1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44 
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49 
50 #include "fs_enet.h"
51 
52 /*************************************************/
53 
54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58 
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62 		 "Freescale bitmapped debugging message enable value");
63 
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67 
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70 	struct fs_enet_private *fep = netdev_priv(dev);
71 
72 	(*fep->ops->set_multicast_list)(dev);
73 }
74 
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77 	int off = ((unsigned long)skb->data) & (align - 1);
78 
79 	if (off)
80 		skb_reserve(skb, align - off);
81 }
82 
83 /* NAPI receive function */
84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 	struct net_device *dev = fep->ndev;
88 	const struct fs_platform_info *fpi = fep->fpi;
89 	cbd_t __iomem *bdp;
90 	struct sk_buff *skb, *skbn, *skbt;
91 	int received = 0;
92 	u16 pkt_len, sc;
93 	int curidx;
94 
95 	/*
96 	 * First, grab all of the stats for the incoming packet.
97 	 * These get messed up if we get called due to a busy condition.
98 	 */
99 	bdp = fep->cur_rx;
100 
101 	/* clear RX status bits for napi*/
102 	(*fep->ops->napi_clear_rx_event)(dev);
103 
104 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105 		curidx = bdp - fep->rx_bd_base;
106 
107 		/*
108 		 * Since we have allocated space to hold a complete frame,
109 		 * the last indicator should be set.
110 		 */
111 		if ((sc & BD_ENET_RX_LAST) == 0)
112 			dev_warn(fep->dev, "rcv is not +last\n");
113 
114 		/*
115 		 * Check for errors.
116 		 */
117 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
118 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
119 			fep->stats.rx_errors++;
120 			/* Frame too long or too short. */
121 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122 				fep->stats.rx_length_errors++;
123 			/* Frame alignment */
124 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125 				fep->stats.rx_frame_errors++;
126 			/* CRC Error */
127 			if (sc & BD_ENET_RX_CR)
128 				fep->stats.rx_crc_errors++;
129 			/* FIFO overrun */
130 			if (sc & BD_ENET_RX_OV)
131 				fep->stats.rx_crc_errors++;
132 
133 			skb = fep->rx_skbuff[curidx];
134 
135 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
136 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
137 				DMA_FROM_DEVICE);
138 
139 			skbn = skb;
140 
141 		} else {
142 			skb = fep->rx_skbuff[curidx];
143 
144 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146 				DMA_FROM_DEVICE);
147 
148 			/*
149 			 * Process the incoming frame.
150 			 */
151 			fep->stats.rx_packets++;
152 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
153 			fep->stats.rx_bytes += pkt_len + 4;
154 
155 			if (pkt_len <= fpi->rx_copybreak) {
156 				/* +2 to make IP header L1 cache aligned */
157 				skbn = dev_alloc_skb(pkt_len + 2);
158 				if (skbn != NULL) {
159 					skb_reserve(skbn, 2);	/* align IP header */
160 					skb_copy_from_linear_data(skb,
161 						      skbn->data, pkt_len);
162 					/* swap */
163 					skbt = skb;
164 					skb = skbn;
165 					skbn = skbt;
166 				}
167 			} else {
168 				skbn = dev_alloc_skb(ENET_RX_FRSIZE);
169 
170 				if (skbn)
171 					skb_align(skbn, ENET_RX_ALIGN);
172 			}
173 
174 			if (skbn != NULL) {
175 				skb_put(skb, pkt_len);	/* Make room */
176 				skb->protocol = eth_type_trans(skb, dev);
177 				received++;
178 				netif_receive_skb(skb);
179 			} else {
180 				dev_warn(fep->dev,
181 					 "Memory squeeze, dropping packet.\n");
182 				fep->stats.rx_dropped++;
183 				skbn = skb;
184 			}
185 		}
186 
187 		fep->rx_skbuff[curidx] = skbn;
188 		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 			     DMA_FROM_DEVICE));
191 		CBDW_DATLEN(bdp, 0);
192 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193 
194 		/*
195 		 * Update BD pointer to next entry.
