sk_buff *skb)
459 {
460 	struct sk_buff *new_skb;
461 
462 	if (skb_linearize(skb))
463 		return NULL;
464 
465 	/* Alloc new skb */
466 	new_skb = netdev_alloc_skb(dev, skb->len + 4);
467 	if (!new_skb)
468 		return NULL;
469 
470 	/* Make sure new skb is properly aligned */
471 	skb_align(new_skb, 4);
472 
473 	/* Copy data to new skb ... */
474 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475 	skb_put(new_skb, skb->len);
476 
477 	/* ... and free an old one */
478 	dev_kfree_skb_any(skb);
479 
480 	return new_skb;
481 }
482 #endif
483 
484 static netdev_tx_t
485 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
486 {
487 	struct fs_enet_private *fep = netdev_priv(dev);
488 	cbd_t __iomem *bdp;
489 	int curidx;
490 	u16 sc;
491 	int nr_frags;
492 	skb_frag_t *frag;
493 	int len;
494 #ifdef CONFIG_FS_ENET_MPC5121_FEC
495 	int is_aligned = 1;
496 	int i;
497 
498 	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
499 		is_aligned = 0;
500 	} else {
501 		nr_frags = skb_shinfo(skb)->nr_frags;
502 		frag = skb_shinfo(skb)->frags;
503 		for (i = 0; i < nr_frags; i++, frag++) {
504 			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
505 				is_aligned = 0;
506 				break;
507 			}
508 		}
509 	}
510 
511 	if (!is_aligned) {
512 		skb = tx_skb_align_workaround(dev, skb);
513 		if (!skb) {
514 			/*
515 			 * We have lost packet due to memory allocation error
516 			 * in tx_skb_align_workaround(). Hopefully original
517 			 * skb is still valid, so try transmit it later.
518 			 */
519 			return NETDEV_TX_BUSY;
520 		}
521 	}
522 #endif
523 
524 	spin_lock(&fep->tx_lock);
525 
526 	/*
527 	 * Fill in a Tx ring entry
528 	 */
529 	bdp = fep->cur_tx;
530 
531 	nr_frags = skb_shinfo(skb)->nr_frags;
532 	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
533 		netif_stop_queue(dev);
534 		spin_unlock(&fep->tx_lock);
535 
536 		/*
537 		 * Ooops.  All transmit buffers are full.  Bail out.
538 		 * This should not happen, since the tx queue should be stopped.
539 		 */
540 		dev_warn(fep->dev, "tx queue full!.\n");
541 		return NETDEV_TX_BUSY;
542 	}
543 
544 	curidx = bdp - fep->tx_bd_base;
545 
546 	len = skb->len;
547 	dev->stats.tx_bytes += len;
548 	if (nr_frags)
549 		len -= skb->data_len;
550 	fep->tx_free -= nr_frags + 1;
551 	/*
552 	 * Push the data cache so the CPM does not get stale memory data.
553 	 */
554 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
555 				skb->data, len, DMA_TO_DEVICE));
556 	CBDW_DATLEN(bdp, len);
557 
558 	fep->mapped_as_page[curidx] = 0;
559 	frag = skb_shinfo(skb)->frags;
560 	while (nr_frags) {
561 		CBDC_SC(bdp,
562 			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
563 			BD_ENET_TX_TC);
564 		CBDS_SC(bdp, BD_ENET_TX_READY);
565 
566 		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
567 			bdp++, curidx++;
568 		else
569 			bdp = fep->tx_bd_base, curidx = 0;
570 
571 		len = skb_frag_size(frag);
572 		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
573 						   DMA_TO_DEVICE));
574 		CBDW_DATLEN(bdp, len);
575 
576 		fep->tx_skbuff[curidx] = NULL;
577 		fep->mapped_as_page[curidx] = 1;
578 
579 		frag++;
580 		nr_frags--;
581 	}
582 
583 	/* Trigger transmission start */
584 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
585 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
586 
587 	/* note that while FEC does not have this bit
