1 /* 2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. 3 * 4 * Copyright (c) 2003 Intracom S.A. 5 * by Pantelis Antoniou <panto@intracom.gr> 6 * 7 * 2005 (c) MontaVista Software, Inc. 8 * Vitaly Bordug <vbordug@ru.mvista.com> 9 * 10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com> 11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se> 12 * 13 * This file is licensed under the terms of the GNU General Public License 14 * version 2. This program is licensed "as is" without any warranty of any 15 * kind, whether express or implied. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/types.h> 21 #include <linux/string.h> 22 #include <linux/ptrace.h> 23 #include <linux/errno.h> 24 #include <linux/ioport.h> 25 #include <linux/slab.h> 26 #include <linux/interrupt.h> 27 #include <linux/delay.h> 28 #include <linux/netdevice.h> 29 #include <linux/etherdevice.h> 30 #include <linux/skbuff.h> 31 #include <linux/spinlock.h> 32 #include <linux/mii.h> 33 #include <linux/ethtool.h> 34 #include <linux/bitops.h> 35 #include <linux/fs.h> 36 #include <linux/platform_device.h> 37 #include <linux/phy.h> 38 #include <linux/of.h> 39 #include <linux/of_mdio.h> 40 #include <linux/of_platform.h> 41 #include <linux/of_gpio.h> 42 #include <linux/of_net.h> 43 #include <linux/pgtable.h> 44 45 #include <linux/vmalloc.h> 46 #include <asm/irq.h> 47 #include <linux/uaccess.h> 48 49 #include "fs_enet.h" 50 51 /*************************************************/ 52 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>"); 54 MODULE_DESCRIPTION("Freescale Ethernet Driver"); 55 MODULE_LICENSE("GPL"); 56 57 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ 58 module_param(fs_enet_debug, int, 0); 59 MODULE_PARM_DESC(fs_enet_debug, 60 "Freescale bitmapped debugging message enable value"); 61 62 #define RX_RING_SIZE 32 63 #define TX_RING_SIZE 64 64 65 #ifdef CONFIG_NET_POLL_CONTROLLER 66 static void fs_enet_netpoll(struct net_device *dev); 67 #endif 68 69 static void fs_set_multicast_list(struct net_device *dev) 70 { 71 struct fs_enet_private *fep = netdev_priv(dev); 72 73 (*fep->ops->set_multicast_list)(dev); 74 } 75 76 static void skb_align(struct sk_buff *skb, int align) 77 { 78 int off = ((unsigned long)skb->data) & (align - 1); 79 80 if (off) 81 skb_reserve(skb, align - off); 82 } 83 84 /* NAPI function */ 85 static int fs_enet_napi(struct napi_struct *napi, int budget) 86 { 87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); 88 struct net_device *dev = fep->ndev; 89 const struct fs_platform_info *fpi = fep->fpi; 90 cbd_t __iomem *bdp; 91 struct sk_buff *skb, *skbn; 92 int received = 0; 93 u16 pkt_len, sc; 94 int curidx; 95 int dirtyidx, do_wake, do_restart; 96 int tx_left = TX_RING_SIZE; 97 98 spin_lock(&fep->tx_lock); 99 bdp = fep->dirty_tx; 100 101 /* clear status bits for napi*/ 102 (*fep->ops->napi_clear_event)(dev); 103 104 do_wake = do_restart = 0; 105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) { 106 dirtyidx = bdp - fep->tx_bd_base; 107 108 if (fep->tx_free == fep->tx_ring) 109 break; 110 111 skb = fep->tx_skbuff[dirtyidx]; 112 113 /* 114 * Check for errors. 115 */ 116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { 118 119 if (sc & BD_ENET_TX_HB) /* No heartbeat */ 120 dev->stats.tx_heartbeat_errors++; 121 if (sc & BD_ENET_TX_LC) /* Late collision */ 122 dev->stats.tx_window_errors++; 123 if (sc & BD_ENET_TX_RL) /* Retrans limit */ 124 dev->stats.tx_aborted_errors++; 125 if (sc & BD_ENET_TX_UN) /* Underrun */ 126 dev->stats.tx_fifo_errors++; 127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */ 128 dev->stats.tx_carrier_errors++; 129 130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { 131 dev->stats.tx_errors++; 132 do_restart = 1; 133 } 134 } else 135 dev->stats.tx_packets++; 136 137 if (sc & BD_ENET_TX_READY) { 138 dev_warn(fep->dev, 139 "HEY! Enet xmit interrupt and TX_READY.