1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
43 
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48 
49 #include "fs_enet.h"
50 
51 /*************************************************/
52 
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
57 
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 		 "Freescale bitmapped debugging message enable value");
62 
63 #ifdef CONFIG_NET_POLL_CONTROLLER
64 static void fs_enet_netpoll(struct net_device *dev);
65 #endif
66 
67 static void fs_set_multicast_list(struct net_device *dev)
68 {
69 	struct fs_enet_private *fep = netdev_priv(dev);
70 
71 	(*fep->ops->set_multicast_list)(dev);
72 }
73 
74 static void skb_align(struct sk_buff *skb, int align)
75 {
76 	int off = ((unsigned long)skb->data) & (align - 1);
77 
78 	if (off)
79 		skb_reserve(skb, align - off);
80 }
81 
82 /* NAPI receive function */
83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84 {
85 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 	struct net_device *dev = fep->ndev;
87 	const struct fs_platform_info *fpi = fep->fpi;
88 	cbd_t __iomem *bdp;
89 	struct sk_buff *skb, *skbn, *skbt;
90 	int received = 0;
91 	u16 pkt_len, sc;
92 	int curidx;
93 
94 	if (budget <= 0)
95 		return received;
96 
97 	/*
98 	 * First, grab all of the stats for the incoming packet.
99 	 * These get messed up if we get called due to a busy condition.
100 	 */
101 	bdp = fep->cur_rx;
102 
103 	/* clear RX status bits for napi*/
104 	(*fep->ops->napi_clear_rx_event)(dev);
105 
106 	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 		curidx = bdp - fep->rx_bd_base;
108 
109 		/*
110 		 * Since we have allocated space to hold a complete frame,
111 		 * the last indicator should be set.
112 		 */
113 		if ((sc & BD_ENET_RX_LAST) == 0)
114 			dev_warn(fep->dev, "rcv is not +last\n");
115 
116 		/*
117 		 * Check for errors.
118 		 */
119 		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 			fep->stats.rx_errors++;
122 			/* Frame too long or too short. */
123 			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 				fep->stats.rx_length_errors++;
125 			/* Frame alignment */
126 			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 				fep->stats.rx_frame_errors++;
128 			/* CRC Error */
129 			if (sc & BD_ENET_RX_CR)
130 				fep->stats.rx_crc_errors++;
131 			/* FIFO overrun */
132 			if (sc & BD_ENET_RX_OV)
133 				fep->stats.rx_crc_errors++;
134 
135 			skb = fep->rx_skbuff[curidx];
136 
137 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 				DMA_FROM_DEVICE);
140 
141 			skbn = skb;
142 
143 		} else {
144 			skb = fep->rx_skbuff[curidx];
145 
146 			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 				DMA_FROM_DEVICE);
149 
150 			/*
151 			 * Process the incoming frame.
152 			 */
153 			fep->stats.rx_packets++;
154 			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
155 			fep->stats.rx_bytes += pkt_len + 4;
156 
157 			if (pkt_len <= fpi->rx_copybreak) {
158 				/* +2 to make IP header L1 cache aligned */
159 				skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 				if (skbn != NULL) {
161 					skb_reserve(skbn, 2);	/* align IP header */
162 					skb_copy_from_linear_data(skb,
163 						      skbn->data, pkt_len);
164 					/* swap */
165 					skbt = skb;
166 					skb = skbn;
167 					skbn = skbt;
168 				}
169 			} else {
170 				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171 
172 				if (skbn)
173 					skb_align(skbn, ENET_RX_ALIGN);
174 			}
175 
176 			if (skbn != NULL) {
177 				skb_put(skb, pkt_len);	/* Make room */
178 				skb->protocol = eth_type_trans(skb, dev);
179 				received++;
180 				netif_receive_skb(skb);
181 			} else {
182 				fep->stats.rx_dropped++;
183 				skbn = skb;
184 			}
185 		}
186 
187 		fep->rx_skbuff[curidx] = skbn;
188 		CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189 			     L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190 			     DMA_FROM_DEVICE));
191 		CBDW_DATLEN(bdp, 0);
192 		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193 
194 		/*
195 		 * Update BD pointer to next entry.