196 		 */
197 		if ((sc & BD_ENET_RX_WRAP) == 0)
198 			bdp++;
199 		else
200 			bdp = fep->rx_bd_base;
201 
202 		(*fep->ops->rx_bd_done)(dev);
203 
204 		if (received >= budget)
205 			break;
206 	}
207 
208 	fep->cur_rx = bdp;
209 
210 	if (received < budget) {
211 		/* done */
212 		napi_complete(napi);
213 		(*fep->ops->napi_enable_rx)(dev);
214 	}
215 	return received;
216 }
217 
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
220 {
221 	struct fs_enet_private *fep = netdev_priv(dev);
222 	const struct fs_platform_info *fpi = fep->fpi;
223 	cbd_t __iomem *bdp;
224 	struct sk_buff *skb, *skbn, *skbt;
225 	int received = 0;
226 	u16 pkt_len, sc;
227 	int curidx;
228 	/*
229 	 * First, grab all of the stats for the incoming packet.
230 	 * These get messed up if we get called due to a busy condition.
231 	 */
232 	bdp = fep->cur_rx;
233 
234 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
235 
236 		curidx = bdp - fep->rx_bd_base;
237 
238 		/*
239 		 * Since we have allocated space to hold a complete frame,
240 		 * the last indicator should be set.
241 		 */
242 		if ((sc & BD_ENET_RX_LAST) == 0)
243 			dev_warn(fep->dev, "rcv is not +last\n");
244 
245 		/*
246 		 * Check for errors.
247 		 */
248 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
249 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250 			fep->stats.rx_errors++;
251 			/* Frame too long or too short. */
252 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253 				fep->stats.rx_length_errors++;
254 			/* Frame alignment */
255 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256 				fep->stats.rx_frame_errors++;
257 			/* CRC Error */
258 			if (sc & BD_ENET_RX_CR)
259 				fep->stats.rx_crc_errors++;
260 			/* FIFO overrun */
261 			if (sc & BD_ENET_RX_OV)
262 				fep->stats.rx_crc_errors++;
263 
264 			skb = fep->rx_skbuff[curidx];
265 
266 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
267 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 				DMA_FROM_DEVICE);
269 
270 			skbn = skb;
271 
272 		} else {
273 
274 			skb = fep->rx_skbuff[curidx];
275 
276 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
278 				DMA_FROM_DEVICE);
279 
280 			/*
281 			 * Process the incoming frame.
282 			 */
283 			fep->stats.rx_packets++;
284 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
285 			fep->stats.rx_bytes += pkt_len + 4;
286 
287 			if (pkt_len <= fpi->rx_copybreak) {
288 				/* +2 to make IP header L1 cache aligned */
289 				skbn = dev_alloc_skb(pkt_len + 2);
290 				if (skbn != NULL) {
291 					skb_reserve(skbn, 2);	/* align IP header */
292 					skb_copy_from_linear_data(skb,
293 						      skbn->data, pkt_len);
294 					/* swap */
295 					skbt = skb;
296 					skb = skbn;
297 					skbn = skbt;
298 				}
299 			} else {
300 				skbn = dev_alloc_skb(ENET_RX_FRSIZE);
301 
302 				if (skbn)
303 					skb_align(skbn, ENET_RX_ALIGN);
304 			}
305 
306 			if (skbn != NULL) {
307 				skb_put(skb, pkt_len);	/* Make room */
308 				skb->protocol = eth_type_trans(skb, dev);
309 				received++;
310 				netif_rx(skb);
311 			} else {
312 				dev_warn(fep->dev,
313 					 "Memory squeeze, dropping packet.\n");
314 				fep->stats.rx_dropped++;
315 				skbn = skb;
316 			}
317 		}
318 
319 		fep->rx_skbuff[curidx] = skbn;
320 		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
321 			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
322 			     DMA_FROM_DEVICE));
323 		CBDW_DATLEN(bdp, 0);
324 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
325 
326 		/*
327 		 * Update BD pointer to next entry.
328 		 */
329 		if ((sc & BD_ENET_RX_WRAP) == 0)
330 			bdp++;
331 		else
332 			bdp = fep->rx_bd_base;
333 
334 		(*fep->ops->rx_bd_done)(dev);
335 	}
336 
337 	fep->cur_rx = bdp;
338 
339 	return 0;
340 }
341 
342 static void fs_enet_tx(struct net_device *dev)
343 {
344 	struct fs_enet_private *fep = netdev_priv(dev);
345 	cbd_t __iomem *bdp;
346 	struct sk_buff *skb;
347 	int dirtyidx, do_wake, do_restart;
348 	u16 sc;
349 
350 	spin_lock(&fep->tx_lock);
351 	bdp = fep->dirty_tx;
352 
353 	do_wake = do_restart = 0;
354 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
355 		dirtyidx = bdp - fep->tx_bd_base;
356 
357 		if (fep->tx_free == fep->tx_ring)
358 			break;
359 
360 		skb = fep->tx_skbuff[dirtyidx];
361 
362 		/*
363 		 * Check for errors.