588 	 * it marks it as available for software use
589 	 * yay for hw reuse :) */
590 	if (skb->len <= 60)
591 		sc |= BD_ENET_TX_PAD;
592 	CBDC_SC(bdp, BD_ENET_TX_STATS);
593 	CBDS_SC(bdp, sc);
594 
595 	/* Save skb pointer. */
596 	fep->tx_skbuff[curidx] = skb;
597 
598 	/* If this was the last BD in the ring, start at the beginning again. */
599 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
600 		bdp++;
601 	else
602 		bdp = fep->tx_bd_base;
603 	fep->cur_tx = bdp;
604 
605 	if (fep->tx_free < MAX_SKB_FRAGS)
606 		netif_stop_queue(dev);
607 
608 	skb_tx_timestamp(skb);
609 
610 	(*fep->ops->tx_kickstart)(dev);
611 
612 	spin_unlock(&fep->tx_lock);
613 
614 	return NETDEV_TX_OK;
615 }
616 
617 static void fs_timeout_work(struct work_struct *work)
618 {
619 	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
620 						   timeout_work);
621 	struct net_device *dev = fep->ndev;
622 	unsigned long flags;
623 	int wake = 0;
624 
625 	dev->stats.tx_errors++;
626 
627 	spin_lock_irqsave(&fep->lock, flags);
628 
629 	if (dev->flags & IFF_UP) {
630 		phy_stop(dev->phydev);
631 		(*fep->ops->stop)(dev);
632 		(*fep->ops->restart)(dev);
633 	}
634 
635 	phy_start(dev->phydev);
636 	wake = fep->tx_free >= MAX_SKB_FRAGS &&
637 	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
638 	spin_unlock_irqrestore(&fep->lock, flags);
639 
640 	if (wake)
641 		netif_wake_queue(dev);
642 }
643 
644 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
645 {
646 	struct fs_enet_private *fep = netdev_priv(dev);
647 
648 	schedule_work(&fep->timeout_work);
649 }
650 
651 /*-----------------------------------------------------------------------------
652  *  generic link-change handler - should be sufficient for most cases
653  *-----------------------------------------------------------------------------*/
654 static void generic_adjust_link(struct  net_device *dev)
655 {
656 	struct fs_enet_private *fep = netdev_priv(dev);
657 	struct phy_device *phydev = dev->phydev;
658 	int new_state = 0;
659 
660 	if (phydev->link) {
661 		/* adjust to duplex mode */
662 		if (phydev->duplex != fep->oldduplex) {
663 			new_state = 1;
664 			fep->oldduplex = phydev->duplex;
665 		}
666 
667 		if (phydev->speed != fep->oldspeed) {
668 			new_state = 1;
669 			fep->oldspeed = phydev->speed;
670 		}
671 
672 		if (!fep->oldlink) {
673 			new_state = 1;
674 			fep->oldlink = 1;
675 		}
676 
677 		if (new_state)
678 			fep->ops->restart(dev);
679 	} else if (fep->oldlink) {
680 		new_state = 1;
681 		fep->oldlink = 0;
682 		fep->oldspeed = 0;
683 		fep->oldduplex = -1;
684 	}
685 
686 	if (new_state && netif_msg_link(fep))
687 		phy_print_status(phydev);
688 }
689 
690 
691 static void fs_adjust_link(struct net_device *dev)
692 {
693 	struct fs_enet_private *fep = netdev_priv(dev);
694 	unsigned long flags;
695 
696 	spin_lock_irqsave(&fep->lock, flags);
697 
698 	if(fep->ops->adjust_link)
699 		fep->ops->adjust_link(dev);
700 	else
701 		generic_adjust_link(dev);
702 
703 	spin_unlock_irqrestore(&fep->lock, flags);
704 }
705 
706 static int fs_init_phy(struct net_device *dev)
707 {
708 	struct fs_enet_private *fep = netdev_priv(dev);
709 	struct phy_device *phydev;
710 	phy_interface_t iface;
711 
712 	fep->oldlink = 0;
713 	fep->oldspeed = 0;
714 	fep->oldduplex = -1;
715 
716 	iface = fep->fpi->use_rmii ?