196 		 */
197 		if ((sc & BD_ENET_RX_WRAP) == 0)
198 			bdp++;
199 		else
200 			bdp = fep->rx_bd_base;
201 
202 		(*fep->ops->rx_bd_done)(dev);
203 
204 		if (received >= budget)
205 			break;
206 	}
207 
208 	fep->cur_rx = bdp;
209 
210 	if (received < budget) {
211 		/* done */
212 		napi_complete(napi);
213 		(*fep->ops->napi_enable_rx)(dev);
214 	}
215 	return received;
216 }
217 
218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219 {
220 	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221 						   napi_tx);
222 	struct net_device *dev = fep->ndev;
223 	cbd_t __iomem *bdp;
224 	struct sk_buff *skb;
225 	int dirtyidx, do_wake, do_restart;
226 	u16 sc;
227 	int has_tx_work = 0;
228 
229 	spin_lock(&fep->tx_lock);
230 	bdp = fep->dirty_tx;
231 
232 	/* clear TX status bits for napi*/
233 	(*fep->ops->napi_clear_tx_event)(dev);
234 
235 	do_wake = do_restart = 0;
236 	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237 		dirtyidx = bdp - fep->tx_bd_base;
238 
239 		if (fep->tx_free == fep->tx_ring)
240 			break;
241 
242 		skb = fep->tx_skbuff[dirtyidx];
243 
244 		/*
245 		 * Check for errors.
246 		 */
247 		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248 			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249 
250 			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
251 				fep->stats.tx_heartbeat_errors++;
252 			if (sc & BD_ENET_TX_LC)	/* Late collision */
253 				fep->stats.tx_window_errors++;
254 			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
255 				fep->stats.tx_aborted_errors++;
256 			if (sc & BD_ENET_TX_UN)	/* Underrun */
257 				fep->stats.tx_fifo_errors++;
258 			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
259 				fep->stats.tx_carrier_errors++;
260 
261 			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262 				fep->stats.tx_errors++;
263 				do_restart = 1;
264 			}
265 		} else
266 			fep->stats.tx_packets++;
267 
268 		if (sc & BD_ENET_TX_READY) {
269 			dev_warn(fep->dev,
270 				 "HEY! Enet xmit interrupt and TX_READY.\n");
271 		}
272 
273 		/*
274 		 * Deferred means some collisions occurred during transmit,
275 		 * but we eventually sent the packet OK.
276 		 */
277 		if (sc & BD_ENET_TX_DEF)
278 			fep->stats.collisions++;
279 
280 		/* unmap */
281 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
282 				skb->len, DMA_TO_DEVICE);
283 
284 		/*
285 		 * Free the sk buffer associated with this last transmit.
286 		 */
287 		dev_kfree_skb(skb);
288 		fep->tx_skbuff[dirtyidx] = NULL;
289 
290 		/*
291 		 * Update pointer to next buffer descriptor to be transmitted.
292 		 */
293 		if ((sc & BD_ENET_TX_WRAP) == 0)
294 			bdp++;
295 		else
296 			bdp = fep->tx_bd_base;
297 
298 		/*
299 		 * Since we have freed up a buffer, the ring is no longer
300 		 * full.
301 		 */
302 		if (!fep->tx_free++)
303 			do_wake = 1;
304 		has_tx_work = 1;
305 	}
306 
307 	fep->dirty_tx = bdp;
308 
309 	if (do_restart)
310 		(*fep->ops->tx_restart)(dev);
311 
312 	if (!has_tx_work) {
313 		napi_complete(napi);
314 		(*fep->ops->napi_enable_tx)(dev);
315 	}
316 
317 	spin_unlock(&fep->tx_lock);
318 
319 	if (do_wake)
320 		netif_wake_queue(dev);
321 
322 	if (has_tx_work)
323 		return budget;
324 	return 0;
325 }
326 
327 /*
328  * The interrupt handler.
329  * This is called from the MPC core interrupt.