\n"); 140 } 141 142 /* 143 * Deferred means some collisions occurred during transmit, 144 * but we eventually sent the packet OK. 145 */ 146 if (sc & BD_ENET_TX_DEF) 147 dev->stats.collisions++; 148 149 /* unmap */ 150 if (fep->mapped_as_page[dirtyidx]) 151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), 152 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 153 else 154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 155 CBDR_DATLEN(bdp), DMA_TO_DEVICE); 156 157 /* 158 * Free the sk buffer associated with this last transmit. 159 */ 160 if (skb) { 161 dev_kfree_skb(skb); 162 fep->tx_skbuff[dirtyidx] = NULL; 163 } 164 165 /* 166 * Update pointer to next buffer descriptor to be transmitted. 167 */ 168 if ((sc & BD_ENET_TX_WRAP) == 0) 169 bdp++; 170 else 171 bdp = fep->tx_bd_base; 172 173 /* 174 * Since we have freed up a buffer, the ring is no longer 175 * full. 176 */ 177 if (++fep->tx_free == MAX_SKB_FRAGS) 178 do_wake = 1; 179 tx_left--; 180 } 181 182 fep->dirty_tx = bdp; 183 184 if (do_restart) 185 (*fep->ops->tx_restart)(dev); 186 187 spin_unlock(&fep->tx_lock); 188 189 if (do_wake) 190 netif_wake_queue(dev); 191 192 /* 193 * First, grab all of the stats for the incoming packet. 194 * These get messed up if we get called due to a busy condition. 195 */ 196 bdp = fep->cur_rx; 197 198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 && 199 received < budget) { 200 curidx = bdp - fep->rx_bd_base; 201 202 /* 203 * Since we have allocated space to hold a complete frame, 204 * the last indicator should be set. 205 */ 206 if ((sc & BD_ENET_RX_LAST) == 0) 207 dev_warn(fep->dev, "rcv is not +last\n"); 208 209 /* 210 * Check for errors. 211 */ 212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | 213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { 214 dev->stats.rx_errors++; 215 /* Frame too long or too short. */ 216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) 217 dev->stats.rx_length_errors++; 218 /* Frame alignment */ 219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 220 dev->stats.rx_frame_errors++; 221 /* CRC Error */ 222 if (sc & BD_ENET_RX_CR) 223 dev->stats.rx_crc_errors++; 224 /* FIFO overrun */ 225 if (sc & BD_ENET_RX_OV) 226 dev->stats.rx_crc_errors++; 227 228 skbn = fep->rx_skbuff[curidx]; 229 } else { 230 skb = fep->rx_skbuff[curidx]; 231 232 /* 233 * Process the incoming frame. 234 */ 235 dev->stats.rx_packets++; 236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ 237 dev->stats.rx_bytes += pkt_len + 4; 238 239 if (pkt_len <= fpi->rx_copybreak) { 240 /* +2 to make IP header L1 cache aligned */ 241 skbn = netdev_alloc_skb(dev, pkt_len + 2); 242 if (skbn != NULL) { 243 skb_reserve(skbn, 2); /* align IP header */ 244 skb_copy_from_linear_data(skb, 245 skbn->data, pkt_len); 246 swap(skb, skbn); 247 dma_sync_single_for_cpu(fep->dev, 248 CBDR_BUFADDR(bdp), 249 L1_CACHE_ALIGN(pkt_len), 250 DMA_FROM_DEVICE); 251 } 252 } else { 253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 254 255 if (skbn) { 256 dma_addr_t dma; 257 258 skb_align(skbn, ENET_RX_ALIGN); 259 260 dma_unmap_single(fep->dev, 261 CBDR_BUFADDR(bdp), 262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 263 DMA_FROM_DEVICE); 264 265 dma = dma_map_single(fep->dev, 266 skbn->data, 267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 268 DMA_FROM_DEVICE); 269 CBDW_BUFADDR(bdp, dma); 270 } 271 } 272 273 if (skbn != NULL) { 274 skb_put(skb, pkt_len); /* Make room */ 275 skb->protocol = eth_type_trans(skb, dev); 276 received++; 277 netif_receive_skb(skb); 278 } else { 279 dev->stats.rx_dropped++; 280 skbn = skb; 281 } 282 } 283 284 fep->rx_skbuff[curidx] = skbn; 285 CBDW_DATLEN(bdp, 0); 286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); 287 288 /* 289 * Update BD pointer to next entry. 