717 		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718 
719 	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720 				iface);
721 	if (!phydev) {
722 		dev_err(&dev->dev, "Could not attach to PHY\n");
723 		return -ENODEV;
724 	}
725 
726 	return 0;
727 }
728 
729 static int fs_enet_open(struct net_device *dev)
730 {
731 	struct fs_enet_private *fep = netdev_priv(dev);
732 	int r;
733 	int err;
734 
735 	/* to initialize the fep->cur_rx,... */
736 	/* not doing this, will cause a crash in fs_enet_napi */
737 	fs_init_bds(fep->ndev);
738 
739 	napi_enable(&fep->napi);
740 
741 	/* Install our interrupt handler. */
742 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
743 			"fs_enet-mac", dev);
744 	if (r != 0) {
745 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
746 		napi_disable(&fep->napi);
747 		return -EINVAL;
748 	}
749 
750 	err = fs_init_phy(dev);
751 	if (err) {
752 		free_irq(fep->interrupt, dev);
753 		napi_disable(&fep->napi);
754 		return err;
755 	}
756 	phy_start(dev->phydev);
757 
758 	netif_start_queue(dev);
759 
760 	return 0;
761 }
762 
763 static int fs_enet_close(struct net_device *dev)
764 {
765 	struct fs_enet_private *fep = netdev_priv(dev);
766 	unsigned long flags;
767 
768 	netif_stop_queue(dev);
769 	netif_carrier_off(dev);
770 	napi_disable(&fep->napi);
771 	cancel_work_sync(&fep->timeout_work);
772 	phy_stop(dev->phydev);
773 
774 	spin_lock_irqsave(&fep->lock, flags);
775 	spin_lock(&fep->tx_lock);
776 	(*fep->ops->stop)(dev);
777 	spin_unlock(&fep->tx_lock);
778 	spin_unlock_irqrestore(&fep->lock, flags);
779 
780 	/* release any irqs */
781 	phy_disconnect(dev->phydev);
782 	free_irq(fep->interrupt, dev);
783 
784 	return 0;
785 }
786 
787 /*************************************************************************/
788 
789 static void fs_get_drvinfo(struct net_device *dev,
790 			    struct ethtool_drvinfo *info)
791 {
792 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
793 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
794 }
795 
796 static int fs_get_regs_len(struct net_device *dev)
797 {
798 	struct fs_enet_private *fep = netdev_priv(dev);
799 
800 	return (*fep->ops->get_regs_len)(dev);
801 }
802 
803 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
804 			 void *p)
805 {
806 	struct fs_enet_private *fep = netdev_priv(dev);
807 	unsigned long flags;
808 	int r, len;
809 
810 	len = regs->len;
811 
812 	spin_lock_irqsave(&fep->lock, flags);
813 	r = (*fep->ops->get_regs)(dev, p, &len);
814 	spin_unlock_irqrestore(&fep->lock, flags);
815 
816 	if (r == 0)
817 		regs->version = 0;
818 }
819 
820 static u32 fs_get_msglevel(struct net_device *dev)
821 {
822 	struct fs_enet_private *fep = netdev_priv(dev);
823 	return fep->msg_enable;
824 }
825 
826 static void fs_set_msglevel(struct net_device *dev, u32 value)
827 {
828 	struct fs_enet_private *fep = netdev_priv(dev);
829 	fep->msg_enable = value;
830 }
831 
832 static int fs_get_tunable(struct net_device *dev,
833 			  const struct ethtool_tunable *tuna, void *data)
834 {
835 	struct fs_enet_private *fep = netdev_priv(dev);
836 	struct fs_platform_info *fpi = fep->fpi;
837 	int ret = 0;
838 
839 	switch (tuna->id) {
840 	case ETHTOOL_RX_COPYBREAK:
841 		*(u32 *)data = fpi->rx_copybreak;
842 		break;
843 	default:
844 		ret = -EINVAL;
845 		break;
846 	}
847 
848 	return ret;
849 }
850 
851 static int fs_set_tunable(struct net_device *dev,
852 			  const struct ethtool_tunable *tuna, const void *data)
853 {
854 	struct fs_enet_private *fep = netdev_priv(dev);
855 	struct fs_platform_info *fpi = fep->fpi;
856 	int ret = 0;
857 
858 	switch (tuna->id) {
859 	case ETHTOOL_RX_COPYBREAK:
860 		fpi->rx_copybreak = *(u32 *)data;
861 		break;
862 	default:
863 		ret = -EINVAL;
864 		break;
865 	}
866 
867 	return ret;
868 }
869 
870 static const struct ethtool_ops fs_ethtool_ops = {