330  */
331 static irqreturn_t
332 fs_enet_interrupt(int irq, void *dev_id)
333 {
334 	struct net_device *dev = dev_id;
335 	struct fs_enet_private *fep;
336 	const struct fs_platform_info *fpi;
337 	u32 int_events;
338 	u32 int_clr_events;
339 	int nr, napi_ok;
340 	int handled;
341 
342 	fep = netdev_priv(dev);
343 	fpi = fep->fpi;
344 
345 	nr = 0;
346 	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
347 		nr++;
348 
349 		int_clr_events = int_events;
350 		int_clr_events &= ~fep->ev_napi_rx;
351 
352 		(*fep->ops->clear_int_events)(dev, int_clr_events);
353 
354 		if (int_events & fep->ev_err)
355 			(*fep->ops->ev_error)(dev, int_events);
356 
357 		if (int_events & fep->ev_rx) {
358 			napi_ok = napi_schedule_prep(&fep->napi);
359 
360 			(*fep->ops->napi_disable_rx)(dev);
361 			(*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
362 
363 			/* NOTE: it is possible for FCCs in NAPI mode    */
364 			/* to submit a spurious interrupt while in poll  */
365 			if (napi_ok)
366 				__napi_schedule(&fep->napi);
367 		}
368 
369 		if (int_events & fep->ev_tx) {
370 			napi_ok = napi_schedule_prep(&fep->napi_tx);
371 
372 			(*fep->ops->napi_disable_tx)(dev);
373 			(*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
374 
375 			/* NOTE: it is possible for FCCs in NAPI mode    */
376 			/* to submit a spurious interrupt while in poll  */
377 			if (napi_ok)
378 				__napi_schedule(&fep->napi_tx);
379 		}
380 	}
381 
382 	handled = nr > 0;
383 	return IRQ_RETVAL(handled);
384 }
385 
386 void fs_init_bds(struct net_device *dev)
387 {
388 	struct fs_enet_private *fep = netdev_priv(dev);
389 	cbd_t __iomem *bdp;
390 	struct sk_buff *skb;
391 	int i;
392 
393 	fs_cleanup_bds(dev);
394 
395 	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
396 	fep->tx_free = fep->tx_ring;
397 	fep->cur_rx = fep->rx_bd_base;
398 
399 	/*
400 	 * Initialize the receive buffer descriptors.
401 	 */
402 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
403 		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
404 		if (skb == NULL)
405 			break;
406 
407 		skb_align(skb, ENET_RX_ALIGN);
408 		fep->rx_skbuff[i] = skb;
409 		CBDW_BUFADDR(bdp,
410 			dma_map_single(fep->dev, skb->data,
411 				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
412 				DMA_FROM_DEVICE));
413 		CBDW_DATLEN(bdp, 0);	/* zero */
414 		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
415 			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
416 	}
417 	/*
418 	 * if we failed, fillup remainder
419 	 */
420 	for (; i < fep->rx_ring; i++, bdp++) {
421 		fep->rx_skbuff[i] = NULL;
422 		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
423 	}
424 
425 	/*
426 	 * ...and the same for transmit.
427 	 */
428 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
429 		fep->tx_skbuff[i] = NULL;
430 		CBDW_BUFADDR(bdp, 0);
431 		CBDW_DATLEN(bdp, 0);
432 		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
433 	}
434 }
435 
436 void fs_cleanup_bds(struct net_device *dev)
437 {
438 	struct fs_enet_private *fep = netdev_priv(dev);
439 	struct sk_buff *skb;
440 	cbd_t __iomem *bdp;
441 	int i;
442 
443 	/*
444 	 * Reset SKB transmit buffers.