290 */ 291 if ((sc & BD_ENET_RX_WRAP) == 0) 292 bdp++; 293 else 294 bdp = fep->rx_bd_base; 295 296 (*fep->ops->rx_bd_done)(dev); 297 } 298 299 fep->cur_rx = bdp; 300 301 if (received < budget && tx_left) { 302 /* done */ 303 napi_complete_done(napi, received); 304 (*fep->ops->napi_enable)(dev); 305 306 return received; 307 } 308 309 return budget; 310 } 311 312 /* 313 * The interrupt handler. 314 * This is called from the MPC core interrupt. 315 */ 316 static irqreturn_t 317 fs_enet_interrupt(int irq, void *dev_id) 318 { 319 struct net_device *dev = dev_id; 320 struct fs_enet_private *fep; 321 u32 int_events; 322 u32 int_clr_events; 323 int nr, napi_ok; 324 int handled; 325 326 fep = netdev_priv(dev); 327 328 nr = 0; 329 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { 330 nr++; 331 332 int_clr_events = int_events; 333 int_clr_events &= ~fep->ev_napi; 334 335 (*fep->ops->clear_int_events)(dev, int_clr_events); 336 337 if (int_events & fep->ev_err) 338 (*fep->ops->ev_error)(dev, int_events); 339 340 if (int_events & fep->ev) { 341 napi_ok = napi_schedule_prep(&fep->napi); 342 343 (*fep->ops->napi_disable)(dev); 344 (*fep->ops->clear_int_events)(dev, fep->ev_napi); 345 346 /* NOTE: it is possible for FCCs in NAPI mode */ 347 /* to submit a spurious interrupt while in poll */ 348 if (napi_ok) 349 __napi_schedule(&fep->napi); 350 } 351 352 } 353 354 handled = nr > 0; 355 return IRQ_RETVAL(handled); 356 } 357 358 void fs_init_bds(struct net_device *dev) 359 { 360 struct fs_enet_private *fep = netdev_priv(dev); 361 cbd_t __iomem *bdp; 362 struct sk_buff *skb; 363 int i; 364 365 fs_cleanup_bds(dev); 366 367 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 368 fep->tx_free = fep->tx_ring; 369 fep->cur_rx = fep->rx_bd_base; 370 371 /* 372 * Initialize the receive buffer descriptors. 373 */ 374 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 375 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); 376 if (skb == NULL) 377 break; 378 379 skb_align(skb, ENET_RX_ALIGN); 380 fep->rx_skbuff[i] = skb; 381 CBDW_BUFADDR(bdp, 382 dma_map_single(fep->dev, skb->data, 383 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 384 DMA_FROM_DEVICE)); 385 CBDW_DATLEN(bdp, 0); /* zero */ 386 CBDW_SC(bdp, BD_ENET_RX_EMPTY | 387 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); 388 } 389 /* 390 * if we failed, fillup remainder 391 */ 392 for (; i < fep->rx_ring; i++, bdp++) { 393 fep->rx_skbuff[i] = NULL; 394 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); 395 } 396 397 /* 398 * ...and the same for transmit. 399 */ 400 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 401 fep->tx_skbuff[i] = NULL; 402 CBDW_BUFADDR(bdp, 0); 403 CBDW_DATLEN(bdp, 0); 404 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); 405 } 406 } 407 408 void fs_cleanup_bds(struct net_device *dev) 409 { 410 struct fs_enet_private *fep = netdev_priv(dev); 411 struct sk_buff *skb; 412 cbd_t __iomem *bdp; 413 int i; 414 415 /* 416 * Reset SKB transmit buffers. 