364 		 */
365 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
366 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
367 
368 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
369 				fep->stats.tx_heartbeat_errors++;
370 			if (sc & BD_ENET_TX_LC)	/* Late collision */
371 				fep->stats.tx_window_errors++;
372 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
373 				fep->stats.tx_aborted_errors++;
374 			if (sc & BD_ENET_TX_UN)	/* Underrun */
375 				fep->stats.tx_fifo_errors++;
376 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
377 				fep->stats.tx_carrier_errors++;
378 
379 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
380 				fep->stats.tx_errors++;
381 				do_restart = 1;
382 			}
383 		} else
384 			fep->stats.tx_packets++;
385 
386 		if (sc & BD_ENET_TX_READY) {
387 			dev_warn(fep->dev,
388 				 "HEY! Enet xmit interrupt and TX_READY.\n");
389 		}
390 
391 		/*
392 		 * Deferred means some collisions occurred during transmit,
393 		 * but we eventually sent the packet OK.
394 		 */
395 		if (sc & BD_ENET_TX_DEF)
396 			fep->stats.collisions++;
397 
398 		/* unmap */
399 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
400 				skb->len, DMA_TO_DEVICE);
401 
402 		/*
403 		 * Free the sk buffer associated with this last transmit.
404 		 */
405 		dev_kfree_skb_irq(skb);
406 		fep->tx_skbuff[dirtyidx] = NULL;
407 
408 		/*
409 		 * Update pointer to next buffer descriptor to be transmitted.
410 		 */
411 		if ((sc & BD_ENET_TX_WRAP) == 0)
412 			bdp++;
413 		else
414 			bdp = fep->tx_bd_base;
415 
416 		/*
417 		 * Since we have freed up a buffer, the ring is no longer
418 		 * full.
419 		 */
420 		if (!fep->tx_free++)
421 			do_wake = 1;
422 	}
423 
424 	fep->dirty_tx = bdp;
425 
426 	if (do_restart)
427 		(*fep->ops->tx_restart)(dev);
428 
429 	spin_unlock(&fep->tx_lock);
430 
431 	if (do_wake)
432 		netif_wake_queue(dev);
433 }
434 
435 /*
436  * The interrupt handler.
437  * This is called from the MPC core interrupt.
438  */
439 static irqreturn_t
440 fs_enet_interrupt(int irq, void *dev_id)
441 {
442 	struct net_device *dev = dev_id;
443 	struct fs_enet_private *fep;
444 	const struct fs_platform_info *fpi;
445 	u32 int_events;
446 	u32 int_clr_events;
447 	int nr, napi_ok;
448 	int handled;
449 
450 	fep = netdev_priv(dev);
451 	fpi = fep->fpi;
452 
453 	nr = 0;
454 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
455 		nr++;
456 
457 		int_clr_events = int_events;
458 		if (fpi->use_napi)
459 			int_clr_events &= ~fep->ev_napi_rx;
460 
461 		(*fep->ops->clear_int_events)(dev, int_clr_events);
462 
463 		if (int_events & fep->ev_err)
464 			(*fep->ops->ev_error)(dev, int_events);
465 
466 		if (int_events & fep->ev_rx) {
467 			if (!fpi->use_napi)
468 				fs_enet_rx_non_napi(dev);
469 			else {
470 				napi_ok = napi_schedule_prep(&fep->napi);
471 
472 				(*fep->ops->napi_disable_rx)(dev);
473 				(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
474 
475 				/* NOTE: it is possible for FCCs in NAPI mode    */
476 				/* to submit a spurious interrupt while in poll  */
477 				if (napi_ok)
478 					__napi_schedule(&fep->napi);
479 			}
480 		}
481 
482 		if (int_events & fep->ev_tx)
483 			fs_enet_tx(dev);
484 	}
485 
486 	handled = nr > 0;
487 	return IRQ_RETVAL(handled);
488 }
489 
490 void fs_init_bds(struct net_device *dev)
491 {
492 	struct fs_enet_private *fep = netdev_priv(dev);
493 	cbd_t __iomem *bdp;
494 	struct sk_buff *skb;
495 	int i;
496 
497 	fs_cleanup_bds(dev);
498 
499 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
500 	fep->tx_free = fep->tx_ring;
501 	fep->cur_rx = fep->rx_bd_base;
502 
503 	/*
504 	 * Initialize the receive buffer descriptors.