445 	 */
446 	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
447 		if ((skb = fep->tx_skbuff[i]) == NULL)
448 			continue;
449 
450 		/* unmap */
451 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
452 				skb->len, DMA_TO_DEVICE);
453 
454 		fep->tx_skbuff[i] = NULL;
455 		dev_kfree_skb(skb);
456 	}
457 
458 	/*
459 	 * Reset SKB receive buffers
460 	 */
461 	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
462 		if ((skb = fep->rx_skbuff[i]) == NULL)
463 			continue;
464 
465 		/* unmap */
466 		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
467 			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
468 			DMA_FROM_DEVICE);
469 
470 		fep->rx_skbuff[i] = NULL;
471 
472 		dev_kfree_skb(skb);
473 	}
474 }
475 
476 /**********************************************************************************/
477 
478 #ifdef CONFIG_FS_ENET_MPC5121_FEC
479 /*
480  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
481  */
482 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
483 					       struct sk_buff *skb)
484 {
485 	struct sk_buff *new_skb;
486 
487 	/* Alloc new skb */
488 	new_skb = netdev_alloc_skb(dev, skb->len + 4);
489 	if (!new_skb)
490 		return NULL;
491 
492 	/* Make sure new skb is properly aligned */
493 	skb_align(new_skb, 4);
494 
495 	/* Copy data to new skb ... */
496 	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
497 	skb_put(new_skb, skb->len);
498 
499 	/* ... and free an old one */
500 	dev_kfree_skb_any(skb);
501 
502 	return new_skb;
503 }
504 #endif
505 
506 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
507 {
508 	struct fs_enet_private *fep = netdev_priv(dev);
509 	cbd_t __iomem *bdp;
510 	int curidx;
511 	u16 sc;
512 
513 #ifdef CONFIG_FS_ENET_MPC5121_FEC
514 	if (((unsigned long)skb->data) & 0x3) {
515 		skb = tx_skb_align_workaround(dev, skb);
516 		if (!skb) {
517 			/*
518 			 * We have lost packet due to memory allocation error
519 			 * in tx_skb_align_workaround(). Hopefully original
520 			 * skb is still valid, so try transmit it later.
521 			 */
522 			return NETDEV_TX_BUSY;
523 		}
524 	}
525 #endif
526 	spin_lock(&fep->tx_lock);
527 
528 	/*
529 	 * Fill in a Tx ring entry
530 	 */
531 	bdp = fep->cur_tx;
532 
533 	if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
534 		netif_stop_queue(dev);
535 		spin_unlock(&fep->tx_lock);
536 
537 		/*
538 		 * Ooops.  All transmit buffers are full.  Bail out.
539 		 * This should not happen, since the tx queue should be stopped.
540 		 */
541 		dev_warn(fep->dev, "tx queue full!.\n");
542 		return NETDEV_TX_BUSY;
543 	}
544 
545 	curidx = bdp - fep->tx_bd_base;
546 	/*
547 	 * Clear all of the status flags.
548 	 */
549 	CBDC_SC(bdp, BD_ENET_TX_STATS);
550 
551 	/*
552 	 * Save skb pointer.
553 	 */
554 	fep->tx_skbuff[curidx] = skb;
555 
556 	fep->stats.tx_bytes += skb->len;
557 
558 	/*
559 	 * Push the data cache so the CPM does not get stale memory data.
560 	 */
561 	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
562 				skb->data, skb->len, DMA_TO_DEVICE));
563 	CBDW_DATLEN(bdp, skb->len);
564 
565 	/*
566 	 * If this was the last BD in the ring, start at the beginning again.