417 */ 418 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { 419 if ((skb = fep->tx_skbuff[i]) == NULL) 420 continue; 421 422 /* unmap */ 423 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 424 skb->len, DMA_TO_DEVICE); 425 426 fep->tx_skbuff[i] = NULL; 427 dev_kfree_skb(skb); 428 } 429 430 /* 431 * Reset SKB receive buffers 432 */ 433 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { 434 if ((skb = fep->rx_skbuff[i]) == NULL) 435 continue; 436 437 /* unmap */ 438 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), 439 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), 440 DMA_FROM_DEVICE); 441 442 fep->rx_skbuff[i] = NULL; 443 444 dev_kfree_skb(skb); 445 } 446 } 447 448 /**********************************************************************************/ 449 450 #ifdef CONFIG_FS_ENET_MPC5121_FEC 451 /* 452 * MPC5121 FEC requeries 4-byte alignment for TX data buffer! 453 */ 454 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, 455 struct sk_buff *skb) 456 { 457 struct sk_buff *new_skb; 458 459 if (skb_linearize(skb)) 460 return NULL; 461 462 /* Alloc new skb */ 463 new_skb = netdev_alloc_skb(dev, skb->len + 4); 464 if (!new_skb) 465 return NULL; 466 467 /* Make sure new skb is properly aligned */ 468 skb_align(new_skb, 4); 469 470 /* Copy data to new skb ... */ 471 skb_copy_from_linear_data(skb, new_skb->data, skb->len); 472 skb_put(new_skb, skb->len); 473 474 /* ... and free an old one */ 475 dev_kfree_skb_any(skb); 476 477 return new_skb; 478 } 479 #endif 480 481 static netdev_tx_t 482 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 483 { 484 struct fs_enet_private *fep = netdev_priv(dev); 485 cbd_t __iomem *bdp; 486 int curidx; 487 u16 sc; 488 int nr_frags; 489 skb_frag_t *frag; 490 int len; 491 #ifdef CONFIG_FS_ENET_MPC5121_FEC 492 int is_aligned = 1; 493 int i; 494 495 if (!IS_ALIGNED((unsigned long)skb->data, 4)) { 496 is_aligned = 0; 497 } else { 498 nr_frags = skb_shinfo(skb)->nr_frags; 499 frag = skb_shinfo(skb)->frags; 500 for (i = 0; i < nr_frags; i++, frag++) { 501 if (!IS_ALIGNED(skb_frag_off(frag), 4)) { 502 is_aligned = 0; 503 break; 504 } 505 } 506 } 507 508 if (!is_aligned) { 509 skb = tx_skb_align_workaround(dev, skb); 510 if (!skb) { 511 /* 512 * We have lost packet due to memory allocation error 513 * in tx_skb_align_workaround(). Hopefully original 514 * skb is still valid, so try transmit it later. 515 */ 516 return NETDEV_TX_BUSY; 517 } 518 } 519 #endif 520 521 spin_lock(&fep->tx_lock); 522 523 /* 524 * Fill in a Tx ring entry 525 */ 526 bdp = fep->cur_tx; 527 528 nr_frags = skb_shinfo(skb)->nr_frags; 529 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { 530 netif_stop_queue(dev); 531 spin_unlock(&fep->tx_lock); 532 533 /* 534 * Ooops. All transmit buffers are full. Bail out. 535 * This should not happen, since the tx queue should be stopped. 536 */ 537 dev_warn(fep->dev, "tx queue full!.\n"); 538 return NETDEV_TX_BUSY; 539 } 540 541 curidx = bdp - fep->tx_bd_base; 542 543 len = skb->len; 544 dev->stats.tx_bytes += len; 545 if (nr_frags) 546 len -= skb->data_len; 547 fep->tx_free -= nr_frags + 1; 548 /* 549 * Push the data cache so the CPM does not get stale memory data. 550 */ 551 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, 552 skb->data, len, DMA_TO_DEVICE)); 553 CBDW_DATLEN(bdp, len); 554 555 fep->mapped_as_page[curidx] = 0; 556 frag = skb_shinfo(skb)->frags; 557 while (nr_frags) { 558 CBDC_SC(bdp, 559 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | 560 BD_ENET_TX_TC); 561 CBDS_SC(bdp, BD_ENET_TX_READY); 562 563 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) { 564 bdp++; 565 curidx++; 566 } else { 567 bdp = fep->tx_bd_base; 568 curidx = 0; 569 } 570 571 len = skb_frag_size(frag); 572 