505 	 */
506 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
507 		skb = dev_alloc_skb(ENET_RX_FRSIZE);
508 		if (skb == NULL) {
509 			dev_warn(fep->dev,
510 				 "Memory squeeze, unable to allocate skb\n");
511 			break;
512 		}
513 		skb_align(skb, ENET_RX_ALIGN);
514 		fep->rx_skbuff[i] = skb;
515 		CBDW_BUFADDR(bdp,
516 			dma_map_single(fep->dev, skb->data,
517 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
518 				DMA_FROM_DEVICE));
519 		CBDW_DATLEN(bdp, 0);	/* zero */
520 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
521 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
522 	}
523 	/*
524 	 * if we failed, fillup remainder
525 	 */
526 	for (; i < fep->rx_ring; i++, bdp++) {
527 		fep->rx_skbuff[i] = NULL;
528 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
529 	}
530 
531 	/*
532 	 * ...and the same for transmit.
533 	 */
534 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
535 		fep->tx_skbuff[i] = NULL;
536 		CBDW_BUFADDR(bdp, 0);
537 		CBDW_DATLEN(bdp, 0);
538 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
539 	}
540 }
541 
542 void fs_cleanup_bds(struct net_device *dev)
543 {
544 	struct fs_enet_private *fep = netdev_priv(dev);
545 	struct sk_buff *skb;
546 	cbd_t __iomem *bdp;
547 	int i;
548 
549 	/*
550 	 * Reset SKB transmit buffers.
551 	 */
552 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
553 		if ((skb = fep->tx_skbuff[i]) == NULL)
554 			continue;
555 
556 		/* unmap */
557 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
558 				skb->len, DMA_TO_DEVICE);
559 
560 		fep->tx_skbuff[i] = NULL;
561 		dev_kfree_skb(skb);
562 	}
563 
564 	/*
565 	 * Reset SKB receive buffers
566 	 */
567 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
568 		if ((skb = fep->rx_skbuff[i]) == NULL)
569 			continue;
570 
571 		/* unmap */
572 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
573 			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
574 			DMA_FROM_DEVICE);
575 
576 		fep->rx_skbuff[i] = NULL;
577 
578 		dev_kfree_skb(skb);
579 	}
580 }
581 
582 /**********************************************************************************/
583 
584 #ifdef CONFIG_FS_ENET_MPC5121_FEC
585 /*
586  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
587  */
588 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
589 					       struct sk_buff *skb)
590 {
591 	struct sk_buff *new_skb;
592 	struct fs_enet_private *fep = netdev_priv(dev);
593 
594 	/* Alloc new skb */
595 	new_skb = dev_alloc_skb(skb->len + 4);
596 	if (!new_skb) {
597 		if (net_ratelimit()) {
598 			dev_warn(fep->dev,
599 				 "Memory squeeze, dropping tx packet.\n");
600 		}
601 		return NULL;
602 	}
603 
604 	/* Make sure new skb is properly aligned */
605 	skb_align(new_skb, 4);
606 
607 	/* Copy data to new skb ... */
608 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
609 	skb_put(new_skb, skb->len);
610 
611 	/* ... and free an old one */
612 	dev_kfree_skb_any(skb);
613 
614 	return new_skb;
615 }
616 #endif
617 
618 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
619 {
620 	struct fs_enet_private *fep = netdev_priv(dev);
621 	cbd_t __iomem *bdp;
622 	int curidx;
623 	u16 sc;
624 	unsigned long flags;
625 
626 #ifdef CONFIG_FS_ENET_MPC5121_FEC
627 	if (((unsigned long)skb->data) & 0x3) {
628 		skb = tx_skb_align_workaround(dev, skb);
629 		if (!skb) {
630 			/*
631 			 * We have lost packet due to memory allocation error
632 			 * in tx_skb_align_workaround(). Hopefully original
633 			 * skb is still valid, so try transmit it later.
634 			 */
635 			return NETDEV_TX_BUSY;
636 		}
637 	}
638 #endif
639 	spin_lock_irqsave(&fep->tx_lock, flags);
640 
641 	/*
642 	 * Fill in a Tx ring entry
643 	 */
644 	bdp = fep->cur_tx;
645 
646 	if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
647 		netif_stop_queue(dev);
648 		spin_unlock_irqrestore(&fep->tx_lock, flags);
649 
650 		/*
651 		 * Ooops.  All transmit buffers are full.  Bail out.