567 	 */
568 	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
569 		fep->cur_tx++;
570 	else
571 		fep->cur_tx = fep->tx_bd_base;
572 
573 	if (!--fep->tx_free)
574 		netif_stop_queue(dev);
575 
576 	/* Trigger transmission start */
577 	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
578 	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
579 
580 	/* note that while FEC does not have this bit
581 	 * it marks it as available for software use
582 	 * yay for hw reuse :) */
583 	if (skb->len <= 60)
584 		sc |= BD_ENET_TX_PAD;
585 	CBDS_SC(bdp, sc);
586 
587 	skb_tx_timestamp(skb);
588 
589 	(*fep->ops->tx_kickstart)(dev);
590 
591 	spin_unlock(&fep->tx_lock);
592 
593 	return NETDEV_TX_OK;
594 }
595 
596 static void fs_timeout(struct net_device *dev)
597 {
598 	struct fs_enet_private *fep = netdev_priv(dev);
599 	unsigned long flags;
600 	int wake = 0;
601 
602 	fep->stats.tx_errors++;
603 
604 	spin_lock_irqsave(&fep->lock, flags);
605 
606 	if (dev->flags & IFF_UP) {
607 		phy_stop(fep->phydev);
608 		(*fep->ops->stop)(dev);
609 		(*fep->ops->restart)(dev);
610 		phy_start(fep->phydev);
611 	}
612 
613 	phy_start(fep->phydev);
614 	wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
615 	spin_unlock_irqrestore(&fep->lock, flags);
616 
617 	if (wake)
618 		netif_wake_queue(dev);
619 }
620 
621 /*-----------------------------------------------------------------------------
622  *  generic link-change handler - should be sufficient for most cases
623  *-----------------------------------------------------------------------------*/
624 static void generic_adjust_link(struct  net_device *dev)
625 {
626 	struct fs_enet_private *fep = netdev_priv(dev);
627 	struct phy_device *phydev = fep->phydev;
628 	int new_state = 0;
629 
630 	if (phydev->link) {
631 		/* adjust to duplex mode */
632 		if (phydev->duplex != fep->oldduplex) {
633 			new_state = 1;
634 			fep->oldduplex = phydev->duplex;
635 		}
636 
637 		if (phydev->speed != fep->oldspeed) {
638 			new_state = 1;
639 			fep->oldspeed = phydev->speed;
640 		}
641 
642 		if (!fep->oldlink) {
643 			new_state = 1;
644 			fep->oldlink = 1;
645 		}
646 
647 		if (new_state)
648 			fep->ops->restart(dev);
649 	} else if (fep->oldlink) {
650 		new_state = 1;
651 		fep->oldlink = 0;
652 		fep->oldspeed = 0;
653 		fep->oldduplex = -1;
654 	}
655 
656 	if (new_state && netif_msg_link(fep))
657 		phy_print_status(phydev);
658 }
659 
660 
661 static void fs_adjust_link(struct net_device *dev)
662 {
663 	struct fs_enet_private *fep = netdev_priv(dev);
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&fep->lock, flags);
667 
668 	if(fep->ops->adjust_link)
669 		fep->ops->adjust_link(dev);
670 	else
671 		generic_adjust_link(dev);
672 
673 	spin_unlock_irqrestore(&fep->lock, flags);
674 }
675 
676 static int fs_init_phy(struct net_device *dev)
677 {
678 	struct fs_enet_private *fep = netdev_priv(dev);
679 	struct phy_device *phydev;
680 	phy_interface_t iface;
681 
682 	fep->oldlink = 0;
683 	fep->oldspeed = 0;
684 	fep->oldduplex = -1;
685 
686 	iface = fep->fpi->use_rmii ?
687 		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
688 
689 	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
690 				iface);
691 	if (!phydev) {
692 		dev_err(&dev->dev, "Could not attach to PHY\n");
693 		return -ENODEV;
694 	}
695 
696 	fep->phydev = phydev;
697 
698 	return 0;
699 }
700 
701 static int fs_enet_open(struct net_device *dev)
702 {
703 	struct fs_enet_private *fep = netdev_priv(dev);
704 	int r;
705 	int err;
706 
707 	/* to initialize the fep->cur_rx,... */