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, 573 DMA_TO_DEVICE)); 574 CBDW_DATLEN(bdp, len); 575 576 fep->tx_skbuff[curidx] = NULL; 577 fep->mapped_as_page[curidx] = 1; 578 579 frag++; 580 nr_frags--; 581 } 582 583 /* Trigger transmission start */ 584 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | 585 BD_ENET_TX_LAST | BD_ENET_TX_TC; 586 587 /* note that while FEC does not have this bit 588 * it marks it as available for software use 589 * yay for hw reuse :) */ 590 if (skb->len <= 60) 591 sc |= BD_ENET_TX_PAD; 592 CBDC_SC(bdp, BD_ENET_TX_STATS); 593 CBDS_SC(bdp, sc); 594 595 /* Save skb pointer. */ 596 fep->tx_skbuff[curidx] = skb; 597 598 /* If this was the last BD in the ring, start at the beginning again. */ 599 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) 600 bdp++; 601 else 602 bdp = fep->tx_bd_base; 603 fep->cur_tx = bdp; 604 605 if (fep->tx_free < MAX_SKB_FRAGS) 606 netif_stop_queue(dev); 607 608 skb_tx_timestamp(skb); 609 610 (*fep->ops->tx_kickstart)(dev); 611 612 spin_unlock(&fep->tx_lock); 613 614 return NETDEV_TX_OK; 615 } 616 617 static void fs_timeout_work(struct work_struct *work) 618 { 619 struct fs_enet_private *fep = container_of(work, struct fs_enet_private, 620 timeout_work); 621 struct net_device *dev = fep->ndev; 622 unsigned long flags; 623 int wake = 0; 624 625 dev->stats.tx_errors++; 626 627 spin_lock_irqsave(&fep->lock, flags); 628 629 if (dev->flags & IFF_UP) { 630 phy_stop(dev->phydev); 631 (*fep->ops->stop)(dev); 632 (*fep->ops->restart)(dev); 633 } 634 635 phy_start(dev->phydev); 636 wake = fep->tx_free >= MAX_SKB_FRAGS && 637 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); 638 spin_unlock_irqrestore(&fep->lock, flags); 639 640 if (wake) 641 netif_wake_queue(dev); 642 } 643 644 static void fs_timeout(struct net_device *dev, unsigned int txqueue) 645 { 646 struct fs_enet_private *fep = netdev_priv(dev); 647 648 schedule_work(&fep->timeout_work); 649 } 650 651 /*----------------------------------------------------------------------------- 652 * generic link-change handler - should be sufficient for most cases 653 *-----------------------------------------------------------------------------*/ 654 static void generic_adjust_link(struct net_device *dev) 655 { 656 struct fs_enet_private *fep = netdev_priv(dev); 657 struct phy_device *phydev = dev->phydev; 658 int new_state = 0; 659 660 if (phydev->link) { 661 /* adjust to duplex mode */ 662 if (phydev->duplex != fep->oldduplex) { 663 new_state = 1; 664 fep->oldduplex = phydev->duplex; 665 } 666 667 if (phydev->speed != fep->oldspeed) { 668 new_state = 1; 669 fep->oldspeed = phydev->speed; 670 } 671 672 if (!fep->oldlink) { 673 new_state = 1; 674 fep->oldlink = 1; 675 } 676 677 if (new_state) 678 fep->ops->restart(dev); 679 } else if (fep->oldlink) { 680 new_state = 1; 681 fep->oldlink = 0; 682 fep->oldspeed = 0; 683 fep->oldduplex = -1; 684 } 685 686 if (new_state && netif_msg_link(fep)) 687 phy_print_status(phydev); 688 } 689 690 691 static void fs_adjust_link(struct net_device *dev) 692 { 693 struct fs_enet_private *fep = netdev_priv(dev); 694 unsigned long flags; 695 696 spin_lock_irqsave(&fep->lock, flags); 697 698 if(fep->ops->adjust_link) 699 fep->ops->adjust_link(dev); 700 else 701 generic_adjust_link(dev); 702 703 spin_unlock_irqrestore(&fep->lock, flags); 704 } 705 706 static int fs_init_phy(struct net_device *dev) 707 { 708 struct fs_enet_private *fep = netdev_priv(dev); 709 struct phy_device *phydev; 710 phy_interface_t iface; 711 712 fep->oldlink = 0; 713 fep->oldspeed = 0; 714 fep->oldduplex = -1; 715 716 iface = fep->fpi->use_rmii ? 