871 	.get_drvinfo = fs_get_drvinfo,
872 	.get_regs_len = fs_get_regs_len,
873 	.nway_reset = phy_ethtool_nway_reset,
874 	.get_link = ethtool_op_get_link,
875 	.get_msglevel = fs_get_msglevel,
876 	.set_msglevel = fs_set_msglevel,
877 	.get_regs = fs_get_regs,
878 	.get_ts_info = ethtool_op_get_ts_info,
879 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
880 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
881 	.get_tunable = fs_get_tunable,
882 	.set_tunable = fs_set_tunable,
883 };
884 
885 extern int fs_mii_connect(struct net_device *dev);
886 extern void fs_mii_disconnect(struct net_device *dev);
887 
888 /**************************************************************************************/
889 
890 #ifdef CONFIG_FS_ENET_HAS_FEC
891 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
892 #else
893 #define IS_FEC(match) 0
894 #endif
895 
896 static const struct net_device_ops fs_enet_netdev_ops = {
897 	.ndo_open		= fs_enet_open,
898 	.ndo_stop		= fs_enet_close,
899 	.ndo_start_xmit		= fs_enet_start_xmit,
900 	.ndo_tx_timeout		= fs_timeout,
901 	.ndo_set_rx_mode	= fs_set_multicast_list,
902 	.ndo_do_ioctl		= phy_do_ioctl_running,
903 	.ndo_validate_addr	= eth_validate_addr,
904 	.ndo_set_mac_address	= eth_mac_addr,
905 #ifdef CONFIG_NET_POLL_CONTROLLER
906 	.ndo_poll_controller	= fs_enet_netpoll,
907 #endif
908 };
909 
910 static const struct of_device_id fs_enet_match[];
911 static int fs_enet_probe(struct platform_device *ofdev)
912 {
913 	const struct of_device_id *match;
914 	struct net_device *ndev;
915 	struct fs_enet_private *fep;
916 	struct fs_platform_info *fpi;
917 	const u32 *data;
918 	struct clk *clk;
919 	int err;
920 	const u8 *mac_addr;
921 	const char *phy_connection_type;
922 	int privsize, len, ret = -ENODEV;
923 
924 	match = of_match_device(fs_enet_match, &ofdev->dev);
925 	if (!match)
926 		return -EINVAL;
927 
928 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
929 	if (!fpi)
930 		return -ENOMEM;
931 
932 	if (!IS_FEC(match)) {
933 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
934 		if (!data || len != 4)
935 			goto out_free_fpi;
936 
937 		fpi->cp_command = *data;
938 	}
939 
940 	fpi->rx_ring = RX_RING_SIZE;
941 	fpi->tx_ring = TX_RING_SIZE;
942 	fpi->rx_copybreak = 240;
943 	fpi->napi_weight = 17;
944 	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
945 	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
946 		err = of_phy_register_fixed_link(ofdev->dev.of_node);
947 		if (err)
948 			goto out_free_fpi;
949 
950 		/* In the case of a fixed PHY, the DT node associated
951 		 * to the PHY is the Ethernet MAC DT node.
952 		 */
953 		fpi->phy_node = of_node_get(ofdev->dev.of_node);
954 	}
955 
956 	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
957 		phy_connection_type = of_get_property(ofdev->dev.of_node,
958 						"phy-connection-type", NULL);
959 		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
960 			fpi->use_rmii = 1;
961 	}
962 
963 	/* make clock lookup non-fatal (the driver is shared among platforms),
964 	 * but require enable to succeed when a clock was specified/found,
965 	 * keep a reference to the clock upon successful acquisition
966 	 */
967 	clk = devm_clk_get(&ofdev->dev, "per");
968 	if (!IS_ERR(clk)) {
969 		ret = clk_prepare_enable(clk);
970 		if (ret)
971 			goto out_deregister_fixed_link;
972 
973 		fpi->clk_per = clk;
974 	}
975 
976 	privsize = sizeof(*fep) +
977 	           sizeof(struct sk_buff **) *
978 		     (fpi->rx_ring + fpi->tx_ring) +
979 		   sizeof(char) * fpi->tx_ring;
980 
981 	ndev = alloc_etherdev(privsize);
982 	if (!ndev) {
983 		ret = -ENOMEM;
984 		goto out_put;
985 	}
986 
987 	SET_NETDEV_DEV(ndev, &ofdev->dev);
988 	platform_set_drvdata(ofdev, ndev);
989 
990 	fep = netdev_priv(ndev);
991 	fep->dev = &ofdev->dev;
992 	fep->ndev = ndev;
993 	fep->fpi = fpi;