708 	/* not doing this, will cause a crash in fs_enet_rx_napi */
709 	fs_init_bds(fep->ndev);
710 
711 	napi_enable(&fep->napi);
712 	napi_enable(&fep->napi_tx);
713 
714 	/* Install our interrupt handler. */
715 	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
716 			"fs_enet-mac", dev);
717 	if (r != 0) {
718 		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
719 		napi_disable(&fep->napi);
720 		napi_disable(&fep->napi_tx);
721 		return -EINVAL;
722 	}
723 
724 	err = fs_init_phy(dev);
725 	if (err) {
726 		free_irq(fep->interrupt, dev);
727 		napi_disable(&fep->napi);
728 		napi_disable(&fep->napi_tx);
729 		return err;
730 	}
731 	phy_start(fep->phydev);
732 
733 	netif_start_queue(dev);
734 
735 	return 0;
736 }
737 
738 static int fs_enet_close(struct net_device *dev)
739 {
740 	struct fs_enet_private *fep = netdev_priv(dev);
741 	unsigned long flags;
742 
743 	netif_stop_queue(dev);
744 	netif_carrier_off(dev);
745 	napi_disable(&fep->napi);
746 	napi_disable(&fep->napi_tx);
747 	phy_stop(fep->phydev);
748 
749 	spin_lock_irqsave(&fep->lock, flags);
750 	spin_lock(&fep->tx_lock);
751 	(*fep->ops->stop)(dev);
752 	spin_unlock(&fep->tx_lock);
753 	spin_unlock_irqrestore(&fep->lock, flags);
754 
755 	/* release any irqs */
756 	phy_disconnect(fep->phydev);
757 	fep->phydev = NULL;
758 	free_irq(fep->interrupt, dev);
759 
760 	return 0;
761 }
762 
763 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
764 {
765 	struct fs_enet_private *fep = netdev_priv(dev);
766 	return &fep->stats;
767 }
768 
769 /*************************************************************************/
770 
771 static void fs_get_drvinfo(struct net_device *dev,
772 			    struct ethtool_drvinfo *info)
773 {
774 	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
775 	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
776 }
777 
778 static int fs_get_regs_len(struct net_device *dev)
779 {
780 	struct fs_enet_private *fep = netdev_priv(dev);
781 
782 	return (*fep->ops->get_regs_len)(dev);
783 }
784 
785 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
786 			 void *p)
787 {
788 	struct fs_enet_private *fep = netdev_priv(dev);
789 	unsigned long flags;
790 	int r, len;
791 
792 	len = regs->len;
793 
794 	spin_lock_irqsave(&fep->lock, flags);
795 	r = (*fep->ops->get_regs)(dev, p, &len);
796 	spin_unlock_irqrestore(&fep->lock, flags);
797 
798 	if (r == 0)
799 		regs->version = 0;
800 }
801 
802 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803 {
804 	struct fs_enet_private *fep = netdev_priv(dev);
805 
806 	if (!fep->phydev)
807 		return -ENODEV;
808 
809 	return phy_ethtool_gset(fep->phydev, cmd);
810 }
811 
812 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
813 {
814 	struct fs_enet_private *fep = netdev_priv(dev);
815 
816 	if (!fep->phydev)
817 		return -ENODEV;
818 
819 	return phy_ethtool_sset(fep->phydev, cmd);
820 }
821 
822 static int fs_nway_reset(struct net_device *dev)
823 {
824 	return 0;
825 }
826 
827 static u32 fs_get_msglevel(struct net_device *dev)
828 {
829 	struct fs_enet_private *fep = netdev_priv(dev);
830 	return fep->msg_enable;
831 }
832 
833 static void fs_set_msglevel(struct net_device *dev, u32 value)
834 {
835 	struct fs_enet_private *fep = netdev_priv(dev);
836 	fep->msg_enable = value;
837 }
838 
839 static const struct ethtool_ops fs_ethtool_ops = {
840 	.get_drvinfo = fs_get_drvinfo,
841 	.get_regs_len = fs_get_regs_len,
842 	.get_settings = fs_get_settings,
843 	.set_settings = fs_set_settings,
844 	.nway_reset = fs_nway_reset,
845 	.get_link = ethtool_op_get_link,
846 	.get_msglevel = fs_get_msglevel,
847 	.set_msglevel = fs_set_msglevel,