717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; 718 719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, 720 iface); 721 if (!phydev) { 722 dev_err(&dev->dev, "Could not attach to PHY\n"); 723 return -ENODEV; 724 } 725 726 return 0; 727 } 728 729 static int fs_enet_open(struct net_device *dev) 730 { 731 struct fs_enet_private *fep = netdev_priv(dev); 732 int r; 733 int err; 734 735 /* to initialize the fep->cur_rx,... */ 736 /* not doing this, will cause a crash in fs_enet_napi */ 737 fs_init_bds(fep->ndev); 738 739 napi_enable(&fep->napi); 740 741 /* Install our interrupt handler. */ 742 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, 743 "fs_enet-mac", dev); 744 if (r != 0) { 745 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); 746 napi_disable(&fep->napi); 747 return -EINVAL; 748 } 749 750 err = fs_init_phy(dev); 751 if (err) { 752 free_irq(fep->interrupt, dev); 753 napi_disable(&fep->napi); 754 return err; 755 } 756 phy_start(dev->phydev); 757 758 netif_start_queue(dev); 759 760 return 0; 761 } 762 763 static int fs_enet_close(struct net_device *dev) 764 { 765 struct fs_enet_private *fep = netdev_priv(dev); 766 unsigned long flags; 767 768 netif_stop_queue(dev); 769 netif_carrier_off(dev); 770 napi_disable(&fep->napi); 771 cancel_work_sync(&fep->timeout_work); 772 phy_stop(dev->phydev); 773 774 spin_lock_irqsave(&fep->lock, flags); 775 spin_lock(&fep->tx_lock); 776 (*fep->ops->stop)(dev); 777 spin_unlock(&fep->tx_lock); 778 spin_unlock_irqrestore(&fep->lock, flags); 779 780 /* release any irqs */ 781 phy_disconnect(dev->phydev); 782 free_irq(fep->interrupt, dev); 783 784 return 0; 785 } 786 787 /*************************************************************************/ 788 789 static void fs_get_drvinfo(struct net_device *dev, 790 struct ethtool_drvinfo *info) 791 { 792 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); 793 } 794 795 static int fs_get_regs_len(struct net_device *dev) 796 { 797 struct fs_enet_private *fep = netdev_priv(dev); 798 799 return (*fep->ops->get_regs_len)(dev); 800 } 801 802 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, 803 void *p) 804 { 805 struct fs_enet_private *fep = netdev_priv(dev); 806 unsigned long flags; 807 int r, len; 808 809 len = regs->len; 810 811 spin_lock_irqsave(&fep->lock, flags); 812 r = (*fep->ops->get_regs)(dev, p, &len); 813 spin_unlock_irqrestore(&fep->lock, flags); 814 815 if (r == 0) 816 regs->version = 0; 817 } 818 819 static u32 fs_get_msglevel(struct net_device *dev) 820 { 821 struct fs_enet_private *fep = netdev_priv(dev); 822 return fep->msg_enable; 823 } 824 825 static void fs_set_msglevel(struct net_device *dev, u32 value) 826 { 827 struct fs_enet_private *fep = netdev_priv(dev); 828 fep->msg_enable = value; 829 } 830 831 static int fs_get_tunable(struct net_device *dev, 832 const struct ethtool_tunable *tuna, void *data) 833 { 834 struct fs_enet_private *fep = netdev_priv(dev); 835 struct fs_platform_info *fpi = fep->fpi; 836 int ret = 0; 837 838 switch (tuna->id) { 839 case ETHTOOL_RX_COPYBREAK: 840 *(u32 *)data = fpi->rx_copybreak; 841 break; 842 default: 843 ret = -EINVAL; 844 break; 845 } 846 847 return ret; 848 } 849 850 static int fs_set_tunable(struct net_device *dev, 851 const struct ethtool_tunable *tuna, const void *data) 852 { 853 struct fs_enet_private *fep = netdev_priv(dev); 854 struct fs_platform_info *fpi = fep->fpi; 855 int ret = 0; 856 857 switch (tuna->id) { 858 case ETHTOOL_RX_COPYBREAK: 859 fpi->rx_copybreak = *(u32 *)data; 860 break; 861 default: 862 ret = -EINVAL; 863 break; 864 } 865 866 