652 		 * This should not happen, since the tx queue should be stopped.
653 		 */
654 		dev_warn(fep->dev, "tx queue full!.\n");
655 		return NETDEV_TX_BUSY;
656 	}
657 
658 	curidx = bdp - fep->tx_bd_base;
659 	/*
660 	 * Clear all of the status flags.
661 	 */
662 	CBDC_SC(bdp, BD_ENET_TX_STATS);
663 
664 	/*
665 	 * Save skb pointer.
666 	 */
667 	fep->tx_skbuff[curidx] = skb;
668 
669 	fep->stats.tx_bytes += skb->len;
670 
671 	/*
672 	 * Push the data cache so the CPM does not get stale memory data.
673 	 */
674 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
675 				skb->data, skb->len, DMA_TO_DEVICE));
676 	CBDW_DATLEN(bdp, skb->len);
677 
678 	/*
679 	 * If this was the last BD in the ring, start at the beginning again.
680 	 */
681 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
682 		fep->cur_tx++;
683 	else
684 		fep->cur_tx = fep->tx_bd_base;
685 
686 	if (!--fep->tx_free)
687 		netif_stop_queue(dev);
688 
689 	/* Trigger transmission start */
690 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
691 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
692 
693 	/* note that while FEC does not have this bit
694 	 * it marks it as available for software use
695 	 * yay for hw reuse :) */
696 	if (skb->len <= 60)
697 		sc |= BD_ENET_TX_PAD;
698 	CBDS_SC(bdp, sc);
699 
700 	skb_tx_timestamp(skb);
701 
702 	(*fep->ops->tx_kickstart)(dev);
703 
704 	spin_unlock_irqrestore(&fep->tx_lock, flags);
705 
706 	return NETDEV_TX_OK;
707 }
708 
709 static void fs_timeout(struct net_device *dev)
710 {
711 	struct fs_enet_private *fep = netdev_priv(dev);
712 	unsigned long flags;
713 	int wake = 0;
714 
715 	fep->stats.tx_errors++;
716 
717 	spin_lock_irqsave(&fep->lock, flags);
718 
719 	if (dev->flags & IFF_UP) {
720 		phy_stop(fep->phydev);
721 		(*fep->ops->stop)(dev);
722 		(*fep->ops->restart)(dev);
723 		phy_start(fep->phydev);
724 	}
725 
726 	phy_start(fep->phydev);
727 	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
728 	spin_unlock_irqrestore(&fep->lock, flags);
729 
730 	if (wake)
731 		netif_wake_queue(dev);
732 }
733 
734 /*-----------------------------------------------------------------------------
735  *  generic link-change handler - should be sufficient for most cases
736  *-----------------------------------------------------------------------------*/
737 static void generic_adjust_link(struct  net_device *dev)
738 {
739 	struct fs_enet_private *fep = netdev_priv(dev);
740 	struct phy_device *phydev = fep->phydev;
741 	int new_state = 0;
742 
743 	if (phydev->link) {
744 		/* adjust to duplex mode */
745 		if (phydev->duplex != fep->oldduplex) {
746 			new_state = 1;
747 			fep->oldduplex = phydev->duplex;
748 		}
749 
750 		if (phydev->speed != fep->oldspeed) {
751 			new_state = 1;
752 			fep->oldspeed = phydev->speed;
753 		}
754 
755 		if (!fep->oldlink) {
756 			new_state = 1;
757 			fep->oldlink = 1;
758 		}
759 
760 		if (new_state)
761 			fep->ops->restart(dev);
762 	} else if (fep->oldlink) {
763 		new_state = 1;
764 		fep->oldlink = 0;
765 		fep->oldspeed = 0;
766 		fep->oldduplex = -1;
767 	}
768 
769 	if (new_state && netif_msg_link(fep))
770 		phy_print_status(phydev);
771 }
772 
773 
774 static void fs_adjust_link(struct net_device *dev)
775 {
776 	struct fs_enet_private *fep = netdev_priv(dev);
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&fep->lock, flags);
780 
781 	if(fep->ops->adjust_link)
782 		fep->ops->adjust_link(dev);
783 	else
784 		generic_adjust_link(dev);
785 