848 	.get_regs = fs_get_regs,
849 	.get_ts_info = ethtool_op_get_ts_info,
850 };
851 
852 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
853 {
854 	struct fs_enet_private *fep = netdev_priv(dev);
855 
856 	if (!netif_running(dev))
857 		return -EINVAL;
858 
859 	return phy_mii_ioctl(fep->phydev, rq, cmd);
860 }
861 
862 extern int fs_mii_connect(struct net_device *dev);
863 extern void fs_mii_disconnect(struct net_device *dev);
864 
865 /**************************************************************************************/
866 
867 #ifdef CONFIG_FS_ENET_HAS_FEC
868 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
869 #else
870 #define IS_FEC(match) 0
871 #endif
872 
873 static const struct net_device_ops fs_enet_netdev_ops = {
874 	.ndo_open		= fs_enet_open,
875 	.ndo_stop		= fs_enet_close,
876 	.ndo_get_stats		= fs_enet_get_stats,
877 	.ndo_start_xmit		= fs_enet_start_xmit,
878 	.ndo_tx_timeout		= fs_timeout,
879 	.ndo_set_rx_mode	= fs_set_multicast_list,
880 	.ndo_do_ioctl		= fs_ioctl,
881 	.ndo_validate_addr	= eth_validate_addr,
882 	.ndo_set_mac_address	= eth_mac_addr,
883 	.ndo_change_mtu		= eth_change_mtu,
884 #ifdef CONFIG_NET_POLL_CONTROLLER
885 	.ndo_poll_controller	= fs_enet_netpoll,
886 #endif
887 };
888 
889 static struct of_device_id fs_enet_match[];
890 static int fs_enet_probe(struct platform_device *ofdev)
891 {
892 	const struct of_device_id *match;
893 	struct net_device *ndev;
894 	struct fs_enet_private *fep;
895 	struct fs_platform_info *fpi;
896 	const u32 *data;
897 	struct clk *clk;
898 	int err;
899 	const u8 *mac_addr;
900 	const char *phy_connection_type;
901 	int privsize, len, ret = -ENODEV;
902 
903 	match = of_match_device(fs_enet_match, &ofdev->dev);
904 	if (!match)
905 		return -EINVAL;
906 
907 	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
908 	if (!fpi)
909 		return -ENOMEM;
910 
911 	if (!IS_FEC(match)) {
912 		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
913 		if (!data || len != 4)
914 			goto out_free_fpi;
915 
916 		fpi->cp_command = *data;
917 	}
918 
919 	fpi->rx_ring = 32;
920 	fpi->tx_ring = 32;
921 	fpi->rx_copybreak = 240;
922 	fpi->napi_weight = 17;
923 	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
924 	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
925 		err = of_phy_register_fixed_link(ofdev->dev.of_node);
926 		if (err)
927 			goto out_free_fpi;
928 
929 		/* In the case of a fixed PHY, the DT node associated
930 		 * to the PHY is the Ethernet MAC DT node.
931 		 */
932 		fpi->phy_node = of_node_get(ofdev->dev.of_node);
933 	}
934 
935 	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
936 		phy_connection_type = of_get_property(ofdev->dev.of_node,
937 						"phy-connection-type", NULL);
938 		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
939 			fpi->use_rmii = 1;
940 	}
941 
942 	/* make clock lookup non-fatal (the driver is shared among platforms),
943 	 * but require enable to succeed when a clock was specified/found,
944 	 * keep a reference to the clock upon successful acquisition
945 	 */
946 	clk = devm_clk_get(&ofdev->dev, "per");
947 	if (!IS_ERR(clk)) {
948 		err = clk_prepare_enable(clk);
949 		if (err) {
950 			ret = err;
951 			goto out_free_fpi;
952 		}
953 		fpi->clk_per = clk;
954 	}
955 
956 	privsize = sizeof(*fep) +
957 	           sizeof(struct sk_buff **) *
958 	           (fpi->rx_ring + fpi->tx_ring);
959 
960 	ndev = alloc_etherdev(privsize);
961 	if (!ndev) {
962 		ret = -ENOMEM;
963 		goto out_put;
964 	}
965 
966 	SET_NETDEV_DEV(ndev, &ofdev->dev);
967 	platform_set_drvdata(ofdev, ndev);
968 