return ret; 867 } 868 869 static const struct ethtool_ops fs_ethtool_ops = { 870 .get_drvinfo = fs_get_drvinfo, 871 .get_regs_len = fs_get_regs_len, 872 .nway_reset = phy_ethtool_nway_reset, 873 .get_link = ethtool_op_get_link, 874 .get_msglevel = fs_get_msglevel, 875 .set_msglevel = fs_set_msglevel, 876 .get_regs = fs_get_regs, 877 .get_ts_info = ethtool_op_get_ts_info, 878 .get_link_ksettings = phy_ethtool_get_link_ksettings, 879 .set_link_ksettings = phy_ethtool_set_link_ksettings, 880 .get_tunable = fs_get_tunable, 881 .set_tunable = fs_set_tunable, 882 }; 883 884 /**************************************************************************************/ 885 886 #ifdef CONFIG_FS_ENET_HAS_FEC 887 #define IS_FEC(match) ((match)->data == &fs_fec_ops) 888 #else 889 #define IS_FEC(match) 0 890 #endif 891 892 static const struct net_device_ops fs_enet_netdev_ops = { 893 .ndo_open = fs_enet_open, 894 .ndo_stop = fs_enet_close, 895 .ndo_start_xmit = fs_enet_start_xmit, 896 .ndo_tx_timeout = fs_timeout, 897 .ndo_set_rx_mode = fs_set_multicast_list, 898 .ndo_eth_ioctl = phy_do_ioctl_running, 899 .ndo_validate_addr = eth_validate_addr, 900 .ndo_set_mac_address = eth_mac_addr, 901 #ifdef CONFIG_NET_POLL_CONTROLLER 902 .ndo_poll_controller = fs_enet_netpoll, 903 #endif 904 }; 905 906 static const struct of_device_id fs_enet_match[]; 907 static int fs_enet_probe(struct platform_device *ofdev) 908 { 909 const struct of_device_id *match; 910 struct net_device *ndev; 911 struct fs_enet_private *fep; 912 struct fs_platform_info *fpi; 913 const u32 *data; 914 struct clk *clk; 915 int err; 916 const char *phy_connection_type; 917 int privsize, len, ret = -ENODEV; 918 919 match = of_match_device(fs_enet_match, &ofdev->dev); 920 if (!match) 921 return -EINVAL; 922 923 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); 924 if (!fpi) 925 return -ENOMEM; 926 927 if (!IS_FEC(match)) { 928 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); 929 if (!data || len != 4) 930 goto out_free_fpi; 931 932 fpi->cp_command = *data; 933 } 934 935 fpi->rx_ring = RX_RING_SIZE; 936 fpi->tx_ring = TX_RING_SIZE; 937 fpi->rx_copybreak = 240; 938 fpi->napi_weight = 17; 939 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); 940 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { 941 err = of_phy_register_fixed_link(ofdev->dev.of_node); 942 if (err) 943 goto out_free_fpi; 944 945 /* In the case of a fixed PHY, the DT node associated 946 * to the PHY is the Ethernet MAC DT node. 947 */ 948 fpi->phy_node = of_node_get(ofdev->dev.of_node); 949 } 950 951 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { 952 phy_connection_type = of_get_property(ofdev->dev.of_node, 953 "phy-connection-type", NULL); 954 if (phy_connection_type && !strcmp("rmii", phy_connection_type)) 955 fpi->use_rmii = 1; 956 } 957 958 /* make clock lookup non-fatal (the driver is shared among platforms), 959 * but require enable to succeed when a clock was specified/found, 960 * keep a reference to the clock upon successful acquisition 961 */ 962 clk = devm_clk_get(&ofdev->dev, "per"); 963 if (!IS_ERR(clk)) { 964 ret = clk_prepare_enable(clk); 965 if (ret) 966 goto out_deregister_fixed_link; 967 968 fpi->clk_per = clk; 969 } 970 971 privsize = sizeof(*fep) + 972 sizeof(struct sk_buff **) * 973 (fpi->rx_ring + fpi->tx_ring) + 974 sizeof(char) * fpi->tx_ring; 975 976 ndev = alloc_etherdev(privsize); 977 if (!ndev) { 978 ret = -ENOMEM; 979 goto out_put; 980 } 981 982 SET_NETDEV_DEV(ndev, &ofdev->dev); 983 platform_set_drvdata(ofdev, ndev); 984 985 fep = netdev_priv(ndev); 986 fep->dev = &ofdev->dev; 