786 	spin_unlock_irqrestore(&fep->lock, flags);
787 }
788 
789 static int fs_init_phy(struct net_device *dev)
790 {
791 	struct fs_enet_private *fep = netdev_priv(dev);
792 	struct phy_device *phydev;
793 
794 	fep->oldlink = 0;
795 	fep->oldspeed = 0;
796 	fep->oldduplex = -1;
797 
798 	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
799 				PHY_INTERFACE_MODE_MII);
800 	if (!phydev) {
801 		phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
802 						   PHY_INTERFACE_MODE_MII);
803 	}
804 	if (!phydev) {
805 		dev_err(&dev->dev, "Could not attach to PHY\n");
806 		return -ENODEV;
807 	}
808 
809 	fep->phydev = phydev;
810 
811 	return 0;
812 }
813 
814 static int fs_enet_open(struct net_device *dev)
815 {
816 	struct fs_enet_private *fep = netdev_priv(dev);
817 	int r;
818 	int err;
819 
820 	/* to initialize the fep->cur_rx,... */
821 	/* not doing this, will cause a crash in fs_enet_rx_napi */
822 	fs_init_bds(fep->ndev);
823 
824 	if (fep->fpi->use_napi)
825 		napi_enable(&fep->napi);
826 
827 	/* Install our interrupt handler. */
828 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
829 			"fs_enet-mac", dev);
830 	if (r != 0) {
831 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
832 		if (fep->fpi->use_napi)
833 			napi_disable(&fep->napi);
834 		return -EINVAL;
835 	}
836 
837 	err = fs_init_phy(dev);
838 	if (err) {
839 		free_irq(fep->interrupt, dev);
840 		if (fep->fpi->use_napi)
841 			napi_disable(&fep->napi);
842 		return err;
843 	}
844 	phy_start(fep->phydev);
845 
846 	netif_start_queue(dev);
847 
848 	return 0;
849 }
850 
851 static int fs_enet_close(struct net_device *dev)
852 {
853 	struct fs_enet_private *fep = netdev_priv(dev);
854 	unsigned long flags;
855 
856 	netif_stop_queue(dev);
857 	netif_carrier_off(dev);
858 	if (fep->fpi->use_napi)
859 		napi_disable(&fep->napi);
860 	phy_stop(fep->phydev);
861 
862 	spin_lock_irqsave(&fep->lock, flags);
863 	spin_lock(&fep->tx_lock);
864 	(*fep->ops->stop)(dev);
865 	spin_unlock(&fep->tx_lock);
866 	spin_unlock_irqrestore(&fep->lock, flags);
867 
868 	/* release any irqs */
869 	phy_disconnect(fep->phydev);
870 	fep->phydev = NULL;
871 	free_irq(fep->interrupt, dev);
872 
873 	return 0;
874 }
875 
876 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
877 {
878 	struct fs_enet_private *fep = netdev_priv(dev);
879 	return &fep->stats;
880 }
881 
882 /*************************************************************************/
883 
884 static void fs_get_drvinfo(struct net_device *dev,
885 			    struct ethtool_drvinfo *info)
886 {
887 	strcpy(info->driver, DRV_MODULE_NAME);
888 	strcpy(info->version, DRV_MODULE_VERSION);
889 }
890 
891 static int fs_get_regs_len(struct net_device *dev)
892 {
893 	struct fs_enet_private *fep = netdev_priv(dev);
894 
895 	return (*fep->ops->get_regs_len)(dev);
896 }
897 
898 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
899 			 void *p)
900 {
901 	struct fs_enet_private *fep = netdev_priv(dev);
902 	unsigned long flags;
903 	int r, len;
904 
905 	len = regs->len;
906 
907 	spin_lock_irqsave(&fep->lock, flags);
908 	r = (*fep->ops->get_regs)(dev, p, &len);
909 	spin_unlock_irqrestore(&fep->lock, flags);
910 
911 	if (r == 0)
912 		regs->version = 0;
913 }
914 
915 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
916 {
917 	struct fs_enet_private *fep = netdev_priv(dev);
918 
919 	if (!fep->phydev)
920 		return -ENODEV;
921 
922 	return phy_ethtool_gset(fep->phydev, cmd);
923 }
924 
925 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