969 	fep = netdev_priv(ndev);
970 	fep->dev = &ofdev->dev;
971 	fep->ndev = ndev;
972 	fep->fpi = fpi;
973 	fep->ops = match->data;
974 
975 	ret = fep->ops->setup_data(ndev);
976 	if (ret)
977 		goto out_free_dev;
978 
979 	fep->rx_skbuff = (struct sk_buff **)&fep[1];
980 	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
981 
982 	spin_lock_init(&fep->lock);
983 	spin_lock_init(&fep->tx_lock);
984 
985 	mac_addr = of_get_mac_address(ofdev->dev.of_node);
986 	if (mac_addr)
987 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
988 
989 	ret = fep->ops->allocate_bd(ndev);
990 	if (ret)
991 		goto out_cleanup_data;
992 
993 	fep->rx_bd_base = fep->ring_base;
994 	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
995 
996 	fep->tx_ring = fpi->tx_ring;
997 	fep->rx_ring = fpi->rx_ring;
998 
999 	ndev->netdev_ops = &fs_enet_netdev_ops;
1000 	ndev->watchdog_timeo = 2 * HZ;
1001 	netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1002 	netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1003 
1004 	ndev->ethtool_ops = &fs_ethtool_ops;
1005 
1006 	init_timer(&fep->phy_timer_list);
1007 
1008 	netif_carrier_off(ndev);
1009 
1010 	ret = register_netdev(ndev);
1011 	if (ret)
1012 		goto out_free_bd;
1013 
1014 	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1015 
1016 	return 0;
1017 
1018 out_free_bd:
1019 	fep->ops->free_bd(ndev);
1020 out_cleanup_data:
1021 	fep->ops->cleanup_data(ndev);
1022 out_free_dev:
1023 	free_netdev(ndev);
1024 out_put:
1025 	of_node_put(fpi->phy_node);
1026 	if (fpi->clk_per)
1027 		clk_disable_unprepare(fpi->clk_per);
1028 out_free_fpi:
1029 	kfree(fpi);
1030 	return ret;
1031 }
1032 
1033 static int fs_enet_remove(struct platform_device *ofdev)
1034 {
1035 	struct net_device *ndev = platform_get_drvdata(ofdev);
1036 	struct fs_enet_private *fep = netdev_priv(ndev);
1037 
1038 	unregister_netdev(ndev);
1039 
1040 	fep->ops->free_bd(ndev);
1041 	fep->ops->cleanup_data(ndev);
1042 	dev_set_drvdata(fep->dev, NULL);
1043 	of_node_put(fep->fpi->phy_node);
1044 	if (fep->fpi->clk_per)
1045 		clk_disable_unprepare(fep->fpi->clk_per);
1046 	free_netdev(ndev);
1047 	return 0;
1048 }
1049 
1050 static struct of_device_id fs_enet_match[] = {
1051 #ifdef CONFIG_FS_ENET_HAS_SCC
1052 	{
1053 		.compatible = "fsl,cpm1-scc-enet",
1054 		.data = (void *)&fs_scc_ops,
1055 	},
1056 	{
1057 		.compatible = "fsl,cpm2-scc-enet",
1058 		.data = (void *)&fs_scc_ops,
1059 	},
1060 #endif
1061 #ifdef CONFIG_FS_ENET_HAS_FCC
1062 	{
1063 		.compatible = "fsl,cpm2-fcc-enet",
1064 		.data = (void *)&fs_fcc_ops,
1065 	},
1066 #endif
1067 #ifdef CONFIG_FS_ENET_HAS_FEC
1068 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1069 	{
1070 		.compatible = "fsl,mpc5121-fec",
1071 		.data = (void *)&fs_fec_ops,
1072 	},
1073 	{
1074 		.compatible = "fsl,mpc5125-fec",
1075 		.data = (void *)&fs_fec_ops,
1076 	},
1077 #else
1078 	{
1079 		.compatible = "fsl,pq1-fec-enet",
1080 		.data = (void *)&fs_fec_ops,
1081 	},
1082 #endif
1083 #endif
1084 	{}
1085 };
1086 MODULE_DEVICE_TABLE(of, fs_enet_match);
1087 
1088 static struct platform_driver fs_enet_driver = {
1089 	.driver = {
1090 		.owner = THIS_MODULE,
1091 		.name = "fs_enet",
1092 		.of_match_table = fs_enet_match,
1093 	},
1094 	.probe = fs_enet_probe,
1095 	.remove = fs_enet_remove,
1096 };
1097 
1098 #ifdef CONFIG_NET_POLL_CONTROLLER
1099 static void fs_enet_netpoll(struct net_device *dev)
1100 {
1101        disable_irq(dev->irq);
1102        fs_enet_interrupt(dev->irq, dev);
1103        enable_irq(dev->irq);
1104 }
1105 #endif
1106 
1107 module_platform_driver(fs_enet_driver);
1108