987 fep->ndev = ndev; 988 fep->fpi = fpi; 989 fep->ops = match->data; 990 991 ret = fep->ops->setup_data(ndev); 992 if (ret) 993 goto out_free_dev; 994 995 fep->rx_skbuff = (struct sk_buff **)&fep[1]; 996 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; 997 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + 998 fpi->tx_ring); 999 1000 spin_lock_init(&fep->lock); 1001 spin_lock_init(&fep->tx_lock); 1002 1003 of_get_ethdev_address(ofdev->dev.of_node, ndev); 1004 1005 ret = fep->ops->allocate_bd(ndev); 1006 if (ret) 1007 goto out_cleanup_data; 1008 1009 fep->rx_bd_base = fep->ring_base; 1010 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; 1011 1012 fep->tx_ring = fpi->tx_ring; 1013 fep->rx_ring = fpi->rx_ring; 1014 1015 ndev->netdev_ops = &fs_enet_netdev_ops; 1016 ndev->watchdog_timeo = 2 * HZ; 1017 INIT_WORK(&fep->timeout_work, fs_timeout_work); 1018 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi, 1019 fpi->napi_weight); 1020 1021 ndev->ethtool_ops = &fs_ethtool_ops; 1022 1023 netif_carrier_off(ndev); 1024 1025 ndev->features |= NETIF_F_SG; 1026 1027 ret = register_netdev(ndev); 1028 if (ret) 1029 goto out_free_bd; 1030 1031 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); 1032 1033 return 0; 1034 1035 out_free_bd: 1036 fep->ops->free_bd(ndev); 1037 out_cleanup_data: 1038 fep->ops->cleanup_data(ndev); 1039 out_free_dev: 1040 free_netdev(ndev); 1041 out_put: 1042 clk_disable_unprepare(fpi->clk_per); 1043 out_deregister_fixed_link: 1044 of_node_put(fpi->phy_node); 1045 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1046 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1047 out_free_fpi: 1048 kfree(fpi); 1049 return ret; 1050 } 1051 1052 static void fs_enet_remove(struct platform_device *ofdev) 1053 { 1054 struct net_device *ndev = platform_get_drvdata(ofdev); 1055 struct fs_enet_private *fep = netdev_priv(ndev); 1056 1057 unregister_netdev(ndev); 1058 1059 fep->ops->free_bd(ndev); 1060 fep->ops->cleanup_data(ndev); 1061 dev_set_drvdata(fep->dev, NULL); 1062 of_node_put(fep->fpi->phy_node); 1063 clk_disable_unprepare(fep->fpi->clk_per); 1064 if (of_phy_is_fixed_link(ofdev->dev.of_node)) 1065 of_phy_deregister_fixed_link(ofdev->dev.of_node); 1066 free_netdev(ndev); 1067 } 1068 1069 static const struct of_device_id fs_enet_match[] = { 1070 #ifdef CONFIG_FS_ENET_HAS_SCC 1071 { 1072 .compatible = "fsl,cpm1-scc-enet", 1073 .data = (void *)&fs_scc_ops, 1074 }, 1075 { 1076 .compatible = "fsl,cpm2-scc-enet", 1077 .data = (void *)&fs_scc_ops, 1078 }, 1079 #endif 1080 #ifdef CONFIG_FS_ENET_HAS_FCC 1081 { 1082 .compatible = "fsl,cpm2-fcc-enet", 1083 .data = (void *)&fs_fcc_ops, 1084 }, 1085 #endif 1086 #ifdef CONFIG_FS_ENET_HAS_FEC 1087 #ifdef CONFIG_FS_ENET_MPC5121_FEC 1088 { 1089 .compatible = "fsl,mpc5121-fec", 1090 .data = (void *)&fs_fec_ops, 1091 }, 1092 { 1093 .compatible = "fsl,mpc5125-fec", 1094 .data = (void *)&fs_fec_ops, 1095 }, 1096 #else 1097 { 1098 .compatible = "fsl,pq1-fec-enet", 1099 .data = (void *)&fs_fec_ops, 1100 }, 1101 #endif 1102 #endif 1103 {} 1104 }; 1105 MODULE_DEVICE_TABLE(of, fs_enet_match); 1106 1107 static struct platform_driver fs_enet_driver = { 1108 .driver = { 1109 .name = "fs_enet", 1110 .of_match_table = fs_enet_match, 1111 }, 1112 .probe = fs_enet_probe, 1113 .remove_new = fs_enet_remove, 1114 }; 1115 1116 #ifdef CONFIG_NET_POLL_CONTROLLER 1117 static void fs_enet_netpoll(struct net_device *dev) 1118 { 1119 disable_irq(dev->irq); 1120 fs_enet_interrupt(dev->irq, dev); 1121 enable_irq(dev->irq); 1122 } 1123 #endif 1124 1125 module_platform_driver(fs_enet_driver); 1126