926 {
927 	struct fs_enet_private *fep = netdev_priv(dev);
928 
929 	if (!fep->phydev)
930 		return -ENODEV;
931 
932 	return phy_ethtool_sset(fep->phydev, cmd);
933 }
934 
935 static int fs_nway_reset(struct net_device *dev)
936 {
937 	return 0;
938 }
939 
940 static u32 fs_get_msglevel(struct net_device *dev)
941 {
942 	struct fs_enet_private *fep = netdev_priv(dev);
943 	return fep->msg_enable;
944 }
945 
946 static void fs_set_msglevel(struct net_device *dev, u32 value)
947 {
948 	struct fs_enet_private *fep = netdev_priv(dev);
949 	fep->msg_enable = value;
950 }
951 
952 static const struct ethtool_ops fs_ethtool_ops = {
953 	.get_drvinfo = fs_get_drvinfo,
954 	.get_regs_len = fs_get_regs_len,
955 	.get_settings = fs_get_settings,
956 	.set_settings = fs_set_settings,
957 	.nway_reset = fs_nway_reset,
958 	.get_link = ethtool_op_get_link,
959 	.get_msglevel = fs_get_msglevel,
960 	.set_msglevel = fs_set_msglevel,
961 	.get_regs = fs_get_regs,
962 };
963 
964 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
965 {
966 	struct fs_enet_private *fep = netdev_priv(dev);
967 
968 	if (!netif_running(dev))
969 		return -EINVAL;
970 
971 	return phy_mii_ioctl(fep->phydev, rq, cmd);
972 }
973 
974 extern int fs_mii_connect(struct net_device *dev);
975 extern void fs_mii_disconnect(struct net_device *dev);
976 
977 /**************************************************************************************/
978 
979 #ifdef CONFIG_FS_ENET_HAS_FEC
980 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
981 #else
982 #define IS_FEC(match) 0
983 #endif
984 
985 static const struct net_device_ops fs_enet_netdev_ops = {
986 	.ndo_open		= fs_enet_open,
987 	.ndo_stop		= fs_enet_close,
988 	.ndo_get_stats		= fs_enet_get_stats,
989 	.ndo_start_xmit		= fs_enet_start_xmit,
990 	.ndo_tx_timeout		= fs_timeout,
991 	.ndo_set_rx_mode	= fs_set_multicast_list,
992 	.ndo_do_ioctl		= fs_ioctl,
993 	.ndo_validate_addr	= eth_validate_addr,
994 	.ndo_set_mac_address	= eth_mac_addr,
995 	.ndo_change_mtu		= eth_change_mtu,
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997 	.ndo_poll_controller	= fs_enet_netpoll,
998 #endif
999 };
1000 
1001 static struct of_device_id fs_enet_match[];
1002 static int __devinit fs_enet_probe(struct platform_device *ofdev)
1003 {
1004 	const struct of_device_id *match;
1005 	struct net_device *ndev;
1006 	struct fs_enet_private *fep;
1007 	struct fs_platform_info *fpi;
1008 	const u32 *data;
1009 	const u8 *mac_addr;
1010 	int privsize, len, ret = -ENODEV;
1011 
1012 	match = of_match_device(fs_enet_match, &ofdev->dev);
1013 	if (!match)
1014 		return -EINVAL;
1015 
1016 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1017 	if (!fpi)
1018 		return -ENOMEM;
1019 
1020 	if (!IS_FEC(match)) {
1021 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1022 		if (!data || len != 4)
1023 			goto out_free_fpi;
1024 
1025 		fpi->cp_command = *data;
1026 	}
1027 
1028 	fpi->rx_ring = 32;
1029 	fpi->tx_ring = 32;
1030 	fpi->rx_copybreak = 240;
1031 	fpi->use_napi = 1;
1032 	fpi->napi_weight = 17;
1033 	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1034 	if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1035 						  NULL)))
1036 		goto out_free_fpi;
1037 
1038 	privsize = sizeof(*fep) +
1039 	           sizeof(struct sk_buff **) *
1040 	           (fpi->rx_ring + fpi->tx_ring);
1041 
1042 	ndev = alloc_etherdev(privsize);
1043 	if (!ndev) {
1044 		ret = -ENOMEM;
1045 		goto out_put;
1046 	}
1047 
1048 	SET_NETDEV_DEV(ndev, &ofdev->dev);