994 	fep->ops = match->data;
995 
996 	ret = fep->ops->setup_data(ndev);
997 	if (ret)
998 		goto out_free_dev;
999 
1000 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1001 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1002 	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1003 				       fpi->tx_ring);
1004 
1005 	spin_lock_init(&fep->lock);
1006 	spin_lock_init(&fep->tx_lock);
1007 
1008 	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1009 	if (!IS_ERR(mac_addr))
1010 		ether_addr_copy(ndev->dev_addr, mac_addr);
1011 
1012 	ret = fep->ops->allocate_bd(ndev);
1013 	if (ret)
1014 		goto out_cleanup_data;
1015 
1016 	fep->rx_bd_base = fep->ring_base;
1017 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1018 
1019 	fep->tx_ring = fpi->tx_ring;
1020 	fep->rx_ring = fpi->rx_ring;
1021 
1022 	ndev->netdev_ops = &fs_enet_netdev_ops;
1023 	ndev->watchdog_timeo = 2 * HZ;
1024 	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1025 	netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1026 
1027 	ndev->ethtool_ops = &fs_ethtool_ops;
1028 
1029 	netif_carrier_off(ndev);
1030 
1031 	ndev->features |= NETIF_F_SG;
1032 
1033 	ret = register_netdev(ndev);
1034 	if (ret)
1035 		goto out_free_bd;
1036 
1037 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1038 
1039 	return 0;
1040 
1041 out_free_bd:
1042 	fep->ops->free_bd(ndev);
1043 out_cleanup_data:
1044 	fep->ops->cleanup_data(ndev);
1045 out_free_dev:
1046 	free_netdev(ndev);
1047 out_put:
1048 	if (fpi->clk_per)
1049 		clk_disable_unprepare(fpi->clk_per);
1050 out_deregister_fixed_link:
1051 	of_node_put(fpi->phy_node);
1052 	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1053 		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1054 out_free_fpi:
1055 	kfree(fpi);
1056 	return ret;
1057 }
1058 
1059 static int fs_enet_remove(struct platform_device *ofdev)
1060 {
1061 	struct net_device *ndev = platform_get_drvdata(ofdev);
1062 	struct fs_enet_private *fep = netdev_priv(ndev);
1063 
1064 	unregister_netdev(ndev);
1065 
1066 	fep->ops->free_bd(ndev);
1067 	fep->ops->cleanup_data(ndev);
1068 	dev_set_drvdata(fep->dev, NULL);
1069 	of_node_put(fep->fpi->phy_node);
1070 	if (fep->fpi->clk_per)
1071 		clk_disable_unprepare(fep->fpi->clk_per);
1072 	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1073 		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1074 	free_netdev(ndev);
1075 	return 0;
1076 }
1077 
1078 static const struct of_device_id fs_enet_match[] = {
1079 #ifdef CONFIG_FS_ENET_HAS_SCC
1080 	{
1081 		.compatible = "fsl,cpm1-scc-enet",
1082 		.data = (void *)&fs_scc_ops,
1083 	},
1084 	{
1085 		.compatible = "fsl,cpm2-scc-enet",
1086 		.data = (void *)&fs_scc_ops,
1087 	},
1088 #endif
1089 #ifdef CONFIG_FS_ENET_HAS_FCC
1090 	{
1091 		.compatible = "fsl,cpm2-fcc-enet",
1092 		.data = (void *)&fs_fcc_ops,
1093 	},
1094 #endif
1095 #ifdef CONFIG_FS_ENET_HAS_FEC
1096 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1097 	{
1098 		.compatible = "fsl,mpc5121-fec",
1099 		.data = (void *)&fs_fec_ops,
1100 	},
1101 	{
1102 		.compatible = "fsl,mpc5125-fec",
1103 		.data = (void *)&fs_fec_ops,
1104 	},
1105 #else
1106 	{
1107 		.compatible = "fsl,pq1-fec-enet",
1108 		.data = (void *)&fs_fec_ops,
1109 	},
1110 #endif
1111 #endif
1112 	{}
1113 };
1114 MODULE_DEVICE_TABLE(of, fs_enet_match);
1115 
1116 static struct platform_driver fs_enet_driver = {
1117 	.driver = {
1118 		.name = "fs_enet",
1119 		.of_match_table = fs_enet_match,
1120 	},
1121 	.probe = fs_enet_probe,
1122 	.remove = fs_enet_remove,
1123 };
1124 
1125 #ifdef CONFIG_NET_POLL_CONTROLLER
1126 static void fs_enet_netpoll(struct net_device *dev)
1127 {
1128        disable_irq(dev->irq);
1129        fs_enet_interrupt(dev->irq, dev);
1130        enable_irq(dev->irq);
1131 }
1132 #endif
1133 
1134 module_platform_driver(fs_enet_driver);
1135