1049 	dev_set_drvdata(&ofdev->dev, ndev);
1050 
1051 	fep = netdev_priv(ndev);
1052 	fep->dev = &ofdev->dev;
1053 	fep->ndev = ndev;
1054 	fep->fpi = fpi;
1055 	fep->ops = match->data;
1056 
1057 	ret = fep->ops->setup_data(ndev);
1058 	if (ret)
1059 		goto out_free_dev;
1060 
1061 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1062 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1063 
1064 	spin_lock_init(&fep->lock);
1065 	spin_lock_init(&fep->tx_lock);
1066 
1067 	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1068 	if (mac_addr)
1069 		memcpy(ndev->dev_addr, mac_addr, 6);
1070 
1071 	ret = fep->ops->allocate_bd(ndev);
1072 	if (ret)
1073 		goto out_cleanup_data;
1074 
1075 	fep->rx_bd_base = fep->ring_base;
1076 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1077 
1078 	fep->tx_ring = fpi->tx_ring;
1079 	fep->rx_ring = fpi->rx_ring;
1080 
1081 	ndev->netdev_ops = &fs_enet_netdev_ops;
1082 	ndev->watchdog_timeo = 2 * HZ;
1083 	if (fpi->use_napi)
1084 		netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1085 		               fpi->napi_weight);
1086 
1087 	ndev->ethtool_ops = &fs_ethtool_ops;
1088 
1089 	init_timer(&fep->phy_timer_list);
1090 
1091 	netif_carrier_off(ndev);
1092 
1093 	ret = register_netdev(ndev);
1094 	if (ret)
1095 		goto out_free_bd;
1096 
1097 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1098 
1099 	return 0;
1100 
1101 out_free_bd:
1102 	fep->ops->free_bd(ndev);
1103 out_cleanup_data:
1104 	fep->ops->cleanup_data(ndev);
1105 out_free_dev:
1106 	free_netdev(ndev);
1107 	dev_set_drvdata(&ofdev->dev, NULL);
1108 out_put:
1109 	of_node_put(fpi->phy_node);
1110 out_free_fpi:
1111 	kfree(fpi);
1112 	return ret;
1113 }
1114 
1115 static int fs_enet_remove(struct platform_device *ofdev)
1116 {
1117 	struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1118 	struct fs_enet_private *fep = netdev_priv(ndev);
1119 
1120 	unregister_netdev(ndev);
1121 
1122 	fep->ops->free_bd(ndev);
1123 	fep->ops->cleanup_data(ndev);
1124 	dev_set_drvdata(fep->dev, NULL);
1125 	of_node_put(fep->fpi->phy_node);
1126 	free_netdev(ndev);
1127 	return 0;
1128 }
1129 
1130 static struct of_device_id fs_enet_match[] = {
1131 #ifdef CONFIG_FS_ENET_HAS_SCC
1132 	{
1133 		.compatible = "fsl,cpm1-scc-enet",
1134 		.data = (void *)&fs_scc_ops,
1135 	},
1136 	{
1137 		.compatible = "fsl,cpm2-scc-enet",
1138 		.data = (void *)&fs_scc_ops,
1139 	},
1140 #endif
1141 #ifdef CONFIG_FS_ENET_HAS_FCC
1142 	{
1143 		.compatible = "fsl,cpm2-fcc-enet",
1144 		.data = (void *)&fs_fcc_ops,
1145 	},
1146 #endif
1147 #ifdef CONFIG_FS_ENET_HAS_FEC
1148 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1149 	{
1150 		.compatible = "fsl,mpc5121-fec",
1151 		.data = (void *)&fs_fec_ops,
1152 	},
1153 #else
1154 	{
1155 		.compatible = "fsl,pq1-fec-enet",
1156 		.data = (void *)&fs_fec_ops,
1157 	},
1158 #endif
1159 #endif
1160 	{}
1161 };
1162 MODULE_DEVICE_TABLE(of, fs_enet_match);
1163 
1164 static struct platform_driver fs_enet_driver = {
1165 	.driver = {
1166 		.owner = THIS_MODULE,
1167 		.name = "fs_enet",
1168 		.of_match_table = fs_enet_match,
1169 	},
1170 	.probe = fs_enet_probe,
1171 	.remove = fs_enet_remove,
1172 };
1173 
1174 #ifdef CONFIG_NET_POLL_CONTROLLER
1175 static void fs_enet_netpoll(struct net_device *dev)
1176 {
1177        disable_irq(dev->irq);
1178        fs_enet_interrupt(dev->irq, dev);
1179        enable_irq(dev->irq);
1180 }
1181 #endif
1182 
1183 module_platform_driver(fs_enet_driver);
1184